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Abstract A piecewise bivariate rational spline interpola-
tion is presented only based on the values of the interpolated
function. The interpolation has the following advantages: it is
C2 continuous in the whole interpolating region; the interpo-
lation function has a explicit rational mathematical represen-
tation, and can be represented by the basis functions; more
important, since there are three free parameters αi, j , αi, j+1

and βi, j in this interpolant, the shape of the interpolating
surfaces can be modified by selecting suitable parameters
for the unchanged interpolating data. Also, the values of the
interpolation function are bounded no matter what the para-
meters might be, and the approximation expressions of the
interpolant are derived.

Keywords C2-spline · Bivariate rational interpolation ·
Rectangular mesh · Surface representations · Shape control

1 Introduction

Surface modeling, an important issue in computer aided
geometric design (CAGD), has been widely applied in
many fields such as industrial design and manufacture,
atmospheric analysis, geology and medical imaging, etc.
Generally speaking, for most applications, C1 smoothness
is sufficient, and there are many ways to tackle this problem
[2,8,15,19,20,22,24]. However, curvature continuity some-
times is needed and this leads to the need forC2 smoothness.
Generating a C2 bivariate interpolation is a more difficult
task. In [10], a bicubic spline interpolation scheme was pro-
posed as a extension of the theory of cubic splines to two

Q. Sun · F. Bao (B) · Q. Duan
School of Mathematics, Shandong University, Jinan 250100, China
e-mail: fxbao@sdu.edu.cn

dimension, this type of interpolation scheme has become the
standard scheme for rectangular regions, and which has stud-
ied in many literatures [3,6,7,16,17]. In recent years, some
of the literatures have contributed to theC2 bivariate interpo-
lation also. For example, in [4], Brou and Méhauté proposed
a construction of Cr bivariate rational splines over a triangu-
lation, via a finite element approach; In [5], a novel surface
modeling scheme was presented based on an envelope tem-
plate, and G2 or C2 composite surfaces can be obtained uti-
lizing the envelope template sweeping over the data points;
In [9], a refinable function vector of C2-quartic splines was
introduced for generating approximation quadrilateral sub-
divisions, and that of C2-quintic splines was constructed for
generating a second order Hermite interpolatory quadrilat-
eral subdivision; In [11], two families of solutions provided
by two Hermite subdivision schemes HD2 and HR2 were
investigate, and a C2 interpolant on any semiregular rectan-
gular mesh was generated with Hermite data of degree 2; In
[18], two C2 shape-preserving bivariate interpolants on rec-
tangular grids were developed by using polynomial splines;
In [21], the authors presented a method based on C2 poly-
nomial bivariate splines of degree 7 which can be used to
interpolate function values at a set of arbitrarily scattered
points in a planar domain. In [25], C1- and C2-continuous
spline-interpolation surfaces were constructed in a regular
triangular net with the help of polynomial basic functions;
In [26], author proved that there exists a C3 piecewise poly-
nomial of degree 7 on the twice CT type split of a triangle,
which interpolate arbitrarily given values and derivatives of
orders up to three at the vertices and on the edges of the
triangle.

In this paper, we are concernedwith theC2 bivariate ratio-
nal spline interpolationswith a simple and explicitmathemat-
ical representation. This kind of interpolation can be conve-
niently used for both practical application and theoretical
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analysis. In fact, in recent years, motivated by the univariate
rational spline interpolation, the C1 bivariate rational spline,
which has a simple and explicit mathematical representation
with parameters, has been studied [1,12–14]. Since the para-
meters in the interpolation function are selective according
to the control constrains, the constrained control of the shape
becomes possible.

This paper aims to provide a C2 piecewise rational sur-
face modeling scheme over rectangular mesh. To solve the
problem, a new approach is proposed by using a constructed
interpolation function comprising a simple and explicitmath-
ematical representation with the new parameters αi, j and
βi, j . The shape of the interpolating surfaces can be modified
by using these parameters being achieved for the unchanged
interpolating data, and a local shape control method of inter-
polating surface is developed.

This paper is arranged as follows. In Section 2, a piece-
wise bivariate rational spline interpolation with parameters
is constructed over rectangular mesh. In Section 3, the C2

continuity of the interpolant is proved. In Section 4, the basis
of this interpolator is derived, and the bounded property of
the interpolant is obtained. Sections 5 deals with the error
estimates of the interpolator. Some examples are given in
Section 6, which show that this interpolator gives a good
approximation to the interpolated function and the shape of
the interpolating surfaces can be modified by selecting suit-
able parameters.

