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Abstract We propose a novel variational framework for
image restoration based on the assumption that noise is addi-
tive and white. In particular, the proposed variational model
uses total variation regularization and forces the resemblance
of the residue image to a white noise realization by impos-
ing constraints in the frequency domain. The whiteness con-
straint constitutes the key novelty behind our approach. The
restored image is efficiently computed by the constrained
minimization of an energy functional using an alternat-
ing directions methods of multipliers procedure. Numerical
examples show that the novel approach is particularly suited
for textured image restorations.

Keywords Image restoration · Whiteness ·
Image deconvolution/deblurring · Variational methods

1 Introduction

Image restoration refers to the recovery of a clean sharp
image from a noisy, and potentially blurred, observation.
In this paper, we consider the problem of restoring images
corrupted by blur and additive white noise. Several image
restoration algorithms such as nonlinear-diffusion partial dif-
ferential equations (PDE)-basedmethods andTV regularized
strategies, succeeded in obtaining good quality edge preserv-
ing restorations, especially for noise removal. However, they
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modify images towards piecewise constant functions, in such
a way that important information, encoded in image features
like textures and details, is often compromised in the restora-
tion process.

Wepropose a novel variational formulationwhich exploits
the relevant information on the whiteness of the noise thus
resulting in a method that is particularly suitable for the
restoration of partly-textured perturbed images, since it pre-
serves fine scale features in the restoration process. In par-
ticular, we take advantage of the fact that while textures are
characterized as repeated and meaningful structure of small
patterns, noise is characterized as uncorrelated random pat-
terns.

One aspect generally missing from the state-of-the-art
image restoration methods is a full exploitation of all the
available information about the noise. More precisely, most
algorithms recover an estimate of the clean image by using
prior knowledge only about the variance of the noise, but
totally neglect the significantly more information-rich prop-
erty of the noise being the realization of a white random
process. This is to some extent surprising provided that, on
the other hand, the whiteness of the residue image is often
used as an a-posteriori criterion for evaluating the perfor-
mance of restoration algorithms (see, e.g., [18]). In particu-
lar, by evaluating the resemblance of the residue image to a
white noise realization, one can check, to some extents, the
quality of the restored image. In [1,10,17,18] themeasures of
residual spectral whiteness have been exploited for adjusting
the regularization parameter and/or the number of iterations
of the algorithms for deconvolution problems. Comparisons
among several state of the artmethods have been documented
in [2].

The whiteness constraint constitutes the key novelty
behind our approach. A penalty term to favor whiteness in
the residue image has been proposed in [14] for the image
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denoising problem. One of the contribution of this paper is
to incorporate such a relevant information into the restora-
tion process when the image is both blurred and corrupted
by additive white noise. The second one is the proposal of an
efficient algorithm for the solution of the new model.

Without loss of generality, we consider grayscale images
with a squared×d domain.Letu ∈ R

d2 be the unknownd×d
clean image concatenated into an d2-vector, K ∈ R

d2×d2

be a known blurring operator and n ∈ R
d2 be an unknown

realization of the random noise process, which we assume
white with zero-mean and standard deviation σ . The discrete
imaging model of the degradation process which relates the
observed degraded image g ∈ R

d2 with u, can be expressed
as follows:

g = Ku + n . (1.1)

Given K and g, our goal is to solve the inverse problem of
recovering an estimate u∗ of u from g, which is known as
deconvolution or deblurring.When K is the identity operator,
recovering u is referred as denoising.

It is well known that deblurring by direct inversion of K ,
i.e. u∗ = K−1g, can yield meaningless results due to the fact
that the linear blur operator K is typically ill-conditioned
or singular [11]. To obtain a meaningful restoration, some
prior information are commonly included in the formulation.
A classical regularization approach consists in solving the
optimization problem

u∗ ← arg min
u∈Rd2

{R(u) + μF(u, g)} , (1.2)

where the regularization term R(u) enforces certain prior
constraints on the clean image u, the fidelity term F(u, g)
measures how u fits the observed image g, and μ is a pos-
itive regularization parameter balancing the two terms. In
particular, the fidelity term is typically related to the type
of noise corrupting the image, while the regularization term
commonly enforces smoothness of the solution.

Many different regularization functionals have been pro-
posed, ranging from the classical Tikhonov [3,11], to total
variation (TV) [16], Mumford-Shah [12,13], and many other
variants of these. In this paper, we consider the TV regular-
ization simply for its popularity, any other regularizers could
be substituted as well. A popular and effective choice for
images corrupted by additive Gaussian noise, is the TV-L2

functional formulation:

u∗ ← arg min
u∈Rd2

{
T V (u) + μ

2
‖Ku − g‖22

}
, (1.3)

where T V (u) denotes the TV semi-norm of u defined as

T V (u) =
d2∑
i=1

‖(∇u)i‖2 , (1.4)

with (∇u)i := (Dx,i u, Dy,i u) denoting the discrete gradient
of u at pixel i and Dx,i , Dy,i representing the i-th rows of
the x and y-directional first order finite difference operators
Dx , Dy ∈ R

d2×d2 , respectively. The regularization parame-
ter μ plays a critical role in the success of the restoration
process [21].

When the standard deviation σ of noise is available, under
the discrepancy principle, the unconstrained TV-L2 model
in (1.3) can be equivalently reformulated as the following
constrained optimization problem:

u∗ ← argmin
u∈U T V (u) , (1.5)

with the feasible set defined as

U =
{
u ∈ R

d2 : ‖Ku − g‖22 ≤ τ 2 d2 σ 2
}

, (1.6)

where τ is a pre-determined scalar parameter controlling the
variance of the residue image Ku − g.

In this paper, we propose to explicitly incorporate the con-
straints on the whiteness of the residue image by modifying
the feasible set defined in (1.6). The proposed TV-W model
is

u∗ ← arg min
u∈W TV (u) , (1.7)

where the new feasible set W ⊂ R
d2 contains solutions u

such that the corresponding residue image Ku − g satis-
fies the discrepancy principle and resembles a white noise
realization. We will propose a particular whiteness set W
and, accordingly, we will present an efficient minimization
method based on the ADMM strategy which was originally
developed in the 1970s [6,7], and recently applied to the
image restoration problem [5].

More recently, a fast TV deconvolution algorithm called
FTVd was proposed in [20] for image restoration with L2

fidelity, which is a quadratic penalty method. In [8] an aug-
mented Lagrangian method has been successfully applied to
overcome the difficulties due to the penalty parameter. Alter-
nating direction method (ADM), a variant of the classic aug-
mented Lagrangian method for structured optimization, has
been introduced in [19]. Finally, in [5] the ADM strategy has
been extended to the solution of constrained TV problems
and named ADMM.

