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Abstract The fundamental matrix can be estimated from
point matches. The current gold standard is to bootstrap the
eight-point algorithm and two-view projective bundle adjust-
ment. The eight-point algorithm first computes a simple lin-
ear least squares solution by minimizing an algebraic cost and
then projects the result to the closest rank-deficient matrix.
We propose a single-step method that solves both steps of
the eight-point algorithm. Using recent results from polyno-
mial global optimization, our method finds the rank-deficient
matrix that exactly minimizes the algebraic cost. In this spe-
cial case, the optimization method is reduced to the resolution
of very short sequences of convex linear problems which are
computationally efficient and numerically stable. The cur-
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rent gold standard is known to be extremely effective but is
nonetheless outperformed by our rank-constrained method
for bootstrapping bundle adjustment. This is here demon-
strated on simulated and standard real datasets. With our ini-
tialization, bundle adjustment consistently finds a better local
minimum (achieves a lower reprojection error) and takes less
iterations to converge.

Keywords Global optimization · Linear matrix inequality ·
Fundamental matrix

1 Introduction

The fundamental matrix has received a great interest in the
computer vision community (see for instance [1–7]). This
(3 × 3) rank-two matrix encapsulates the epipolar geome-
try, the projective motion between two uncalibrated perspec-
tive cameras, and serves as a basis for 3D reconstruction,
motion segmentation and camera self-calibration, to name a
few. Given n point matches (qi ,q

′
i ), i = 1, . . . , n between

two images, the fundamental matrix may be estimated in
two phases. The initialization phase finds some suboptimal
estimate while the refinement phase iteratively minimizes
an optimal but nonlinear and nonconvex criterion. The gold
standard uses the eight-point algorithm and projective bun-
dle adjustment for these two phases, respectively. A ‘good
enough’ initialization is necessary to avoid local minima at
the refinement phase as much as possible. The main goal of
this article is to improve the current state of the art regarding
the initialization phase. We here focus on input point matches
that do not contain mismatches (a pair of points incorrectly
associated). The problem of mismatches has been specifically
addressed by the use of robust methods in the literature.
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The eight-point algorithm follows two steps [1]. In its first
step, it relaxes the rank-deficiency constraint and solves the
following convex problem:

F̃ = arg min
F∈R3×3

C(F) s.t. ‖F‖2 = 1, (1)

where C is a convex, linear least squares cost, hereinafter
called the algebraic cost:

C(F) =
n∑

i=1

(
q′�
i Fqi

)2
. (2)

This minimization is subject to the normalization constraint
‖F‖2 = 1. This is to avoid the trivial solution F = 0. Nor-
malization will be further discussed in Sect. 3. The estimated
matrix F̃ is thus not a fundamental matrix yet. In its second
step, the eight-point algorithm computes the closest rank-
deficient matrix to F̃ as:

F8pt = arg min
F∈R3×3

‖F − F̃‖2 s.t. det(F) = 0. (3)

Both steps can be easily solved. The first step is a simple
linear least squares problem and the second step is solved by
nullifying the least singular value of F̃. It has been shown [4]
that this simple algorithm performs extremely well in prac-
tice, provided that the image point coordinates are standard-
ized by simply rescaling them so that they lie in [−√

2;√
2]2.

Our main contribution in this paper is an approach that
solves for the fundamental matrix minimizing the algebraic
cost. In other words, we find the global minimum of:

FGp = arg min
F∈R3×3

C(F) s.t. det(F) = 0 and ‖F‖2 = 1. (4)

Perhaps more importantly, we also quantify the impact that
each of F8pt and FGp has when used as an initial estimate
in bundle adjustment. Each initial estimate will lead bundle
adjustment to its own refined estimate. The two final esti-
mates may thus be different since, as the difference between
the two initial estimates grows larger, the probability that
they lie in different basins of attraction increases. Our mea-
sure quantifies:

1. how far are these two basins of attraction,
2. how many iterations will bundle adjustment take to con-

verge.

The proposed algorithm uses polynomial global optimiza-
tion [8,9]. Previous attempts [10–12] in the literature differ
in terms of optimization strategy and parameterization of
the fundamental matrix. None solves problem (4) optimally
for a general parameterization: they either do not guarantee

global optimality [11,12] or prescribe some camera configu-
rations [10–12] (requiring typically that the epipole in the first
camera does not lie at infinity). Furthermore, the main criti-
cism made to the optimization method we use is the resolution
of a hierarchy of convex linear problems of increasing size,
which is computationally ineffective and numerically unsta-
ble. The proposed solution overcomes this drawback: exper-
iments show that, in most of cases, the proposed algorithm
only requires solving the second relaxation of the sequences.

Our experimental evaluation on simulated and real datasets
compares the difference between the eight-point algorithm
and ours used as initialization to bundle adjustment. We
observe that (i) bundle adjustment consistently converges
within less iterations with our initialization and (ii) bundle
adjustment always achieves an equal or lower reprojection
error with our initialization. We provide numerous examples
of real image pairs from standard datasets. They all illustrate
practical cases for which our initialization method allows
bundle adjustment to reach a better local minimum than the
eight-point algorithm.

2 State of the Art

Accurately and automatically estimating the fundamental
matrix from a pair of images has received a lot of atten-
tion. We first review a four-class categorization of existing
methods, and specifically investigate the details of existing
global methods. We finally state the improvements brought
by our global method.

2.1 Categorizing Methods

A classification of the different methods in three categories—
linear, iterative and robust—was proposed in [2]. Linear
methods directly optimize a linear least squares cost. They
include the eight-point algorithm [1], SVD resolution [2] and
variants [3–6]. Iterative methods iteratively optimize a non-
linear and nonconvex cost. They require, and are sensitive to
the quality of, an initial estimate. The first group of iterative
methods minimizes the distances between points and epipo-
lar lines [13,14]. The second group minimizes some approx-
imation of the reprojection error [15–18]. The third group of
methods minimizes the reprojection error, and are equivalent
to two-view projective bundle adjustment. Iterative methods
typically use a nonlinear parameterization of the fundamental
matrix which guarantees that the rank-deficiency constraint
is met. For instance, a minimal 7-parameter update can be
used over a consistent orthogonal representation [7]. Finally,
robust methods estimate the fundamental matrix while clas-
sifying each point match as inlier or outlier. Robust methods
use M-Estimators [19], median least squares (LMedS) [16] or
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random sampling consensus (RANSAC) [20]. Both LMedS
and RANSAC are stochastic.

