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Abstract A functional for joint variational object segmen-
tation and shape matching is developed. The formulation
is based on optimal transport w.r.t. geometric distance and
local feature similarity. Geometric invariance and modelling
of object-typical statistical variations is achieved by intro-
ducing degrees of freedom that describe transformations and
deformations of the shape template. The shapemodel ismath-
ematically equivalent to contour-based approaches but infer-
ence can be performed without conversion between the con-
tour and region representations, allowing combination with
other convex segmentation approaches and simplifying opti-
mization. While the overall functional is non-convex, non-
convexity is confined to a low-dimensional variable. We pro-
pose a locally optimal alternating optimization scheme and a
globally optimal branch and bound scheme, based on adap-
tive convex relaxation. Combining both methods allows to
eliminate the delicate initialization problem inherent tomany
contour based approaches while remaining computationally
practical. The properties of the functional, its ability to adapt
to a wide range of input data structures and the different opti-
mization schemes are illustrated and compared by numerical
experiments.
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1 Introduction

1.1 Motivation

Object segmentation and matching are fundamental prob-
lems in image processing and computer vision as they form
the basis for many high-level approaches to understanding
an image. They are intimately related: segmentation of the
foreground is a prerequisite for matching in a sequential
processing pipeline. Whereas, when performed simultane-
ously, matching with a template of the sought-after object
(e.g. starfish, car, etc.) as prior knowledge can help guiding
segmentation to become more robust to corruption of local
image features throughnoise, occlusion andother distortions.
Naturally the combined problem is more complicated.

Today convex variational methods can solve image labell-
ing and segmentation problems based on local cues exactly
or in good approximation. But combining an object segmen-
tation functional with a shape prior entails a delicate trade-
off between descriptive power and computational complex-
ity. Sophisticated shape priors are often described by highly
non-convex functionals whereas convex shape prior func-
tionals tend to be rather simplistic. Incompatibility between
different shape representations within one approach or the
requirement of geometric invariance are common causes of
difficulty.

In this paper we present a shape prior functional for
simultaneous object segmentation and matching which has
been designed specifically to address the issues of repre-
sentation incompatibility and geometric invariance. Using
optimal transport and the differential geometric structure of
the 2-Wasserstein space for regularization, one can combine
appearance modelling, description of statistical shape vari-
ations and geometric invariance in a mathematically uni-
form way. The linear programming formulation of opti-
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mal transport due to Kantorovich allows for an adaptive
convex relaxation which can be used for a globally opti-
mal branch and bound scheme, thus avoiding the initial-
ization problem from which most non-convex approaches
suffer.

1.2 Related Literature

Image Segmentation and Shape Priors. Variational meth-
ods based on convex relaxations have been successfully
applied to obtain globally optimal (approximate) solutions
to the originally combinatorial image labelling or segmenta-
tion problem [8,22,29]. The segmentation is usually encoded
by (relaxed) indicator functions which allow for simple
and convex formulation of local data matching terms and
regularizers that encourage local boundary regularity, such
as total variation and its generalizations. However, intro-
ducing global regularizers, such as shape priors, into such
models is difficult. Convex shape priors based on indica-
tor functions are conceivable but tend to be rather simplis-
tic and lack important features such as geometric invariance
[18,30].

Somewhat complimentary is the representation of shapes
by their outline contours. Treated as infinite dimensional
manifolds [26,34,38] such representations can be used to
construct sophisticated shape modelling functionals [10,12].
But matching contours with local image data usually yields
non-convex functionals that can only be optimized locally
via gradient descent. Often one has to internally convert
the contour to the region representation. Therefore such
approaches require a good initialization to yield reasonable
results.

Object Registration. Independent of the segmentation prob-
lem, computing meaningful registrations between two fixed
objects (e.g. whole images, measures, meshes…) has attract-
ed a lot of attention. Typical applications are shape interpola-
tion, data interpretation and using registrations as a basis for
a measure of object similarity. Often one requires invariance
of the sought-after registration under isometric transforma-
tions of either of the two objects. Major approaches include
the framework of diffeomorphic matching and metamorpho-
sis [15,39], methods based on physical deformation energies
[5,17] and the metric approach to shape matching [7,25].
An extension to shapes that in addition to their geometry are
equipped with a ‘signal living on the shape’ is presented in
[9].

These methods provide impressive results at the cost of
non-convex functionals and high computational complexity.
Naïve online combination with object segmentation is thus
not possible. In [32] a shape prior based on object match-
ing has been constructed through convex relaxation of the
Gromov-Wasserstein distance [25].

Optimal Transport. Optimal transport is a popular tool in
machine learning and image analysis. It provides a mean-
ingful metric on probability measures by ‘lifting’ a met-
ric from the base space. Thus it is a powerful similarity
measure on bag-of-feature representations and other his-
tograms [28]. It is also applied in geometric problems to
extract an object registration from the optimal transport plan
[16]. However this requires alignment of the objects before-
hand. A step towards loosening this constraint is presented in
[11] where one optimizes over a suitable class of transfor-
mations. The 2-Wasserstein space, induced by optimal trans-
port, exhibits structure akin to a Riemannian manifold [3].
This was exploited in [36] for analysis of spatial variations
in observed sets of measures.

1.3 Contribution and Outline

We present a functional for object segmentation with a
shape prior. Motivated by the literature on object registra-
tion, we propose to base the prior on matching the fore-
ground proposal to a template object. For this we need to
be able to jointly optimize over segmentation and registra-
tion. Matching is done via optimal transport and based both
on geometry and local appearance information. Foreground
and template are represented as metric measure spaces
[25] which provides ample flexibility. This encompasses a
wide range of spatial data structures (pixels, super-pixels,
point clouds, sparse interest points,…) and local appear-
ance features (color, patches, filter responses,…). Inspired
by [36] the Riemannian structure of the 2-Wasserstein
space is used to model geometric transformations, object-
typical deformations and changes in appearance in a uni-
form way. Hence, the resulting approach is invariant under
translation and approximately invariant under rotation and
scaling.

It has recently been shown that this way of modelling
transformations and deformations is equivalent to modelling
based on closed contours [31] but no conversion of shape
representation is required during inference. So shape mod-
elling and local appearance matching are performed directly
in the same object representation, allowing to combine the
local appearance matching of indicator functions with the
manifold based shape modelling on contours. Also, explic-
itly using the conversion during learning greatly simplifies
statistical analysis of the training data and avoids difficulties
that arise in [36].

The resulting overall functional is non-convex, but non-
convexity is constrained to a low-dimensional variable, mak-
ing optimization less cumbersome than in typical contour-
based approaches or shape matching functionals. Using
the linear programming formulation of optimal transport
due to Kantorovich, we derive an adaptive convex relax-
ation and construct a globally optimal branch and bound
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scheme thereon. Another option is to apply a local alter-
nating optimization scheme. By employing both optimiza-
tion techniques one after another their respective advan-
tages (no initialization required, speed) can be combined.
This allows to construct a ‘coarse’ object localization
method and a subsequent more precise segmentation method
as different approximate optimization techniques of the
very same functional instead of using two different mod-
els. Additionally an efficient graph-cut relaxation is dis-
cussed.

Organization. The paper is organized as follows: In Sect. 2
the mathematical background for the paper is introduced.
We touch upon the convex variational framework for image
segmentation, optimal transport and its differential geomet-
ric aspects and the description of shapes via manifolds of
(parametrized) contours. The proposed functional is succes-
sively developed throughout Sect. 3. We start in Sect. 3.1
with a basic segmentation functional where optimal trans-
port w.r.t. a reference template is used as a shape prior. This
functional has obvious limitations (e.g. lack of geometric
invariance). An alleviation is proposed in Sect. 3.2 by intro-
ducing additional degrees of freedoms that allow transforma-
tion of the template set. These transformations can be used to
achieve geometric invariance and to model statistical object
variation, learned from training data (Sects. 3.3 and 3.4).
In Sect. 4 we discuss two different approaches for optimiza-
tion: locally, based on alternating descending steps and glob-
ally by branch and bound with adaptive convex relaxations
(Sects. 4.1 and 4.2). A relaxation that replaces optimal trans-
port by graph cuts for reduced computational cost is derived
in 4.3. Numerical experiments are presented in Sect. 5 to
illustrate the different features of the approach and to com-
pare the two optimization schemes. A brief conclusion is
given at the end.

1.4 Notation

For a measure space A we denote by Meas(A) the set of
non-negative and by Prob(A) the set of probability measures
on A. For two measure spaces A, B and a measurable map
f : A → B we write f�μ for the push-forward of a measure
μ from A to B which is defined by ( f�μ)(σ ) = μ

(
f −1(σ )

)

for all measurable σ ⊂ B. For A ⊂ R
n we denote by LA the

Lebesgue measure constrained to A and by |�| the Lebesgue
volume of a measurable set � ⊂ R

n . Sometimes, by abuse
of notation we use L to denote the discrete approximation of
the Lebesgue measure for discretized domains. For a product
space A × B we denote by ProjA : A × B → A the canon-
ical projection onto some component. For a differentiable
manifold M we write TxM for the tangent space at footpoint
x ∈ M .

2 Mathematical Background

2.1 Convex Variational Image Segmentation

Let Y ⊂ R
2 be the (continuous) image domain. The goal of

object segmentation is the partition of an image into fore- and
background. Such a partition can be encoded by an indicator
function u : Y → {0, 1} where u(y) = 1 encodes that y ∈ Y
is part of the foreground.A typical functional for a variational
segmentation approach has the form [22]

E(u) =
∫

Y
s
(
y, u(y)

)
dy + R(u) . (2.1)

The first term is referred to as data term, the second as reg-
ularizer. The data term s

(
y, u(y)

)
describes how well label

u(y)matches pixel y, based on local appearance information.
The regularizer R introduces prior knowledge to increase
robustness to noisy appearance. A common assumption is
that boundaries between objects are smooth, a suitable regu-
larizer then is the total variation.