2 Interpolation

LetΩ : [a, b; c, d]be theplane region, and {(xi , yi , fi, j ), i =
1, 2, · · · , n; j = 1, 2, · · · ,m} be a given set of data points,
where a = x1 < x2 < · · · < xn = b and c =
y1 < y2 < · · · < ym = d are the knot spacings,
fi, j = f (xi , y j ). di, j and ei, j are chosen partial deriva-

tive values ∂ f (x,y)
∂x and ∂ f (x,y)

∂y at the knots (xi , y j ), respec-
tively. Let hi = xi+1 − xi , and l j = y j+1 − y j , and for
any point (x, y) ∈ [xi , xi+1; y j , y j+1] in the xy-plane, Let
θ = (x − xi )/hi and η = (y − y j )/ l j . Denoting

Δ
(x)
i, j = fi+1, j − fi, j

hi
, Δ

(y)
i, j = fi, j+1 − fi, j

l j
.

First, for each y = y j , j = 1, 2, · · · ,m, construct the
x-direction interpolating curve, this is given by

P∗
i, j (x) = p∗

i, j (x)

q∗
i, j (x)

, i = 1, 2, · · · , n − 1, (1)

where

p∗
i, j (x) = (1 − θ)3 fi, j + θ(1 − θ)2V ∗

i, j (x)

+ θ2(1 − θ)W ∗
i, j (x) + θ3 fi+1, j ,

q∗
i, j (x) = (1 − θ)3 + θ(1 − θ)αi, j + θ3,

with

V ∗
i, j (x) = αi, j fi, j + hidi, j − θ( fi+1, j − fi, j )

+ θ(2 − θ − (1−θ)αi, j )( fi+1, j − fi, j − hidi, j ),

W ∗
i, j (x) = αi, j fi+1, j −hidi+1, j +(1 − θ)( fi+1, j − fi, j )

+ (1−θ)(1 + θ−θαi, j )( fi, j − fi+1, j +hidi+1, j ),

and αi, j > 0. This interpolation P∗
i, j (x) defined by (1) is

called the rational quintic interpolator which satisfies

P∗
i, j (xi ) = fi, j , P∗

i, j (xi+1) = fi+1, j , P∗
i, j

′
(xi )

= di, j , P∗
i, j

′
(xi+1) = di+1, j .

If we define

di, j = hi−1Δ
(x)
i, j + hiΔ

(x)
i−1, j

hi−1 + hi
, i = 2, 3, · · · , n − 1, (2)

then the interpolation function P∗
i, j (x) defined by (1) is C2

continuous in [a, b], and which satisfies

P ′′(xi ) = 2

hi−1 + hi
(Δ

(x)
i, j − Δ

(x)
i−1, j ), i = 2, 3, · · · , n − 1.

Remark At the end knots x1, xn , the derivative values are
given as

d1, j = Δ
(x)
1, j − h1

h1 + h2
(Δ

(x)
2, j − Δ

(x)
1, j ),

dn, j = Δ
(x)
n−1, j + hn−1

hn−1 + hn−2
(Δ

(x)
n−1, j − Δ

(x)
n−2, j ),

(3)

For each pair of (i, j), i = 1, 2, · · · , n − 1 and j =
1, 2, · · · ,m − 1, using the x-direction interpolation P∗

i, j (x),
define the interpolation function Pi, j (x, y) on
[xi , xi+1; y j , y j+1] as follows:

Pi, j (x, y) = pi, j (x, y)

qi, j (y)
, i = 1, 2, · · · , n − 1; j

= 1, 2, · · · ,m − 1, (4)

where

pi, j (x, y) = (1 − η)3P∗
i, j (x) + η(1 − η)2Vi, j

+ η2(1 − η)Wi, j + η3P∗
i, j+1(x),

qi, j (y) = (1 − η)3 + η(1 − η)βi, j + η3,

with

Vi, j = βi, j P
∗
i, j (x) + l jφi, j (x) + ϕi, j (x, y),

Wi, j = βi, j P
∗
i, j+1(x) − l jφi, j+1(x) + ψi, j (x, y),
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and

φi,s(x) = (1 − θ)3(1 + 4θ + 9θ2)ei,s

+ θ3(6 − 8θ + 3θ2)ei+1,s, s = j, j + 1,

ϕi, j (x, y) = η(2 − η − (1 − η)(βi, j + 1))(P∗
i, j+1(x)