The paper is organized as follows. In Sect. 2 we present
and motivate our choice for the whiteness set W . In Sect. 3
we illustrate in detail the ADMM-based algorithm used to
minimize the functional together with a discussion of the
computational aspects. In Sect. 4 we present experimental
results assessing the performance of the proposed model. In
Sect. 5 we draw conclusions.
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2 Imposing Whiteness Constraints

The statistical version of the degradation model in (1.1) with
images in matrix-form is

G(i, j) = v̄ (i, j) + N̄ (i, j), (i, j) ∈ � = {1, . . . , d}2,
(2.1)

with capital letters indicating random quantities and where
v̄(i, j) = (K u)(i, j) denotes the value of the blurred image
at pixel (i, j). In particular, the additive noise is modeled as a
d ×d discrete random process N̄ := { N̄ (i, j) : (i, j) ∈ � }
with N̄ (i, j) denoting the scalar random variable modeling
noise at pixel (i, j). This means that different images of the
same subject under the same blurring operator will differ
due to the inherently random nature of the additive noise.
The ensemble auto-correlation of N̄ is a function ρN̄ which
maps pairs of pixel locations (i1, j1), (i2, j2) ∈ � into a
scalar value given by

ρN̄ (i1, j1, i2, j2) := E
[
N̄ (i1, j1) N̄ (i2, j2)

]
, (2.2)

where E is the expectation operator [9].
Since we assume that noise is zero-mean and white, i.e.

wide-sense stationary and uncorrelated, the auto-correlation
of N̄ depends only on the lag between the two pixel locations
(l,m) = (i2− i1, j2− j1) and, with a little abuse of notation,
(2.2) can be rewritten as follows

ρN̄ (i1, j1, i2, j2) = ρN̄ (0, 0, i2 − i1, j2 − j1)

= ρN̄ (l,m) = E
[
N̄ (i, j) N̄ (i + l, j + m)

]
(2.3)

=
{

σ 2, if (l,m) = (0, 0)
0, otherwise

,

(l,m) ∈ � = {−(d − 1), . . . , d − 1}2 . (2.4)

Equation (2.3) expresses stationarity of the noise process and
holds independently for every (i, j) ∈ � such that (i+ l, j+
m) ∈ �, whereas (2.4) says that a zero-mean white noise
process is characterized by zero values of the auto-correlation
function at all non-vanishing lags.

Given a single realization n := { n(i, j) ∈ R : (i, j) ∈
� } of the noise process N̄ , that is the series of noise values
corrupting the particular observed image according to the
deterministic degradation model in (1.1), the sample auto-
correlation of n is a function rn mapping all the possible lags
(l,m) ∈ � into a scalar value given by

rn(l,m) := 1

d 2

(
n �n

)
l,m = (

n ∗ n′ )
l,m

= 1

d 2

∑
(i, j)∈�

n(i, j) n(i + l, j + m), (l,m)∈�,

(2.5)

where � and ∗ denote the 2-D discrete correlation and con-
volution operators, respectively, and where n′(i, j)

= n(−i,− j). Clearly, for (2.5) being defined for all lags
(l,m) ∈ �, the noise realization n must be padded with at
least d − 1 samples in all directions.

It can be demonstrated that, with the further assump-
tion that the noise process is also ergodic [9], the sample
auto-correlation is a good estimate of the ensamble auto-
correlation. In particular, we have:

lim
d→∞ rn(l,m) = ρN̄ (l,m). (2.6)

A set of white noise realizations could thus be defined in the
spatial domain by constraining the values of the sample auto-
correlation function rn in (2.5) to lie within a band around
the theoretical limit in (2.6). In [14] the authors proposed
a denoising method based on a novel fidelity term penaliz-
ing the autocorrelation function of the residual. The numeri-
cal solution of the obtained integro-differential equation was
computed by an explicit finite difference method. The exten-
sion of such strategy to our setting, due to the presence of the
blur operator, would lead to very strict stability conditions
and consequently to a very slow procedure. In this paper we
followed a new strategy considering a whiteness definition in
the frequency domain and, accordingly, we propose a novel
whiteness set.

The periodogram pn ∈ R
d2 of the noise realization n is

defined as [9]

pn = |Tn| , (2.7)

where | · | denotes the component-wise modulus of the com-
plex vector Tn, where T ∈ C

d2×d2 is obtained using the uni-
tary matrix representing the 1D discrete Fourier transform
(DFT) T (1) ∈ C

d×d

T = T (1) ⊗ T (1) , (2.8)

and where ⊗ denotes the Kronecker product operator.
It can be demonstrated that the elements of the vector pn

are independent random variables. Moreover, the first ele-
ment of pn has a χ distribution with 1 degree of freedom and
all the other elements are distributed as a χ distribution with
2 degrees of freedom [9]. We recall that the probability den-
sity function pk(x) and the mean value μk of a χ -distributed
random variable with k degrees of freedom are, respectively:

pk(x) = 21−k/2xk−1e−x2/2

	(k/2)
and μk = √

2
	((k + 1)/2)

	(k/2)
,

(2.9)

where	 is theGamma function. To obtain a vector of random
variables having all mean equal to one, and following from
the properties of the χ distribution, we scale the vector pn
by means of a diagonal d2 ×d2 normalization matrix M , i.e.
p̂n = Mpn , with M defined as

123



64 J Math Imaging Vis (2015) 53:61–77

M = 1

τ σ d2
diag

(√
2	(1.5),

1

	(1.5)
, . . . ,

1

	(1.5)

)
.

(2.10)

Next we sort the elements of the normalized periodogram
p̂n in increasing order of spatial frequency. At this aim, we
introduce the d × d matrix 
 with elements 
i, j = i2 + j2

and the d2×d2 permutation matrix� such that the elements
of�ξ appear in nondecreasing order, with ξ ∈ R

d2 denoting
the column-vector form of 
. Then the vector � p̂n holds all
the elements of p̂n in order of increasing spatial frequency.
We define the normalized cumulative periodogram (NCP) of
n as the vector cn ∈ R

d2 given by

cn := S � p̂n, (2.11)

where S is the d2 × d2 partial sums matrix, i.e. a lower tri-
angular matrix with all nonzero entries equal to one.

In Sect. 4 we test experimentally by a Montecarlo simula-
tion that in case that n is the realization of a zero-mean white
noise process, as the image dimension d increases the asso-
ciated NCP vector cn tends to a limit vector cw, that we call
theoretical whiteness NCP vector, given by the discretization
of the straight line between (1, d−2) and (d2, 1), that is:

cw = d−2 ( 1, 2, . . . , d2 )T . (2.12)

In this paper, we will exploit such a property of white
noise to constrain the NCP vector cn of the restored residue
image n = Ku − g to lie within a narrow band around
the theoretical whiteness NCP vector cw. In particular, we
define the whiteness set W to be used in our model (1.7) as
follows:

W =
{
u ∈ R

d2 : b− ≤ S�M |T (Ku − g)| ≤ b+ } ,

(2.13)

where the inequalities must be intended component-wise and
b+, b− ∈ R

d2 are vectors containing the upper and lower
limits of the whiteness set, respectively. In Sect. 4, we will
illustrate how the values of b+ and b− can be selected accord-
ing to probabilistic arguments. By constraining the restored
image u to belong to the setW in (2.13) with appropriate set
limits b− and b+, we are thus implicitly forcing the restora-
tion residual to resemble the realization of a white noise
process.