To obtain feasible convex problems the constraint that u
must be binary is usually relaxed to the interval [0, 1] and the
functional (2.1) is suitably extended onto non-binary func-
tions, such that it is convex. In the case of total variation
regularization such an extension may be

E(u) =
∫

Y
f (y) · u(y) dy + TV(u) (2.2)

where the data term of (2.1) can be equivalently expressed
as a linear function in u.

Total variation is a local regularizer in the sense that it only
depends locally on the (distributional) derivative of its argu-
ment. It can thus only account for local noise, i.e. noise that
is statistically independent at different points of the image.
Although this weakness can be alleviated to some extent by
employing non-local total variation [14], the inherent under-
lying assumption is often not satisfied: faulty observations
caused by illumination changes or occlusion clearly have
long range correlations. At the same time, in particular for the
problem of object segmentation more detailed prior knowl-
edge might be available that is not exploited by local reg-
ularizers: the shape of the sought-after object. A non-local
regularizer that encourages the foreground region to have a
particular shape is called a shape prior.

In this article we construct a shape prior by regularization
of the foreground region with optimal transport. Hence, we
interpret u as the density of a measure ν w.r.t. the Lebesgue
measure LY on Y . The feasible set for ν will be:

SegMeas(Y, M) =
{
ν ∈ Meas(Y ) : 0 ≤ ν

≤ LY ∧ ν(Y ) = M} (2.3)
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The first constraint ensures that ν ∈ SegMeas(Y, M) has a
density which is a relaxed indicator function. The second
constraint fixes the overall mass of ν to M . This is necessary
to make it comparable by optimal transport.

2.2 Optimal Transport

For two spaces X and Y , two probability measures μ ∈
Prob(X) and ν ∈ Prob(Y ) and a cost function c : X×Y → R

the optimal transport cost between μ and ν is defined by

D(c;μ, ν) = inf
π∈�(μ,ν)

∫

X×Y
c(x, y) dπ(x, y) (2.4)

where

�(μ, ν) =
{
π ∈ Prob(X × Y ) : ProjX �π

= μ ∧ ProjY �π = ν
}

(2.5)

is referred to as the set of couplings between μ and ν. It is
the set of non-negative measures on X × Y with marginals
μ and ν respectively.

For X = Y = R
n and c(x, y) = ‖x − y‖2 one finds that

W : Prob(Rn)2 → R, W (μ, ν) = (D(c;μ, ν))1/2

(2.6)

is a metric on the space of probability measures on R
n with

finite second order moments, called the 2-Wasserstein space
of Rn , here denoted by W2(R

n).
This space exhibitsmany interesting properties. For exam-

ple, for two absolutely continuous measures μ, ν ∈ W2(R
n)

(2.4) has a unique minimizer π̂ , induced by a map T : Rn →
R
n , that takes μ onto ν, i.e. ν = T�μ and π̂ = (id, T )�μ and

the measure valued curve

[0, 1] � λ 	→ (
(1 − λ) id+λ · T )

�
μ (2.7)

is a geodesic between μ and ν in W2(R
n). This lead to the

observation that the set of absolutely continuous measures in
W2(R

n) can informally be viewed as an infinite dimensional
Riemannian manifold. The tangent space at footpoint μ is
represented by gradient fields

TμW2
(
R
n) = {∇ϕ : ϕ ∈ C∞

0 (Rn)
}L2(μ)

(2.8)

and the Riemannian inner product for two tangent vectors is
given by the L2 inner product w.r.t. μ:

〈t1, t2〉μ =
∫

Rn
〈t1(x), t2(x)〉R2 dμ(x) (2.9)

Analogous to (2.7) first order variations of ameasureμ along
a given tangent vector t are described by

λ 	→ (id+λ · t)�μ. (2.10)

The Jacobian determinant of Tλ = id+λ · t is

det JTλ = 1 + λ · div t + O(λ2). (2.11)

And by the change of variables formula the density of Tλ�μ

is given by

dens
(
Tλ�μ

)(
Tλ(x)

) = dens(μ)(x) · (
1 + λ · div t (x)

)−1

+ O(λ2). (2.12)

Clearly the concept of optimal transport generalizes to
non-negative measures of any (finite) mass, as long as the
mass of all involved measures is fixed to be identical. An
extensive introduction to optimal transport and the structure
of Wasserstein spaces is given in [35]. A nice review of the
Riemannian viewpoint can be found in [3] and is further
investigated in [24] for sufficiently regular measures.

In this paper we will describe the template for our shape
prior by a measure μ and model geometric and statistical
variations of the shape by tangent vectors t ∈ TμW2(R

2)

and their induced first-order transformations (2.10).

2.3 Contour Manifolds and Shape Measures

The shape of an object can be described by parametrizing its
outline contour. Let S1 denote the unit circle in two dimen-
sions. The set Emb of smooth embeddings of S1 into R

2

can be treated as an infinite dimensional manifold. A corre-
sponding framework is laid out in [19], a short summary for
shape analysis is given in [26]. For various proposed met-
rics and implementations as shape priors see references in
Sect. 1.2. Here we give a very brief summary that aids the
understanding of the paper.

The tangent space TcEmb at a given curve c ∈ Emb is
represented by smooth vector fields on S1, indicating first
order deformation:

TcEmb � C∞ (
S1,R2

)
(2.13)

This linear structure is a useful basis for analysis of shapes,
represented by closed simple contours, and construction of
shape priors thereon (see Sect. 1.2).

Let Diff denote the set of smooth automorphisms on S1.
In shape analysis one naturally wants to identify different
parametrizations of the same curve. This can be achieved
by resorting to the quotient manifold B = Emb/Diff of
equivalence classes of curves, equivalence c1 ∼ c2 between
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c1, c2 ∈ Emb given if there exists a ϕ ∈ Diff such that
c1 = c2 ◦ ϕ. We write [c] for the class of all curves equiva-
lent to c.

We summarize:

Emb : smooth embeddings S1 → R
2

Diff : smooth automorphisms on S1

B : quotient Emb/Diff (2.14)

One finds that for some a ∈ TcEmb the component which
is locally tangent to the contour corresponds to a first order
change in parametrization of c. ‘Actual’ changes of the shape
can always be represented by scalar functions on S1 that
describe deformations which are locally normal to the con-
tour:

HcEmb � C∞ (
S1,R

)
(2.15)

where H indicates that this belongs to the horizontal bundle
on Emb w.r.t. the quotient B. For smooth paths in Emb one
can always find an equivalent path such that the tangents lie in
HcEmb.While splitting off reparametrization is very elegant
from a mathematical perspective, it remains a computational
challenge when handling parametrized curves numerically
(see for example [27]).

Alternatively, one can represent a shape by a probabil-
ity measure with constant density support on the interior of
the object. Such measures and their relation to contours have
been investigated in [31].Wewill here recap themain results.
For an embedding c ∈ Emb denote by �(c) the region
enclosed by the curve and let the map F : Emb → W2(R

2)

be given by

(
F(c)

)
(A) = |�(c)|−1 · |A ∩ �(c)| and

∫
φ dF(c) = |�(c)|−1

∫

A∩�(c)
φ dx (2.16)

for measurable A ⊂ R
2 and integrable functions φ. The set

S = F(Emb) of measures is referred to as shape measures.
If c1 ∼ c2 then obviously F(c1) = F(c2), i.e. different
parametrizations of the same curve are mapped to the same
measure. Thus one can define a map FB : B → W2(R

2) by
FB([c]) = F(c) for any representative c of equivalence class
[c].

Consider a smooth path λ 	→ c(λ) on Emb with tangents
a(λ) = d

dλ
c(λ) ∈ Hc(λ)Emb. The derivative d

dλ
F

(
c(λ)

)
can

then be represented by a vector field t (λ) ∈ TF(c(λ))W2(R
2)

in the distributional sense that for any test function φ ∈
C∞
0 (R2) one has

d

dλ

∫
φ dF

(
c(λ)

) =
∫

〈∇φ, t (λ)〉R2 dF
(
c(λ)

)
. (2.17)

For a contour c themeasure tangent t ∈ TF(c)W2(R
2) at F(c)

corresponding to a contour tangent a ∈ HcEmb at contour c
in the sense of (2.17), one has on �(c) that t = ∇u where u
solves the Neumann problem

�u = C in �(c),
∂u

∂n
= a ◦ c−1 on ∂�(c) (2.18a)

with ∂
∂n denoting the derivative in outward normal direction

of the contour and

C = |�(c)|−1
∫

∂�(c)
a ◦ c−1 ds (2.18b)

is the normalized total flow of a through the surface ∂�(c).
This maps a to a uniquely determined t . We denote this map
by fc (depending on the basis contour c) andwrite t = fc(a).

Note that t = fc(a) has constant divergence on �(c) =
spt F(c). Hence by virtue of (2.12) one finds to first order of
λ that μ(λ) = (id+λ · t)�F(c) has constant density on its
support and is therefore itself a shape measure.

So vector fields generated as t = fc(a) can said to be
tangent to the set S inW2(R

2) and the former can informally
be regarded as a submanifold of the latter. When equipped
with the proper topology it becomes a manifold in the sense
of [19] which is diffeomorphic to B.

This means that describing shapes via shapemeasures and
appropriate tangent vectors thereon is mathematically equiv-
alent to describing shapes by contours modulo parametriza-
tion and deformations. Thus we can construct shape pri-
ors for regularization with optimal transport, based on mea-
sures, without any representation conversion during infer-
ence and without having to handle parametrization ambigu-
ities numerically.

3 Regularization with Optimal Transport

3.1 Setup and Basic Functional

Let Y ⊂ R
2 describe the image domain in which we want

to locate and match the sought-after object. As discussed in
Sect. 2.1 we will describe the object location by a relaxed
indicator function u : Y → [0, 1]. Since we want to use
optimal transport for regularization, u will be interpreted as
density of a measure ν. The feasible set for ν is given by
SegMeas(Y, M) as defined in (2.3) where M is the total mass
of the reference measure which we use for regularization.

