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Abstract Thisworkdevelops a globalminimization frame-
work for segmentation of high-dimensional data into two
classes. It combines recent convex optimization methods
from imagingwith recent graph- based variationalmodels for
data segmentation. Two convex splitting algorithms are pro-
posed, where graph-based PDE techniques are used to solve
some of the subproblems. It is shown that global minimiz-
ers can be guaranteed for semi-supervised segmentation with
two regions. If constraints on the volume of the regions are
incorporated, global minimizers cannot be guaranteed, but
can often be obtained in practice and otherwise be closely
approximated. Experiments on benchmark data sets show
that our models produce segmentation results that are com-
parable with or outperform the state-of-the-art algorithms.
In particular, we perform a thorough comparison to recent
MBO (Merriman–Bence–Osher, AMS-Selected Lectures in
Mathematics Series: Computational Crystal Growers Work-
shop, 1992) and phase fieldmethods, and show the advantage
of the algorithms proposed in this paper.
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1 Introduction

We consider the problem of clustering general high-dimen-
sional data into two classes. The data points are viewed as
nodes on a graph and the similarity between them is repre-
sented by the weight function defined on the edges between
the nodes. Recently, there has been a growing interest in for-
mulating such problems as variational or optimization prob-
lems, where the non-local total variation term plays a funda-
mental role in constructing the cost function.

A graphical framework is often used to exploit underlying
similarities in the data [3,17,59,63–65]. For example, spec-
tral graph theory [19,48] uses this approach to perform var-
ious tasks in imaging and data clustering. The graph Lapla-
cian, one of its fundamental concepts, is described in Sect. 2.

Graph-based formulations have been used extensively
for image processing applications [6,21,22,25,32,33,35,44,
52]. A typical framework involves the similarity graphwhere
each two vertices are given a weight measuring their simi-
larity. Buades et al. in [13] introduce a new non-local means
algorithm for image denoising and compare it to some of
the best methods. In [33], Grady describes a random walk
algorithm for image segmentation using the solution to a
Dirichlet problem. Elmoataz et al. present generalizations of
the graph Laplacian [25] for image denoising and manifold
smoothing. Couprie et al. in [21] propose a parameterized
graph-based energy function that unifies graph cuts, random
walker, shortest paths and watershed optimizations. We use
a non-local calculus formulation [57] to generalize the con-
tinuous formulation to a (non-local) discrete setting, while
other non-local versions for weighted graphs are described
in [25]. A comprehensive reference about casting continuous
PDEs in graph form is found in [34].

Our work involves semi-supervised clustering, where the
labeling of a small set of the data points is provided in
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advance. Such problems have been studied in [4,46] in a vari-
ational framework, where a Ginzburg–Landau (GL) func-
tional was defined on the graph and minimized by PDE tech-
niques, such as phase field [4] and the MBO (Merriman-
Bence-Osher) scheme [46]. MBO was originally formulated
in the Euclidean space as a numerical scheme for solving
evolution equations involving mean curvature motion of a
region boundary [47] and has also been used for image seg-
mentation [56]. Since the energy functional is non-convex
and the PDEs evolve in the steepest descent direction, these
approaches may potentially get stuck in unwanted local min-
ima.

On the other hand, in unsupervised clustering, there are
no a priori knowledge of the labeling of some of the data
points. In such cases, some knowledge of the sizes of each
class is typically incorporated in order to prevent the triv-
ial solution where all data points are assigned to the same
class. The normalized cut and the Cheeger ratio cut [18,52]
are two popular such cost functions that favor clusterings
with classes of equal size. Recent work has been focused on
greatly simplifying the energy landscape [10,12,37,53,54]
in such problems by writing them as constrained binary opti-
mization problems involving the total variation on graphs.
Even though the simplified problems are not completely con-
vex, experiments demonstrate that they can often avoid bad
local minima. Supervised constraints can theoretically also
be incorporated into the framework [9], although the experi-
ments were focused on undersupervised clustering. Another
interesting paper [45] generalized well known variational
image segmentation models consisting of a fidelity and reg-
ularization term to graphs, paying particular attention to the
Chan-Vesemodel [15] in experiments, andgeneralized recent
convex relaxationmethods [16] for the graph versions of such
models.

It is well known in combinatorial optimization that cer-
tain graph partition problems can be formulated as min-cut
problems [27], which aim to find the minimal separation of
the graph into two sets, one of them containing a predefined
source node and the other a predefined sink node. The max-
flow problem is the equivalent dual problem and can be glob-
ally optimized by classical combinatorial algorithms such as
Ford-Fulkerson [27] or the push-relabel method [29]. Spe-
cialized versions of such algorithms have recently become
popular for solving certain optimization problems in image
processing and computer vision [5,6,41].

There are some fundamental differences between the
imaging applications and more general clustering problems
on graphs. In imaging, most of the data is incorporated in a
strong fidelity term, which measures how well each pixel fits
to each region. Edges are also defined between neighboring
data points on a regular grid, but they are mainly used for
smoothing purposes. In more general clustering problems,
the data is mainly incorporated on edges between pairs of

data points, and the fidelity term is zero at the majority of the
data points.

The combinatorial max-flow algorithm of [5] was devel-
oped with specific imaging problems and a regular grid in
mind. We anticipate that it is not easily transferable to graph
clustering while still maintaining a high efficiency; one rea-
son being that the paths between the source node and sink
node aremuch longer. Such combinatorial algorithms also do
not exploit PDE techniques to approximate the large graph,
like the approximate eigendecomposition of the graph Lapla-
cian as in [4,46].

This paper proposes an efficient global optimization
framework for semi-supervised clustering problems, formu-
lated in the same variational form as [4,46]. Instead of apply-
ing classical combinatorial algorithms, we build on more
recent work from imaging, which formulates two class par-
tition problems as convex variational problems [8,16,30]
or variational min-cut/max-flow problems [61,62]. Convex
optimization algorithms were used in [8,30,61,62] to split
the problems into simpler subproblems, each of which could
be solved by PDE techniques. In this paper, we describe
the extension of the variational min-cut/max-flow duality in
[61,62] and of the algorithm in [30,60] to a more general
graph setting to solve a more general clustering problem.
Here, the two global minimization methods are referred to
as “max-flow” and “primal augmented Lagrangian” algo-
rithms, respectively. The new subproblems are solved by
graph-based PDE techniques. We also show how constraints
on the size of each class can be incorporated by a small mod-
ification of the max-flow algorithm.

Our global minimization algorithms are tested on several
benchmark data sets, and we compare them with the phase
field [4] andMBO [46] algorithms as well as with each other.
One notable finding is that if the known data points are not
distributed relatively uniformly among the entire data set, the
local minimization methods may have difficulty finding the
correct solution.

The paper is organized as follows. In Sect. 2, we review
the graphical framework and some previous related work. In
Sect. 3,wepresent our novel graph-based clusteringmethods.
The results are shown in Sect. 4. We conclude in Sect. 5.

2 The Graphs Framework

We consider the data as vertices on a graph. Let G be an
undirected graph G = (V, E), where V and E are the sets of
vertices and edges, respectively. Each edge is equipped with
a weight denoted by the weight function w(x, y), which sat-
isfies the symmetric property and measures the similarity
between vertices x and y. A big value of w(x, y) indicates
that nodes x and y are very similar, while a small value of
w(x, y) indicates that they are dissimilar, and thus less likely
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to belong to the same class. The challenge is to use the right
weight function- the one that measures the important classi-
fication attributes of each pair of vertices.

One popular choice for theweight function is theGaussian

w(x, y) = e− d(x,y)2

σ2 , (1)

where d(x, y) is some distancemeasure between the two ver-
tices x and y, and σ is a parameter to be chosen. For example,
if the data set consists of points in R

2, d(x, y) can be the
Euclidean distance between point x and point y, since points
farther away are less likely to belong to the same cluster than
points closer together. For images, d(x, y) can be defined as
the weighted 2-norm of the difference of the feature vectors
of pixels x and y, where the feature vector of a node consists
of intensity values of pixels in its neighborhood, as described
in [28].

Another choice for the similarity function used in this
work is the Zelnik-Manor and Perona weight function[50]
for sparse matrices:

w(x, y) = e
− d(x,y)2√

τ (x)τ (y) , (2)

where the local parameter τ(x) = d(x, z)2, and z is the Mth

closest vertex to vertex x .
Note that it is not necessary to use a fully connected graph

setting, whichmight be a computational burden. Specifically,
the fully connected graph can be approximated by a much
smaller graph by only including edges in E between the M
nearest neighbors for each node in V, i.e., only the edges
with large weight w. In this paper, we make use of such an
approximation; our edge set includes only edges between
vertices that are near to each other. Specifically, we include
an edge between vertices x and y only if x is among M
nearest neighbors of y or vice versa.