To these three categories, we propose to add a fourth one:
global methods. Global methods attempt at finding the global
minimum of a nonconvex problem. Convex relaxations have
been used to combine a convex cost with the rank-deficiency
constraint [11]. However, these relaxations do not converge
to a global minimum and the solution’s optimality is not
certified.

2.2 Global Methods

In theory, for a constrained optimization problem, global
optimization methods do not require an initial guess and
may be guaranteed to reach the global minimum, thereby
certifying optimality. Such global methods can be separated
in two classes. The methods of the first class describe the
search space as exhaustively as possible in order to test as
many candidate solutions as possible. Following this way,
there are methods such as Monte-Carlo sampling, which
test random elements satisfisying constraints, and reactive
tabu search [21,22], which continues searching even after
a local minimum has been found. The major drawback of
these methods is mainly in the prohibitive computation time
required to have a sufficiently high probability of success.
Moreover, even in case of convergence, there is no certifi-
cate of global optimality. Contrary to the methods of the first
class, methods lying in the second class provide a certifi-
cate of global optimality using the mathematical theory from
which they are built. Branch and Bound algorithms [23] or
global optimization by interval analysis [24,25] are some
examples. However, although these methods can be faster
than those of the first category, their major drawback is their
lack of generality. Indeed, these methods are usually dedi-
cated to one particular type of cost function because they use
highly specific computing mechanisms to be as efficient as
possible. A review of global methods may be found in [26].

A good deal of research has been conducted over the
last few decades on applying global optimization methods
in order to solve polynomial minimization problems under
polynomial constraints. The major drawback of these appli-
cations has been the difficulty to take constraints into account.
But, by solving simplified problems, these approaches have
mainly been used to find a starting point for local iterative
methods. However, recent results in the areas of convex and
polynomial optimization have facilitated the emergence of
new approaches. These have attracted great interest in the
computer vision community. In particular, global polyno-
mial optimization [8,9] has been used in combination with a
finite-epipole nonlinear parameterization of the fundamental
matrix [10]. This method does not consequently cover cam-
era setups where the epipole lies at infinity. A global convex
relaxation scheme [8,9] was used to minimize the Samp-

son distance [12]. Because this implies minimizing a sum
of many rational functions, the generic optimization method
had to be specifically adapted and lost the property of certi-
fied global optimality.

2.3 The Proposed Method

The proposed method lies in the fourth category: it is a global
method. Similarly to the eight-point algorithm, it minimizes
the algebraic cost, but explicitly enforces the nonlinear rank-
deficiency constraint. Contrarily to previous global meth-
ods [10–12], the proposed method handles all possible cam-
era configurations (it does not make an assumption on the
epipoles being finite or infinite) and certifies global optimal-
ity. Moreover, the presented algorithm is based on the res-
olution of a very short sequence of convex linear problems
and is therefore computationally efficient.

A large number of attempts to introduce global optimiza-
tion have been made in the literature. In [11], a dedicated
hierarchy of convex relaxations is defined in order to glob-
ally solve the problem of fundamental matrix estimation.

In [10], Lasserre’s hierarchy is used jointly with the intro-
duction of the singularity constraint in the problem descrip-
tion. In [12] the authors minimize the Sampson distance
(which theoretically gives better results) by solving a spe-
cific hierarchy of convex relaxations built upon an epigraph
formulation. Finally, in a very recent work [27], the alge-
braic error is globally minimized thanks to the resolution of
seven subproblems. Each subproblem is reduced to a polyno-
mial equation system solved via a Gröbner basis solver. The
singularity constraint is satisfied thanks to the right epipole
parametrization. Although this parametrization ensures that
F is singular while using the minimum number of parame-
ters, this method is not practical since it would be necessary
to solve 126 subproblems in order to cover all the 18 possi-
ble parameter sets [16]. Therefore it is preferable to introduce
the singularity constraint directly in the problem description
rather than via some parametrization of F.

3 Polynomial Global Optimization

3.1 Introduction

Given a real-valued polynomial f (x) : R
n → R, we are

interested in solving the problem:

f � = inf
x∈K f (x) (5)

where K ⊆ R
n is a (not necessarily convex) compact

set defined by polynomial inequalities: g j (x) ≥ 0, j =
1, . . . ,m. Our optimization method is based on an idea first
described in [28]. It consists in reformulating the nonconvex
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global optimization problem (5) as the equivalent convex lin-
ear programming problem:

f̂ = inf
μ∈P(K)

∫

K
f (x)dμ, (6)

where P(K) is the set of probability measures supported on
K . Note that this reformulation is true for any continuous
function (not necessarily polynomial) and any compact set
K ⊆ R

n . Indeed, as f � ≤ f (x), then f � ≤ ∫
K f dμ and thus

f � ≤ f̂ . Conversely, if x� is a global minimizer of (5), then

the probability measure μ� �= δx� (the Dirac at x�) is admis-
sible for (6). Moreover, because f̂ is a solution of (6), the
following inequality holds:

∫
K f (x)dμ ≥ f̂ , ∀μ ∈ P(K)

and thus f � = ∫
K f (x) δx� ≥ f̂ . Instead of optimizing over

the finite-dimensional euclidean space K , we optimize over
the infinite-dimensional set of probability measures P(K).
Thus, Problem (6) is, in general, not easier to solve than Prob-
lem (5). However, in the special case of f being a polynomial
andK being defined by polynomial inequalities, we will show
how Problem (6) can be reduced to solving a (generically
finite) sequence of convex linear matrix inequality (LMI)
problems.