− P∗
i, j (x) − l jφi, j (x))

− η(P∗
i, j+1(x) − P∗

i, j (x)),

ψi, j (x, y) = (1 − η)(1 + η − η(βi, j + 1))(P∗
i, j (x)

− P∗
i, j+1(x) + l jφi, j+1(x))

+ (1 − η)(P∗
i, j+1(x) − P∗

i, j (x)),

and βi, j > 0. The interpolation function Pi, j (x, y) defined
by (4) is called a bivariate piecewise rational interpolator,
which satisfies

Pi, j (xr , ys) = f (xr , ys),
∂Pi, j (xr , ys)

∂x
= dr,s,

∂Pi, j (xr , ys)

∂y
= er,s, r = i, i + 1, s = j, j + 1.

3 The C2 Continuity of the Interpolant

This section deals with the C2 continuity conditions of
the interpolating function Pi, j (x, y) defined by (4). Let
the knots be equally spaced for variable x , namely, hi =
(b − a)/n. We can easily derive that the interpolation func-
tion Pi, j (x, y) is C1 continuous in the whole interpolating
region [x1, xn; y1, ym] when the parameters βi, j =constant
for each j ∈ {1, 2, · · · ,m − 1} and all i = 1, 2, · · · , n − 1,
no matter what the parameters αi, j might be (see [12]).
Since the rational interpolation function P∗

i, j (x) defined by

(1) is C2 continuous in [x1, xn], it is easy to show that
the bivariate interpolation function Pi, j (x, y) has continu-

ous second-order partial derivatives
∂P2

i, j (x,y)

∂x2
and

∂P2
i, j (x,y)

∂y2

in the interpolating region [x1, xn; y1, ym] except ∂P2
i, j (x,y)

∂x2
for every y ∈ [y j , y j+1], j = 1, 2, · · · ,m − 1, at the

points (xi , y), i = 2, 3, · · · , n − 1, and
∂P2

i, j (x,y)

∂y2
for every

x ∈ [xi , xi+1], i = 1, 2, · · · , n−1, at the points (x, y j ), j =
2, 3, · · · ,m−1.Thus it is sufficient for Pi, j (x, y) ∈ C2 in the

whole interpolating region [x1, xn; y1, ym] if ∂P2
i, j (x

+
i ,y)

∂x2
=

∂P2
i, j (x

−
i ,y)

∂x2
,

∂P2
i, j (x,y

+
j )

∂y2
= ∂P2

i, j (x,y
−
j )

∂y2
,

∂P2
i, j (x

+
i ,y)

∂x∂y = ∂P2
i, j (x

−
i ,y)

∂x∂y

and
∂P2

i, j (x,y
+
j )

∂x∂y = ∂P2
i, j (x,y

−
j )

∂x∂y hold. This leads to the following
theorem.

Theorem 1 If the knots are equally spaced for variable
x, namely, hi = (b − a)/n, a sufficient condition for the
interpolation function Pi, j (x, y), i = 1, 2, · · · , n − 1; j =
1, 2, · · · ,m − 1, to be C2 in the whole interpolating region
[x1, xn; y1, ym] is that the parameters βi, j =constant for

each j ∈ {1, 2, · · · ,m − 1} and all i = 1, 2, · · · , n − 1, no
matter what the parameters αi, j might be.

Proof Based on the analysis above, for any pair (i, j), 1 ≤
i ≤ n−1, 1 ≤ j ≤ m−1, in order to ensure the continuity of
the interpolation function Pi, j (x, y) defined by (4), we only
need to prove that

∂P2
i, j (x

+
i , y)

∂x2
= ∂P2

i, j (x
−
i , y)

∂x2
,
∂P2

i, j (x, y
+
j )

∂y2
= ∂P2

i, j (x, y
−
j )

∂y2
,

∂P2
i, j (x

+
i , y)

∂x∂y
= ∂P2

i, j (x
−
i , y)

∂x∂y
,
∂P2

i, j (x, y
+
j )

∂x∂y
= ∂P2

i, j (x, y
−
j )

∂x∂y
.