However, from the definitions of the whiteness set in
(2.13), we notice that the complicated constraint on u can
be turned into a simple box-constraint on the NCP of the
residue image cn , that is cn must belong to the following
whiteness set:

B =
{
cn ∈ R

d2 : b− ≤ cn ≤ b+ } , (2.14)

where b− and b+ are the pre-computed limits of the box-
constraint.

In Fig. 1 we illustrate the capability of the set W in dis-
criminating white signals, by showing the NCP vectors for
two different 1D signals: the first signal in Fig. 1a is the real-
ization of a white gaussian process with zero-mean, standard
deviation σ = 4, and number of samples d = 1,000, the
second signal in Fig. 1b is obtained from the first signal by
setting one-fifth of the samples to a constant value equal to 4.
In Fig. 1c, d we show the NCP vectors c of the 1D sampled
signals depicted in Fig. 1a, b, respectively. We note that the
NCP vector c of the white signal depicted in Fig. 1c is very
similar to the theoretical whiteness NCP vector cw, while a
significant deviation occurs for the partially modified signal,
as visible in Fig. 1d.

3 Applying ADMM to the Proposed Model

Constrained problems are in general much more difficult to
solve than the unconstrained ones.Moreover, for constrained
TV problems, the singularity of the TV functional prohibits
the application of Newton-like methods [15]. Recently Chan
et al. [5] successfully adapted theADMMalgorithm for solv-
ing both the constrained TV-L2 and TV-L1 problems. Thus
in the following we introduce a suitable variant of the basic
ADMM approach to solve the proposed constrained mini-
mization problem in (1.7) with the whiteness set W defined
in (2.13).

At this aim,we first introduce two auxiliary variables t and
z to reformulate (1.7) into the following equivalent form:

u∗ ← argmin
u,t,z

⎧⎨
⎩

d2∑
i=1

‖ ti ‖2 + ıW (z)

⎫⎬
⎭

s.t. : t = Du, z = u, (3.1)

where D = (Dx ; Dy) ∈ R
2d2×d2 , ıW is the indicator func-

tion of the whiteness set W , with the convention that ıW (z)
takes the value 0 for z ∈ W and ∞ otherwise. The auxil-
iary variable t is introduced to transfer the discrete gradi-
ent operator (∇u)i out of the non-differentiable term ‖ · ‖2.
The variable z plays the role of u within the whiteness con-
straint so that the constraint is now imposed on z instead
of u.

As we have already noticed the whiteness set W on u,
i.e. on z, can be reformulated into a simple box-constraint
set B on cn , where B is defined in (2.14). To exploit this
new simple set we introduce three new auxiliary variables
f = F(Ku − g), p = �M | f | and c = Sp, where F =
(Treal; Timag) ∈ R

2d2×d2 .
Then the minimization problem replacing (3.1) is written

as:

123



J Math Imaging Vis (2015) 53:61–77 65

100 200 300 400 500 600 700 800 900 1000

−10

−8

−6

−4

−2

0

2

4

6

8

10

100 200 300 400 500 600 700 800 900 1000

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)(a)

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
c

w

c

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
c

w

c

(d)(c)

Fig. 1 Sample 1D signals (top) and associated NCP vectors (bottom)

u∗ ← arg min
u,t, f,p,c

⎧⎨
⎩

d2∑
i=1

‖ ti ‖2 + ıB(c)

⎫⎬
⎭

s.t. : t = Du, f = F(Ku − g), p = �M | f |, c = Sp,

(3.2)

where ıB is the indicator function of the whiteness set B.
The augmented Lagrangian functional associated with

(3.2) is

L(u, t, f, p, c; λt , λ f , λp, λc) =
d2∑
i=1

‖ ti ‖2 + ıB(c)

−〈 λt , t − Du 〉 + βt

2
‖ t − Du ‖22

−〈 λ f , f − F(Ku − g) 〉 + β f

2
‖ f − F(Ku − g) ‖22

−〈 λp , p − �M | f | 〉 + βp

2
‖ p − �M | f | ‖22

−〈 λc , c − Sp 〉 + βc

2
‖ c − Sp ‖22 , (3.3)

where βt , β f , βp, βc > 0 are scalar penalty parameters and
λt , λ f ∈ Q, λp, λc ∈ V are the vectors of Lagrangian mul-

tipliers, with V = R
d2 , Q = R

2d2 .
Solving (3.2) is thus equivalent to search for the solutions

of the following saddle point problem:

Find (x∗; λ∗) ∈ X × �

s.t. L(x∗; λ) ≤ L(x∗; λ∗) ≤ L(x; λ∗)
∀ (x; λ) ∈ X × �, (3.4)

withL defined in (3.3) andwhere, for simplicity of notations,
we set x = (u, t, f, p, c), λ = (λt , λ f , λp, λc), X = V ×
Q × Q × V × V and � = Q × Q × V × V .

Starting at u = uk , λt = λkt , λ f = λkf , λp = λkp, λc = λkc ,
the ADMM iterative scheme applied to the solution of (3.2)
reads as follows:

tk+1← arg min
t∈Q L(uk, t, f k, pk, ck; λkt , λ

k
f , λ

k
p, λ

k
c) (3.5)

f k+1← arg min
f ∈Q L(uk, tk+1, f, pk, ck; λkt , λ

k
f , λ

k
p, λ

k
c) (3.6)
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pk+1← arg min
p∈V L(uk, tk+1, f k+1, p, ck; λkt , λ

k
f , λ

k
p, λ

k
c)

(3.7)

ck+1← arg min
c∈V L(uk, tk+1, f k+1, pk+1, c; λkt , λ

k
f , λ

k
p, λ

k
c)

(3.8)

uk+1← arg min
u∈V L(u, tk+1, f k+1, pk+1, ck+1; λkt , λ

k
f , λ

k
p, λ

k
c)

(3.9)⎛
⎜⎜⎜⎜⎝

λk+1
t

λk+1
f

λk+1
p

λk+1
c

⎞
⎟⎟⎟⎟⎠

←

⎛
⎜⎜⎜⎝

λkt − γ βt
(
tk+1 − Duk+1

)

λkf − γ β f
(
f k+1 − F(Kuk+1 − g)

)

λkp − γ βp
(
pk+1 − �M | f k+1| )

λkc − γ βc
(
ck+1 − Spk+1

)

⎞
⎟⎟⎟⎠ ,

(3.10)

where γ is a relaxation parameter chosen in the interval
(0, (

√
5 + 1)/2), as analyzed in [5].