3.2 Notations and Definitions

First, given vectors α = (α1, . . . , αn)
� ∈ N

n and x =
(x1, . . . , xn)� ∈ R

n , we define the monomial xα by:

xα �= xα1
1 xα2

2 . . . xαn
n (7)

and its degree by deg(xα)
�= ‖α‖1 =

n∑

i=1

αi . For t ∈ N, we

define Nn
t the space of the n-dimensional integer vector with

a norm lower than t as:

N
n
t

�= {
α ∈ N

n | ‖α‖1 ≤ t
}
. (8)

Then, consider the family:

{
xα

}
α∈Nn

t
=

{
1, x1, x2, . . . , xn, x

2
1 , x1x2, . . . , (9)

x1xn, x2x3, . . . , x
2
n , . . . , x

t
1, . . . , x

t
n

}

of all the monomials xα of degree at most t , which has dimen-

sion s(t)
�= (n + t)!

t !n! . Those monomials form the canon-

ical basis of the vector space Rt [x] of real-valued multi-
variate polynomials of degree at most t . Then, a polynomial
p ∈ Rt [x] is understood as a linear combination of mono-
mials of degree at most t :

p(x) =
∑

α∈Nn
t

pαx
α, (10)

and p �= (pα)‖α‖1≤t ∈ R
N
n
t � R

s(t) is the vector of its
coefficients in the monomial basis {xα}α∈Nn

t
. Its degree is

equal to deg(p)
�= max {‖α‖1 | pα = 0} and dp denotes the

smallest integer not lower than
deg(p)

2
.

Example The polynomial

x ∈ R
2 �→ p(x) = 1 + 2x2 + 3x2

1 + 4x1x2 (11)

has a vector of coefficients p ∈ R
6 with entries p00 =

1, p10 = 0, p01 = 2, p20 = 3, p11 = 4 and p02 = 0.
Next, given y = (yα)α∈Nn ∈ R

N
n
, we define the Riesz

functional Ly by the linear form:

Ly : R [x] → R

p =
∑

α∈Nn

pαx
α → y�p =

∑

α∈Nn

pα yα. (12)

Thus, the Riesz functional can be seen as an operator that
linearizes polynomials.

Example For the polynomial (11), the Riesz functional reads

p(x) = 1 + 2x2 + 3x2
1 + 4x1x2 �→ Ly(p)

= y00 + 2y01 + 3y20 + 4y11. (13)

For t ∈ N and y ∈ R
N
n
2t , the matrix Mt (y) of size s(t)

defined by:

(Mt (y))α,β = Ly(x
αxβ) = yα+β ∀α, β ∈ N

n
t (14)

is called the moment matrix of order t of y. By construc-
tion, this matrix is symmetric and linear in y. Then, given
q ∈ Rt [x] and q ∈ R

N
n
t the vector of its coefficients in the

monomial basis, the vector:

qy �= Mt (y)q ∈ R
N
n
t (15)

is called the shifted vector with respect to q. Mt (qy), the
moment matrix of order t of qy, is called the localizingmatrix
of degree t of q. This matrix is also symmetric and linear in y.

Example If n = 2 then:

M0(y) = y00, M1(y) =

⎛

⎜⎜⎝

y00 y10 y01

y10 y20 y11

y01 y11 y02

⎞

⎟⎟⎠ ,

M2(y) =

⎛

⎜⎜⎜⎜⎜⎜⎝

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎞

⎟⎟⎟⎟⎟⎟⎠
(16)

and if q(x) = a + 2x2
1 + 3x2

2 then:
M1(qy)

=
⎛

⎝
ay00 + 2y20 + 3y02 ay10 + 2y30 + 3y12 ay01 + 2y21 + 3y03

ay10 + 2y30 + 3y12 ay20 + 2y40 + 3y22 ay11 + 2y31 + 3y13

ay01 + 2y21 + 3y03 ay11 + 2y31 + 3y13 ay02 + 2y22 + 3y04

⎞

⎠ .

(17)
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Finally, recall that a symmetric matrix F ∈ S
n is positive

semidefinite, denoted by F � 0, if and only if x�Fx ≥
0, ∀x ∈ R

n or equivalently, if and only if the minimum
eigenvalue of F is non-negative. A linear matrix inequality
(LMI) is a convex constraint:

F0 +
n∑

k=1

xk Fk � 0, (18)

on a vector x ∈ R
n , where matrices Fk ∈ S

m, k = 0, . . . , n
are given.

3.3 Optimization Method

Let f be a real-valued multivariate polynomial, Problem (6)
can be reduced to a convex linear programming problem.
Indeed, if f (x) = ∑

α∈Nn fαxα then:

∫

K
f dμ=

∫

K

∑

α∈Nn

fαx
αdμ=

∑

α∈Nn

fα

∫

K
xαdμ = Ly( f )

(19)

where each coordinate yα of the infinite sequence y ∈ R
N
n

is equal to
∫

K
xα μ(dx), also called the moment of order

α. Consequently, if f is polynomial, then Problem (6) is
equivalent to:

f̂ = inf Ly( f )

s.t. y0 = 1
y∈MK.

(20)

with:

MK
�=

{
y ∈ R

N
n | ∃μ ∈ M+(K ) such that

yα =
∫

K
xαdμ ∀α ∈ N

n
}

, (21)

and M+(K ) is the space of finite Borel measures sup-
ported on K . Remark that the constraint y0 = 1 is added
in order to impose that if y ∈ MK then y represents a mea-
sure in P(K) (and no longer in M+(K )). Although Prob-
lem (20) is a convex linear programming problem, it is diffi-
cult to describe the convex cone MK with simple constraints
on y. But, the problem y ∈ MK, also called K-moment
problem, is solved when K is a basic semi-algebraic set,
namely:

K
�= {

x ∈ R
n | g1(x) � 0, . . . , gm(x) � 0

}
(22)

where g j ∈ R[x], ∀ j = 1, . . .m. Note that K is assumed
to be compact. Then, without loss of generality, we assume
that one of the polynomial inequalities g j (x) � 0 is of the
form R2 − ‖x‖2

2 � 0 where R is a sufficiently large positive

constant. This allows to apply a theorem on positivity by
Putinar [29,30] and to model MK with LMI conditions:

MK = M�(g1, . . . , gm), (23)

where:

M�(g1, . . . , gm)
�=

{
y ∈ R

N
n | Mt (y) � 0, Mt (g jy) � 0

∀ j = 1, . . ,m ∀t ∈ N} . (24)

Then, Problem (6) is equivalent to:

f̂ = inf
y∈RNn

Ly( f )

s.t. y0 = 1

Mt (y) � 0

Mt (g jy) � 0 j = 1, . . . ,m ∀t ∈ N. (25)

To summarize, if f is polynomial and K a semi-algebraic
set, then Problem (5) is equivalent to a convex linear pro-
gramming problem with an infinite number of linear con-
straints on an infinite number of decision variables. Now,
for t ≥ dK

�= max(d f , dg1 , . . . , dgm ) consider the finite-
dimensional truncations of Problem (25):

Qt
�=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̂t
�= min

y∈R
N
n
2t

Ly( f )

s.t. y0 = 1
Mt (y) � 0,

Mt−dg j
(g jy) � 0 ∀ j ∈ {1, . . . ,m} .