Note that this is conceptually different from matching
approaches where a certain local image feature (usually
intensity or gray-level) is directly converted into a density.
The limitations of this are discussed in [9] in the context
of ‘colored currents’. In brief, one problem is, for example,
that only one dimensional features can be described. Another
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X, μ

π

Y, ν

(a)

x Tλ(x)

X, μ

Tλ

T μ

π

Y, ν

(b)

Fig. 1 Illustration of functionals E(ν), Eq. (3.3), and E(λ, ν),
Eq. (3.5): a The segmentation in Y is described by measure ν which is
regularized by the Wasserstein distance to a template measure μ, living
on X . This simple approach introduces strong bias, depending on the rel-
ative location of X andY , and lacks the ability to explicitlymodel typical
object deformations. b In the enhanced functional the template measure

μ is deformed by the map Tλ, resulting in the push-forward Tλ � μ. The
segmentation ν is then regularized by its Wasserstein distance to Tλ � μ.
The corresponding optimal coupling π gives a registration between the
foreground part of the image and the deformed template (Color figure
online)

is, that, by converting features to density, different, a priori
equally important image regions, are assigned different den-
sities and thus have a different influence on the optimizer.

We use the measure to indicate the location of the sought-
after object. Local image data is handled in a different fash-
ion: for this we introduce a suitable feature spaceF . Depend-
ing on the image this may be the corresponding color space.
It may however also be a more elaborate space spanned by
small image patches or local filter responses.We then assume
that any point y ∈ Y is equipped with some fy ∈ F which
we refer to as the observed feature. We can thus consider
every pixel to be a point in the enhanced space Y × F with
coordinates (y, fy).

For regularization with optimal transport we need to pro-
vide a prototype, referred to as template. Let X be a set whose
geometrywill model the shape of the object of interest. It will
be equipped with a measure μ which should usually be the
Lebesgue measure on X , having density 1 everywhere, to
indicate that ‘all of X is part of the object’. The constant M
specifying the total mass for feasible segmentations ν will
be the mass of μ:

M = μ(X) (3.1)

Additionally, we describe the appearance of the template by
associating to all elements x ∈ X corresponding fx ∈ F , the
expected features.

We assume that both the template X and the image domain
Y are embedded into R

2. The squared Euclidean distance
‖x − y‖2 for x ∈ X and y ∈ Y then provides a geometric
matching cost for points:

cgeo(x, y) = ‖x − y‖2 (3.2)

Moreover, we pick some function cF : F × F → R

which models the matching cost on the feature space. Pos-
sible choices for cF are for example a (squared) metric, or

a Bayesian log-likelihood for observing a noisy feature fy
when expecting feature fx .

Combining this, we can construct a functional for rating
the plausibility of a segmentation proposal ν ∈ SegMeas
(Y, M):

E(ν) = 1

2
inf

π∈�(μ,ν)

∫

X×Y

(
cgeo(x, y)

+ cF ( fx , fy)
)
dπ(x, y) + G(ν) (3.3)

The first term is the minimal matching cost between the seg-
mentation region and the template via optimal transport with
a cost function that combines the geometry and appearance.
The second term can contain other typical components of a
segmentation functional, for example a local boundary regu-
larizer (cf. Sect. 2.1). The functional is illustrated in Fig. 1a.

Remark 3.1 (Generality of functional). Although we des-
cribe here a continuous setup, numerically functional (3.3)
can be applied to a wide range of different data structures. X
andY canbeopen sets inR2, describing continuous templates
and images. Then μ would be, as indicated, the Lebesgue
measure on X and LY in (2.3) would be the Lebesgue mea-
sure on Y . Alternatively X and Y could be discrete sets of
pixels in R

2 or point clouds in R
n , then μ and LY should

be chosen to be the respective uniform counting measures
on X and Y . If X and Y represent an over-segmentation of
some data (i.e. super-pixels or voxels), μ and LY would be
weighted counting measures, the weights representing the
area/volume of each cell.

Remark 3.2 (Metric structure of W2(R
2)). Adding the term

cF to the optimal transport cost breaks the geometric struc-
ture ofW2(R

2), therefore some readersmaybe hesitant about
this step. However the measure ν is an unknown variable in
the approach. Therefore numerical solvers that rely on the
W2(R

2)-structure cannot be applied directly, even without
the cF term. Instead we use discrete solvers in this paper,
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which can simultaneously optimize for ν and π . So cF does
not add any computational complexity whereas we gain sig-
nificantly more modelling flexibility. Additionally, when one
chooses cF to be a squared metric onF , then one is working
on W2(R

2 × F), which also exhibits a metric structure.

Limitations of the Basic Functional. Functional (3.3) has
three major shortcomings for the application of object seg-
mentation and shape matching, related to the choice of the
embedding X → R

2:

(i) The location and orientation of the sought-after object
are often unknown beforehand. Hence, a segmentation
method should be invariant under Euclidean isometries,
which is clearly violated by picking an arbitrary embed-
ding X → R

2. If μ and ν were fixed measures in
Meas(R2) with equal mass, then the optimal coupling
forW (μ, ν) would be invariant under translation (up to
an adjustment of the coordinates according to the trans-
lation, of course). However, since in this application ν

is not fixed this quasi-invariance cannot be exploited.
Also, there is no similar invariance w.r.t. rotation.

(ii) Any non-isometric deformation between template fore-
ground and the objectwill be uniformly penalized by the
geometric part of the corresponding optimal transport
cost. No information on more or less common defor-
mations (learned from a set of training samples) can be
encoded.

(iii) Since themassM ofμ, related to the size of the template
X , equals the mass of ν, this determines the size of the
foregroundobject inY .Hence, the presented functionals
imply that one must know the scale of the sought-after
object beforehand. This is not possible in all applica-
tions.

In the next sections we will discuss how to overcome these
obstacles. By making the embedding X → R

2 flexible, the
resulting functionals become fit for (almost) isometry invari-
ance, can handle prior information on more or less common
non-isometric deformations and can dynamically adjust the
object scale.

3.2 Wasserstein Modes

Toovercome the limitations listed inSect. 3.1wewill allow X
tomove and be deformedwithinR2.We choose the following
family of embeddings:

Tλ : X → R
2, Tλ(x) = x +

n∑

i=1

λi · ti (x),

ti ∈ TμW2

(
R
2
)

(3.4)

t1
t2

Fig. 2 Explicit transformation variables and non-convexity. Gray
shading indicates ‘foreground features’. Placing the template (red con-
tour) at t1 or t2 yields equally good hypotheses. Were the prior func-
tional convex in the translation variable, any point along the line
(1 − α) · t1 + α · t2 for α ∈ [0, 1] would yield an at least equally
good proposal, which is clearly unreasonable (Color figure online)

The transformation is parametrized by the coefficients λ ∈
R
n . This linear decomposition will allow enough flexibil-

ity for modelling while keeping the resulting functionals
amenable. We refer to the basis maps {ti }ni=1 as modes.
Including the coefficients λ as degrees of freedom into (3.3)
yields:

E(λ, ν) = 1

2
inf

π∈�(μ,ν)

∫

X×Y

(
cgeo

(
Tλ(x), y

)

+ cF ( fx , fy)
)
dπ(x, y) + F(λ) + G(ν) (3.5)

The function F can be used to introduce statistical knowl-
edge on the distribution of the coefficients λ. The enhanced
functional is illustrated in Fig. 1b.

Functional (3.5) is generally non-convex. For fixed λ it is
convex in ν. For fixed ν and a fixed coupling π in the optimal
transport term it is convex in λ if transformations are of the
form (3.4) and F is convex. Joint non-convexity does not
come as a surprise. It is in fact easy to see that a meaningful
isometry invariant segmentation functional with explicitly
modelled transformations is bound to be non-convex (Fig. 2).

Remark 3.3 (Eliminating ν). For optimization of (3.5)
assume we first eliminate the high-dimensional variable ν

through minimization (which is a convex problem). One is
then left with:

E1(λ) = inf
ν∈SegMeas(Y,M)

E(λ, ν) (3.6)

This is in general non-convex, but the dimensionality of λ is
typically very low (of the order of 10). We can thus still hope
to find globally optimal solutions by means of non-convex
optimization. We will present a corresponding branch and
bound scheme in Sect. 4.2.

Remark 3.4 (Modelling transformations in feature space)
When the feature space F has an appropriate linear struc-
ture a natural generalization of (3.4) is to not only model
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geometric transformations of X but also of the expected fea-
tures fx . In analogy to (3.4) consider

T̂λ : X → R
2 × F , T̂λ(x) = (x, fx ) +

n∑

i=1

λi · t̂i (x)

(3.7)

where T̂0(x) = (x, fx ) returns the original position and
expected feature of a point. The modes t̂i : X → R

2 × F
can then be used to alter both the geometry of X as well as
its appearance.

This will be useful when the appearance of the object
is known to be subject to variations or when a feature
is affected by geometric transformations: for example the
expected response to an oriented local filter will need to be
changed when the object is rotated. The corresponding gen-
eralized functional is

EF (λ, ν) = 1

2
inf

π∈�(μ,ν)

∫

X×Y
ĉ
(
T̂λ(x), (y, fy)

)
dπ(x, y)

+ F(λ) + G(ν) (3.8)

with

ĉ : (R2 × F)2 → R, ĉ
(
(x ′, f ′

x ), (y, fy)
)

= cgeo(x
′, y′) + cF ( f ′

x , fy). (3.9)

We will further study this generalization in Sect. 5. Mean-
while, for the sake of simplicity we constrain ourselves to
purely geometric modes.