In the following subsections we show in detail how to
solve the five minimization sub-problems (3.5)–(3.9), then
we present the overall iterative ADMM-based minimization
algorithm. As we will see, the first two sub-problems admit
a very efficient closed-form solution based on the following
proposition, whose proof is reported in the Appendix.

Proposition 3.1 Let α ∈ R, β ∈ R
+ and λ, v ∈ R

n with
n ≥ 1 be given constants. Then, the solution x∗ of the
n-dimensional minimization problem

arg min
x∈Rn

{
α ‖ x ‖2 − 〈 λ , x 〉+ β

2
‖ x − v ‖22

}
(3.11)

is given by:

a) x∗ = max

{
1 − α

β ‖ q ‖2 , 0

}
q if ‖ q ‖2 > 0, ∀α

b) x∗ = 0 if ‖ q ‖2 = 0 and α ≥ 0

c) x∗ ∈
{
x ∈ R

n : ‖ x ‖2 = −α

β

}
if ‖ q ‖2 = 0 and α < 0

(3.12)

where we set

q = v + 1

β
λ . (3.13)

3.1 Solving the Sub-problem for t

Given the definition of the augmented Lagrangian functional
in (3.3), the minimization sub-problem for t in (3.5) can be
written as follows:

t∗ ← arg min
t∈Q

⎧⎨
⎩

d2∑
i=1

‖ ti ‖2 −〈 λt , t − Du 〉 + βt

2
‖ t − Du ‖22

⎫⎬
⎭

← arg min
t∈Q

⎧⎨
⎩

d2∑
i=1

‖ ti ‖2 −〈 λt , t 〉 + βt

2
‖ t − Du ‖22

⎫⎬
⎭ (3.14)

← arg min
t∈Q

⎧⎨
⎩

d2∑
i=1

(
‖ ti ‖2 −〈 λt,i , ti 〉 + βt

2
‖ ti − Diu ‖22

)⎫⎬
⎭ .

(3.15)

Note that in (3.14) we omitted the constant terms while in
(3.15) the functional is written in an explicit component-
wise form. The minimization in (3.15) is equivalent to the
following d2 problems:

t∗i ← arg min
ti∈R2

{
‖ ti ‖2 − 〈 λt,i , ti 〉+ βt

2
‖ ti − Diu ‖22

}
,

i = 1, . . . , d2. (3.16)

Based on Proposition (3.1) and setting

qi := Diu + 1

βt
λt,i , i = 1, . . . , d2, (3.17)

the solution of (3.16) is given explicitly by the following d2

operations:

t∗i = max

{
‖ qi ‖2 − 1

βt
, 0

}
qi

‖ qi ‖2 , i = 1, . . . , d2.

(3.18)

where 0 · (0/0) = 0 is assumed. We notice that the com-
putational cost of (3.17)–(3.18) is linear with respect to the
number of pixels d2.

3.2 Solving the Sub-problem for f

The minimization sub-problem for f in (3.6) is as follows:

f ∗ ← arg min
f ∈Q

{
− 〈 λ f , f − F(Ku − g) 〉

−〈 λp, p − �M | f | 〉 + β f

2
‖ f − F(Ku − g) ‖22

+ βp

2
‖ p − �M | f | ‖22

}

← arg min
f ∈Q

{
− 〈 λ f , f 〉+ 〈 λp,�M | f | 〉

+ β f

2
‖ f − F(Ku − g) ‖22 + βp

2
‖ p − �M | f | ‖22

}

(3.19)

← arg min
f ∈Q

{
− 〈 λ f , f 〉+ 〈�T λp, M | f | 〉

+ β f

2
‖ f −F(Ku−g) ‖22 + βp

2
‖�T p−M | f | ‖22

}
.

(3.20)

In (3.19) we omitted the constant terms while in (3.20) we
rearranged the second and fourth term of the functional by
exploiting the orthogonality of �.

To simplify notations, we denote by λ̃p = �T λp and
p̃ = �T p the inversely-permuted versions of vectors λp
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and p, respectively, by Mi the i-th element on the main diag-
onal of M in (2.10) and by wi = Fi (Ku − g) the two-
dimensional vector containing the real and imaginary parts
of the i th component of the 2D-DFT of the residue image.
The component-wise form of (3.20) reads thus as follows:

f ∗ ← arg min
f ∈Q

d2∑
i=1

{
−〈 λ f,i , fi 〉+ λ̃p,i Mi ‖ fi ‖2

+ β f

2
‖ fi − wi ‖22 + βp

2

(
p̃i − Mi ‖ fi ‖2

)2 }

(3.21)

← arg min
f ∈Q

d2∑
i=1

{
−〈 λ f,i , fi 〉+ λ̃p,i Mi ‖ fi ‖2

+ β f

2

(
‖ fi ‖22 + ‖wi ‖22 − 2〈 fi , wi 〉

)

+ βp

2

(
p̃2i + M2

i ‖ fi ‖22 − 2 p̃i Mi ‖ fi ‖2
) }

(3.22)

← arg min
f ∈Q

d2∑
i=1

{
Mi
(
λ̃p,i − βp p̃i

) ‖ fi ‖2

− 〈 λ f,i + β f wi , fi 〉+ β f + M2
i βp

2
‖ fi ‖22

}
,

(3.23)

where the constant terms have been omitted in (3.23). The
minimization in (3.23) is equivalent to the following d2 prob-
lems:

f ∗
i ← arg min

fi∈R2

{
αi‖ fi ‖2 − 〈 ρi , fi 〉+ κi

2
‖ fi ‖22

}
,

i = 1, . . . , d2 , (3.24)

where the constants αi ∈ R, ρi ∈ R
2 and κi ∈ R in (3.24)

are defined as
⎧⎨
⎩

αi = Mi (λ̃p,i − βp p̃i )
ρi = λ f,i + β f wi

κi = β f + βpM2
i

, i = 1, . . . , d2 . (3.25)

Similar to the solution of (3.16), based on Proposition
(3.1) and setting

qi := 1

κi
ρi , i = 1, . . . , d2 , (3.26)

the solution of (3.24) is given explicitly by the following d2

operations:

f ∗
i = max

{
‖ qi ‖2 − αi

κi
, 0

}
qi

‖ qi ‖2 , i = 1, . . . , d2.

(3.27)

where 0 · (0/0) = 0 is assumed. The computational cost
of (3.25)–(3.27) is dominated by the 2D-DFT of the residue
image F(Ku − g) required to compute wi .