(26)

By construction, Qt , t ∈ N generates a hierarchy of LMI
relaxations of Problem (25) [8], where each Qt , t ∈ N, is
concerned with moment and localizing matrices of fixed size
t . Each relaxation (26) can be solved by using public-domain
implementations of primal-dual interior point algorithms for
semidefinite programming (SDP) [31–35]. When the relax-
ation order t ∈ N tends to infinity, we obtain the following
results [8,36]:

f̂t ≤ f̂t+1 ≤ f̂ and lim
t→+∞ f̂t = f̂ . (27)

Practice reveals that this convergence is fast and very often
finite, i.e. there exists a finite t0 such that f̂t = f̂ , ∀t ≥ t0.
In fact, finite convergence is guaranteed in a number of cases
(e.g. discrete optimization) and very recent results by Nie
[36] show that the finite convergence of the sequence ( f̂t )t∈N
as well as the existence of an optimal solution y�

t of (26) are
generically guaranteed.

Example Consider the polynomial optimization problem
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f̂ = min
x∈R2

− x2

s.t.3 − 2x2 − x2
1 − x2

2 ≥ 0

− x1 − x2 − x1x2 ≥ 0

1 + x1x2 ≥ 0. (28)

The first LMI relaxation Q1 is

f̂1 = min
y∈R6

− y01

s.t.y00 = 1
⎛

⎝
y00 y10 y01

y10 y20 y11

y01 y11 y02

⎞

⎠ � 0

3y00 − 2y01 − y20 − y02 ≥ 0

− y10 − y01 − y11 ≥ 0

y00 + y11 ≥ 0, (29)

and the second LMI relaxation Q2 is

f̂2 = min
y∈R15

− y01

s.t.y00 = 1
⎛

⎜⎜⎜⎜⎜⎜⎝

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎞

⎟⎟⎟⎟⎟⎟⎠
� 0,

⎛

⎝
3y00 − 2y01 − y20 − y02 3y10 − 2y11 − y30 − y12 3y01 − 2y02 − y21 − y03

3y10 − 2y11 − y30 − y12 3y20 − 2y21 − y40 − y22 3y11 − 2y12 − y31 − y13

3y01 − 2y02 − y21 − y03 3y11 − 2y12 − y31 − y13 3y02 − 2y03 − y22 − y04

⎞

⎠ � 0

⎛

⎝
−y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12

−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y31 − y21

−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13

⎞

⎠ � 0

⎛

⎝
y00 + y11 y10 + y21 y01 + y12

y10 + y21 y20 + y31 y11 + y22

y01 + y12 y11 + y22 y02 + y13

⎞

⎠ � 0. (30)

It can be checked that f̂1 = −2 ≤ f̂2 = f̂ = − 1+√
5

2 .
Note that the constraint 3 − 2x2 − x2

1 − x2
2 ≥ 0 certifies

boundedness of the feasibility set.
However, we do not know a priori at which relaxation

order t0 the convergence occurs. Practically, to detect whether
the optimal value is attained, we can use conditions on the
rank of the moment and localization matrices. Indeed, let
y�
t ∈ R

N
n
2t be a solution of Problem (26) at a given relaxation

order t ≥ dK , if:

rank(Mt (y�
t )) = rank(Mt−dK (y�

t )) (31)

then f̂t = f̂ . In particular, if rank(Mt (y�
t )) = 1 then condi-

tion (31) is satisfied. Moreover, if these rank conditions are
satisfied, then we can use numerical linear algebra to extract
rank(Mt (y�

t )) global optima for Problem (5). We do not
describe the algorithm in this article, but the reader can refer
to [29, Sect. 4.3] for more advanced information. Figure 1
summarizes the optimization process.

A Matlab interface called GloptiPoly [37] has been
designed to construct Lasserre’s LMI relaxations in a
format understandable by any SDP solver interfaced via
YALMIP [38]. It can be used to construct an LMI relax-
ation (26) of a given order corresponding to a polyno-
mial optimization problem (5) with given polynomial data
entered symbolically. A numerical algorithm is implemented
in GloptiPoly to detect global optimality of an LMI relax-
ation, using the rank tests (31). The algorithm also extracts
numerically the global optima from the moment matrix.
Then, a practical algorithm is given by Algorithm 1. This

approach has been successfully applied to globally solve
various polynomial optimization problems (see [29] for an
overview of results and applications). In computer vision this
approach was first introduced in [39] and used in [12].

3.4 Application to Fundamental Matrix Estimation

This first paragraph aims at relating the theory and the prac-
tical application in the context of fundamental matrix esti-
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Fig. 1 Polynomial
optimization process; see the
main text for details

Algorithm 1 Polynomial global opimization.
Require: f, g1, . . . , gm ∈ R [x] and k > max(d f , dK )

1: t ← max(d f , dK )

2: Stopping Criterion ← FALSE
3: while (t ≤ k) or (Stopping Criterion=FALSE) do
4: Solve Qt
5: if Qt has an optimal solution y�

t then
6: if rank(Mt (y�

t )) = rank(Mt−dK (y�
t )) then

7: Stopping Criterion ← TRUE
8: else
9: t ← t + 1
10: end if
11: else
12: t ← t + 1
13: end if
14: end while
15: if Stopping Criterion=FALSE then
16: return f̂t = Ly�

t
( f ) which is a lower bound of f �.

17: else
18: return f̂t = f � and, if the extraction succeeded, a set of

rank(Mt (y�
t )) global minima.

19: end if

mation. More generally, applying the presented algorithm
requires to pay one specific attention to three key points.

Firstly, a necessary condition for the convergence of the
presented polynomial optimization method is the compact-
ness of the feasible set. In the context of fundamental matrix
estimation, the problem is homogeneous. Hence, an addi-
tional normalization constraint is needed to avoid the trivial
solution F = 0. A classical confusion would be to assume
that any normalization constraint satisfies the compactness
condition. Indeed, a generally used normalization constraint
consists in setting one of the coefficients of the F matrix to 1.
However, the other F coefficients are not bounded and thus
the compactness of the feasible set is not guaranteed. More-
over, such normalisation a priori excludes some geometric
configurations. A way to proceed is to add the normalization
constraint ‖F‖2 = 1.