In this paper we assume that X = �(c) for some c ∈ Emb
(cf. Sect. 2.3). As pointed out, for a meaningful template μ

should be the Lebesgue measure on X with constant density
1, so μ is a (rescaled) shape measure. The modes {ti }i span a
subspace of TμW2(R

2) in which λ parametrizes a first-order
deformation. We will choose ti ∈ TμS, i.e. tangents to the
manifold of shape measures. This is equivalent to the tangent
space approximation of the contourmanifold Bmodulo para-
metrizations. We need to take into account how transforming
X through Tλ alters μ. We discussed earlier that according
to (2.10) the density of Tλ�μ remains constant to first order.
Modes with non-zero divergence will lead to a density which
is not 1. Hence, Tλ� μ must be rescaled accordingly, which
will change its total mass and thus influence the correspond-
ing feasible set SegMeas(Y, M) for ν. This will require some
additional care during optimization. All constant-divergence
modes can be decomposed into zero-divergence modes plus
an additional ‘scale mode’ (see Sect. 3.3).Wewill thus see to
it that all but one mode will have zero divergence and handle
the scale mode with particular care (Sect. 4).

3.3 Geometric Invariance

The framework provided by transformations (3.4) and func-
tional (3.5) allows to introduce geometric invariance into
the segmentation /matching approach. In this section we
will consider translations, (approximate) rotations and scale
transformations. Scale transformations will play a special
role as they change the mass of the template.

The transformations will be modelled with the genera-
tors of the corresponding (local) Lie group acting on R

2.
Likewise invariance w.r.t. transformation Lie groups could
be introduced into matching functionals on other manifolds.

Translation and Rotation. If one chooses modes

tt1(x) = (1, 0)�, tt2(x) = (0, 1)� (3.10)

the corresponding coefficients λt1, λt2 parametrize transla-
tions of the template. Further, let R(φ) be the 2-dimensional
rotation matrix by angle φ. Then the mode

tr(x) = d

dφ
R(φ)

∣∣∣∣
φ=0

x = (−x2, x1)
� (3.11)

will approximately rotate the template.1 This first order
expansion works satisfactory for angles up to about ±30◦.
We will consider larger rotations in the experiments, Sect. 5.

Note that tt1, tt2 and tr have zero divergence. Hence, to first
order the implied transformations do not alter the density of
μ. For explicit invariance under translations and rotations the
modelling function F in (3.5) should be constant w.r.t. the
coefficients λt1, λt2 and λr.

Scale. The size of X and μ determines the size of the object
within the image. Inmany applications the scale is not known
beforehand, thus dynamical resizing of the template during
the search is desirable. With slight extensions the framework
of transformations can be employed to introduce as a scale-
mode into the approach. Let

ts(x) = x. (3.12)

By the change of variable formula (cf. (2.11, 2.12)) the den-
sity of Tλ� μ is given by

dens
(
Tλ� μ

) (
Tλ(x)

) = dens(μ)(x) · ( det JTλ(x)
)−1

.

(3.13)

1 Note that tr is not a gradient field and thus /∈ TμW2(R
2). One could

find a corresponding gradient version by lifting the rotation field from
the contour to the interior, Sect. 2.3. However the functional is also
meaningful with this non-gradient mode and its effect on the template
is more intuitive.
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By plugging in the scale mode ts and ignoring other modes,
which due to zero divergence do not contribute to first order,
we find in 2 dimensions:

= (1 + λs)
−2 (3.14)

Thus, introducing a scale mode into (3.5) yields

Es(λ, ν) = 1

2 (1 + λs)2
inf

π∈�
(
(1+λs)2·μ,ν

)

∫

X×Y

(
cgeo

(
Tλ(x), y)

+ cF ( fx , fy)
)
dπ(x, y) + F(λ) + G(ν) (3.15)

where we have scaledμ by the appropriate factor in the feasi-
ble set for π and we have normalized the first term by a factor
of (1+λs)

−2 to make the term scale invariant. Depending on
whether scale invariance is desired the terms F(λ) and G(ν)

may need to be rescaled appropriately, too. The feasible set
for ν in Es is SegMeas

(
Y, (1 + λs)

2 · M)
.

While the modes for translation and rotation leave the
area of the template unaltered, statistical deformation modes
that we learn from sample data will in general have non-
zero divergence. Handling changes inmass will require some
extra care during optimization. Thereforewewill decompose
such modes into a divergence-free part and a contribution of
the scale-component.

3.4 Statistical Variation

One of the limitations of (3.3) discussed in Sect. 3.1 is that
non-isometric variations of the template object are uniformly
penalized by the geometric component of the corresponding
optimal transport cost. However, not all deformations with
the same optimal transport cost are equally likely. It may be
necessary to reweigh the distance to more accurately model
common and less common deformations.

For contour based shape priors amodel of statistical object
variations is typically learned from samples in a tangent
space approximation of the contour manifold. In [36] the
tangent space approximation to the Wasserstein space W2

was used to analyze typical deformations in a dataset of
densities. But mimicking the learning procedure on the con-
tour manifold with optimal transport involves some unsolved
problems.

(i) The first problem is to find an appropriate footpoint
for the tangent space approximation, i.e. a point by the
associated tangent space of which we want to approxi-
mate the manifold to first order. One should pick a point
which is close to all training samples. Typically one
chooses a suitable mean, in amore general metric setting
the natural generalization is the Karcher mean. Com-
putation of the barycenter on W2 is a non-trivial prob-
lem [2], which has recently been made more accessible

through Entropy smoothing [13]. However it becomes
more involved when one wants to take geometric invari-
ances into account and impose the constraint of constant
density on the support. In [36] the L2-mean of the den-
sity functions was picked as footpoint after aligning the
centers of mass and the principal axes of the samples.
Though this is not necessarily an ideal choice (the L2-
mean of the densities can be very far from some of the
samples) it seems to work for smooth densities with lim-
ited variations. It will not extend to the binary densities
that we consider in this paper since their L2-mean need
not be binary. In [33] the problem was tentatively solved
by manually picking a ‘typical’ sample from the training
set as the footpoint.

(ii) The second problem is how one maps the samples into
the tangent space of the footpoint. A natural choice is the
logarithmic map, or some approximation thereof. Recall
from Sect. 2.2 that tangent vectors on the manifold of
measures are curl-free vector fields and that the loga-
rithmic map is basically obtained by taking the relative
transportmap.There are some issueswith the application
to object segmentation: The vector fields computed by
the logarithmic map need not have constant divergence,
although fluctuations are typically small enough to be
ignored for practical purposes. A second issue is that the
vector fields are in general not smooth betweenmeasures
with non-smooth densities, as in our case. This leads to
unreasonable interpolations and unwanted artifacts dur-
ing statistical analysis of the vector fields representing
the sample set.

In this paper we circumvent both problems by employ-
ing the diffeomorphism between the manifold of contours
and the manifold of shape measures (see Sect. 2.3). This
allows us to outsource the shape learning problem to the con-
tour representation where established methods for finding a
good mean and tangent vectors are available (for example
[27]).

Concretely we used the contour metric and the corre-
sponding approximate algorithmic framework based on gra-
dient descent anddynamicprogrammingpresented in [27] for
computing the Karcher mean of a set of training shapes and
for mapping the training-samples onto the tangent space at
the mean via the logarithmic map.We then performed a prin-
cipal component analysis w.r.t. the Riemannian inner product
to extract the dominatingmodes of shape variation within the
training set, together with their observed standard deviation
{(ti , σi )}. The results we obtained were stable under choos-
ing different initializations. Learning of the class ‘starfish’
is illustrated in Fig. 3. The standard deviations σi were then
used to define F(λ) to model a Gaussian distribution on the
statistical mode parameters:
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Fig. 3 Learning of contours.
Top left: geodesic from shape
mean to a training sample. Top
right: Normal contour
deformation of first principal
component of training samples.
Bottom left: Potential function u
for lifting the deformation to the
full region (see (2.18)). Bottom
right: Gradient field which gives
deformation mode for whole
template region (Color figure
online)

F(λ) = γ

2

nstat∑

i=1

(
λi

σi

)2

(3.16)

where γ is a parameter determining the weight of F w.r.t. the
other functional components.

3.5 Background Modelling

The previous sections describe how tomodel the sought-after
object via a template, i.e. they focus on the image foreground.
Let us now briefly comment on the background.

Sometimes information on the expected appearance of the
background is available. This can be incorporated by a linear
contribution to G (3.5):

G(ν) =
∫

Y
g(y) dν(y) (3.17)

where a positive (negative) coefficient g(y) indicates that a
given point is likely to be part of the background (foreground)
(cf. Sect. 2.1). Such linear terms can be absorbed into the
optimal transport term:

∫

Y
g(y) dν(y) =

∫

X×Y
g(y) dπ(x, y) (3.18)

That is, the background appearance model leads to an effec-
tive shift of the foreground assignment costs: c(x, y) →
c(x, y) + g(y).

In other situations it may be desirable to impose that the
region directly around the foreground object does not look
like foreground itself. An example for such a situation and the
corresponding solution are discussed with numerical exam-
ples in Sect. 5, see Fig. 5.

4 Optimization

4.1 Alternating Optimization

Functional (3.5) is generally non-convex. It is convex in ν for
fixed λ and it is convex in λ under suitable conditions (see
Sect. 3.2). Based on this, an alternating optimization scheme
is conceivable for divergence-free modes. This has also been
proposed in [11, Sect. 3.2.1]. We require the following refor-
mulation of (3.6):

Remark 4.1 (Coupling reformulation). Computing (3.6) in-
volves a nested optimization problem over ν ∈ SegMeas
(Y, M) and then π ∈ �(μ, ν). Given a coupling π ∈
�(μ, ν) the marginal ν can be reconstructed via projection:
ν = ProjY �π . This allows to reformulate the optimization of
(3.6) directly in terms of couplings. Let
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Ê(λ, π) = 1

2

∫

X×Y

(
cgeo

(
Tλ(x), y

)

+ cF ( fx , fy)
)
dπ(x, y) + F(λ) + G(ProjY �π)

(4.1)

and let the feasible set for π in Ê be

SegCoupl(Y, μ) =
⋃

ν∈SegMeas(Y,M)

�(μ, ν)

=
{
π ∈ Meas(X × Y ) : ProjX �π

= μ ∧ ProjY �π ≤ LY

}
. (4.2)

Then for fixed λ one has by construction

inf
ν∈SegMeas(Y,M)

E(λ, ν) = inf
π∈SegCoupl(Y,μ)

Ê(λ, π) (4.3)

and for any optimizer π∗ of Ê the marginal ProjY �π
∗ is an

optimizer of E .