ThematrixW is defined asWxy = w(x, y) and the degree
of a vertex x ∈ V as

d(x) =
∑

y∈V
w(x, y). (3)

We letD to be the diagonal matrix with elements d(x) on the
diagonal.

We use a graphical framework because it simplifies the
processing of high-dimensional data and provides a way to
deal with nonlinearly separable classes.

2.1 Well Known Operators in Graph Form

We define operators on graphs in a similar fashion as done in
[36,57], where the justification for these choices is shown.

Assume m is the number of vertices in the graph and let

V ∼= R
m and E ∼= R

m(m−1)
2 be Hilbert spaces (associated

with the set of vertices and edges, respectively) defined via
the following inner products:

〈λ, γ 〉V =
∑

x

λ(x)γ (x)d(x)r ,

〈ψ, φ〉E = 1

2

∑

x,y

ψ(x, y)φ(x, y)w(x, y)2q−1

for some r ∈ [0, 1] and q ∈ [ 12 , 1]. Let us also define the
following norms:

‖λ‖V = √〈λ,λ〉V =
√∑

x

λ(x)2d(x)r ;

‖φ‖E = √〈φ, φ〉E =
√
1

2

∑

x,y

φ(x, y)2w(x, y)2q−1;

‖φ‖E,∞ = max
x,y

|φ(x, y)|.
The gradient operator ∇ : V → E is then defined as:

(∇λ)w(x, y) = w(x, y)1−q(λ(y) − λ(x)). (4)

The Dirichlet energy does not depend on r or q:

1

2
‖∇λ‖2E = 1

4

∑

x,y

w(x, y)(λ(x) − λ(y))2. (5)

The divergence div : E → V is defined as the adjoint of the
gradient:

(divw φ)(x) = 1

2d(x)r
∑

y

w(x, y)q(φ(x, y) − φ(y, x)),

(6)

where we define the adjoint using the following definition:
〈∇u, φ〉E = −〈u, divw φ〉V .

We now have a family of graph Laplacians�r = divw ∇̇ :
V → V:

(�wλ)(x) =
∑

y

w(x, y)

d(x)r
(λ(y) − λ(x)). (7)

Viewing λ as a vector in Rm , we can write

−�wλ = (D1−r − D−rW)λ. (8)

The case with r = 0 is the unnormalized Laplacian

L = D − W. (9)

However, the matrix L is usually scaled to guarantee conver-
gence to the continuum differential operator in the limit of
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large sample size [4]. Although several versions exist, two
popular versions are the symmetric Laplacian

Ls = D− 1
2LD− 1

2 = I − D− 1
2WD− 1

2 (10)

and the random walk Laplacian (r = 1)

Lrw = D−1L = I − D−1W. (11)

The advantage of the former formulation is its symmetric
property which allows for more efficient implementations.

A family of anisotropic total variations T Vw : V → R

can now be defined:

T Vw(λ) = max
{〈divw φ,λ〉V : φ ∈ E, ‖φ‖E,∞ ≤ 1

}

= 1

2

∑

x .y

w(x, y)q |λ(x) − λ(y)| . (12)

It remains to choose the parameters q and r . We choose
q = 1 as in [57], where it is shown that for any r , T Vw is the
Γ -limit (Gamma convergence) of a sequence of graph-based
GL-type functionals:

Theorem 1 GLε
Γ−→ GL0 as ε → 0 where

GLε(λ) = ‖∇λ‖2E + 1

ε

∑

x

W (λ(x))

= 1

2

∑

x,y

w(x, y)(λ(x) − λ(y))2 + 1

ε

∑

x

W (λ(x))

GL0(λ) =
{
T Vw(λ)with q=1 for λ s.t. λ(x) ∈ {0, 1}
∞ otherwise

Proof See Theorem 3.1 of [57]. �
Here W is the double-well potential W (u) = u2(u − 1)2

having two zeros (in our case 0 and 1), and ε is a small
positive number. It is also shown in the paper (specifically
Theorem 3.6) that the addition of a fidelity term is compatible
withΓ -convergence. Since one of the algorithmswe compare
our methods to deals with the GL functional directly, to be
consistent, we use the above definitions with q = 1 in our
formulations.

Remark It is noted in [57] that although the first term in the
continuous GL functional

GLc(λ) = ε

∫
|∇λ|2dx + 1

ε

∫
W (λ)dx

is scaled by ε, the first term of GLε contains no ε. This
occurs because the Dirichlet energy inGLc is unbounded for
functions λ of bounded variation and taking on two values of
theminima of the double-well potential (almost everywhere).
However, the difference terms of GLε are finite even in the
case of binary functions, and no rescaling of the first term is
necessary.

We choose r = 1 because it results in a normalized ran-
dom walk Laplacian and the eigenvectors as well as the cor-
responding eigenvalues of the matrix can be efficiently cal-
culated. Although the randomwalk Laplacian matrix itself is
not symmetric, spectral graph theory described in [19] shows
that the eigenvectors of the random walk Laplacian can be
directly computed from knowing the diagonal matrix D and
the eigenvectors of the symmetric graph Laplacian (which is
a symmetric matrix) Ls. In particular, λ is an eigenvalue of
Lrw with eigenvector u if and only if λ is an eigenvalue ofLs

with eigenvector w = D
1
2 u. This is proved by multiplying

the eigenvalue equation Lrwu = λu by D
1
2 from the left and

then substituting w = D
1
2 u, obtaining Lsw = λw.

We take advantage of this property by calculating the
eigenvalues and eigenvectors of the symmetric graph Lapla-
cian (since symmetric matrices allow for more efficient
implementations) and then using this information to calculate
the same for the random walk Laplacian.

To summarize, we use the above operator definitions with
q = 1 and r = 1.

In this work, we use the notation λ(x) to denote the value
of λ at node x ∈ V that provides information about the class
membership of the node. Specifically, we use λ(x) = 0 to
denote the fact that node x belongs to class 1, and λ(x) = 1
to denote that it belongs to class 2.

2.2 Partition Problems on Graphs

In this work, we are interested in solving partition problems
of the form

min
S⊂V

∑

(x,y)∈E : x∈S, y∈V \S
w(x, y), (13)

which is the formulation of the minimum cut problem, under
supervised constraints

S ⊇ V f , V \S ⊇ V b (14)

and an optional volume constraint

|S| = a|V |,
where 0 < a < 1. V f ⊂ V is a set of nodes that are known a
priori to belong to the region S and V b ⊂ V is a set of nodes
that are known to belong to region V \S. Variations of this
problem have been vastly explored in literature. For example,
in [11], the authors describe an algorithm which minimizes a
normalized version of the cut, specifically the balanced cut.
A multiclass version of this method is introduced in [9].

By defining a binary function

λ(x) :=
{
1, x ∈ S
0, x ∈ V \S

the above problem can be expressed as
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min
λ∈B

EP (λ) = T Vw(λ) +
∑

x∈V
f (λ(x), x), (15)

where

T Vw(λ) = 1

2

∑

x .y

w(x, y) |λ(x) − λ(y)|

as defined earlier (with q = 1) and

B = {λ : V �→ {0, 1}} (16)

is the set of binary functions indicating the partition. Here,
f (λ(x), x) is a fidelity term which incorporates the super-
vised constraints (14). It typically takes the form of

f (λ(x), x) = η(x)
∣∣∣λ(x) − λ

0(x)
∣∣∣
2
, (17)

where λ0 is a binary function taking value 1 in V f and 0
in V b, and η(x) is a function that takes on a large constant
value η on fidelity points V f ∪V b and zero elsewhere. If η is
chosen sufficiently large, it can be guaranteed that the solu-
tionλ satisfies the supervised constraints. In [45], the authors
propose solving a similar minimization problem by introduc-
ing nonlocal global minimizers of active contour models on
graphs.

In addition, when the size of the two classes is known, the
volume of the regions may be enforced to satisfy a constraint
of the form

∑

x∈V
λ(x) = a|V |, (18)

where a is the fraction of the nodes belonging to class 2, e.g.
a = 1

2 enforces partitions of equal volume. The goal of this
is to create an algorithm that requires a much smaller fidelity
set (to produce an accurate classification) than otherwise,
because we also have the information about class size.