Secondly, the applicability of the presented algorithm is
directly linked to the number of variables (i.e. the length of
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Fig. 2 For problem (28) with
an additional constraint of the
form xn1 = x1 + x2, total
number of moments after
substitutions against the
relaxation order for a fixed n
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vector y) in the LMI relaxation (26). Indeed, for a polynomial
f of n variables, the size of the vector y in the first relaxation
equals s(2t) = (n+2t)!

2t ! n! with t = d f . The amount of variables
n being fixed, s(2t) grows in O(tn), that is polynomially in
the relaxation order t . Clearly, the smaller is the degree of f ,
the smaller is the number of variables of the first relaxations
in the hierarchy (Qt )t∈N. Thus, in the context of fundamen-
tal matrix estimation, the goal is to include the singularity
constraint in the optimization problem in a manner which
minimizes the degree of the polynomial criterion. Alterna-
tively to a direct inclusion in the constaints, the singularity
constraint can be inferred by parameterizing the F matrix
using one or two epipoles. This latter method being not only
arbitrary, also leads to increase the degree of the cost func-
tion. For instance, the parameterization with one epipole:

F =
⎡

⎣
f11 f12 f13

f21 f22 f23

α f11 + β f21 α f12 + β f22 α f13 + β f23

⎤

⎦ , (32)

leads to a cost function of degree 4, while the parameteriza-
tion with two epipoles:

F =
⎡

⎣
f11 f12 e1 f11 + e2 f12

f21 f22 e1 f21 + e2 f22

e′
1 f11 + e′

2 f21 e′
1 f12 + e′

2 f22 (e1 f11 + e2 f12)e′
1 + (e1 f21 + e2 f22)e′

2

⎤

⎦ (33)

leads to a cost function of degree 6.
Thirdly, in case of polynomial equalities, several explicit

moment substitutions can be performed and thus significantly
reduce the number of variables and constraints in LMI relax-

ations, as described in Sect 5.12 of [37]. More precisely, from
an equality constraint, it is sometimes possible to express a
variable xk in function of x1, . . . , xk−1, xk+1 . . . , xn :

xα
k = s(x1, . . . , xk1, xk+1, . . . , xn),

with xα
k a monomial and s a polynomial. The goal of the

following example is to underline the result: if the degrees
of the monomial and the polynomial are high, then only a
few explicit moment substitutions can be carried out. If an
equality constraint of the form xn1 = x1+x2 is added to Prob-
lem (28), it is then possible to represent the total number of
moments after substitutions against the relaxation order for
a fixed n. Consequently, Fig. 2 demonstrates that the total
number of moments in Problem (28) increases with n. In the
context of fundamental matrix estimation, possible substitu-
tions are given by the rank constraint and the normalization
constraint, say:

f11 f22 f33 − f11 f32 f23 − f21 f12 f33 + f21 f32 f13

+ f31 f12 f23 − f31 f22 f13 = 0

f 2
11 + f 2

12 + f 2
13 + f 2

21 + f 2
22 + f 2

23

+ f 2
31 + f 2

32 + f 2
33 = 1.

Thus, due to complexity of this equation system, there are
too few possible substitutions to significantly increase the
performance of the proposed algorithm.
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This second paragraph aims at focusing on previous
attempts to solve the fundamental matrix estimation prob-
lem thanks to a hierarchy of convex relaxations. The method
described in [10] applies directly the presented hierarchy
without bounding the F coefficients. Indeed, the trivial solu-
tion is avoided by fixing, a priori, one of the F coefficients to
1. Consequently, as explained in the first key point, there is no
guarantee that the sequence of solutions ( f̂t )t∈N converges
to the global minimum. In [11], a dedicated hierarchy of con-
vex relaxations is defined. The rank constraint is not directly
added to the problem description, but is accounted for thanks
to the introduction of additional optimization variables. The
resulting optimization algorithm is not generic and, contrary
to the presented hierarchy, there is no proof that the sequence
of solutions of this specific hierarchy converges to the global
minimum (e.g. the obtained solution could be a lower bound).
Finally, in [12] an extension of the presented hierarchy is
defined in order to minimize the Sampson distance (which
theoretically gives better results [19]). Indeed, the Sampson
distance being a sum of many rational functions, the pre-
sented hierarchy cannot be applied. However, thanks to an
epigraph formulation, authors are able to include the denomi-
nators in the constraints and thus solve a polynomial problem.
In addition to adding as many variables as matched points,
the price to pay for this introduction is to loose the linearity of
the constraints. Indeed, the linear matrix inequalities become
polynomial matrix inequalities (PMI). To handle the case
of PMI constraints, an adapted moment-SOS approach with
convergence guarantees is described in [40]. However, this
method is not directly implemented in [12]. Consequently,
no asymptotic convergence of this particular hierarchy to the
global optimum can be guaranteed. Moreover, even if the
rank correction is achieved using the singularity constraint,
the normalization is replaced by setting, a priori, the coef-
ficient f33 to 1 and subsequently discards the compactness
condition.

To sum up, although methods presented in [11,12] are
based on a theory close to that presented in the above, they
have no guarantee of convergence to the global minimum,
only a lower bound can be ensured. The method presented
in [10] is a direct application of the presented hierarchy but
without ensuring the compactness of the feasible set. For all
these reasons, it is chosen to not compare the presented algo-
rithm to these methods. The presented method is summarized
in Algorithm 2 below. Its main features are:

– In contrast with [12,39] the optimization problem is for-
mulated with an explicit Frobenius norm constraint on
the decision variables. This enforces compactness of the
feasibility set which is included in the Euclidean ball of
radius 1. We have observed that enforcing this Frobenius
norm constraint has a dramatic influence on the overall
numerical behavior of the SDP solver, especially with

respect to convergence and extraction of global minimiz-
ers.

– We have chosen the SDPT3 solver [34,41] since our exper-
iments revealed that for our problem it was the most effi-
cient and reliable solver.

– We force the interior-point algorithm to increase the accu-
racy as much as possible, overruling the default parameter
set in SDPT3. Then the solver runs as long as it can make
progress.