Functional Ê(λ, π) is separately convex in λ and π for
transformations of the form (3.4) and convex F . For some
initial λ1 consider the following sequence for k = 1, 2, . . .:

πk ∈ argminπ∈SegCoupl(Y,μ) Ê(λk, π) (4.4a)

λk+1 ∈ argminλ∈Rn Ê(λ, πk) (4.4b)

Proposition 4.2 The sequence of energies Ê(λ1, π1) →
Ê(λ2, π1) → Ê(λ2, π2) → . . . is non-increasing and con-
verges.

Proof Since λk is feasible when determining λk+1, one has
Ê(λk+1, πk) ≤ Ê(λk, πk). Likewise πk is a feasible point
for computing πk+1 so Ê(λk+1, πk+1) ≤ Ê(λk+1, πk).
Hence, the sequence of energies is non-increasing. As Ê is
bounded from below, the sequence of energies must con-
verge. ��

Unfortunately this cannot be extended to modes with non-
zero divergence, as changing λs changes the feasible set
SegCoupl

(
Y, (1 + λs)

2 · μ)
for π . Thus πk need not be fea-

sible for the problem that determines πk+1 and the sequence
of energies created may be increasing. We will provide a
workaround for this in the next section (Remark 4.7).

The alternating scheme (4.4) is fast and tends to converge
after few iterations. But obviously it need not converge to a
global optimum and the result depends on the initialization
λ1. Therefore, similar to contour based segmentation func-
tionals it must be applied with care. In practice application to
‘large’ transformations, e.g. translations and rotations, works
only if a good initial guess is available (see Fig. 9). On the
other hand it achieves decent results on smaller transforma-
tions, as most statistically learned deformations are.

4.2 Globally Optimal Branch and Bound

For handling large displacement transformations, one needs a
global optimization scheme. As discussed in Remark 3.3, for
fixed λwe can eliminate ν by a separate convex optimization.
One obtains (3.6):

E1(λ) = inf
ν∈SegMeas(Y,M)

E(λ, ν)

= inf
ν∈SegMeas(Y,M)

1

2
inf

π∈�(μ,ν)

∫

X×Y

(
cgeo

(
Tλ(x), y

)

+ cF ( fx , fy)
)
dπ(x, y) + F(λ) + G(ν) (4.5)

This function is in general non-convex but low dimensional.
We thus strive for a non-convex global optimization scheme.

Given Remark 4.1 E1(λ) can be written as

E1(λ) = inf
π∈SegCoupl(Y,μ)

1

2

∫

X×Y

(
cgeo

(
Tλ(x), y

)

+ cF ( fx , fy)
)
dπ(x, y) + F(λ) + G(ProjY �π).

(4.6)

If G is zero, then by inserting suitable dummy nodes, com-
puting E1(λ) can be written as an optimal transport problem
for which efficient solvers are available.

In this section we will consider a hierarchical branch and
bound approach. We will compute lower bounds for E1 on
whole intervals of λ-configurations for successively refined
intervals. Let � ⊂ R

n be a set of λ-values. We assume for
now that all modes have zero divergence. For such subsets
define

E2(�) = inf
π∈SegCoupl(Y,μ)

1

2

∫

X×Y

( (
inf
λ∈�

cgeo
(
Tλ(x), y

))

+cF ( fx , fy)
)
dπ(x, y)+ inf

λ∈�
F(λ)+G(ProjY �π)

(4.7)

where we have again merged the nested optimizations as
above. All occurrences of λ are optimized separately and
independently over �. By introducing a nested sequence of
feasible sets

�1 ⊃ �2 ⊃ · · · ⊃ �n (4.8)

we obtain an adaptive convex relaxation of E1(λ) over �.
The relaxation becomes tighter as the set becomes smaller.
For application in a branch and bound scheme the following
properties are required:

Proposition 4.3 ([33, Prop. 1]). The functional E2 has the
following properties:

123



J Math Imaging Vis (2015) 52:436–458 447

(i) E2(�) ≤ E1(λ)∀ λ ∈ �,
(ii) lim�→{λ0} E2(�) = E1(λ0),
(iii) �1 ⊂ �2 ⇒ E2(�1) ≥ E2(�2).

Proof Property (i): For any λ ∈ � obviously

inf
λ′∈�

cgeo
(
Tλ′(x), y

) ≤ cgeo
(
Tλ(x), y

)
and

inf
λ′∈�

F(λ′) ≤ F(λ). (4.9)

So for any fixed π ∈ SegCoupl(Y, μ) (overriding the mini-
mization in (4.6, 4.7)) have E2(�) ≤ E1(λ). Consequently
this inequality will also hold after minimization w.r.t. π .

For the limit property (ii) note that the functions
cgeo

(
Tλ(x), y

)
and F(λ) are continuous functions of λ.

Hence, when � → {λ0} all involved minimizations will
converge towards the respective function values at λ0 and
E2 converges as desired.

For the hierarchical bound property (iii) note that for fixed
π in (4.7)minimization over the larger set�2 will never yield
the larger result for all occurrences of λ. This relation will
then also hold after minimization. ��

With the aid of E2 one can then construct a branch and
bound scheme for optimization of E1. Let

L = {(�i , bi )}i∈{1,...,k} (4.10)

be a finite list of λ-parameter sets �i and lower bounds bi
on E1 on these respective sets. For such a list consider the
following refinement procedure:
refine(L):

(1) Find the element (�i∗ , bi∗) ∈ L with the smallest lower
bound bi∗ .

(2) Let subdiv(�i∗) = {�i∗, j } j be a subdivision of the
set �i∗ into smaller sets.

(3) Computebi∗, j =E2(�i∗, j ) for all�i∗, j ∈subdiv(�i∗).
(4) Remove (�i∗ , bi∗) from L and add {(�i∗, j , bi∗, j )} j for

�i∗, j ∈ subdiv(�i∗).

This allows the following statement:

Proposition 4.4 ([33, Prop. 2]). Let L be a list of finite
length. Let the subdivision in refine be such that any set
will be split into a finite number of smaller sets, and that any
two distinct points will eventually be separated by succes-
sive subdivision. Setsubdiv({λ0}) = {{λ0}}. Then repeated
application of refine to the list L will generate an adap-
tive piecewise constant underestimator of E1 throughout the
union of the sets� appearing in L. The sequence of smallest
lower bounds will converge to the global minimum of E1.

Proof Obviously the sequence of smallest lower bounds
is non-decreasing and never greater than the minimum of
E1 throughout the considered region (see Proposition 4.3
(iii) and (i)). So it must converge to a value which is at
most this minimum. Assume that {�i }i is a sequence with
�i+1 ∈ subdiv(�i ) such that E2(�i ) is a subsequence
of the smallest lowest bounds of L (there must be such a
sequence since L is finite). Since subdiv will eventually
separate any two distinct points, this sequence must con-
verge to a singleton {λ0} and the corresponding subsequence
of smallest lowest bounds converges to E2({λ0}) = E1(λ0).
Since the sequence of smallest lowest bounds converges, and
the limit is at most the minimum of E1, E1(λ0) must be the
minimum. ��

When the global optimum is unique, one can see that there
also is a subsequence of λ-sets, converging to the global opti-
mum.

In practice we start with a coarse grid of hypercubes
covering the space of reasonable λ-parameters (e.g. trans-
lation throughout the image, rotation within bounds where
the approximation is valid and the deformation-coefficients
in ranges according to the statistical model) and the respec-
tive E2-bounds. Any hypercube with the smallest bound will
then be subdivided into equally sized smaller hypercubes,
leading to an adaptive 2n-tree cover on the considered para-
meter range.

The refinement is stopped, when the interval with the low-
est bound has edge lengths that correspond to an uncertainty
in Tλ(x) which is in the range of the discretization of X and
Y . Further refinementwould only reveal structure determined
by rasterization effects.

Remark 4.5 (Combining hierarchical and alternating opti-
mization). The optimum of E1 w.r.t. modes that have large
displacements (such as translation and rotation) tends to be
rather distinct, i.e. there is a small, steep basin around the
optimal position. The hierarchical optimization scheme then
works rather efficiently.

On the other hand, modes that model smaller, local dis-
placements (e.g. those learned from training samples), often
have broad, shallow basins around the optimal value. The
branch and bound scheme can then take longer to converge.

Therefore it suggests itself to combine the two optimiza-
tion schemes: the hierarchical approach is used to determine
a good initial guess for translation, rotation and a coarse esti-
mate for the smaller modes. For this the alternating scheme is
not applicable due to the non-convexity. But once the broad
basin around the global optimum is located, the branch and
bound schememay become inefficient. Conversely, using the
estimate of the hierarchical scheme as initialization, we can
then expect that the alternating method will give reasonable
results.
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Scale Mode. In the presence of a scale mode one can define
Es,1 and Es,2 equivalent to E1 and E2 with slight adaptations.