In previous work [4], the problem (15) was formulated as
the minimization of a GL functional on graphs with a fidelity
term

GLε(λ) = ‖∇λ‖2E + 1

ε

∑

x

W (λ(x)) + f (λ(x), x), (19)

where

‖∇λ‖2E = 1

2

∑

x,y

w(x, y)(λ(x) − λ(y))2

as defined before. Note that as ε → 0, in the limit of gamma
convergence, the sum of first two terms of the energy con-
verge to the total variation term, making the energy exactly
the same as one in (15). The problem is solved using gra-
dient descent and an efficient convex splitting scheme. This
method will be referred to as “binary GL” in the paper, and
we compare it to our work.

In [46], (19) is solved numerically by a variation of the
MBO scheme [47], amethod to approximatemotion bymean
curvature. To make everything consistent with the notation
and theorems stated in the paper, we include an extra scaling
in our implementation of the method in [46], and the justi-
fication is described shortly. We note that this change in the
method did not exacerbate the results as compared to those of
the original method; in fact, it produced very little change in
any simulation. This algorithm will be referred to as “binary
MBO” in the paper, andwe compare it to our new algorithms.
The discretized version of the algorithm is the following:

Starting with some initial classification λ ∈ {0, 1}, alter-
nate between the following two steps until the stopping cri-
terion is satisfied:

1. Heat equation with forcing term:

λ
n+ 1

2 − λn

dt
= 2�wλ

n+1 − 1

d(x)r
∂ f (λ(x), x)

∂λ
. (20)

2. Thresholding:

λ
n+1(x) =

{
1, if λ

n+ 1
2 (x) ≥ 0.5,

0, if λ
n+ 1

2 (x) < 0.5.
(21)

Here, after the second step, λn+1(x) can take only two values
of 1 or 0; thus, this method is appropriate for binary segmen-
tation.

Following [46], (20) is solved by a semi-implicit scheme,
where the Laplacian term is calculated implicitly, and the
terms are considered as a linear combination of the eigen-
vectors of the random walk Laplacian.

To show the general idea of the derivation, we start with
the GL functional on graphs (19). One can rewrite it using
inner product notation:

GLε(λ) = ‖∇λ‖2E + 1

ε
〈D−rW (λ(x)), 1〉V

+〈D−r f (λ(x), x), 1〉V , (22)

where (D−rW (λ))(x) = d(x)−rW (λ(x)). The factor
d(x)−r is needed to cancel the factor d(x)r in the V- inner
product.

The Allen-Cahn equation can then be derived using the
V-gradient flow associated with GLε . We have

d

dt
GLε(λ + tγ )|t=0 = −2〈�wλ, γ 〉V

+ 1

ε
〈D−rW ′(λ(x)), γ 〉V

+〈D−r ∂ f

∂λ
(λ(x), x), γ 〉V . (23)
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The Allen-Cahn equation is then

λ̇(x) = 2�wλ − 1

εd(x)r
W ′(λ(x))

− 1

d(x)r
∂ f

∂λ
(λ(x), x). (24)

The above equation can be solved using a time-splitting
scheme, where the splitting occurs so that the double-well
potential term is separated. The first step is

λ̇(x) = 2�wλ − 1

d(x)r
∂ f

∂λ
(λ(x), x) (25)

and the second step (with the double-well potential) is just
thresholding in the ε → 0 limit. By alternating between
these two steps, one can form an approximate solution of the
Allen-Cahn equation (24).

Such approaches (binary GL and binary MBO methods)
converge to the nearest local minimizer from a given ini-
tialization. In general, one cannot guarantee that the desired
global minimizer is obtained. The subject of this work is
to develop a convex optimization framework for minimizing
(15) which is guaranteed to obtain the global minimizer. Var-
ious algorithms are developed for solving the convex prob-
lems.

3 Global Optimization for Partition Problems on
Graphs

The problem (15) is non-convex because the binary side con-
straints (16) are non-convex. We show that the binary con-
straints can be replaced by their convex hull [0, 1] to obtain
an exact convex formulation aswas shown in [16] for images.
Define first the functions

Cs(x) = f (0, x) , Ct (x) = f (1, x), ∀x ∈ V,

g(φ(x), x) = Ct (x)φ(x) + Cs(x)(1−φ(x)), ∀x ∈V . (26)

The problem

min
λ∈B

EP (λ) = T Vw(λ) +
∑

x∈V
g(λ(x), x) (27)

is equivalent to the formulation (15). The proof is obvious as
g(φ(x), x) = f (φ(x), x) for all binary φ.

The convex relaxed problem is formulated as follows:

min
λ∈B′ E

P (λ) = T Vw(λ) +
∑

x∈V
g(λ(x), x), (28)

where

B′ = {λ : V �→ [0, 1]}. (29)

In case of images and local differential operators, it was
shown in [16] Theorem 1 that the minimizer of the convex

problem can be thresholded to yield a binary global mini-
mizer of the original problem.Generalizationswere proposed
in [7] to continuous manifolds arising from patch-based non-
local operators. A generalization of the theorem to discrete
graphs was proposed in [45], although a formal proof was
not included. Here we state the same result as in [45] and
give a complete proof.

Theorem 2 Let λ∗ be a minimizer of (28). Denote by λ
 :
V �→ {0, 1} the binary function

λ

(x) =

{
1 , if λ∗(x) ≥ 


0 , if λ∗(x) < 

. (30)

Then for almost every 
 ∈ (0, 1], λ
 is a global minimizer of
the non-convex problem (27).

Proof For any function λ ∈ B′ and for any x ∈ V , if λ(x) ∈
[0, 1], then ∫ 1

0 λ
(x) d
 = λ(x). Therefore, for each x ∈ V ,
∫ 1

0
g(λ
(x), x) d


=
∫ 1

0
λ


(x)Ct (x) + (1 − λ

(x))Cs(x) d


= λ(x)Ct (x) + (1 − λ(x))Cs(x) = g(λ(x), x). (31)

By the coarea formula, we have that
∫ 1

0
T Vw(λ


) d
 = T Vw(λ) .

For a proof of the coarea formula on graphs, see Appendix
B of [58].

Combining the above properties, we obtain that for any
λ ∈ B′,
∫ 1

0
EP (λ


) d
 =
∑

x∈V

∫ 1

0
(T Vw(λ


) + g(λ
(x), x))d


=
∑

x∈V
T Vw(λ) + g(λ(x), x)

= EP (λ). (32)

For a λ that minimizes the energy, clearly EP (λ) ≤ EP (λ
)

for any 
 ∈ (0, 1]. However, equality (32) can then only be
true provided EP (λ) = EP (λ
) for almost every 
 ∈ (0, 1].
In otherwords,λ
 alsominimizes the energy for almost every

 ∈ (0, 1]. �

In order to solve (28), we consider two main algorithms.
The first is based on solving a dual formulation of the prob-
lem, which can be identified as amaximum-flow problem, by
convex optimization techniques. It will be referred to as the
“max-flow” method in this paper. We present three versions
of this algorithm: one without hard supervised constraints
(Algorithm 1), one with hard supervised constraints (Algo-
rithm1s), and onewith balancing constraints (Algorithm1b).
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The second algorithm (Algorithm 2) solves the primal prob-
lem by the augmented Lagrangian technique, and will be
denoted the “primal augmented Lagrangian” method in this
paper.

3.1 Max-flow Algorithm Without Balancing Constraints

In graph theory, themax-flowproblem [27] aims tomaximize
the flow from a source node s to a sink node t , which are both
connected by edges to the nodes in V .We let ps, pt : V �→ R

denote the flow variables on sink and source edges and
p : E �→ R represent the flow on edges between pairwise
points in V , where E ⊂ V × V . The upper capacities on the
source edges are denoted by Cs and on sink edges by Ct , and
there is no lower bound on the capacities. The flows p(x, y)
on the edges (x, y) are bounded by |p(x, y)| ≤ w(x, y). The
amount of flow in the graph can be expressed as the amount of
flow on the source edges, which we want to maximize under
flow capacity and flow conservation constraints. In this sec-
tion, we describe two max-flow problems. The first is dual to
the problem (15) with fidelity term, and consequently solves
the original problem (13) provided the penality parameter
η is high enough. The second max-flow problem incorpo-
rates the supervised constraints directly without the need for
a very large penalty term. The following derivations extend
the continuous max-flow problem [61,62] from images to
general graphs.