3.3 Solving the Sub-problem for p

Given f and c, the minimization sub-problem for p in (3.7)
is as follows:

p∗ ← arg min
p∈V

{
− 〈 λp, p − �M | f | 〉 − 〈 λc, c − Sp 〉

+ βp

2
‖ p − �M | f | ‖22 + βc

2
‖ c − Sp ‖22

}

← arg min
p∈V

{
− 〈 λp, p 〉 + 〈 λc, Sp 〉

+ βp

2
‖ p − �M | f | ‖22 + βc

2
‖ c − Sp ‖22

}
.

(3.28)

The problem (3.28) is a quadratic optimization problem
whose optimality conditions read as follows:

− λp + ST λc + βp
(
p − �M | f |)− βcS

T (c − Sp
) = 0

(3.29)

that is(
ST S + βp

βc
I

)
p = 1

βc

(
λp + βp�M | f | + ST

(
βcc−λc

))
.

(3.30)

Recalling that S is a lower triangular matrix with all nonzero
entries equal to one, the expressions for the d2 × d2 matrix
ST S and its inverse

(
ST S

)−1 is quite straightforward to
derive:

STS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d2 . . . 4 3 2 1
...

. . .
...

...
...

...

4 . . . 4 3 2 1
3 . . . 3 3 2 1
2 . . . 2 2 2 1
1 . . . 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(
STS

)−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . . . . . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
...

. . .
. . .

. . .
. . .

. . .
...

... 0
. . . 2 −1 0

...
. . . −1 2 −1

0 . . . . . . . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.31)

Since ST S is symmetric positive definite and βp
βc

> 0, the
coefficient matrix of the linear system in (3.30) is symmet-
ric positive definite. Moreover, to exploit the sparsity of
the matrix

(
ST S

)−1 both sides of (3.30) are multiplied by
βc
βp

(
ST S

)−1 thus obtaining the following equivalent linear
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system:
((

ST S
)−1 + βc

βp
I

)
p

= 1

βp
S−1

(
S−T (λp + βp�M | f |)+βcc − λc

)
. (3.32)

The coefficient matrix in (3.32) is a tridiagonal symmetric
positive definite matrix and is constant with the iterations,
hence its bidiagonal Cholesky factorization can be computed
as a preliminary step. At each iteration, the computational
cost for solving (3.32) is twice the cost for solving a bidiag-
onal system.

3.4 Solving the Sub-problem for c

Given p, the minimization sub-problem for c in (3.8) is as
follows:

c∗ ← arg min
c∈V

{
ıB(c)− 〈 λc, c − Sp 〉+ βc

2
‖ c − Sp ‖22

}

← arg min
c∈B

{
βc

2

∥∥∥∥c −
(
Sp + λc

βc

)∥∥∥∥
2

2

}
. (3.33)

The solution of (3.33) is thus given by a simple Euclidean
projection of the vector Sp+λc/βc onto the box-constraints
defined by the whiteness set B in (2.14):

c∗ = PB

(
Sp + λc

βc

)
. (3.34)

Such a projection can be obtained straightforwardly by com-
puting the following d2 component-wise projections:

c∗
i = max

{
min

{(
Si p + λc,i

βc

)
, b+

i

}
, b−

i

}
,

i = 1, . . . , d2 , (3.35)

where Si p is the i-th component of the vector of partial sums
of p, and where b+

i , b−
i ∈ R represent the selected box-

constraint limits of the i-th component of the NCP vector.
The computational complexity of this sub-problem is lin-

ear in the number of pixels d2. In fact, the matrix-vector
product Sp in (3.34) can be efficiently obtained by comput-
ing the partial sums of the vector p incrementally.

3.5 Solving the Sub-problem for u

Theminimization sub-problem foru in (3.9) canbe re-written
as follows:

u∗ ← argmin
u∈V

{
− 〈 λt , t − Du 〉 − 〈 λ f , f − F(Ku − g) 〉

+ βt

2
‖ t − Du ‖22 + β f

2
‖ f − F(Ku − g) ‖22

}

← arg min
u∈V

{
+ 〈 λt , Du 〉 + 〈 λ f , F(Ku) 〉

+ βt

2
‖ t − Du ‖22 + β f

2
‖ f − F(Ku − g) ‖22

}
.

(3.36)

The problem (3.36) is a quadratic optimization problem
whose optimality conditions read as follows:

DT λt + KT FT λ f − βt D
T (t − Du)

−β f K
T FT ( f − F(Ku − g)

) = 0 (3.37)

that is
(
βt D

T D + β f K
T FT FK

)
u

= −DT λt − KT FT λ f + βt D
T t + β f K

T FT ( f + Fg)

(3.38)

by dividing by βt and considering that FT F = I , we have

(
DT D + β f

βt
K T K

)
u

= DT
(
t − 1

βt
λt

)
+ β f

βt
K T

(
g + FT

(
f − 1

β f
λ f

))
.

(3.39)

The coefficient matrix of the linear system (3.39) does
not change with iterations. Moreover, since under periodic
boundary conditions for u both DT D and KT K are block cir-
culant matrices with circulant blocks, the coefficient matrix
can be diagonalized once for all by the 2D-DFT using the
FFT implementation. Therefore, at each iteration the linear
system (3.39) can be solved by one forward FFT and one
inverse FFT, each at a cost of O(d2 log d). For the computa-
tion of the right-hand side, we point out that thematrix-vector
product FT x can be obtained by taking the real part of the
inverse FFT of the vector x .

3.6 ADMM Iterative Scheme

To solve the proposed whiteness constrained minimization
problem (3.2), we use the ADMM iterative scheme reported
in Algorithm 1.

The overall computational cost of the algorithm is domi-
nated by step 5 which computes the u update by solving the
linear system (3.39) of dimension d2. However, we should
notice that the cost of the steps 2, 3 and4 is strongly reduced in
our implementation thanks to the symmetry of the 2D-DFT.
In particular, the dimension of the variables f, p, c is reduced
from d2 to s � d2

2 . Clearly, in step 5, we then need to expand
the f variable in order to cover the entire frequency range
according to the symmetry of the DFT of real 2D images.
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Algorithm1ADMMfor thewhiteness constrained problem (3.2)

Input: g, K , βt > 0, β f > 0, βp > 0, βc > 0

Output: approximate solution u∗ of (1.7)
1. Initialize: u0 = g, λ0t = 0, λ0f = 0, λ0p = 0, λ0c = 0;

2. For k = 0, 1, 2, . . . until convergence:

1) given uk , λkt , compute tk+1 according to (3.17)–(3.18)

2) given uk , pk , λkf , λ
k
p , compute f k+1 according to (3.25)–(3.27)

3) given f k+1, ck , λkp, λ
k
c , compute pk+1 according to (3.32)

4) given pk+1, λkc , compute ck+1 according to (3.35)

5) given tk+1, f k+1, λkt , λ
k
f , compute uk+1 by solving (3.39)

6) given tk+1, f k+1, pk+1, ck+1, uk+1, compute λk+1
t , λk+1

f , λk+1
p , λk+1

c by (3.10)

End For

4 Numerical Examples

In this section we first discuss the approach we followed
to select the limits b+, b− for the box-constraint in (2.14),
then we present experimental results to test the proposed
algorithm.