Es,1(λ) = inf
ν∈SegMeas

(
Y,(1+λs)2·M

) Es(λ, ν)

= inf
π∈SegCoupl

(
Y,(1+λs)2·μ

)
1

2 (1 + λs)2

∫

X×Y

(
cgeo

(
Tλ(x), y

) + cF ( fx , fy)
)
dπ(x, y)

+ F(λ) + G(ProjY �π) (4.11)

where in the second line we have merged the nested opti-
mization over ν and π , see Remark 4.1. To obtain Es,2(�)

all occurrences of λ will again be replaced by independent
separate optimizations over �. To handle the dependency of
the feasible set on λs consider the following set:

SegCoupl(Y, μ1, μ2) = {π ∈ Meas(X × Y ) : μ1

≤ ProjX �π ≤ μ2 ∧ ProjY �π ≤ LY

}

(4.12)

Obviously SegCoupl
(
Y, (1+ λs)

2 · μ) ⊂ SegCoupl
(
Y, (1+

λs,l)
2 · μ, (1+ λs,u)

2 · μ)
as long as λs,l ≤ λs ≤ λs,u. Then a

possible definition of Es,2 equivalent to (4.7) is

Es,2a(�) = inf
π∈SegCoupl

(
Y,(1+λs,l)2·μ,(1+λs,u)2·μ

)

(
min

λs∈[λs,l,λs,u]
1

2 (1 + λs)2

) ∫

X×Y

( (
inf
λ∈�

cgeo
(
Tλ(x), y

))

+ cF ( fx , fy)

)
dπ(x, y)+ inf

λ∈�
F(λ)+G(ProjY �π) (4.13)

where λs,l and λs,u are the infimum and supremum of λs in�.
It is easy to see that Es,2a satisfies Proposition 4.3 w.r.t. Es,1.
The proof is analogous.

If G is zero the definition of Es,2a can be improved upon.
Consider the following lemma:

Lemma 4.6 For some cost function c and m > 0 let

f (m) = inf
π∈SegCoupl(Y,m·μ)

∫

X×Y
c(x, y) dπ(x, y). (4.14)

Then f (m2)/m2 ≥ f (m1)/m1 for m2 > m1.

Proof Assume f (m2) < (m2/m1) · f (m1) for m2 > m1

and let π∗
2 be an optimizer for f (m2). Then (m1/m2) · π∗

2 is
feasible for computation of f (m1) and one has

m1

m2

∫

X×Y
c(x, y) dπ∗

2 (x, y) = m1

m2
f (m2) < f (m1) (4.15)

which is a contradiction. ��

With the aid of Lemma 4.6 one then finds that the following
is a suitable variant of Es,2a:

Es,2b(�) = inf
π∈SegCoupl

(
Y,(1+λs,l)2·μ

)
1

2 (1 + λs,l)2

∫

X×Y

( (
inf
λ∈�

cgeo
(
Tλ(x), y

))

+ cF ( fx , fy)
)
dπ(x, y) + inf

λ∈�
F(λ) (4.16)

The advantages over Es,2a are a tighter scaling factor and a
simpler feasible set for the optimal transport term.

Remark 4.7 (Scale mode and alternating optimization). The
alternating optimization scheme presented in Sect. 4.1 only
works with zero-divergence modes. The hierarchical opti-
mization scheme can be used to extend this to the scalemode.
The non-scale coefficients are determined by separate opti-
mization as before, see (4.4b). The new coefficient λk+1

s and
πk+1 are jointly determined by global hierarchical optimiza-
tion, while keeping the other mode coefficients fixed (this
replaces (4.4a)). This hierarchical scheme will only go over
one degree of freedom and thus be very quick. Again one
finds a non-increasing sequence that must eventually con-
verge.

4.3 Graph Cut Relaxation

Both alternating and hierarchical optimization require solv-
ing a lot of optimal transport problems. Even with efficient
solvers this will quickly become computationally expensive
as the size of X and Y or the number of modes increases. If
G is non-zero then usually even more so because dedicated
optimal transport solvers can no longer be applied directly to
compute E1(λ). Therefore, in this section we present a mass-
constraint relaxation that, for suitable choice ofG, turns com-
putation of E1(λ) into a min-cut problem. This can be solved
very fast with dedicated algorithms and therefore the relax-
ation yields a huge speed-up.

Throughout this section let X and Y be discrete sets,
e.g. pixels or super-pixels. The Lebesgue measure on Y is
approximated by

LY (σ ) =
∑

y∈σ

my (4.17)

for subsets σ ⊂ Y , where my is the area of super-pixel y.
Any ν ∈ SegMeas(Y, M) can then be expressed as

ν(σ ) =
∑

y∈σ

my uν(y) (4.18)

for all σ ⊂ Y with some function uν : Y → [0, 1]. Let
G be a total-variation-like local boundary regularizer of ν,
expressed in terms of uν :
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G(ν) =
∑

(y,y′)∈G
ay,y′ · |uν(y) − uν(y

′)| (4.19)

where G is the set of super-pixel neighbours and ay,y′ is a
weight that models the likelihood of a boundary between
neighbours y and y′. Such weights can be constructed from
feature dissimilarity in y, y′, from the response of edge detec-
tors and from the length of the boundary.

We now relax the template-marginal constraint from the
coupling set �(μ, ν) and allow ν to have arbitrary mass. So
the feasible set of ν will be

SegMeas(Y ) =
{
ν ∈ Meas(Y ) : ν ≤ LY

}
. (4.20)

This is (2.3) without the mass constraint. The ‘couplings’ π

will be taken from the set

�̂(ν) =
{
π ∈ Meas(X × Y ) : ProjY �π = ν

}
. (4.21)

Merging optimizations (see Remark 4.1) yields the feasible
set

SegCoupl(Y ) =
{
π ∈ Meas(X × Y ) : ProjY �π ≤ LY

}
.

(4.22)

The relaxed equivalent of E1 (4.6) that we consider in this
section is

Er,1(λ) = inf
π∈SegCoupl(Y )

1

2

∫

X×Y

(
cgeo

(
Tλ(x), y

)

+ cF ( fx , fy)
)
dπ(x, y) + F(λ)+G(ProjY �π).

(4.23)

Let π∗ be an optimizer of Er,1(λ) for some configuration λ.
If (ProjY �π

∗)(y) > 0 for some y ∈ Y , this mass will come
from the cheapest x ∈ X for this y, since there is no longer
any constraint on the mass on X . The linear matching in the
first term simplifies to a nearest neighbour matching for each
y ∈ Y . This implies that the minimization in (4.23) over
π ∈ SegCoupl(Y ) can be simplified to a minimization over
ν ∈ SegMeas(Y ). Therefore (4.23) is equivalent to

Er,1(λ) = inf
ν∈SegMeas(Y )

1

2

∑

y∈Y
cmin(y, λ) ν(y)

+ F(λ) + G(ν) (4.24)

with

cmin(y, λ) = min
x∈X

(
cgeo

(
Tλ(x), y

) + cF ( fx , fy)
)
. (4.25)

We express now ν in terms of uν , see (4.18), and plug in the
form of the regularizer G (4.19). This yields

Er,1(λ) = inf
u:Y→[0,1]

1

2

∑

y∈Y
cmin(y, λ) · my · u(y) + F(λ)

+
∑

(y,y′)∈G
ay,y′ · |u(y) − u(y′)|. (4.26)

For fixedλ this is a convex formulation of themax-flow/min-
cut problem with nodes Y and edges G. The edge-weight
between y ∈ Y and the sink is given by cmin(y, λ) · my

and the weights of the edges between y, y′ ∈ Y by ay,y′ .
This problem can be solved very efficiently by dedicated
algorithms, see for example [6].

Remark 4.8 (Optimization of Er,1). Both the alternating
method and the hierarchical scheme, Sects. 4.1 and 4.2, can
be applied directly to the optimization of Er,1. The sequence
equivalent to (4.4) will provide a non-increasing converging
sequence of energies. Since the dependence of the feasible
set on the mass of μ has disappeared, it can also be extended
to the scale mode. Also, handling the scale mode in the hier-
archical scheme is simplified.

Functional (4.26) can be interpreted as a binary Markov
random field (MRF) with labels fore- and background (u ∈
{1, 0}) and a latent object configuration variable λ. Such
enhanced MRFs have been used in [21] with the latent
variables describing layered pictorial structures and in [37]
with graph-based shape models. Optimization of a general
class of such models via branch and bound has been dis-
cussed in [23]. A main difference of the approach presented
here and [23] is that the shape variations are not captured
implicitly in the hierarchical cluster of sample shapes but
explicitly and smoothly in the set of learned Wasserstein
modes.

5 Numerical Examples

We will now present some numerical examples for joint
image segmentation and shape matching with Wasserstein
modes. The scope of these examples is to transparently
show the key properties of the functional (geometric invari-
ance, response to noisy data etc.) and to demonstrate
its applicability to different types of geometric data and
features.

5.1 Setup and Implementation Details

Setting up the Model. As discussed in Sect. 3.3 the func-
tional component F , modelling the distribution of the defor-
mation parameter λ (c.f. (3.5)), was not depending on the
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λ-entries that describe translation, rotation and scale. For the
statistical modes we modelled a simple Gaussian as given
by (3.16). The weight γ was set to a small value, i.e. we
‘trusted’ the data for small deformations and mainly wanted
to keep the deformations from becoming too large, where
the linear deformation model does no longer work very
well.

The number of used modes ranged between 3 and 8 for
branch and bound, up to about 14 for the alternating scheme.
As discussed in Sect. 4.2, for the initial covering L of the
parameter space forλ, we used a grid ofn-dimensional hyper-
cubes: for the translation components ranging over the area
of the image, for rotation and scale within the limits where
the numerical approximation is valid and for the statistical
modes depending on the observed standard deviations during
learning.

A very important parameter in the functional is the rela-
tive weight between the geometric and the appearance cost
function, cgeo and cF .When the appearance features are very
noisy, we tend to put more trust on the geometric component
and thus the predefined deformation modes. For very reli-
able data we may accept a previously unknown deformation
to better match the observed features. Some intuition on how
to choose this relative weight may be gained from Fig. 8.