3.1.1 Max-flow Formulation with Supervised Constraints as
Fidelity Term

The following problem can be interpreted as a max-flow
problem over the graph and is shown to be dual to the convex
partition problem (28).

max
ps ,pt ,p

{
P(ps, pt , p) =

∑

x∈V
ps(x)

}
(33)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (34)

ps(x) ≤ Cs(x), ∀x ∈ V ; (35)

pt (x) ≤ Ct (x), ∀x ∈ V ; (36)

divw p(x) − ps(x) + pt (x) = 0, ∀ x ∈ V . (37)

where (34) is the flow capacity constraint on edges between
pairwise nodes, (35) and (36) are flow capacities on the
source and sink edges, and (37) is the flow conservation con-
straint. The objective function (33)measures the total amount
of flow on the graph. Due to constraint (35), the maximiza-
tion problem (33) is bounded above by

∫
Ω
Cs(x), which is

finite provided f (φ(x), x) is bounded (true for the data terms
considered in this work).

It is well known that the maximum-flow problem is equiv-
alent to the min-cut problem, where the goal is to find a parti-
tion that minimizes the sum of the weights between vertices
of the two regions. In classical max-flow min-cut theory, to
obtain the final classification by solving the maximum-flow
problem, one canuse the informationof theflowon the source
and sink edges. If for x ∈ V , there is a non-saturated path
between s and x , then x is in class 1. If there is a non-saturated
path between x and t , then x is in class 2.

In this paper, we instead solve the max-flow problem (33)
by continuous optimization.The solution to themin-cut prob-
lem can be obtained directly from the Lagrange multiplier
for the flow conservation constraint (37). Introducing such a
Lagrange multiplier for the flow conservation constraint (37)
leads to the primal-dual formulation of (33):

min
λ

max
ps ,pt ,p

{
E(ps, pt , p;λ)

=
∑

x∈V
ps(x) +

∑

x∈V
λ(x)

(
divw p − ps + pt

)}
(38)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (39)

ps(x) ≤ Cs(x), ∀x ∈ V ; (40)

pt (x) ≤ Ct (x), ∀x ∈ V ; (41)

Rearranging the terms, we obtain

min
λ

max
ps ,pt ,p

{
E(ps, pt , p;λ)

=
∑

x∈V

{(
1 − λ

)
ps + λpt + λ divw p

} }
(42)

subject to (39), (40) and (41).
The integrand of thefirst two terms of (42) can be rewritten

for each x ∈ Ω as

sup
ps (x)≤Cs (x)

((1−λ)ps)(x) =
{

((1−λ)Cs)(x) if λ(x)≤1
∞ if λ(x)>1

(43)

sup
pt (x)≤Ct (x)

λ(x)pt (x) =
{

(λCt )(x) if λ(x) ≥ 0
∞ if λ(x) < 0.

(44)

Note that (42) is bounded above. This can be seen by defining
the zero function ∅(x) = 0 ∀x ∈ Ω . From constraints (40)
it follows that infλ P(λ) ≤ P(∅) = ∫

Ω
Cs(x) dx , which is

finite since Cs is uniformly bounded. From (43) and (44), an
optimal variable λ must therefore satisfy the constraints

λ(x) ∈ [0, 1] ∀ x ∈ Ω. (45)

Otherwise, the primal-dual energy (42) would be infinite,
contradicting boundedness from above.
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The last term of (42) can be rewritten using the dual for-
mulation of total variation (12) as

max‖p‖E,∞≤1
〈divw p,λ〉V = T Vw(λ) . (46)

Combinedwith the observation (45), this implies that an opti-
mal variable λ must be contained in the set B′.

By combining (43), (44) and (46), we see that by max-
imizing the above problem for ps, pt and p, we obtain the
closed form expression (28) subject to the constraint (29).
Existence of dual and primal-dual solutions follows by the
minimax theorem, Prop. 2.4 of [24] Chapter VI.

3.1.2 Max-flow Formulation with Hard Supervised
Constraints

We also describe another formulation of the problem, which
avoids using a fidelity term that is forced to take on a very
large value of η to enforce that λ satisfies the supervised
constraints. Define first the binary functions

v f (x) =
{
1, x ∈ V f

0, otherwise
, vb(x) =

{
0, x ∈ V b

1, otherwise
,

and consider the following modification of the max-flow
problem (75):

max
ps ,pt ,p

∑

x∈V
(vb ps − v f pt ) (47)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (48)

ps(x) ≤ 0, ∀x ∈ V ; (49)

pt (x) ≤ 0, ∀x ∈ V ; (50)

divw p(x) − ps(x) + pt (x) = 0, ∀ x ∈ V . (51)

Introducing the Lagrangemultiplier λ for constraint (37), we
obtain the following Lagrangian formulation after rearrange-
ment of the terms:

min
λ

max
ps ,pt ,p

{
E(ps, pt , p;λ)

=
∑

x∈V

{(
vb − λ

)
ps + (λ − v f )pt + λ divw p

} }
(52)

As there are no lower bounds on ps and pt , it can be observed
that optimal solutions λ must satisfy the constraints

v f ≤ λ ≤ vb, (53)

otherwise the energy could bemade arbitrarily large.Bymax-
imizing for the flows ps, pt and p, we therefore obtain the
primal problem

min
λ∈B′ T Vw(λ) (54)

subject to (53). Ifλ∗ is a solution to (54), thenλ∗ is obviously
also a solution to (28) provided the penalty parameter η in
the fidelity term of (28) is chosen sufficiently high.

3.1.3 Algorithms

The dual problems (33) or (47) are solved by the augmented
Lagrangian method as in [61,62]. To solve (33), construct
first the augmented Lagrangian function corresponding to
(33):

Lc(ps, pt , p,λ) =
∑

x∈V

{
ps + λ(divw p − ps + pt )

}

− c

2
‖divw p − ps + pt‖22 , (55)

where ‖s‖22 = ∑
x∈V |s(x)|22 . An augmented Lagrangian

method can be applied by alternatively maximizing Lc for
the dual variables ps, pt and p with constraints (39–41) and
updating the Lagrange multiplier λ. The max-flow algorithm
for (33) with supervised constraints as a fidelity term is out-
lined as “Algorithm1.” Themax-flow algorithm for (47)with
hard supervised constraints is outlined as “Algorithm 1s”

Algorithm 1Max-flow Algorithm

Initialize p1s , p
1
t , p

1 and λ1. For k = 1, ... until conver-
gence:

• Optimize p flow

pk+1 = arg max
|p(e)|≤W (e) ∀e∈E

− c

2
‖divw p − Fk‖22, (56)

where Fk = psk − pt k + λk

c is fixed.
• Optimize source flow ps

pk+1
s = arg max

ps (x)≤Cs (x) ∀x∈V

∑

x∈V
ps − c

2
‖ps − Gk‖22, (57)

where Gk = pt k + divw pk+1 − λk

c is fixed.
• Optimize sink flow pt

pk+1
t = arg max

pt (x)≤Ct (x) ∀x∈V
− c

2
‖pt − Hk‖22, (58)

where Hk = psk+1 − divw pk+1 + λk

c is fixed.
• Update λ

λ
k+1 = λ

k − c (divw pk+1 − pk+1
s + pk+1

t ) .
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To solve (47), construct the augmented Lagrangian func-
tion:

Lc(ps, pt , p,λ) =
∑

x∈V

{
vb ps−v f pt+λ(divw p− ps+ pt )

}

− c

2
‖divw p − ps + pt‖22 . (59)

The augmented Lagrangian method for (47) becomes:

Algorithm 1s Supervised Max-flow Algorithm

Initialize p1s , p
1
t , p

1 and λ1. For k = 1, ... until conver-
gence:

• Optimize p flow

pk+1 = arg max
|p(e)|≤W (e) ∀e∈E

− c

2
‖divw p − Fk‖22, (60)

where Fk = psk − pt k + λk

c is fixed.
• Optimize source flow ps

pk+1
s = arg max

ps (x)≤Cs (x) ∀x∈V

∑

x∈V
vb ps − c

2
‖ps − Gk‖22,

(61)

where Gk = pt k + divw pk+1 − λk

c is fixed.
• Optimize sink flow pt

pk+1
t = arg max

pt (x)≤Ct (x) ∀x∈V
−

∑

x∈V
v f pt − c

2
‖pt − Hk‖22,

(62)

where Hk = psk+1 − divw pk+1 + λk

c is fixed.
• Update λ

λ
k+1 = λ

k − c (divw pk+1 − pk+1
s + pk+1

t ) .

Due to the relation between problem (52) and problem
(28), the output λ at convergence will be a solution to (28).
Similarly, ifη is chosen sufficiently high in (28), then solution
λ to (42) will also be a solution to (28).

By Theorem 1, one can obtain a partition which solves
(27) by the thresholding procedure described in (30).