– The presented numerical experiments show that the
moment matrix has almost always rank-one (which cer-
tifies global optimality) at the second SDP relaxation of
the hierarchy. This suggests that the problem of the funda-
mental matrix estimation has a unique global minimizer.
Note that, in some (very few) cases, due to the numerical
extraction, the global minimum is not fully accurate but
yet largely satisfactory.

Algorithm 2 Polynomial optimization for fundamental
matrix estimation
Require: Matched points (qi ,q

′
i ), i = 1, . . . , n

1: Create the cost function Crit = ∑n
i=1

(
q′�
i Fqi

)2
:

mpol(’F’,3,3);
for k = 1:size(q1)
n(k) = (q2’*F*q1)ˆ2;
end;
Crit = sum(n);

2: Create the constraints det(F) = 0 and ‖F‖2 = 1:
K_det = det(F) == 0; K_fro = trace(F*F’) == 1; 

3: Fix the accuracy of the solver to 0, then the solver runs as long as it
can make progress:
pars.eps = 0; mset(pars);

4: Change the default SDP solver to SDPT3:
mset(’yalmip’,true); mset(sdpsettings
(’solver’,’sdpt3’));

5: Form the second LMI relaxation of the problem:
P = msdp(min(crit),K_det,K_fro,2);

6: Solve the second LMI relaxation:
msol(P);

4 Experimental Results

This section presents results obtained by the test procedure
presented below with the 8-point method and our global
method. First, criteria to evaluate the performance of a fun-
damental matrix estimate are described. Next, the evaluation
methodology is detailed. Experiments were then carried out
on synthetic data to test the sensitivity to noise and to the
number of point matches. Finally, experiments on real data
were performed to confirm previous results and to study the
influence of the type of motion between the two images.
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4.1 Evaluation Criteria

Various evaluation criteria were proposed in the litera-
ture [16] to evaluate the quality of a fundamental matrix
estimate. Driven by practice, a fundamental matrix estimate
F is evaluated with respect to the behavior of its subsequent
refinement by projective bundle adjustment. Bundle Adjust-
ment from two uncalibrated views is described as a mini-
mization problem. The cost function is the RMS reprojection
errors. The unknowns are the 3D points Qi , i = 1, . . . , n
and the projection matrices P and P′. The criteria we use are:

1. The initial reprojection error written eInit(F).
2. The final reprojection error eBA(F).
3. The number of iterations taken by bundle adjustment to

converge, Iter(F).

These three criteria assess whether the estimates provided by
the two methods, denoted by F8pt and FGp, are in a ‘good’
basin of attraction. Indeed, the number of iterations gives
an indication of the distance between the estimate and the
optimum while eBA(F) gives an indication on the quality of
the optimum (Fig. 3).

4.2 Evaluation Method

Figure summarizes our evaluation method. The initial pro-
jective cameras are computed using [42], while the initial 3D
points are calculated using [43]. The two view uncalibrated
bundle adjustment used is described in [19]

4.3 Experiments on Simulated Data

4.3.1 Simulation Procedure

For each simulation series and for each parameter of interest
(noise, number of points and number of motions), the same
methodology is applied with the following four steps:

1. For two given motions between two successives images
([Rk tk]) and for a given matrixK of internal parameters,
a set of 3D points (Qi )i , i = 1, . . . , n is generated and
two projection matrices P and P′ are defined. In practice,
the rotations matrices, R1 and R2, of two motions are
defined by:

Rk
�=

⎡

⎣
cos(θk) 0 sin(θk)

0 1 0
− sin(θk) 0 cos(θk)

⎤

⎦ with

⎧
⎪⎪⎨

⎪⎪⎩

θ1 = π

3
and

θ2 = π

6

(34)

and their translation vectors by t1 = (20, 0, 5)� and t2 =
(6, 0, 0)�. These matrices are chosen such that [R1, t1]

Fig. 3 Evaluation method

is a large movement and [R2, t2] is a small movement
(see Fig. 4). We simulated points lying in a cube with 10
meter side length. The first camera looks at the center of
the cube and it is located 15 meters from the center of the
cube. The focal length of the camera is 700 pixels and
the resolution is 640 × 480 pixels.

2. Thanks to projection matrices P = K [R1, t1] and P′ =
K [R2, t2], the set of 3D points (Qi )i is projected into the
two images as (qi ,q

′
i )i . At each of their pixel coordinates,

a centered Gaussian noise with a variance σ 2 is added. In
order to have statistical evidence, the results are averaged
over 100 trials.

3. The resulting noisy points (q̃i , q̃
′
i )i are used to estimate

F by our method FGp and the reference 8-point method
F8pt .

4. Finally, via our evaluation procedure we evaluate the esti-
mation error with respect to the noise standard deviation
σ and the number of points n.

4.3.2 Sensitivity to Noise

We tested in two simulation series the influence of σ rang-
ing from 0 to 2 pixels. The number of simulated points is
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Fig. 4 Projection of the cube in
the camera on initial position (I)
and in the camera after applying
the rigid transformation
[R1 t1] (II) and the rigid
transformation [R2 t2] (III)

Fig. 5 For two movements,
[R1 t1] (left column) and [R2 t2]
(right column), reprojection
errors and number or iterations
measured against image noise

0 0.5 1 1.5 2
0

0.5

1

1.5

image noise (σ ) – Pixels

oe
(F
)

–
Pi

x e
ls

8pt–Init
8pt–BA

Gp–Init
Gp–BA

0 0.5 1 1.5 2
0

0.5

1

1.5

image noise (σ ) – Pixels

oe
(F
)

–
Pi

x e
ls

8pt–Init
8pt–BA

Gp–Init
Gp–BA

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

image noise (σ ) – Pixels

It
er
(F
)

8pt
Gp

0 0.5 1 1.5 2
0

2

4

6

8

10

12

image noise (σ ) – Pixels

It
er
(F
)

8pt
Gp

50. The first (resp. second) simulation series is based on
the first motion [R1 t1] (resp. the second motion [R2 t2]).
Figure 5 gathers the influence of noise on the evaluation cri-
teria. The first line shows the reproduction errors before,
eInit(F), and after eBA(F) refinement through bundle adjust-
ment with respect to the noise standard deviation. The sec-
ond line shows the number of iterations Iter(F) of the bun-
dle adjustment versus the noise standard deviation. The first
(resp. second) row concerns the first (resp. second) motion.