From (4), it can be derived that

∂P2
i, j (x, y)

∂x∂y
= 1

l j q2i, j (y)

[
3η2(1−η)2(1+(3−6η+6η2)βi, j

+ 2η(1 − η)β2
i, j ) ×

(
dP∗

i, j+1(x)

dx
− dP∗

i, j (x)

dx

)

+ l j (1 − η)2
(
1 − 4η + 6η2 − 6η3

+ η(2 − 10η + 14η2 − 9η3)βi, j

+ η2(1−4η+3η2)β2
i, j

) dφi, j (x)

dx
−l jη

2
(
3−10η+12η2

− 6η3 + (3 − 12η + 22η2 − 22η3 + 9η4)βi, j (5)

+ η(1 − η)2(2 − 3η)β2
i, j

) dφi, j+1(x)

dx

]
.

Thus, we can obtain from (5) that

∂P2
i, j (x, y

+
j )

∂x∂y
= dφi, j (x)

dx
,

∂P2
i, j (x, y

−
j+1)

∂x∂y
= dφi, j+1(x)

dx
.

This imply
∂P2

i, j (x,y)

∂x∂y is continuous at the points (x, y j )

( j = 2, 3, · · · ,m−1). Furthermore, since P∗
i, j (x) isC

1 con-

tinuous, and
dφi, j (x

+
i )

dx = ei, j
hi

,
dφi, j (x

−
i )

dx = ei, j
hi−1

,
dφi, j+1(x

+
i )

dx =
ei, j+1
hi

,
dφi, j+1(x

−
i )

dx = ei, j+1
hi−1

, then
∂P2

i, j (x,y)

∂x∂y is continuous at the
points (xi , y) (i = 2, 3, · · · , n − 1) when βi−1, j = βi, j and

hi = hi−1. The analysis above imply that
∂P2

i, j (x,y)

∂x∂y is con-
tinuous in the whole interpolating region [x1, xn; y1, ym].

Also, we use (4) to arrive at

∂P2
i, j (x, y)

∂x2
= 1

qi, j (y)
[(1−η)3(1+η(1+2η)βi, j )

d2P∗
i, j (x)

dx2

+ η3(1 + (3 − 5η + 2η2)βi, j )
d2P∗

i, j+1(x)

dx2

+ l jη(1 − η)3(1 + ηβi, j )
d2φi, j (x)

dx2
(6)

− l jη
3(1 − η)(1 + (1 − η)βi, j )

d2φi, j+1(x)

dx2
].

Since

d2φi,s(x
+
i )

dx2
= 0,

d2φi,s(x
−
i+1)

dx2
= 0, s = j, j + 1,
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and the interpolation function P∗
i, j (x) is C2 continuous, it

is easy to see from (6) that
∂P2

i, j (x,y)

∂x2
is continuous at the

points (xi , y) (i = 2, 3, · · · , n − 1) when βi−1, j = βi, j

and hi−1 = hi . The proof of the case which
∂P2

i, j (x,y)

∂y2
is

continuous at the points (x, y j ) is similar. This completes
the proof. ��

4 Basis of the Interpolant

For the interpolation defined by (1), it is easy to see that
P∗
i, j (x) can be rewritten as

P∗
i, j (x) = ω0,0(θ) fi, j + ω1,0(θ) fi+1, j

+ω0,1(θ)hidi, j + ω1,1(θ)hidi+1, j ,

where

ω0,0(θ) = (1 − θ)2[1 + θ(1 + θ − 2θ2)(αi, j − 1)]
(1 − θ)3 + θ3 + θ(1 − θ)αi, j

,

ω1,0(θ) = θ2[1 + θ(3 − 5θ + 2θ2)(αi, j − 1)]
(1 − θ)3 + θ3 + θ(1 − θ)αi, j

,

ω0,1(θ) = θ(1 − θ)3(1 − θ + θαi, j )

(1 − θ)3 + θ3 + θ(1 − θ)αi, j
,

ω1,1(θ) = − θ3(1 − θ)[θ + (1 − θ)αi, j ]
(1 − θ)3 + θ3 + θ(1 − θ)αi, j

.

The set {ωi, j (θ), i, j = 0, 1} are called the basis of the inter-
polation (1). It is obvious that when di, j = ∂ f (xi ,y j )

∂x and
αi, j → +∞, the terms ωi, j (θ) are the well-known basis of
standard cubic Hermite interpolation. That is to say, in this
special case, the interpolant P∗

i, j (x) defined by (1) will give
approximately a standard cubic Hermite interpolation.