The subproblems (56) and (60) for updating p can either
be solved by inexactly a few iterations of Chambolle’s algo-
rithm [14], or in one gradient ascent step as follows:

pk+1 = ΠW

(
pk + c∇w(divw pk − Fk)

)
. (63)

Above, ΠW is a projection operator which is defined as

ΠW (p(x, y))

=
{
p(x, y) if |p(x, y)| ≤ 1,

sgn(p(x, y))W (x, y) if |p(x, y)| > 1,
(64)

where sgn is the sign function. There are extended conver-
gence theories the augmented Lagrangianmethod in case one
of the subproblems are solved inexactly, see e.g., [26,30].
In our experience, one gradient ascent iteration leads to the
fastest overall speed of convergence.

The subproblems (57) and (58) can be solved by

ps(x) = min(Gk(x) + 1

c
,Cs(x)); (65)

pt (x) = min(Hk(x),Ct (x)). (66)

The subproblems (61) and (62) can be solved by

ps(x) = min(Gk(x) + vb

c
,Cs(x)); (67)

pt (x) = min(Hk(x) − v f

c
,Ct (x)). (68)

Note that the gradient and divergence operators in the algo-
rithm are constructed using the graphical framework, as
shown by equations (4) and (6).

3.2 Max-flow Algorithm with Balancing Constraints

This section demonstrates how to incorporate balancing con-
straints of the form (18), which take into account the size of
the classes.Volume constraints have been proposed for image
segmentation models in a convex framework in [40,49]. We
propose an efficient algorithm for incorporating the hard vol-
ume constraint (18) on graphs by slightly modifying the dual
max-flow problem using a new variable ρ : V → R as
follows:

max
ps ,pt ,p,ρ

{
P(ps, pt , p) =

∑

x∈V
(ps(x) − aρ)

}
(69)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (70)

ps(x) ≤ Cs(x), ∀x ∈ V ; (71)

pt (x) ≤ Ct (x), ∀x ∈ V ; (72)

divw p(x) − ps(x) + pt (x) + ρ = 0, ∀x ∈ V ; (73)

ρ is a constant function. (74)
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Introducing a Lagrangemultiplierλ for the constraint (73)
yields the primal-dual model

min
λ

max
ps ,pt ,p

{
E(ps, pt , p, ρ;λ) =

∑

x∈V
(ps(x) − aρ)

+
∑

x∈V
λ(x)

(
divw p − ps + pt + ρ

)}
(75)

subject to

|p(x, y)| ≤ w(x, y), (x, y) ∈ E; (76)

ps(x) ≤ Cs(x), ∀x ∈ V ; (77)

pt (x) ≤ Ct (x), ∀x ∈ V ; (78)

ρ is a constant function. (79)

Rearranging the terms, we obtain

min
λ

max
ps ,pt ,p,ρ

{
E(ps, pt , p, ρ;λ)

=
∑

x∈V

{(
1 − λ

)
ps + λpt + ρ

(
λ − a) + λ divw p

}}
(80)

subject to (76–79).
The intuition of having the above model lies in the follow-

ing. Following the same arguments as in Sect. 3.1,we observe
that if λ /∈ B

′, the energy can be arbitrarily large by choosing
ps or pt arbitrarily small, contradicting boundedness from
above. From the second last term of (80), it follows that if the
balancing constraint (18) is not satisfied, the energy can be
made arbitrarily large by choosing ρ arbitrarily high or low.
Therefore, by maximizing for ps, pt , p and ρ, we obtain the
closed form expression (28) subject to the constraints (29)
and the balancing constraint (18).

In contrast to the case with the model without balanc-
ing constraints, it cannot be guaranteed in advance that a
global minimizer is obtained by the thresholding procedure
described in Theorem 2. If the solution is binary, it must
also be a global minimizer of the binary constrained prob-
lem, since the convex set B′ contains the binary set B. In the
experiments, the solution tends to be binary or very close to
binary, indicating that a global minimizer, or close approxi-
mation, can be obtained.

We again construct the augmented Lagrangian functional

Lc(ps, pt , p,λ) =
∑

x∈V
−aρ+ ps+λ(divw p− ps+ pt+ρ)

− c

2
‖divw p − ps + pt + ρ‖22, (81)

which is exactly (59) if ρ is zero.
We have the following primal augmented Lagrangian

algorithm for minimizing the above functional, where we
alternate between maximizing Lc for the dual variables and
updating the Lagrange multiplier λ:

Algorithm 1b Balancing Constraints

Initialize p1s , p
1
t , p

1 and λ1. For k = 1, ... until conver-
gence:

• Optimize p flow

pk+1 = arg max
‖p(e)‖≤ W (e) ∀e∈E

− c

2
‖divw p − Fk‖22, (82)

where Fk = psk − pt k + λk

c − ρk is fixed.
• Optimize source flow ps

pk+1
s = arg max

ps (x)≤ Cs (x) ∀x∈V

∑

x∈V
ps − c

2
‖ps − Gk‖22,

(83)

where Gk = pt k + divw pk+1 − λk

c + ρk is fixed.
• Optimize sink flow pt

pk+1
t := arg max

pt (x)≤ Ct (x) ∀x∈V
− c

2
‖pt − Hk‖22, (84)

where Hk = psk+1 − divw pk+1 + λk

c − ρk is fixed.
• Optimize ρ

ρk+1 = arg max
ρ

∑

x∈V
aρ − c

2
‖ρ − J k‖22, (85)

where J k = −pk+1
t − divw pk+1 + λk

c + pk+1
s is fixed.

• Update λ

λ
k+1 = λ

k − c (divw pk+1 − pk+1
s + pk+1

t + ρk+1) .

The optimization problem (82) for p can be solved by one
step of the projected gradient method as follows:

pk+1 = ΠW (p + c∇w(divw pk − Fk)), (86)

where ΠW is the projection defined in (64).
The subproblems (83) and (84) can be solved by

ps(x) = min(Gk(x) + 1

c
,Cs(x)); (87)

pt (x) = min(Hk(x),Ct (x)). (88)

We solve (85) using

ρk+1 = mean(−ps
k+1 + pt

k+1 + divw pk+1 + ρk

−λk

c
− a

c
). (89)
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In step (89), the constraint that ρ should be constant is
imposed exactly by computing the average of the pointwise
unconstrained maximizers ρ(x) for x ∈ V , and then the
average value is assigned to ρ(x) ∀ x ∈ V .

Just like in the previous cases, the final classification is
obtained by thresholding λ.

3.3 Extension of Primal Augmented Lagrangian Method to
Graphs

In this section, we describe another algorithm for solving the
convex problem (27), by extending the Split-Bregman algo-
rithm [31] for geometric problems [30] to general graphs.
It has recently been shown [51,60] that the Split-Bregman
algorithm is equivalent to solving a specialized decomposi-
tion of total variation regularized problems by the augmented
Lagrangianmethod.We use the augmented Lagrangian nota-
tion when describing the algorithm, since this notation has
already been introduced in Sect. 3.1 when deriving the max-
flow algorithms.

Consider the general minimization problem

min
λ

T Vw(λ) +
∑

x∈V
g(λ(x), x). (90)

The ROF model is a special case of (90) in the case that V
is a regular image domain, λ0 is the noisy input image and
g(λ(x), x) = |λ(x) − λ0(x)|2.

In our case, we wish to choose g according to (26) and
impose the constraint λ ∈ B

′. The idea is to solve

min
λ,q

‖q‖1 +
∑

x∈V
g(λ(x), x)

s.t. q = ∇wλ, (91)

where ‖s‖1 = ∑
x∈V |s(x)|, by the augmented Lagrangian

method.
We introduce a Lagrange multiplier φ for the constraint

(91). This results in the augmented Lagrangian functional

Lc(λ, q, φ) = ‖q‖1 +
∑

x∈V

{
g(λ(x), x) + φ · (q − ∇wλ)

}

+ c

2
‖q − ∇wλ‖22 (92)

where c is a constant and ‖s‖22 = ∑
x∈V |s(x)|2. We want to

find a saddle point of (92) over λ, q and φ:

max
φ

min
λ,q

Lc(λ, q, φ) (93)

by alternating between minimizing for λ and q

(λ
k, qk) = argmin

λ,q
Lc(λ, q, φk) (94)

and updating the Lagrange multiplier by one step of gradient
ascent:

φk+1 = φk + c(qk+1 − ∇λ
k+1). (95)

The minimization problem (94) can be separated into two
subproblems:

min
λ

∑

x∈V

{
g(λ(x), x) − φk · ∇wλ

} + c

2
‖q − ∇wλ‖22; (96)

min
q

‖q‖1 +
∑

x∈V
φk · q + c

2
‖q − ∇wλ‖22. (97)

Therefore, the algorithm is the following:

Algorithm 2 Augmented Lagrangian Algorithm

Initialize φ1, q1 and λ1. For k = 1, ... until convergence:

• Optimize λ

λ
k+1 = min

λ

∑

x∈V

{
g(λ(x), x) − φk · ∇wλ

}

+ c

2
‖qk − ∇wλ‖22. (98)

• Optimize q

qk+1 = min
q

‖q‖1 +
∑

x∈V
φk · q + c

2
‖q − ∇wλ

k+1‖22.