For the two motions, re-projection errors, eInit(F) or
eBA(F), increase with the same slope when the noise level
increases. Notice that for both movements, the Bundle-
Adjustment step does not improve the results. Indeed, the
noise gaussian noise is added to the projections (qi ,q

′
i )i . So

this is noise which in practice would be produced by the
extraction points process. Thus the solution produced by the
resolution of the linear system is very close to the optimum
and does not need to be refined. The initial solution provided
by the triangulation step is then very close to a local mini-

mum of the bundle adjustment problem. Moreover, the vari-
ation of the errors of initial re-projection before (8pt − I ni t
and Gp − I ni t) and after (8pt − BA and Gp − BA) Bun-
dle Adjustment versus the noise standard deviation is linear.
However, the number of iterations needed for convergence
is different in the two methods. The initial estimate of the
triangulation computed from FGp is closer to the local mini-
mum than that obtained from F8pt . For the first motion (large
displacement between camera 1 and 2), the number of iter-
ations of the global method (in green) remains smaller than
for the 8-point method (in blue) even though their difference
seems to decrease when the noise level is high (σ > 1). For
a significant displacement the quality of the estimate F by
the global method remains better even though the difference
in quality diminishes with the noise level. Conversely, for
the second motion (small displacement between the camera
1 and 2) both methods are equivalent since the difference in
quality is only significant for a high level of noise (σ > 1).
This is logical as the movement is less important. As a con-
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clusion, the 8-point method provides a solution equivalent
to that obtained with the global method when the displace-
ment is not too important. For more significant movements
the provided solution is not so close even though still in the
same basin of attraction of a local minimum.

4.3.3 Influence of the Number of Points

In this experiment, we kept the noise level constant with a
standard deviation σ 2 = 0.5 pixels. We tested the influence
of the number of matches (qi ,q

′
i )i on the quality of the result-

ing estimate of F. The number of points N varied from 10 to
100. Two simulation series are also carried out with the two
motions.

Figure 6 brings with the same organization the evaluation
criteria. It displays the influence of the number of matches for
estimating F on the re-projection errors and on the number of
iterations. For both motions and for a sufficiently high num-

ber of matches (N > 50), re-projection errors, before and
after refinement with bundle adjustment, or the number of
iterations versus the number of matches converge to the same
asymptote. From a high number of matches, the initial esti-
mate from triangulation computed with F8pt and with FGp

are both in the same basin of attraction for the bundle adjust-
ment problem. However, for a number of matches smaller
than 50, the number of iterations to converge is smaller for
given re-projection errors. The quality of the estimation by
the global method seems better. The initial estimate from tri-
angulation computed with F8pt goes away from the basin of
convergence whereas the one computed with FGp remains in
the basin.

4.3.4 Influence of the Number of Points with Wide Baseline

In order to sustain the previous behavior, for a noise standard
deviation of σ 2 = 1 pixel and for the significant displace-
ment [R1 t1], the influence of the number of matching points

Fig. 6 For two movements,
[R1 t1] (left column) and [R2 t2]
(right column), reprojection
errors and number or iterations
measured against number of
points for a gaussian noise with
a variance fixed to 0.5
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Fig. 7 For the movement
[R1 t1], reprojection errors and
number or iterations measured
against number of points for a
gaussian noise with a variance
fixed to 1 (left and right)
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Fig. 8 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images to obtain epipoles
close to the images or toward
infinity

Views Epipoles eInit(F) eBA(F) Iter(F) Time (s)
e e′ F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

0.597617 0.65270 0.00252 0.00252 6 6 0.017 2.39
5.61506 5.61996 2.48258 0.00342 122 175 0.017 1.98
21.0855 21.5848 4.74837 0.00344 105 30 0.017 2.12
2.49098 1.91136 0.00260 0.00260 17 12 0.018 1.97
22.0071 23.6253 0.00268 0.00268 122 81 0.018 1.92
28.6586 28.6174 16.6507 0.25921 39 1001 0.018 2.1

A B

DC

Fig. 9 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images of the Library series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 310 18.27449 18.32095 11.39809 11.287591 65 57 0.035 2.05
2 3 439 61.84817 63.79435 41.81854 40.2224 29 28 0.020 2.22
1 3 439 42.67438 42.23867 28.65971 27.90128 40 32 0.043 2.10

on the re-projection errors and on the number of iterations
was tested. In this difficult context, Fig. 7 demonstrates that
the initial estimate computed from FGp is always closer to
the local minimum than that computed from F8pt . No mat-
ter what is the number of matching points, the number of
iterations needed to converge is always smaller.

As a conclusion, the quality of solutions obtained by
both methods is almost identical when the movement is not
too important, the number of matching points is sufficiently
large, and the noise level is not too high. However, when

one of these three parameters varies then the 8-point method
lacks precision whereas the global method still allows bun-
dle adjustment to convergence to the global minimum. The
8-point method computes the projection of an unconstrained
local minimizer on the feasible set whereas the global method
provides a global minimizer of the constrained optimization
problem. It is already surprising that even for good values
of the three parameters the resulting solutions are not too far
apart. But for worst values of the parameters it would be even
more surprising.

123



J Math Imaging Vis (2015) 53:42–60 55

Fig. 10 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images of the Merton1 series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 485 15.1771 15.3126 9.8859 9.7360 77 55 0.048 2.02
2 3 439 61.84817 63.79435 41.81854 40.2224 29 28 0.020 2.22
1 3 384 51.3128 2.3690 7.5245 0.56180 5 52 0.040 2.71

Fig. 11 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images of the Merton2 series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 345 24.7158 29.6530 14.0481 2.7599 69 42 0.037 2.91
2 3 197 143.431 154.880 73.8776 72.8977 14 19 0.026 2.52
1 3 270 59.8109 77.9734 30.3824 15.6367 38 32 0.031 2.37

Fig. 12 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images of the Merton3 series

1 2 3

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 400 62.7290 68.6030 52.6557 23.1740 5 32 0.041 3.03
2 3 197 135.950 140.801 83.3365 76.8614 13 14 0.025 2.52
1 3 264 116.7659 118.1754 24.7184 13.5496 9 11 0.032 2.39

4.4 Experiments on Real Data

The evaluation criteria remain the same, eInit(F), eBA(F) and
Iter(F) and the computation time is added. Two experiments
were carried out with two sets of images that illustrate dif-
ferent motions between two successive images.