Similarly, from (1) and (4), the interpolation function
Pi, j (x, y) can be written as follows:

Pi, j (x, y) =
i+1∑
r=i

j+1∑
s= j

[ar,s(θ, η) fr,s

+ br,s(θ, η)hidr,s + cr,s(θ, η)l j er,s], (7)

where

ai, j (θ, η)

= (1−θ)2(1−η)3(1−θ−θ2+2θ3+θ(1+θ − 2θ2)αi, j )(1+η(1+2η)βi, j )

((1 − θ)3+θ(1−θ)αi, j +θ3)((1 − η)3+η(1−η)βi, j +η3)
,

ai, j+1(θ, η)

= (1−θ)2η3(1−θ−θ2+2θ3+θ(1+θ−2θ2)αi, j+1)(1+(3 − 5η+2η2)βi, j )

((1−θ)3+θ(1 − θ)αi, j+1+θ3)((1 − η)3+η(1 − η)βi, j +η3)
,

ai+1, j (θ, η)

= θ2(1−η)3(1 − 3θ+5θ2−2θ3+θ(3 − 5θ+2θ2)αi, j )(1+η(1+2η)βi, j )

((1−θ)3+θ(1−θ)αi, j +θ3)((1 − η)3+η(1−η)βi, j +η3)
,

ai+1, j+1(θ, η)

= θ2η3(1−3θ+5θ2−2θ3+θ(3−5θ+2θ2)αi, j+1)(1+(3 − 5η+2η2)βi, j )

((1 − θ)3+θ(1 − θ)αi, j+1+θ3)((1 − η)3+η(1 − η)βi, j +η3)
,

bi, j (θ, η)

= θ(1−θ)3(1−η)3(1−θ+θαi, j )(1+η(1+2η)βi, j )

((1−θ)3+θ(1−θ)αi, j +θ3)((1−η)3+η(1−η)βi, j +η3)
,

bi, j+1(θ, η)

= θ(1−θ)3η3(1−θ+θαi, j+1)(1+(3−5η+2η2)βi, j )

((1−θ)3+θ(1−θ)αi, j+1+θ3)((1−η)3+η(1−η)βi, j +η3)
,

bi+1, j (θ, η)

= − θ3(1−θ)(1−η)3(θ+(1−θ)αi, j )(1+η(1+2η)βi, j )

((1−θ)3+θ(1−θ)αi, j +θ3)((1−η)3+η(1−η)βi, j +η3)
,

bi+1, j+1(θ, η)

= − θ3(1−θ)η3(θ+(1−θ)αi, j+1)(1+(3−5η+2η2)βi, j )

((1−θ)3+θ(1−θ)αi, j+1+θ3)((1−η)3+η(1−η)βi, j +η3)
,

ci, j (θ, η) = (1−θ)3η(1−η)3(1+4θ+9θ2)(1+ηβi, j )

(1−η)3+η(1−η)βi, j +η3
,

ci, j+1(θ, η) = − (1−θ)3η3(1−η)(1+4θ+9θ2)(1+(1−η)βi, j )

(1 − η)3+η(1−η)βi, j +η3
,

ci+1, j (θ, η) = θ3η(1−η)3(6−8θ+3θ2)(1+ηβi, j )

(1−η)3+η(1−η)βi, j +η3
,

ci+1, j+1(θ, η) = − θ3η3(1−η)(6−8θ+3θ2)(1+(1−η)βi, j )

(1−η)3+η(1−η)βi, j +η3
.

The teams ar,s(θ, η), br,s(θ, η), cr,s(θ, η), r = i, i + 1, s =
j, j + 1 are called the basis of the interpolant defined by (4),
which satisfy

ai, j (θ, η)+ai, j+1(θ, η)+ai+1, j (θ, η)+ai+1, j+1s(θ, η)=1,

bi, j (θ, η)+bi, j+1(θ, η)−bi+1, j (θ, η)−bi+1, j+1s(θ, η)=θ(1−θ),

ci, j (θ, η)−ci, j+1(θ, η)+ci+1, j (θ, η)−ci+1, j+1s(θ, η)

= η(1−η)(1−2η+2η2+η(1−η)βi, j )(1+θ−10θ3+15θ4−6θ5)

(1−η)3+η(1−η)βi, j +η3
.

(8)

Denote

M = max{| fr,s |, r = i, i + 1; s = j, j + 1},
Q1 = max{hi |dr,s |, r = i, i + 1; s = j, j + 1},
Q2 = max{l j |er,s |, r = i, i + 1; s = j, j + 1}.
For the given data, the piecewise bivariate interpolation

function Pi, j (x, y) defined by (4) has the following bounded
theorem.