(99)

• Update Lagrange multipliers

φk+1 = φk + c(qk+1 − ∇λ
k+1). (100)

Again, as in the max-flow algorithm, the final binary clas-
sification is obtained by thresholding λ to either 0 or 1.

The subproblem (98) gives the Euler-Lagrange equation:

∂g

∂λ
+ c divw(qk − ∇wλ) + divw(φk) = 0, (101)

where in this case ∂g
∂λ

= Ct − Cs .
We solve the above subproblem using one step of forward

Euler:

λk+1 − λk

dt
= −(Ct − Cs + c divw(qk − ∇wλ

k)

+ divw(φk)). (102)

This becomes

λk+1 − λk

dt
= −(Ct − Cs + c divw(qk) − c�wλ

k)

+ divw(φk)). (103)
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All the operators, as was stated before, are formulated in a
graph setting.

We solve subproblem (97) in the same way as it is done
in [60]:

qk+1(x) =
{

1
c (1 − 1

|b(x,y)| )b(x, y), if |b(x, y)| > 1,

0, if |b(x, y)| ≤ 1,

(104)

where b = |c∇λ − φk |.
We have tried solving the subproblem (98) above in

another way. A similar scheme is used, except the Laplace
operator is calculated implicitly, and we proceed further by
considering its terms as a linear combination of the eigenvec-
tors of the random walk Laplacian, in a similar way as in [4]
and [46]. Only a small fraction of the eigenvectors are used.
This way of solving the subproblem turns out to be several
times faster than the one previously discussed, but because it
does not perform well in the case of non-random fidelity, we
did not use it. A disadvantage of this method is that it only
uses a small fraction of the eigenvectors, which might not
contain enough information to result in an accurate classifi-
cation, as was the case with experiments with non-random
fidelity. However, it also has some advantages, which are
discussed in the next section.

3.3.1 Avoiding Trivial Global Minimizers

If the number of supervised points V f ∪ V b are very low,
the global minimizer of (13) may just be the trivial solution
S = V f or S = V b. This was the case for a small number
of our experiments. In order to avoid this problem, the cost
of these trivial solutions can be increased by increasing the
number of edges incident to the supervised points V f ∪ V b,
which amounts to adding nonlocal behavior. Non-supervised
points in the graph are connected by edges to their M nearest
neighbors. Supervised points can instead be connected to
their K nearest neighbors, where K > M , thereby increasing
the cost of the partitions S = V f and S = V b.

An interesting observation is that if the subproblem (98) in
the primal max-flow algorithm is solved via the approximate
eigendecomposition, the algorithm does not result in the triv-
ial solution S = V f and S = V b, even when the number of
supervised points are very low. The reason for this seems
to be that the approximation resulting from not using all the
eigenfunctions erases the unwanted trivial global minimizers
from the energy landscape.

Note that the second eigenvector of the Laplacian already
provides a solution to a cut using a spectral clustering approx-
imation approach. Although we experiment with using that
approximation as an initialization, the methods work just as
well when random initialization is used.

4 Results

The results for several data sets are summarized in Table 2,
with those of the best method highlighted. In all experiments,
we have constructed the graph using theM nearest neighbors
and approximated the eigendecomposition of the Laplacian
using only the M largest eigenvalues. By “random fidelity,”
we mean choosing supervised points randomly. By “corner
fidelity,” we mean choosing supervised points in a certain
portion of the data set only, in this case in the “corner” portion
of the eigenvector graph. The technique described in Sect. 3.3
for avoiding trivial global minimizers, was used on the two
moons data set in Fig. 2 in case of less than 3.25% supervised
points. Below, we provide details about each of the data sets
that we used. The results were computed on a 2.4 GHz Intel
Core i2 Quad.

In the case when we need to compute the eigenvectors and
eigenvalues of the randomwalk graph Laplacian, we first use
a fast numerical solver called the Rayleigh-Chebyshev pro-
cedure [1] to compute those of the symmetric graph Lapla-
cian. One can then use the previously described relation-
ship between the eigendecomposition of the symmetric graph
Laplacian and that of the random walk graph Laplacian. The
Rayleigh-Chebyshev procedure itself is a modification of an
inverse subspace iteration method using adaptively deter-
mined Chebyshev polynomials. It is also a robust method
that converges rapidly and that can handle cases when there
are eigenvalues of multiplicity greater than one. The calcu-
lations are made even more efficient by the fact that only
a small portion of the eigenvectors need to be calculated,
as the most significant nodes contain enough information to
produce accurate results. To have a fair comparison, we use
the same number of eigenvectors per data set for all meth-
ods.

We have used

f (λ(x), x) = η(x)|λ(x) − λ0(x)|2 (105)

for all our computations. Here, λ0 is the initial value of λ,
and η(x) is a function that takes on a value of a constant η

on fidelity points and zero elsewhere.
Below, we provide more detail on the results for each of

the benchmark data sets, as well as a description of the data
set itself. In addition, we provide a comparison of the results
to those of some of the best methods, including the binary
MBO and GL algorithms.

4.1 MNIST

The MNIST digits data set [43], available at http://yann.
lecun.com/exdb/mnist/, is a data set of 70000 28×28 images
of handwritten digits from 0 − 9 (Fig. 1). However, since
our method is only binary, we obtained a subset of this set
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Fig. 1 Examples of digits from the MNIST data base

to classify, in particular, digits 4 and 9 (since these dig-
its are sometimes hard to distinguish, if handwritten). This
created a set of 13782 digits, each either 4 or 9. Start-
ing from some initial classification of the points and using
only a small fraction of the set as fidelity, the goal is to
classify each image into being either a 4 or 9. We used
M = 10.

Using random initialization and random fidelity, the max-
flow method obtained an accuracy of around 98.48 % aver-
aged over 100 runs with different fidelity sets of 500 ran-
domly chosen points (or only 3.62 % of the set). The pri-
mal augmented Lagrangian method’s accuracy was around
98.44 %. The accuracy of binary MBO graph method from
[46] and the binary GL graph method from [4] was slightly
lower than that of our methods; the algorithms were able to
achieve an average accuracy of around 98.37 and 98.29 %,
respectively. Table 2 summarizes the above and also shows
results in the case when the initialization is constructed using
the thresholded second eigenvector of the Laplacian or when
the fidelity region is chosen nonrandomly by only consider-
ing points that give values in the corners of leftmost image
in Fig. 4a. More detail on the latter information will be given
in Sect. 4.6. The parameters for Algorithm 1 were: c = 0.5,
η = 50. For Algorithm 2, they were: c = 0.008, η = 400,
dt = 0.032.

To compare with other methods, we note a recent result
by Hu et al. [38], which is an unsupervised method. The
authors of the paper also tested only digits 4 and 9 and
obtained a purity score (measures the fraction of the nodes
that have been assigned to the correct community) of 0.977.
The GenLouvain algorithm obtained a purity score of 0.975.
In addition, many other algorithms have used the fullMNIST
data set with all 10 digits. For example, Cheeger cuts [54],
boosted stumps [39,43], and transductive classification [55]
have obtained accuracies of 88.2, 92.3–98.74, and 92.6 %,
respectively. Also, papers on k-nearest neighbors [42,43],
neural or convolutional nets [20,42,43], nonlinear classifiers
[42,43] and SVM [23,42] report accuracies of 95.0–97.17,
95.3–99.65, 96.4–96.7, and 98.6–99.32 %, respectively. The
aforementioned approaches are supervised learning meth-
ods using 60, 000 out of 70, 000 digits (or about 85.71 %
of the whole data set) as a training set. Morever, we com-

pare our method with [9], which obtains 98.05 % accuracy
by knowing 10 % of the labels, 97.78 % by knowing 5 %
of the labels, and 97.72 % by knowing 2.5 % of the labels.
Our algorithms, taking only 3.6 % of the data set as fidelity,
obtain around 98.5 % accuracy, and thus are competitive
with, and in most cases outperform, these methods. More-
over, we have not performed any preprocessing or initial fea-
ture extraction on the data set, unlike most of the mentioned
algorithms.

4.2 Banknote Authentication Data Set

The banknote authentication data set, from the UCI machine
learning repository [2], is a data set of 1372 features extracted
from images (400 × 400 pixels) of genuine and forged ban-
knotes. Wavelet transform was used to extract the features
from the images. The goal is to segment the banknotes into
being either genuine or forged. We used M = 15.