For the selection of the whiteness set limits b+, b− ∈
R
s , we propose the following simple Montecarlo approach.

Given a standard deviation σ for the noise and a selected
image dimension d, we generate a large number of d × d
images containing different realizations of a zero-meanwhite
Gaussian noise with standard deviation σ . For each realiza-

tion, we compute the NCP vector c according to the def-
inition in (2.11). Finally, we compute the minimum (b−)
and the maximum (b+) values within all the realizations for
all the components of the NCP vector. In Fig. 2 we show
the results obtained by using four different image dimen-
sions d = 10, 20, 50, 100. It is worth also pointing out
that, thanks to the normalization adopted for the computa-
tion of the NCP vector, see (2.10), the upper and lower limits
b+, b− do not depend on the standard deviation σ of the
noise.

We notice how the size of the band gets smaller as the
image dimension d increases. In other words, the bigger the

Fig. 2 Some results of
Montecarlo simulations: in
dashed blue we depict the
computed upper and lower
limits b+, b− ∈ R

s of the
whiteness box-constraints on the
NCP vector c ∈ R

s for
zero-mean white Gaussian noise
with standard deviation σ = 4,
obtained for d × d images with
dimension a d = 10, b d = 20,
c d = 50, d d = 100. In solid
red the theoretical whiteness
NCP vector cw defined in (2.12)
is shown (Color figure online)
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(b) degraded image(a) original image

(c) restoration by TV-L2 (d) restoration by TV-W

Fig. 3 Example 1. Restoration results obtained by TV-L2 and TV-W
models on the original barbara image degraded by Gaussian blur
with band = 5,sigma = 1.0 and additive zero-mean white Gaussian
noise with standard deviation σ = 5

image dimension d is, the narrower the band of the whiteness
constraint will be. In the limit, as d tends to infinity, the NCP
vector c converges to the theoretical whiteness NCP vector
cw defined in (2.12).

In the rest of this section we evaluate the performance of
the proposed restoration algorithm when applied to images
synthetically corrupted by blur and white Gaussian noise .

We compare the proposed algorithm, referred to as TV-
W, with the well-known Rudin-Osher-Fatemi (ROF) model
[16], based on the minimization of the TV-L2 functional
(1.3). The TV-L2 approach is implemented by the ADM,
a variant of the classic augmented Lagrangian method for
structured optimization which reformulates a TV problem

as a linear equality constrained problem. The ADM algo-
rithm is stable, efficient and in particular faster than most of
the state-of-the-art restoration algorithms [19]. The software
package is freely available at http://www.caam.rice.edu/ opti-
mization/L1/ftvd/v4.0/ and described in detail in [19].

For the proposed TV-W model, we used the ADMM
minimization procedure illustrated in Algorithm 1) which
requires a number of tuning parameters to be estimated. We
used the following parameters setting: βt = βc = βp =
β f = 10, γ = 1.618, which is a pretty standard choice.
In fact we observed that the restoration results are relatively
insensitive to the choice of these parameters. However, for a
faster convergence the βt parameter should be tuned towards
higher values.

In the extensive experiments we run to test the itera-
tive algorithms for TV-L2 and TV-W, we noticed that after
a few iterations they both approach toward a given sta-
ble solution, thus we decided to report in this section the
results of the two algorithms obtained as soon as the rel-
ative difference between two successive iterates satisfies
ek := ‖uk − uk−1‖2 / ‖uk−1‖2 < 10−4 or after a maximum
of 100 iterations.

For a fair comparison between the TV-L2 and TV-W algo-
rithms which are implemented as constrained models, we set
τ = 1 both in (1.6) and in (2.10), where σ is the available
standard deviation of the noise.

The accuracy of the methods is evaluated by the improved
signal to noise ratio (ISNR) and blurred signal to-noise ratio
(BSNR), defined by

ISNR(u∗, u) = 10 log10
‖g − u‖22
‖u∗ − u‖22

dB,

BSNR(u∗, u) = 10 log10
‖g‖22
‖n‖22

dB, (4.1)

where u∗ ∈ R
d2 is the computed estimate of the uncorrupted

image u ∈ R
d2 . The ISNR quantity provides a quantitative

measure of the improvement in the quality of the restored
image: a high ISNR value indicates that u∗ is an accurate
approximation of u.

The corrupted images taken as input by the algorithms
have been obtained as follows. First, the original d × d
image u is blurred by a Gaussian kernel characterized
by two parameters band and sigma. The former spec-
ifies the half-bandwidth of the Toeplitz blocks and the
latter the variance of the Gaussian point spread func-
tion. The larger the sigma is, the more the blurring will
be. The kernel is generated through the MATLAB com-
mand fspecial(’Gaussian’,band,sigma). Then,
the blurred image Ku is corrupted by additive zero-mean
white Gaussian noise with standard deviation σ .

Example 1.We consider the restoration of three different
images:barbara (d = 512),skyscraper (d = 256) and
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Fig. 4 Example 1. Restoration
results obtained by TV-L2 and
TV-W models on the original
skyscraper image degraded
by Gaussian blur with
band = 5,sigma = 1.5 and
additive zero-mean white
Gaussian noise with standard
deviation σ = 10

egamidedarged(b)egamilanigiro(a)

(c) restoration by TV-L2 (d) restoration by TV-W

geometry (d = 256),which present interestingmixtures of
textures, flat regions and shaded areas; the noise-free versions
of the images are depicted in Figs. 3a, 4a, and 5a, respectively.

In the first part of this example we investigate the compar-
ison between the restoration by TV-L2 and by TV-W algo-
rithms for a fixed additive Gaussian noise with standard devi-
ation σ = 5 and variable Gaussian blur degradations, charac-
terized by band and sigma, which significantly worsen the
ill-conditioning of the image restoration problems. Table 1
reports in the first and second columns the parameters band
andsigma of theGaussian blur kernel, and the third column,
labeled BSNR, reports the BSNR-values of the available cor-
rupted image g. The columns labeled TV-L2 and TV-W dis-
play ISNR-values for the restored images obtained by the two
related algorithms. For increasingband andsigma parame-
ters, the textured parts of the images tend to disappear, con-
sequently the benefits of the whiteness constraint decrease
until the worst case with band = 7 and sigma = 2.5
where the ISNR-values for the two algorithms are almost the
same.

In the second part of this example, we evaluate quanti-
tatively the robustness of the restoration performance for a
fixed Gaussian blur and increasing standard deviation σ of
the additive noise when the restoration methods are applied
to the same images. Table 2 shows the resulting ISNR val-
ues for σ ranging from 5 to 40. For each image we chose
different blur intensities in such a way that textured parts
are not completely filtered out, and noise effect can be better
highlighted.