4.4.1 Experiment 1

The first set of four images (see Fig. 8) shows all possible
epipolar configurations (right or left epipole at infinity . . . ).

With four images, six motions between a pair of images
are possible: A–B, A–C, A–D, B–C (infinite epipoles corre-
spond, e.g., to pure translation motions), B–D and C–D. For
every pair of images, 60 matches are available to compute an
estimate of F. The values of the evaluation criteria are sum-
marized in Fig. 8. No matter what pair of images is used, the
re-projection errors and the number of iterations are almost
always better when FGp is used as initial guess. In addition,
for three motions (A–C, A–D and C–D), in contrast with the
initial guess FGp, the initial guess from the 8-point method
is not in a better basin of attraction. This may explain why
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Fig. 13 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images of the Cylinder series.
The matched points are located
in blue bounding boxes

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 6609 6.3142 6.4021 1.4701 0.2531 401 237 1.23 2.33

Fig. 14 Reprojection Error
before (eInit(F)) and after bundle
adjustment (eBA(F)), Number of
Iterations (Iter(F)), and CPU
time to compute F (Time),
obtained when combining pairs
of images of the Endoscope
series

Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp

1 2 730 5.6624 5.6366 3.8566 0.9386 163 401 0.07 1.69
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Fig. 15 Initial re-projections errors measured against movement
amplitude for the dinosaur series

the initial re-projection errors eInit(F) are sometimes larger
for FGp as the initial guess may be in a good basin of attrac-
tion but with a larger re-projection error. For the four motions
A–B,B–C,B–D andB–D, both initializations are in the same
basin of attraction but the number of iterations demonstrates
that the initial guess from the global method is always closer
to the local minimizer. Finally, even though the computation
time of the latter is significantly larger than for the 8-point
method, it still remains compatible with a practical use.
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Fig. 16 Final re-projections errors measured against movement ampli-
tude for the dinosaur series

4.4.2 Experiment 2

The second experiment compares the two methods on large
motions. It is based on many series of images. First we test our
algorithm with the classic series Library, Merton, dinosaur
and house that are available at www.robots.ox.ac.uk/~vgg/
data/data-mview.html. For the set of three images of Library
and Merton serie, Figs. 9, 10, 11 and 12 demonstrate that
the quality of the solution achieved by the global method is
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Fig. 17 Number of iterations performed by Bundle-Adjustment to
converge measured against movement amplitude for the dinosaur series
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Fig. 18 Initial re-projections errors measured against movement
amplitude for the House series
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Fig. 19 Final re-projections errors measured against movement ampli-
tude for the House series

always better than with the 8-point method (in some cases
both solutions are very close).

We also conducted the same tests on other pairs of images.
For the first pair, we used images from a standard cylinder
graciously provided by the company NOOMEO. This cylin-
der is use to evaluate the accuracy of 3D reconstructions.
Matched points are calculated with digital image correlation
method. They are located in a window inside the cylinder.
Thus, we have 6609 pairs (qi ,qi )i matched to sub-pixel pre-
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Fig. 20 Number of iterations performed by Bundle-Adjustment to
converge measured against movement amplitude for the House series

cision. Results are presented in Fig. 13. We observe that the
computation time of the 8-point method exceeds one second.
This is due to the large number of matched points which
leads to the resolution of a large linear system. However, as
the points are precisely matched, this system is well condi-
tioned. But the quality of the fundamental matrix estimated
with the 8-point method is not sufficient to properly initialize
the Bundle-Adjustment because the final re-projection error
is 1.47 pixels. At the same time, even if the number of itera-
tions is larger, our global method supplies a good estimation
because the final re-projection error is 0.25 pixels. Further-
more, the calculation time remains constant in approximately
2 seconds. For the second pair, we use images taken by an
endoscope. Figure 14 shows the results obtained on this dif-
ficult case. As for the previous example, we observe that the
fundamental matrix estimated by our global method is good
quality because the final error is 0.93 pixels. At the same
time, Bundle Adjustement puts more iterations to converge
on a less precise solution when we use F8pt to initialize it.

For the set of 36 images of the Dinosaur series and
9 images of the house series, we tested the influence of
motion amplitude between a pair of image on the qual-
ity of the resulting estimates obtained by both methods.
For this purpose, we had both estimates with all possible
motions ((0, 1), (1, 2), (2, 3), . . .) with 1-image distance,
then all possible motions ((0, 2), (1, 3), (2, 4), . . .) with 2-
image distance, and so on. With this process, we can measure
the influence of the average angle on the quality of the funda-
mental matrix estimated by both methods. Figures 15, 16, 17,
18, 19 and 20 shows the average of re-projection errors and
the average of number of iterations with respect to average
angle for the two series. The re-projection error after bun-
dle adjustment is always smaller with the global method and
with always a smaller number of iterations. Next, the larger
the movement the more the solution by both methods deteri-
orates. But the deterioration is larger for the 8-point method
than for the global method. One may also observe that in some
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cases the re-projection error before bundle adjustment is in
favor of the 8-point method. In analogy with the real cases
studied before, this may be due to the fact that for these cases
the initial guess FGp is in a basin of attraction with a better
local minimum than in the basin of attraction associated with
F8Pt , but the ‘distance’ between the initial guess and the cor-
responding local minimizer is larger for FGp than for F8Pt .
Indeed in such cases the number of iterations is larger for
FGp than for F8Pt .

5 Conclusion

We have studied the problem of estimating globally the fun-
damental matrix over nine parameters and under rank and
normalisation constraints. We have proposed a polynomial-
based approach which enables one to estimate the funda-
mental matrix with good precision. More generally, we have
shown how to modify the constraints on the numerical certifi-
cate of optimality to obtain fast and robust convergence. The
method converges in a reasonable amount of time compared
to other global optimization methods.

From computational experiments conducted on both sim-
ulated and real data we conclude that the global method
always provides an accurate initial estimation for the sub-
sequent bundle adjustment step. Moreover, we have shown
that if the eight-point method has a lower computational cost,
its resulting estimate often lies further away from the global
optimum obtained by the global method.
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