Optimization Algorithms. In most experiments numerical
optimization was carried out in two steps, starting with
branch and bound over the modes with largest deforma-
tions, followed by alternating optimization over all modes
(see Remark 4.5). As pointed out in Remark 3.2 continuous
solvers cannot be applied since the marginal ν is unknown.
Therefore we rely on discrete algorithms. For numeri-
cal optimization of E2(�) we implemented two different
methods:

• For G = 0, i.e. in the absence of an additional segmen-
tation term on the marginal ν (c.f. (3.5)), the functional
E2(�) (4.7) can be evaluated by using a dedicated opti-
mal transport solver. For this we wrote a c + + imple-
mentation of the Hungarian method [20].

• When G is a discrete total-variation-like local regularity
prior (see Sect. 4.3, Eq. (4.19)) evaluation of E2(�) can
be written as a linear program, which we solved with
CPLEX.

The top level, i.e. everything except for the calls to optimize
E2(�) was implemented in Mathematica.

In practice we used the first variant for the branch and
bound stage and the second variant for the subsequent alter-
nating optimization stage. The reasoning behind this is that
the total variation of a segmentation depends mostly on its
local properties and can be vary significantly without altering
its global configuration, which is what we look for during the

branch and bound optimization. TV is then added during the
‘fine-tuning’ in the alternating stage.

Reducing Complexity in Practice. To reduce computational
complexity, we sampled the cost function cgeo(x, y) +
cF ( fx , fy) for fixed x only at positions y close to x . When
y is very far from x the high geometric cost will make the
assignment very unlikely. The cut-off radius around x is cho-
sen according to the range of cF and the size of the mode
parameter set� during branch and bound. Global optimality
of the sub-sampled cost-function w.r.t. the dense model can
be checked by introducing ‘overflow’ variables with suitable
assignment costs for each x : as long as no mass is put onto
these overflow variables, the optimizer of the reduced model
is also globally optimal in the dense model.

Computational Complexity and Runtime. Although we only
used experimental code, which was far from being opti-
mized for performance we briefly comment on the observed
running-times to give the reader a general idea of the applica-
bility. Experiments were performed on a standard desktop
computer with an Intel Core i7 processor at 3.4 GHz and
16 GB RAM. The branch and bound scheme, which is
the computationally most demanding part, was parallelized
over the processor cores. The alternating optimization is
much less demanding and consequently converges much
faster. The discrete templates had several 100 points, the dis-
crete images, super-pixel segmentations, etc. several 1,000
points.

For the branch andbound scheme the running time is deter-
mined by how many of the tree of bounds at different scales
have to be explored until a minimizer is found. This number
is sensitive to several factors: it grows exponentially with the
number of degrees of freedom. Also, it depends on the spe-
cific problem instance and how well the global optimum is
pronounced. In the presence of strong noise or multiple sim-
ilarly good minima the scheme will naturally take longer as
in a problem with only one distinct solution. Consequently
it is not really possible to accurately estimate the number of
required bounds beforehand, i.e. to give an overall expected
complexity estimate of the branch and bound scheme.

During our experiments we observed running times from
under a minute for 3–4 modes on ‘easy problems’ up to
about a day for 7–8 modes on very noisy and large instances.
Instances shown in this section were mostly set up such that
branch and bound would take 10min at most.

Of course the running time also depends strongly on the
problem dimensions. Fortunately, the flexible mathematical
framework provides means for reducing the problem dimen-
sions easily byworking for example on an over-segmentation
with super-pixels instead of on the full pixel grid. The loss
of resolution can often be compensated for by adding a local
regularizer.
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(a) (b) (c) (d)

Fig. 4 Shape location with branch and bound. We are searching for a
bunny among a collection of other shapes via branch and bound. a Illus-
tration of cF ( fx , fy), white indicating foreground affinity. The optimal
segmentation is given by the purple line. b The covering set L (4.10)
upon convergence of branch and bound, projected onto the two trans-
lation components, shown relative to the query image. Very dissimilar
shapes such as the wrench can be ruled out at a coarse level while more

similar shapes such as the bust can only be discarded on finer scales.
The grid is finest at the true location of the bunny. c Modified problem
with the bunny rotated by a large angle. Such large angles cannot be
covered by the rotation mode, see (3.11) and its discussion. Instead, one
can use multiple support points on the shape manifold (sketched in d),
each equipped with a local rotation mode, and integrate them into the
branch and bound scheme (Color figure online)

(a) (b) (c) (d)

Fig. 5 Background modelling. a Naïve segmentation without mod-
elling the image background: sometimes it is then the optimal config-
uration to ‘immerse’ the sought-after shape into a large blob of false-
positive detections. b The shape template: to solve this problem, we can

model a small area of background (gray) around the boundary of the
object (black). c Optimal segmentation when the background around
the object is modelled. d Region which is assigned to the explicitly
modelled background (Color figure online)

5.2 Numerical Results

We start with some synthetic experiments to transparently
illustrate different properties of the functional. For these
experiments the feature cost function cF ( fx , fy)was chosen
to be constant w.r.t. x , i.e. every template point expects the
same features and the template has a homogeneous appear-
ance. This corresponds to a classifier that tries to locally asses
for each pixel whether it is part of the fore- or background.

Branch and Bound. A shape model of a bunny is learned
from several different views. The subsequent task is then to
find a novel view (within the range of the training views)
among a collection of different shapes. Branch and bound
was used to optimize over translations, rotation and scale
of the object. On these degrees of freedom the alternating
scheme is prone to getting stuck in a poor local minimum,
if initialized on the wrong shape. Afterwards the alternating
scheme was applied to account for non-isometric variations
due to perspective. Additionally it is shown how the rotation
invariance can be extended to large angles. The results of this
experiment are illustrated in Fig. 4.

Background Modelling. Note that in order to locate the
bunny correctly, we sometimes also need to model the image

background in some way. This can be done implicitly by
ensuring that the boundary of the foreground is aligned with
detected contours in the image via a weighted TV-like term
through G(ν) in (3.5). A more explicit approach is to extend
the template to include a small region ‘looking like back-
ground’ around the foreground (see Sect. 3.5). This is demon-
strated in Fig. 5.

More examples on detecting objects in a noisy environ-
ment and on restoring shapes from distorted detections are
given in Figs. 6 and 7.

Interaction of Regularizers. Now let us study the interaction
between the different components of the functional. Let G
be the discrete total variation of ν (4.19). For now we ignore
deformations and simply take a fixed template. That is we
consider the following functional:

E(ν) = inf
π∈�(μ,ν)

∫

X×Y

(
‖x − y‖2

+τ · cF ( fx , fy)
)
dπ(x, y) + σ · G(ν) (5.1)

where we have introduced weights τ and σ . In Fig. 8 it is
illustrated how the optimal segmentations depend on τ and
σ in the presence of different types of noise.
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Fig. 6 Locating shapes in a noisy environment. We are looking for the
bust of Beethoven in a picture with non-local noise and other shapes
present. In the first two examples the shape is correctly identified. In

the third example, the true bust is missed, because it is rather small
and instead a chunk of false-positive noise is segmented (Color figure
online)

Fig. 7 Restoring distorted
shapes. By aid of the template
geometry non-local noise,
e.g. partial occlusion and
false-positive detections can be
recognized and the segmentation
retains the true sought-after
shape (Color figure online)

Fig. 8 Interaction of Regularizers.Top row, from left to right: (1) Clean
problem with object formed exactly like template. (2) Local Gaussian
noise, low feature-cost weight τ , σ = 0, i.e. the optimal matching
is dominated by the geometric cost component. (3) Same problem as
before, but with a high τ : now the local noise severely affects the seg-
mentation, which becomes very irregular. (4) An unknown deformation
is encountered (not described by a known deformation mode). With
low τ it is ignored. (5)With a higher τ the optimal segmentation locally
adapts to the unknown deformation. Bottom row: (1) Unknown defor-
mation with local noise and low τ : now the trick to simply increase
τ (2) to adapt for the unknown deformation does no longer work, as

the local noise is distorting the segmentation. (3) The problem can be
solved by adding a local boundary regularizer (σ > 0): it helps to dis-
tinguish between the local Gaussian noise and the non-local unknown
deformation. So the optimal segmentation ignores the former but adapts
to the latter. (4) The same trick does not work with non-local noise: now
unknown deformation and non-local noise cannot be separated and the
optimal segmentation becomes faulty. (5) Adding the deformation as a
Wasserstein mode helps to approximately find the object even in this
noisy scenario, also thanks to the robustness of the globally optimal
branch and bound scheme (Color figure online)

Alternating Optimization. In Fig. 9 the behaviour of the
alternating optimization scheme is elucidated. In particular it
becomes apparent how in noisy problems the scheme easily
gets stuck in poor local minima. This is a general problem
of local optimization methods and proves the importance of
the globally optimal branch and bound scheme to provide a
proper initial starting point.

Super-pixels. An important feature of functional (3.5) is that
its discrete version readily encompasses a wide range of
data structures. As the computational complexity strongly
depends on the size of the discretizations of X and Y it
may be reasonable to apply the functional not directly to the
pixel level but to a coarser over-segmentation as for exam-
ple provided by super-pixels. Some examples with the class
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Fig. 9 Alternating
Optimization. The fundamental
limitations of the local
optimization scheme become
apparent in this experiment. a
Initial position, some overlap
with true segmentation is given.
b Upon convergence the true
shape has been located. c Same
scenario but with a higher noise:
now the alternating scheme gets
stuck along the way. d A large,
but not starfish-shaped blob on
the left by mistake attracts the
template. e The partial occlusion
of the shape obstructs the
convergence. The local scheme
has no way of knowing ‘that the
starfish continues’ beyond the
occlusion (Color figure online)

Fig. 10 Application to super-pixel images. The numerical framework
extends seamlessly to super-pixel images. A simple local classifier
based on color was applied to super-pixel images of starfish. The clas-
sifier was intentionally designed to yield partially faulty results. With
simultaneous matching and segmentation, locally faulty detections can

be corrected for: false-positive clutter is ignored, missing parts are
restored. On the bottom-right an example is given where the defor-
mation modes are not flexible enough to adapt to the true object shape
(Color figure online)

‘starfish’ are given in Fig. 10. Figure 11 shows some of the
involved non-isometric deformations to illustrate the range
of the linear modes model and also one example where the
limit of the linear expansion has been reached.