Theorem 2 Let Pi, j (x, y) is the interpolation function over
[xi , xi+1; y j , y j+1] defined by (4). No matter what posi-
tive number the parameters αi,s and βr, j take, the values
of Pi, j (x, y) in [xi , xi+1; y j , y j+1] satisfy

|Pi, j (x, y)| ≤ M + 1

4
Q1 + 0.573375Q2.
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Proof From (7) and (8), it is easy to derive that

|Pi, j (x, y)|≤M
i+1∑
r=i

j+1∑
s= j

|ar,s(θ, η)|+Q1

i+1∑
r=i

j+1∑
s= j

|br,s(θ, η)|

+ Q2

i+1∑
r=i

j+1∑
s= j

|cr,s(θ, η)|

≤ M + θ(1 − θ)Q1 + Q2

i+1∑
r=i

j+1∑
s= j

|cr,s(θ, η)|

≤ M + 1

4
Q1 + Q2

i+1∑
r=i

j+1∑
s= j

|cr,s(θ, η)|.

Since

i+1∑
r=i

j+1∑
s= j

|cr,s (θ, η)|

≤ η(1 − η)(1 − 2η + 2η2 + η(1 − η)βi, j )(1 + θ − 10θ3 + 15θ4 − 6θ5)

(1 − η)3 + η(1 − η)βi, j + η3

≤ (1 + θ − 10θ3 + 15θ4 − 6θ5)
η(1 − 3η + 4η2 − 2η3)

1 − 3η + 3η2
,

and

max
θ∈[0,1](1 + θ − 10θ3 + 15θ4 − 6θ5) = 1.14675,

max
η∈[0,1]

η(1 − 3η + 4η2 − 2η3)

1 − 3η + 3η2
= 1

2
,

thus, the proof is completed. ��

5 Error Estimates of the Interpolation

Note that the interpolator defined by (4) is local, without loss
of generality, it is only necessary to consider the interpolating
region [xi , xi+1; y j , y j+1] in order to process its error esti-
mates. Let f (x, y) ∈ C2 be the interpolated function, and
Pi, j (x, y) be the interpolation function defined by (4) over
[xi , xi+1; y j , y j+1].

Denoting
∥∥∥∥
∂ f

∂y

∥∥∥∥ = max
(x,y)∈D

∣∣∣∣
∂ f (x, y)

∂y

∣∣∣∣,
∥∥∥∥
∂P

∂y

∥∥∥∥ = max
(x,y)∈D

∣∣∣∣
∂Pi, j (x, y)

∂y

∣∣∣∣,

where D = [xi , xi+1; y j , y j+1]. By the Taylor expansion
and the Peano-Kernel Theorem [23] gives the following:

| f (x, y) − Pi, j (x, y)|
≤ | f (x, y) − f (x, y j )| + |Pi, j (x, y j ) (9)

−Pi, j (x, y)| + | f (x, y j ) − Pi, j (x, y j )|
≤ l j (‖∂ f

∂y
‖+‖∂P

∂y
‖)+|

∫ xi+1

xi

∂2 f (τ, y j )

∂x2
Rx [(x−τ)+]dτ |

≤ l j (‖∂ f

∂y
‖+‖∂P

∂y
‖)+‖∂2 f (x, y j )

∂x2
‖
∫ xi+1

xi
|Rx [(x−τ)+]|dτ,

where ‖ ∂2 f (x,y j )
∂x2

‖ = maxx∈[xi ,xi+1] | ∂2 f (x,y j )
∂x2

|, and
Rx [(x − τ)+]
=

{
(x−τ)−ai+1, j (θ, 0)(xi+1−τ)−bi+1, j (θ, 0)hi , xi <τ < x;
−ai+1, j (θ, 0)(xi+1−τ)−bi+1, j (θ, 0)hi , x < τ < xi+1,

=
{
r(τ ), xi < τ < x;
s(τ ), x < τ < xi+1.

Thus, by simple integral calculation, it can be derived that
∫ xi+1

xi
|Rx [(x − τ)+]|dτ == h2i B(θ, αi, j ), (10)

where

B(θ, αi, j )

= t2(1−t)2(1+2t (1−t)(αi −1))2

(1+t (3−5t+2t2)(αi − 1))(1+t (1+t − 2t2)(αi −1))
. (11)

For the fixed αi, j , let

B(x)
i, j = max

θ∈[0,1] B(θ, αi, j ). (12)

This leads to the following theorem.