In Figs. 3, 4, 5 we display the degraded images and the
results by applying the two different image restoration meth-
ods.

A visual inspection of the figures of this example together
with the results in the Tables 1, 2 allow us to conclude that by
constraining the whiteness of the residual, we can go beyond
the use of just the residual norm or the variance of the noise
model, thus providing better restorations. In all the tables the
highest ISNR values are in boldface.

A proof of theoretical convergence for the ADMM algo-
rithm proposed for the TV-W model is beyond the scope
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Fig. 5 Example 1. Restoration
results obtained by TV-L2 and
TV-W models on the original
geometry image degraded by
Gaussian blur with
band = 7,sigma = 1.5 and
additive zero-mean white
Gaussian noise with standard
deviation σ = 10

egamidedarged(b)egamilanigiro(a)

(c) restoration by TV-L2 (d) restoration by TV-W

Table 1 Example 1. ISNR
values obtained by restoring the
images barbara,
skyscraper and geometry
corrupted by additive zero-mean
white Gaussian noise with fixed
standard deviation σ = 5 and
Gaussian blur with increasing
strength

band sigma barbara skyscraper geometry

BSNR TV-L2 TV-W BSNR TV-L2 TV-W BSNR TV-L2 TV-W

7 2.5 19.09 0.39 0.40 18.01 1.65 2.18 19.47 0.93 0.93

7 1.2 19.29 −0.04 0.55 18.42 1.88 2.83 19.63 3.29 3.96

5 1.0 19.37 0.31 1.22 18.64 2.43 3.06 19.73 2.84 3.81

5 0.7 19.57 1.55 3.06 19.04 2.80 2.98 19.88 1.53 2.58

3 1.0 19.48 0.69 1.66 18.91 2.36 2.76 19.84 1.94 2.69

3 0.5 19.95 1.46 2.59 19.51 1.81 2.06 20.04 0.32 0.92

Table 2 Example 1. ISNR
values obtained by restoring the
images barbara,
skyscraper and geometry
corrupted by fixed Gaussian blur
and additive zero-mean white
Gaussian noise with increasing
standard deviation σ

barbara skyscraper geometry
(band = 3, sigma = 0.5) (band = 5, sigma = 1.5) (band = 7, sigma = 1.5)

σ BSNR TV-L2 TV-W σ BSNR TV-L2 TV-W σ BSNR TV-L2 TV-W

5 19.95 1.46 2.59 5 18.37 1.14 1.73 5 19.56 2.4 4.15

10 13.93 −0.28 0.99 10 12.35 0.63 1.35 10 13.54 1.03 4.24

20 7.91 0.74 1.38 20 6.33 1.66 1.96 20 7.52 3.36 5.13

40 1.88 4.36 4.47 40 0.31 4.56 4.58 40 1.50 7.71 7.74
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Fig. 6 Plot of the relative change of the approximate solution ek computed by the proposed TV-W algorithm as a function of iterations count k
for the example reported in the third row of Table 1 (band = 5, sigma = 1.0)

of this paper, and will be investigated in future work, since
the convergence of a several block variables ADMM is still
an open problem to the best of our knowledge. However, in
Fig. 6 we provide empirical evidence of the numerical con-
vergence of the proposed algorithm for the example reported
in the third row of Table 1 (band = 5, sigma = 1.0). In
particular, in Fig. 6 the relative change of the approximate
solution computed as ek is shown as a function of the itera-
tion count k. The same convergent behavior can be observed
for all the other tested examples.

Example 2. In this example we show the good perfor-
mance of Algorithm 1) with whiteness constraints in recov-
ering perturbed textured images with increasing size of the
texture pattern. In [4] a strategy for the restoration of textured
images has been proposed, where a texture detection prelim-
inary procedure was required to set the fractional order of the
regularization. Unlike, in TV-W method, the textured parts
are automatically handled by the constraint in the variational
formulation.

Synthetic 200 × 200 checkboard images are created
with increasing pattern size as depicted in Fig. 7 (first col-
umn). The checkboard characterized by the finest pattern size
can be considered as a classical textured image, while for
increasing pattern size any automatic texture detection algo-
rithm could even not succeed in classifying them as textured
images. Therefore, all those algorithms that take advantage
of a preliminary detection of textured regions to improve the
restoration would fail in these cases. Moreover, even for the
checkboard image characterized by the largest pattern size
which is notoriously well recovered by TV-L2 algorithm,
TV-W algorithm provides significantly better results.

The checkboard images corrupted by white Gaussian
noise with σ = 20 and Gaussian blur with band = 7
and sigma = 1.5 are displayed in Fig. 7 (second column),
the restored images obtained by the TV-L2 and TV-W algo-
rithms are depicted in Fig. 7 third and fourth columns, respec-
tively.

In Table 3 we report the results of the restorations for
images depicted in Fig. 7 (second column). The initial BSNR
values (labeled as BSN R) and those obtained by each

algorithm for different noise levels (σ = 10, 20), are
reported. The ISNR values reported in Table 3 show that
TV-W algorithm significantly improves the restoration qual-
ity compared to TV-L2, and the improvement increases for
large pattern size.

As previously stated, in all the experiments reported, we
used the parameter value τ = 1 for both approaches, that is
we imposed that the variance of the residue image is equal
to the true noise variance.

However, it is known that using the discrepancy princi-
ple with τ = 1 in the TV-L2 model tends to lead to over-
regularized solutions. Therefore the value of the τ parameter
is usually adjusted for a better performance.

In Table 4 the examples shown in Table 3 has been rerun,
where the τ parameters of the both approaches have been
tuned. The corresponding τ values are reported in columns
fourth and sixth for the TV-L2 and TV-W, respectively.

We observe that the proposed model leads to better
results than the TV-L2 model after parameter tuning of both
approaches, moreover it’s worth noticing that the optimal τ

values are less than 1 for TV-L2 as expected, while they are
greater than 1 in our model.