In Fig. 12 the scale invariance of the approach is demon-
strated by actually deliberately breaking it. The same func-
tional is optimized twice, but with a different prior on the
allowed object scale. Depending on the admissible scale,
once the large and once the small clownfish is segmented.
Such a task can only be solved with global optimization tech-
niques.

Inhomogeneous cF . So far we have only considered the case
where cF ( fx , fy) was constant w.r.t. x . However, computa-
tionally there is no increase in complexity if we pick a more
general feature cost. The potential of this additional freedom
is now demonstrated on an example with the UIUC database
(see for example [1]). This is a set of gray level side views of
parking cars. Locating these cars cannot be approached with
a homogeneous foreground /background detector, as no con-
sistent separation based on local appearance features seems
to be possible.
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Fig. 11 Range of linear deformation model. For the segmentations in
Fig. 10 we illustrate here in the same order the relative configuration
of the template after translation and rotation (dashed lines), the fully
transformed template (black lines) and the segmentation (gray shad-
ing). The experiments used three isometric (translation+ rotation) and

ten statistical modes. One can see that substantial changes in shape can
be encoded by the linear modes. On the top-right an example is shown
where the deformation coefficients λ have become too large and the
shape looks distorted

Fig. 12 Scale invariant segmentation. Similar to the starfish experi-
ment, a super-pixel image of two clownfish is to be segmented, based
on an imperfect local color classifier. With the aid of a shape prior,
by setting a preferred range of object scales, but leaving the rest of

the approach scale invariant, depending on the choice, both the large
and the small fish are correctly located. Note that this example also
requires proper modelling of the object boundary (see Fig. 5) (Color
figure online)

Therefore we now learn local detectors for each point of
the template X separately and based on these compute an
inhomogeneous cF . As features we use local histograms of
the image color and its gradient. We compute assignments
between the learned template and the training cars (both
shapes fixed, only geometric, no appearance cost). Based
on these assignments we extract for each template point x
the collection of expected features fx . Then, on a test image
Y we compare for each super-pixel y ∈ Y its histogram of
features fy with the distribution of expected features fx on
each template point via an optimal transport based histogram
distance (see e.g. [28]). These comparison costs were used
as costs cF ( fx , fy).

We want to emphasize at this point that we do in no way
champion this particular choice of features and this choice

does not constitute a part of our presented framework. We
merely seek to provide a transparent set-up to demonstrate
the benefit of locally adaptive template appearance without
obstruction through more complicated feature acquisition
and processing.

Figure 13 gives an impression of the functions cF ( fx , fy)
obtained in this way. Obviously, for a single template point
x ∈ X the associated cost is very noisy and not very infor-
mative. We can thus only hope that through the combination
of all template pixels and the knowledge about their relative
spatial arrangement we can identify the positions of the cars.

Since the variation of the shapes of the cars is small we
only consider translations during branch and bound for locat-
ing the cars. Geometric flexibility beyond that is provided by
the optimal transport matching. In this way on 10 out of 15
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1
2 3

1

2 3

Fig. 13 Inhomogeneous appearance model. For each template pixel a
local appearance model was learned. Top left: template X with three
selected (super-)pixels {xi }i . Top right, bottom row: costs cF (xi , ·) for
the three selected pixels. The appearance cost of single pixels is not
very informative. Only by combining costs from all template pixels and
their relative spatial position enables one to find the objects (Fig. 14)
(Color figure online)

test images the global optimum correctly corresponded to a
car (some images show multiple cars). As baseline we per-
formed a simple Hough transform which failed to correctly
locate any car. Figure 14 gives some example cases and also
illustrates a failed case.

A similar experiment was performed in [23]. There the
main focus was on modelling the boundary of the cars
whereas here we concentrate on its region. Both approaches
can incorporate both cues from the object interior as well
as its boundary. In Sect. 4.3 it was discussed how [23] is
closely related to the graph-cut relaxation of our functional.
The most significant difference is how in our approach the
geometric variability is explicitly modelled by a linear space
of modes whereas in [23] it is implicitly encoded in a hierar-
chical clustering.

Adaptive cF .We have alreadymentioned in Remark 3.4 that
theWasserstein modes can also be extended beyond geomet-
ric variations to the feature component. This is of particular

use when an expected feature is known to change under a cer-
tain geometric transformation. For example the orientation
of an expected gradient changes with rotation. More gener-
ally, a vector valued feature fx will have to be transformed
by

DTλ(x) = id+
n∑

i=1

λi Dti (x), (5.2)

the Jacobian of the applied transformation, to preserve it’s
‘relative orientation’ within the template, and we see that
this yields a linear deformation on the feature space.

Here we provide a simple example to point out the poten-
tial of this flexibility. We now assume that both location and
expected feature of a template point vary with the transfor-
mations.Wemodel this by linearly expanding cF in λ around
the origin. That is we choose (c.f. (3.7–3.9)):

ĉ
(
T̂λ(x), (y, fy)

) = cgeo
(
Tλ(x), y

) + cF ( fx , fy)

+
n∑

i=1

λi · cF ,i ( fx , fy) (5.3)

where cF ,i ( fx , fy) is the partial derivative of the feature
component of ĉ

(
T̂λ(x), (y, fy)

)
w.r.t. λi evaluated at zero

(thus giving the first order change along the feature compo-
nent of t̂i ). Both discussed optimization schemes can easily
be adapted to this extension.

As a toy example we will be looking for apples. Unripe,
small apples are assumed to be green, ripe, large apples
should have a reddish color. That is, the expected color varies
with size (Naturally the apparent size of an apple on the image
depends strongly on the distance from the camera. But we
will generously overlook this for the sake of the demonstra-
tion.) The results of our search for fruit are illustrated in
Fig. 15.

Fig. 14 Locating cars with a
spatially inhomogeneous
appearance model. Left column.
Two successful examples of
locating a car within the test
image. Right column. Top: A
failed example. Bottom: plot of
the matching cost depending on
translation. Apparently the
chosen features are too simple:
the shady patch of lawn in the
foreground has by far the best
cost. Note however that on the
right car there is a distinct local
minimum (Color figure online)
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Fig. 15 Locating apples with dynamic appearance. We are looking for
apples in the test image. According to our model, small apples should
appear green (unripe) and large apples reddish. This change in appear-
ance, depending on the geometric state, can be encoded by aWasserstein

mode that extends to the feature cost function. Consequently, the small
green and the large red apple are detected, while the ‘implausible’ large
green and small red apple are discarded (Color figure online)

Fig. 16 Segmenting and matching on point clouds. Left: the template,
a schematic ‘gate’. Right: the original shape is subjected to perspective
transformations (foreshortening, rotation, scale), noise and additional,
noisy observations are added.With branch and bound the original shape
is detected. This could be applied to matching sparse interest points on
images (Color figure online)

Point Clouds. Last but not least we want to further illustrate
the flexibility of the numerical framework by applying it to a
scenariowith point clouds. This is relevantwhen one does not
deal with dense images but only with sparse interest points.
We give a transparent, synthetic example in Fig. 16.

6 Conclusion

We have presented a functional for simultaneous image seg-
mentation and shape matching to correctly locate and seg-
ment objects within images under noisy conditions.

Matching is based on optimal transport with a cost func-
tion that combines geometric plausibility with consistency of
appearance features. Through the convex Kantorovich for-
mulation in terms of coupling measures the functional can
naturally be combined with other segmentation terms known
from convex variational image segmentation. To implement
geometric invariances and to account for non-isometric shape
variations we introduced additional degrees of freedom,
drawing from the Riemannian structure of the 2-Wasserstein
space. Through an equivalence relation of the class of shape

measures with closed contours this enabled us to introduce
well established shape analysis tools from the contour regime
into the segmentation approach while remaining in the mea-
sure representation.

While the resulting functional is non-convex, this non-
convexity is constrained to a low dimensional variable which
allowed us to devise an adaptive convex relaxation onwhich a
globally optimal branch&bound optimization scheme could
be constructed. Alternatively, a faster but only locally opti-
mal alternating optimization scheme was discussed. While
it seems impractical to run the branch and bound scheme
on a high number of deformation modes, it still provides
a consistent way to find good initializations for the alter-
nating scheme, thus overcoming a severe problem in many
other segmentation /matching approaches. Determining a
good initial guess and the subsequent ‘fine tuning’ are based
on the very same model and only differ in the application of
the optimization scheme. To reduce numerical complexity, a
graph-cut relaxation was discussed.

In Sect. 5 we presented a series of numerical examples
to demonstrate various aspects of the approach. The basic
behaviour of the branch and bound scheme was illustrated
as well as the limitations of the alternating scheme. It was
shown how the location and shape of the optimal segmen-
tations depends on noise and how different kinds of noise
can at least partially be handled by properly choosing the
weights between the different terms of the functional.We put
a particular focus on illustrating the flexibility in both spatial
data structure (pixels, super-pixels, point clouds) as well as
in incorporating different types of knowledge on the object
appearance (spatially varying, adaptive to deformations).

In the presented state a major limitation of the functional
is the linearity of the modes: this makes it difficult to han-
dle large deformations. In this respect other approaches such
as the LDDMM framework [4,15,39] are already much fur-
ther developed, yet focus on smooth registration mappings
without addressing variational segmentation simultaneously
and explicitly. On the other hand we notice that in terms of
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handling local feature data this approach is similarly flexible
(compare for examplewith [9]). Also,we consider the branch
and bound scheme as an important step towards coherently
solving the initialization problem.

Future work should therefore focus on making the defor-
mations more flexible and powerful while trying to retain the
ability to obtain robust initializations.
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