The results are shown in Table 2. With the max-flow
method, for a 5.1 % fidelity set, we were able to obtain an
average accuracy (over 100 different fidelity sets) of around
99.09 %, while the primal augmented Lagrangian method
achieved a similar accuracy of 98.75 %. The results did not
deteriorate much for a smaller fidelity set of 3.6 %, with the
two methods achieving an accuracy of 98.83 and 98.29 %,
respectively. The parameters forAlgorithm1were: c = 0.15,
η = 250. For Algorithm 2, they were: c = 0.08, η = 50,
dt = 0.5.

We compare this result to the binary MBO algorithm,
which achieved a lower accuracy of 95.43 and 93.48 for
5.1 and 3.6 % fidelity sets, respectively. For the binary
GL method, the results were also not as good—97.76 and
96.10 %, for 5.1 and 3.6 % fidelity sets, respectively.

4.3 Two Moons

This data set is constructed from two half circles in R
2

with a radius of one. The centers of the two half circles are
at (0, 0) and (1, 0.5). A thousand uniformly chosen points
are sampled from each circle, embedded in R

100 and i.d.d.
Gaussian noise with standard deviation 0.02 is added to
each coordinate. Therefore, the set consists of two thou-
sand points. Starting from some initial classification of the
points, the goal is to segment the two half circles. We used
M = 10.

For the max-flow method, in the case of 65 or lower num-
ber of fidelity points (3.25 %), we increased the number of
edges of supervised points to others to avoid the trivial global
minimizer where all points but the supervised ones are clas-
sified as one class.

Using random initialization and random fidelity, for the
max-flow method, we obtained an average accuracy (over
100 different fidelity sets) of 97.10 and 97.05 % in the case
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Fig. 2 Two moons example with max-flow method

Fig. 3 Rod 1 and Rod 2

of 100 and 50 fidelity points, respectively. An example of
a solution is shown in Fig. 2, with the two classes colored
in red and blue. The primal augmented Lagrangian method
achieved an accuracy of around 97.07 % for 100 fidelity
points and around 96.78 % for 50 fidelity points. The para-
meters forAlgorithm1were: c = 0.5,η = 50. ForAlgorithm
2, they were: c = 0.32, η = 100, dt = 0.008.

To compare this with binary MBO, the method obtained
98.41 and 97.53 % accuracy for 100 and 50 fidelity points,
respectively, which is very similar to the results of the binary
GL graph method.

4.4 Rods

We have also tested this algorithm on two other synthetic
data sets created using the rods pictured in Fig. 3. Around
two thousand uniformly chosen points were sampled from
each image, and then embedded in R

100. Finally, noise was
added to each of the points, much like the case with the two
moons data set. We used M = 25.

In the case of random fidelity region, we obtained accu-
racy in the 98th or 99th percentile, no matter what initializa-
tion. In the case of fidelity region in the corner, we obtained
interesting global minimizers for the two data sets. The com-
parison of our results with the binary MBO and GL method

Table 1 Comparison of balancing constraints max-flow method and
regular max-flow method

Number of
fidelity points

50 40 30 20

Two moons-
Max-flow
method
(regular) (%)

97.05 96.92 96.86 88.22

Two moons-
Max-flow
method
(balancing
constraints)
(%)

97.19 97.12 97.11 96.11

Number of
fidelity points

500 400 300 210

MNIST-Max-
flow method
(regular) (%)

98.44 98.40 98.36 93.68

MNIST-Max-
flow method
(balancing
constraints)
(%)

98.59 98.48 98.45 98.41

Number of
fidelity points

50 40 30 20

Banknote
authentication
data set
(regular) (%)

98.83 98.72 98.21 96.78

Banknote
authentication
data set
(balancing
constraints)
(%)

98.83 98.91 98.72 98.55

is detailed in the next section. The parameters for Algorithm
1 were: c = 0.01, η = 50. For Algorithm 2, they were:
c = 0.016, η = 500, dt = 0.512.

4.5 Comparison of the Balancing Constraints Max-flow
Method to the Regular Max-flow Method

We tested our balancing constraints max-flow method on
several data sets using random initialization and fidelity,
and compared it to the regular max-flow meethod. It han-
dles the case of a small fidelity region better than the origi-
nal max-flow method (Algorithm 1) and gives higher accu-
racy everywhere. We used the same M as described in the
previous section. The results are displayed in Table 1, and
those of the best method (compared to Algorithm 1) are
highlighted. In general, the solution is very close to binary,
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Fig. 4 MNIST. Left initialization, supervised points are marked in yellow and magenta. Middle max-flow algorithm result. Right binary MBO
result (Color figure online)
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Table 2 Comparison of
methods Max-flow (%) Primal augmented

Lagrangian (%)
Binary MBO (%) Binary GL (%)

MNIST (3.6 % fidelity)
random initialization,
random fidelity

98.48 98.44 98.37 98.29

MNIST (3.6 % fidelity) 2nd
eigenvector initialization,
random fidelity

98.48 98.43 98.36 98.25

MNIST (3.6 % fidelity)
random initialization,
corner fidelity

98.47 98.40 62.35 64.39

MNIST (3.6 % fidelity) 2nd
eigenvector initialization,
corner fidelity

98.46 98.40 63.87 63.19

Banknote Authentication
Data Set (5.1 % fidelity)

99.09 98.75 95.43 97.76

Banknote Authentication
Data Set (3.6 % fidelity)

98.83 98.29 93.48 96.10

Two moons (5 %
fidelity)

97.10 97.07 98.41 98.31

Two moons (2.5 %
fidelity)

97.05 96.78 97.53 98.15

with some small differences that may be explained by the
finite stopping criterion of the algorithm, indicating that close
approximations to global minimizers are obtained. To mea-
sure how close the solution λ is to binary, we have com-

puted the norm
∑

x∈V
|λ(x)−λ
(x)|

|V | , where λ
 is defined in
(30) and 
 = 0.5. The norm should be 0 if λ is binary. In
the experiments, the values of the norm range from 0.0005
to 6 ∗ 10−18.

For the two moons example, starting from 20 fidelity
points, we obtained very reasonable results. For 50, 40, 30
and 20 fidelity points, we obtained 97.19, 97.12, 97.11 and
96.11 % average accuracy (over 100 different fidelity sets),
respectively. While the results of the binary MBO method
(without any zero means constraint) for the two moons data
set achieves slightly better accuracy for 50 and 100 fidelity
points (being of 97.53 and 98.41%, respectively), we noticed
that if the number of fidelity points is too low, the method
is unable to perform well, as the results vary not insignif-
icantly depending on the fidelity set. The same is the case
with the max-flow method with no balancing constraint. For
example, for 20 fidelity points, the average accuracy we
obtained for the method was 88.22 %. However, with the
balanced method, we still obtain a good result (96.11 %)
for a fidelity set containing as little as 20 points. Thus, the
advantage of the method is that it performs well with even
a very small fidelity region. The results are summarized in
Table 1.

For the MNIST data set, we obtained very good results
even for a small number of fidelity points. For 500, 400, 300
and 210 fidelity points (or 3.6, 2.9, 2.2 and 1.5 % of the data,
respectively), we obtained an average accuracy (over 100
different fidelity sets) of 98.59, 98.48, 98.45 and 98.41 %,
respectively. A comparison to the results of the regular max-
flow method is in Table 1. Note that in addition to giving
at least a slightly higher accuracy everywhere, it handles
the case of a small number of fidelity points better than the
original method. For example, for 210 fidelity points, the
method obtained an accuracy of 98.41 %, while the regu-
lar max-flow method achieved a much lower accuracy of
93.68 %.

For the banknote authentication data set from the UCI
Machine Learning Repository [2], we obtained reasonable
results for as little as 20 fidelity points. The results are shown
in Table 1. The balancing constraints method obtains better
results than the original max-flowmethod, achieving an aver-
age accuracy (over 100 different fidelity sets) of 98.55 % for
only 20 fidelity points, as opposed to the accuracy of 96.78%
of the original max-flow method.