Theorem 3 Let f (x, y) ∈ C2 be the interpolated func-
tion, and Pi, j (x, y) be its interpolator defined by (4) in
[xi , xi+1; y j , y j+1].Whatever the positive values of the para-
meters αi,s, βr, j might be, the error of the interpolation sat-
isfies

| f (x, y) − Pi, j (x, y)| ≤ l j
(∥∥∥∂ f

∂y

∥∥∥ +
∥∥∥∂P

∂y

∥∥∥
)

+ h2i

∥∥∥∂2 f (x, y j )

∂x2
‖B(x)

i, j ,

where B(x)
i, j defined by (12).

Similarly, denoting ‖ ∂2 f (x,y j+1)

∂x2
‖ = maxx∈[xi ,xi+1]

| ∂2 f (x,y j+1)

∂x2
|, then the following theorem holds.

Theorem 4 Let f (x, y) ∈ C2 be the interpolated function,
and Pi, j (x, y) be its interpolation function defined by (4)
in [xi , xi+1; y j , y j+1]. Whatever the positive values of the
parameters αi,s, βr, j might be, the error of the interpolation
satisfies

| f (x, y) − Pi, j (x, y)| ≤ l j
(∥∥∥∂ f

∂y

∥∥∥ +
∥∥∥∂P

∂y

∥∥∥
)

+ h2i ‖
∂2 f (x, y j+1)

∂x2
‖B(x)

i, j+1,

where B(x)
i, j+1 = maxθ∈[0,1] B(θ, αi, j+1), and B(θ, αi, j )

defined by (11).

Furthermore, for B(x)
i,s , we can conclude the following the-

orem.
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Theorem 5 For any positive parameters αi,s, s = j, j + 1,
B(x)
i,s are bounded, and

1

16
≤ B(x)

i,s ≤ 3

16
.

6 Numerical Examples

For the bivariate rational spline interpolant defined by (4) ,
since there are three shape parameters in the interpolation
function, when the parameters vary, the interpolation func-
tion can be changed for the unchanged interpolating data.
Thus, the shape of the interpolating surface can be modi-
fied by selecting suitable shape parameters according to the
control need. Also, the interpolator can give a good approx-
imation to the interpolated function. In this section, in order
to show the effectiveness which the interpolator defined by
(4) approximate a function, and to describe that the shape
of the interpolating surface can be modified by free shape
parameters, some examples will be given.

Example 1 Let the interpolated function be f (x, y) =
cos(x2 + y), (x, y) ∈ [0, 0.8; 0, 0.8], and let hi = l j = 0.2,
then xi = 0.2(i − 1), y j = 0.2( j − 1), i, j = 1, 2, 3, 4, 5.
Also let αi, j = 0.3 + 0.2i + 0.1 j , βi, j = 0.6 + 0.1 j . The
partial derivative values di, j at the knots (xi , y j ) (i, j =
1, 2, 3, 4, 5) are conducted by using (2) and (3). The partial
derivative values ei, j at the knots (xi , y j ) (i, j = 1, 2, 3, 4, 5)
are given as:

ei, j = l j−1Δ
(y)
i, j + l jΔ

(y)
i, j−1

l j−1 + l j
, j = 2, 3, · · · ,m − 1,

ei,1 = Δ
(y)
i,1 − l1

l1 + l2
(Δ

(y)
i,2 − Δ

(y)
i,1 ),

ei,m = Δ
(y)
i,m−1 + lm−1

lm−1 + lm−2
(Δ

(y)
i,m−1 − Δ

(y)
i,m−2). (13)

Figure 1 shows the graph of the interpolated function
f (x, y). Figure 2 shows the graph of the interpolation func-
tion P(x, y) defined by (4). Figure 3 shows the surface of
the error f (x, y)− P(x, y). From Fig. 3, it is easy to see that
the interpolator defined by (4) gives a good approximation
to the interpolated function.