5 Conclusions

Wehave presented a newvariationalmodel for the restoration
of images corrupted by blur and zero-mean white Gaussian
noise. The proposed model takes advantage of residual com-
ponents, rather than only the norm, to determine when the
approximate solution is adequately separated from noise.
In particular, the whiteness of the residual image has been
integrated in the model as a new constraint on the solution.
The constrained TV-Wmodel has been efficiently solved by
combining the effective ADMM method with an accurately
chosen variable splitting strategy. Experimental comparison
with the classical TV-L2 model for image restoration demon-
strates the effectiveness of the proposed model in particu-
lar for textured images. However, we notice that the present
implementation is not optimized as the downloaded code for
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Fig. 7 Restoration results
obtained by TV-L2 (third
column) and TV-W (fourth
column) models on the degraded
images shown in the second
column, obtained by corrupting
the original images in the first
column by a Gaussian blur with
band = 7,sigma = 1.5, and
additive white Gaussian noise
with zero-mean and σ = 20

(a)

(b)

(c)

(d)

Table 3 Example 2. ISNR values obtained by restoring the synthetic
checkboard image corrupted by additive zero-mean white Gaussian
noise of standard deviation σ for different checkboard-sized images

σ BSNR TV-L2 TV-W

Fig.7a 10 −1.88 1.56 3.27

20 −7.90 −0.03 2.28

Fig.7b 10 11.09 3.87 4.98

20 5.07 2.84 4.46

Fig.7c 10 16.59 6.75 13.11

20 10.57 3.73 10.34

Fig.7d 10 18.46 7.66 13.54

20 12.44 5.31 9.21

TV-L2 is, therefore the TV-W presents an overhead with
respect to the TV-L2 between 30% and 50%. Themethod can
also be used in conjunction with other fidelity terms or differ-

Table 4 Example 2. ISNR values obtained by restoring the synthetic
checkboard image corrupted by additive zero-mean white Gaussian
noise of standard deviation σ for different checkboard-sized images,
using properly tuned parameter values τ

σ BSNR τ TV-L2 τ TV-W

Fig.7a 10 −1.88 0.92 2.30 1.03 4.84

20 −7.90 0.92 0.89 1.04 3.38

Fig.7b 10 11.09 0.96 4.22 1.01 5.78

20 5.07 0.96 3.05 1.03 5.34

Fig.7c 10 16.59 0.95 7.46 1.02 13.79

20 10.57 0.96 5.12 1.01 10.78

Fig.7d 10 18.46 0.97 9.36 1.00 13.54

20 12.44 0.98 7.16 1.02 10.48

ent regularization operators provided that the noise is not cor-
related. Future work will investigate how this could improve
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the overall performance. Moreover, the present approach
could be easily extended to non-white noise perturbations
in which the periodogram curve is known or can be inferred,
without any particular modifications of the algorithm.

Appendix

Proof of Proposition (3.1). First, the problem in (3.11) can
be equivalently rewritten as follows:

x∗← arg min
x∈Rn

{
ϕ(x) = α ‖ x ‖2 + β

2
‖ x − q ‖22

}
, (5.1)

with q ∈ R
n defined as in (3.13). In Fig. 8a we give a geo-

metric representation of the problem in the 2-dimensional
case. To prove the proposition statement in (3.12) we con-
sider separately the two cases ‖ q ‖2 > 0 and ‖ q ‖2 = 0.

Case ‖ q ‖2 > 0. First, we prove that the solution x∗ of
(5.1) lies on the half-line Oq with origin at the n-dimensional
null vector O and passing through q, represented in solid red
in Fig. 8a. To this purpose, we demonstrate that for every
point p not lying on Oq there always exists a point p∗ on
Oq providing a lower value of the objective function in (5.1),
that is a point p∗ such that ϕ(p) − ϕ(p∗) > 0. In particular,
we define p∗ as the intersection point between the half-line
Oq and the n-dimensional sphere with center in O and pass-
ing through p, depicted in solid blue in Fig. 8a. Noting that
‖p∗‖2 = ‖p‖2 by construction, we can thus write:

ϕ(p) − ϕ(p∗) = α
(‖ p ‖2 − ‖ p∗ ‖2

)

+β

2

(
‖ p − q ‖22 − ‖ p∗ − q ‖22

)

= β

2

(
‖ p ‖22 + ‖ q ‖22 − 2 〈 p , q〉 − ‖ p∗ ‖22 − ‖ q ‖22

+2 〈 p∗ , q〉)

= β 〈 p∗ − p , q 〉
= β ‖ p∗ − p ‖2 ‖ q ‖2 cos

(
Ô p∗ p

)
. (5.2)

Since β > 0, ‖q‖2 > 0 for hypothesis, p �= p∗ by construc-
tion, and noting that the angle Ô p∗ p is always acute, we can
conclude that the expression in (5.2) is positive. Hence, the
solution x∗ of (5.1) lies on the half-line Oq, i.e. x∗ = ξ∗q,
ξ∗ ≥ 0.

By setting x = ξq, ξ ≥ 0, the n-dimensional minimiza-
tion problem in (5.1) can be transformed into the following
1-dimensional problem:

ξ∗← argmin
ξ≥0

{
α ‖ ξq ‖2 + β

2
‖ ξq − q ‖22

}

← argmin
ξ≥0

{
α ‖ q ‖2ξ + β

2
‖ q ‖22 (ξ − 1)2

}

← argmin
ξ≥0

{
αξ + β

2
‖ q ‖2 (ξ − 1)2

}

← argmin
ξ≥0

{
g(ξ) =

(
β

2
‖ q ‖2

)
ξ2 + (

α − β ‖ q ‖2
)
ξ

}
.

(5.3)

Since the coefficient β
2 || q ||2 is strictly positive (in fact, we

are assuming that β > 0 and ‖q‖2 > 0), the function
g(ξ) in (5.3) represents a strictly convex parabola passing
through the origin and having its unconstrained minimum at
the abscissa of its vertex:

ξv = 1 − α

β‖ q ‖2 . (5.4)

Hence, for what concern the constrained minimization in
(5.3) we have the two cases illustrated in Fig. 8b. In formulas:

ξ∗ =
{

ξv if ξv ≥ 0
0 if ξv < 0

, that is : ξ∗ = max {ξv , 0} . (5.5)

Therefore, from (5.4) and (5.5) the solution x∗ = ξ∗q of the
n-dimensional problem in (5.1) is:

x∗ = ξ∗q = max

{
1 − α

β‖ q ‖2 , 0

}
q , (5.6)

thus proving case a) of the proposition statement in (3.12).
Case ‖ q ‖2 = 0. Since q is the n-dimensional null vector,

the objective function minimized in (5.1) depends on x only
through its norm ‖x‖2. Hence, the minimizers will be all the
vectors x∗ belonging to the n-dimensional sphere ‖x‖2 = r∗
with radius r∗ ≥ 0 given by the solution of the constrained
1-dimensional minimization problem obtained from (5.1) by
setting q = 0 and r = ‖x‖2, that is

r∗ = argmin
r≥0

{
α r + β

2
r2
}

. (5.7)

The minimization problem in (5.7) is very similar to prob-
lem (5.3) and the solution can be analogously computed as
follows:

r∗ = max

{
−α

β
, 0

}
. (5.8)

Therefore, if ‖q‖2 = 0 the solution of (5.1) is given by:

x∗ = 0 if α ≥ 0 , (5.9)

while we get an infinite number of solutions

x∗ ∈ {
x ∈ R

n : ‖ x ‖2 = r∗ } if α < 0 , (5.10)

with r∗ defined in (5.8). This proves cases b) and c) of the
proposition statement in (3.12). ��
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Fig. 8 Geometric
representation of the problem in
(5.1)
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