For the first rod data set, we obtained reasonable results
starting from around 10 fidelity points out of around two
thousand that are in the rods data set. For 10 to 20
fidelity points, the accuracy was around 96 %. Testing
50 and 100 fidelity points, we obtained around 99 %
accuracy.
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(a) Random initialization, random fi-
delity

(b) max-flow result (c) binary MBO result

(d) 2nd eigenvector initialization (e) max-flow result (f) binary MBO result

(g) Random initial., corner fidelity (h) max-flow result (i) binary MBO result

(j) 2nd eigenvector initialization (k) max-flow result (l) binary MBO result

Fig. 5 Results for Rod 1. Left initialization, supervised points are marked in yellow and green. Middle max-flow algorithm result. Right binary
MBO result (Color figure online)

4.6 Comparison of Our Convex Algorithms to Binary MBO
and GL Methods

After comparing the results of our convex algorithms to the
binaryMBO [46] and binary GL [4] graph methods, we have
reached the following conclusions based on our work:

• As long as the fidelity points arewell represented for each
class (meaning the fidelity points represent a whole vari-
ety of points in the class), the binary MBO method and
the binary GL method have no trouble finding the cor-
rectminimizer or something very close. The initialization
might not matter; even with a bad initialization, the local

minimizer will still be found. Our convex methods find
the local minimizer easily.

• Problems occur when the fidelity is not chosen randomly.
In this case, even if the initialization is random, the con-
vergence might not occur for the binary MBO and GL
methods. In all our experiments with the rods data sets
andMNIST, the localminimizerwas not found by the two
methods. However, our convex algorithms still found the
correct local minimizer.

These conclusions are supported by the work done on the
MNIST digits data set, using digits 4 and 9 only. The second
vs. third eigenvector of the symmetric graph Laplacian are
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(a) Random initialization, random fi-
delity

(b) max-flow result (c) binary MBO result

(d) 2nd eigenvector initialization (e) max-flow result (f) binary MBO result

(g) Random initialization, corner fi-
delity

(h) max-flow result (i) binary MBO result

(j) 2nd eigenvector initialization (k) max-flow result (l) binary MBO result

Fig. 6 Results for Rod 2. Left initialization, supervised points are marked in yellow and green. Middle max-flow algorithm result. Right binary
MBO result (Color figure online)

graphed in Fig. 4a, with one digit represented by blue and
another by red. The results of experiments on this data set are
found in Fig. 4. Each row represents a different experiment:
first two rows contain experiments with random initializa-
tion, while last two rows contain experiments with fidelity in
a constrained area. The initialization is random for experi-
ments in first and third row, and is constructed by threshold-
ing the second eigenvector of the Laplacian for the results in
the second and fourth row. The first column represents the

initialization, while the second and third columns are results
for the max-flow and binary MBO algorithm, respectively.
The fidelity points are marked by yellow and magenta for the
two classes.

We see that if the fidelity region is well represented
in the data set, no matter what initialization, none of the
algorithms have a problem finding a close to perfect solu-
tion (accuracy is between 98 and 99 %—see Table 2). How-
ever, when the fidelity region is not random (in this case
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constrained to only the nodes whose corresponding entry
in the second or third eigenvector of the Laplacian match a
certain range), we see that the binary MBO and GL algo-
rithms fail to obtain an accurate solution; its accuracy is
below 70 percent. However, the max-flow algorithm and the
primal augmented Lagrangian methods achieve an almost
perfect solution of 98.47 and 98.40 % accuracy, respec-
tively.

The two conclusions are also supported by the work done
on the two rod data sets created from images displayed in
Fig. 3. Experiments with the first and second rod image are
shown in Figs. 5 and 6, respectively. The first two rows repre-
sent cases with a random fidelity set, while the last two rows
are experiments with corner fidelity. Cases with random ini-
tialization are in first and third rows, and second eigenvector
initialization is used in experiments in the second and fourth
row. The first column is the initialization, second column is
the max-flow algorithm result, and third column is the binary
MBO result.

For rod 1, we found that when the fidelity is chosen ran-
domly, the minimizer divides the bottom two rods from the
rest of the image. When the fidelity is chosen at the corners,
the minimizer is shown in the bottom two rows of the sec-
ond column. The convex max-flow and primal augmented
Lagrangian algorithms are able to attain these minimizers,
while the binary MBO and GL algorithms struggle in the
case of non-random fidelity. The situation is similar with rod
2.

4.6.1 Note About MBO Algorithm

As noted in [46], the first step of the MBO algorithm (heat
equation with an extra term) was solved using the eigenvalue
and eigenvector decomposition of the Laplacian. However, a
disadvantage of solving equations using this method is that,
for it to be efficient, only a fraction of eigenvectors are used,
and they might not contain enough information to result in
an accurate classification. Naturally, the more eigenvectors
one computes, the longer the process will take.

As an alternative way of solving the first step (20) of the
MBO algorithm, we have tried using just the simple for-
ward heat equation solver. However, this did not result in
an accurate segmentation in the case of non-random fidelity,
thus not improving the results from the original way of solv-
ing it. This shows that the algorithm is getting stuck in a
local minimum, since the problem is clearly not the lack of
information encoded within the small number of eigenvec-
tors used.

4.7 Comparison of Convergence, Speed, and Energy

The stopping criterion used for all algorithms was taken to be
the point at which the square of the relative L2 norm between

Table 3 Number of iterations and timing

Max-flow Primal
augmented
Lagrangian

Binary
MBO

Binary
GL

Number of iterations

MNIST 426 2709 10 52

Banknote
authentication
data set

314 725 7 449

Two moons 1031 451 8 108

Timing (s)

MNISTa 2.88 43.21 0.52 0.78

Banknote
authentication
data set

1.21 3.76 0.90 0.95

Two moons 4.13 5.23 2.30 2.98

a This is the timing of the method using already computed weights and
eigenvalues/eigenvectors of the random walk Laplacian

the current and previous iterate is negligible, or below a cer-
tain constant α. With the exception of the MNIST data set
(where α = 5 ∗ 1e − 10), the max-flow, binary MBO and
GL algorithms stabilize around α = 1e − 17 or 1e − 16.
The primal augmented Lagrangian method stabilizes around
α = 1e − 08 or 1e − 09.

Table 3 includes information about the number of itera-
tions needed to reach stability, and also the timing results for
each data set.

We have also computed the initial and final energy for
each data set. The energy was calculated using

E(λ) = 1

2

∑

x,y∈V
w(x, y)|λ(x) − λ(y)|, (106)

whereλ(x) is 0 if node x was classified to be in the first class,
and 1 if it was classified to be in the second class.Note that the
energy here is exactly T Vw(λ). Table 4 includes information
about the initial and final energy for eachmethod.We see that
the max-flow algorithm is able to obtain the lowest energy in
each case. In general, one can see that the convex algorithms
are able to obtain the global minimizer in all cases, while
the binary MBO and GL algorithms struggle in the case of
non-random fidelity.

It can be observed that the max-flow method obtains mar-
ginally lower energy than the primal augmented Lagrangian
method. The reason for this is that the max-flow method sta-
bilizes around a lower precision in terms of relative L2 dif-
ference between successive iterations, as explained above.
We believe this difference is caused by the pointwise projec-
tion step of λ onto the set [0, 1] each iteration in the primal
augmented Lagrangian, which is avoided in the max-flow
algorithm.
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Table 4 Comparison of final
energy Data set Initial

energy
Max-flow
final energy

Primal augmented
Lagrangian final
energy

BinaryMBOfinal
energy

Binary GL
final energy

MNIST
(random fid)

23,223 789 789 798 804

MNIST
(non-random fid)

23,223 791 792 2167 5363

Banknote
authentication

3308 30 37 51 42

Two moons 3802 533 535 538 548

Rod 1
(random fid)

4159 146 148 163 159

Rod 1
(non-random fid)

4159 88 89 825 391

Rod 2
(random fid)

4528 171 176 186 184

Rod 2
(non-random fid)

4528 101 105 709 421

5 Conclusion

We have described two convex methods for data segmen-
tation using a graphical framework. The first solves a dual
maximum-flow problem by continuous optimization tech-
niques, and the second method solves the primal problem
directly. It was proved the algorithmswere guaranteed to pro-
duce global minimizers for semi-supervised data segmenta-
tion problems with two classes. In case where the class sizes
are known precisely or approximately, the first model could
be slightly modified to produce more stable and accurate
results by incorporating constraints on the class sizes. Simu-
lations showed that themethodswere comparablewith or out-
performed the state-of-the-art algorithms. In fact, our convex
models had the advantage over non-convex methods in that
the latter could occasionally get stuck in local minima.More-
over, a thorough comparison to a non-convex binary MBO
and GL method [46] revealed that the latter may not produce
an accurate result in case when the fidelity region is not cho-
sen randomly, but that did not affect the proposed convex
methods. To speed up the timing of the algorithms, we made
use of a fast numerical solver described in [1] to solve someof
the subproblems involving graph-based PDEs. Future work
includes an extension to multiple classes and experimenta-
tion with other ways to incorporate knowledge about class
sizes.
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