Example 2 Let Ω : [0, 1.5; 0, 1.5] be the plane region, and
the interpolation data are given in Table 1. The interpola-
tion function Pi, j (x, y) defined by (4) can be constructed in
[0, 1.5; 0, 1.5] for the given positive parameters αi, j , αi, j+1

and βi, j . In order to show that the shape of the interpo-
lating surface can be modified by selecting suitable para-
meters according to control need, we consider the value
control of the interpolating surface. Assume αi, j = αi, j+1

and βi, j =constant for each j ∈ {1, 2, 3} and all i =
1, 2, 3, then the interpolant Pi, j (x, y) defined by (4) is C2 in
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Fig. 1 Graph of surface f (x, y)

0
0.2

0.4
0.6

0.8
0

0.2
0.4

0.6
0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fig. 2 Graph of surface P(x, y)

0
0.2

0.4
0.6

0.8
0

0.2
0.4

0.6
0.8

−8

−6

−4

−2

0

2

4

6

x 10−3

Fig. 3 Graph of surface f (x, y) − P(x, y)
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Table 1 Set of the interpolating data

(xi , y j ) (0, 0) (0, 0.5) (0, 1) (0, 1.5) (0.5, 0) (0.5, 0.5) (0.5, 1) (0.5, 1.5)

fi, j 3 2 3 2 2 1 3 4

(xi , y j ) (1, 0) (1, 0.5) (1, 1) (1, 1.5) (1.5, 0) (1.5, 0.5) (1.5, 1) (1.5, 1.5)

fi, j 4 3 1 2 2 2 3 3

[0, 1.5; 0, 1.5]. Note that the interpolant is local, without loss
of generality, we only consider a subinterval [0.5, 1; 0.5, 1].

Let αi, j = 2
5 , βi, j = 3

5 . The partial derivative values di, j
and ei, j at the knots (xi , y j ) are conducted by using (2) and
(13), respectively. For the given interpolation data, denote
the interpolation function by P1(x, y) which is defined over
[0.5, 1; 0.5, 1]. Figure 4 shows the graph of the bivariate
rational interpolating surface P1(x, y). It is easy to com-
pute that P1(0.75, 0.75) = 111

64 = 1.73438 · · · . If the prac-
tical design requires P(0.75, 0.75) = 1.7, then βi, j = 1

9
and αi, j = 1 can be obtained. Denote the interpolation by
P2(x, y). Figure 5 shows the graph of the surface P2(x, y).

Furthermore, if the practical design requires P(0.75, 0.75)
= 1.75, then αi, j = 1 and βi, j = 1 can be derived. Denote
the interpolation by P3(x, y). Figure 6 shows the graph of
the surface P3(x, y).

Each interpolant of the family of the C2 bivariate rational
spline interpolation defined by (4) is identified uniquely by
the values of the shape parameters αi, j and βi, j . For different
shape parameters, from Figs. 4, 5 and 6, we can catch sight
of some minor changes of the surfaces in shape. It means
that the shape modification of interpolating surface can be
achieved by selecting suitable shape parameters according
to needs of practical design.
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Fig. 4 Graph of the interpolating surface P1(x, y)

7 Concluding Remarks

In many practical situations, an interpolation surface of class
C1 or C2 is required. However, generating a C2 smooth sur-
face is a very difficult task, it requires up to second-order
partial derivative values of the interpolated function. Some
methods constructing C2 smooth surface have been given
as mentioned above, most of them were polynomial meth-
ods. Usual NURBS method is the most popular technol-
ogy in modern surface modeling, however, preset weights
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Fig. 5 Graph of the interpolating surface P2(x, y)
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Fig. 6 Graph of the interpolating surface P3(x, y)
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are needed to generate a C2 rational surface. Also, NURBS
approach can be used to modify the local shape of the sur-
faces by adjusting control points or corresponding weights,
the given points play the role of the control points.

In this paper, a new approach is proposed to construct a
C2 piecewise bivariate rational spline interpolation over rec-
tangular mesh only based on the values of the interpolated
function. The bivariate interpolant has an explicit mathemati-
cal representation. Generally, when the interpolating data are
given, because of the uniqueness of the interpolation func-
tion, the shape of interpolating surface is fixed. However,
more important, in this interpolant, since there are three pos-
itive parameters:αi, j , αi, j+1, βi, j , the shapeof the interpolat-
ing surfaces can bemodified by selecting suitable parameters
for the unchanged interpolating data according to the control
need, and numerical examples illustrate this case.

For each pitch of the interpolating surface, the value
of the interpolation function depends on the interpolating
data. Since the interpolation function has the convenient
basis functions, error estimate formula of the interpolator
is worked out in Theorem 3 and Theorem 4. Theorem 5
shows that the interpolation is stable for the parameters. Also,
numerical example shows that the interpolator can give a
good approximation to the interpolated function.
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