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Abstract A simple and fast ellipse estimation method is
presented based on optimisation of the Sampson distance
serving as a measure of the quality of fit between a candi-
date ellipse and data points. Generation of ellipses, not just
conics, as estimates is ensured through the use of a parametri-
sation of the set of all ellipses. Optimisation of the Sampson
distance is performed with the aid of a custom variant of
the Levenberg–Marquardt algorithm. The method is supple-
mented with a measure of uncertainty of an ellipse fit in two
closely related forms. One of these concerns the uncertainty
in the algebraic parameters of the fit and the other pertains to
the uncertainty in the geometrically meaningful parameters
of the fit such as the centre, axes, and major axis orientation.
In addition, a means is provided for visualising the uncer-
tainty of an ellipsefit in the formof planar confidence regions.
For moderate noise levels, the proposed estimator produces
results that are fully comparable in accuracy to those pro-
duced by the much slower maximum likelihood estimator.
Due to its speed and simplicity, the method may prove use-
ful in numerous industrial applications where a measure of
reliability for geometric ellipse parameters is required.
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1 Introduction

The task of fitting an ellipse to data is frequently encoun-
tered in numerous disciplines. This is partially explained by
the fact that even though very few shapes and trajectories are
perfectly elliptical, non-elliptical shapes and trajectories can
often bemodelled using one ormore ellipses.Recently,Wong
et al. [60] compiled a comprehensive list of ellipse fitting
applications with items such as human gait analysis, grain
sorting, steel coils quality assurance, and cell segmentation—
to name a few. All of these applications require an ellipse
fitting method that is (1) simple to implement, (2) compu-
tationally efficient, (3) accurate, (4) capable of delivering a
measure of uncertainty associated with any estimate gener-
ated, and (5) always produces a fit in the form of an ellipse.
Unfortunately, there is currently no ellipse fitting method
available that simultaneously satisfies all of these require-
ments.

For example, the maximum likelihood ellipse estimation
method in its classic form seeks to minimise the sum of
the orthogonal distances between data points and a candi-
date ellipse. Minimising the orthogonal distance, however,
is a complicated process in practice [1,8,10,19,32,53,61].
It necessitates projecting points onto conics—a task for
which there is no closed form solution, and one that has
been described by numerous authors as time consuming and
numerically unstable [2,11]. So even though the classic max-
imum likelihood estimation method, also called the orthog-
onal distance regression method, yields accurate results, it is
often inadequate for many practical scenarios.

There are also algebraic ellipse fitting techniques based
on error measures that determine how well a collection of
data points satisfies the ellipse equation in a certain least
squares sense [3,25,33,48]. Least squares error measures
are different from the orthogonal distance, but are much
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easier to compute and much easier to minimise. Therefore,
algebraic ellipse fitting methods are typically fast and sim-
ple, and some can even always generate ellipses, not just
conics, as estimates [17,21,42,59]. However, in compari-
son to the orthogonal distance regression method, algebraic
ellipse fitting techniques often produce estimates of inferior
accuracy.

Another class of ellipse fitting methods comprises tech-
niques taggedwith labels such as gradient-weighted, approx-
imate maximum likelihood (AML), and hyper-accurate
[28,29,55]. Themethods in this class seek a balance between
the accuracy of the orthogonal distance regression method
and the simplicity of algebraic fitting methods. What differ-
entiates these techniques from pure algebraic schemes is that
they have credible statistical foundations [9,13] and are capa-
ble of accommodating the uncertainty associated with a data
point.Oneparticular estimationmethod that has stood the test
of time was proposed independently by Turner [58] in 1974
and by Sampson [50] in 1982. The cost function underlying
this method falls into the category of AML cost functions
and is often called the Sampson distance [24, Sect. 4.2.6].
For moderate noise levels, the Sampson distance is an excel-
lent approximation of the orthogonal distance. Whilst ellipse
fitting methods based on the Sampson distance are typically
simple, fast, and accurate at moderate noise levels, most do
not guarantee generation of an estimate in the form of an
ellipse.

An ellipse fitting method that is fast, simple, utilises the
Sampson distance, and guarantees a genuine ellipse fit was
recently proposed by Szpak et al. [54]. To enforce the ellip-
ticity constraint, the method uses a barrier term added to the
AML cost function. In this paper, we show that an explicit
barrier term may be dispensed with in favour of a para-
metrisation of the set of all ellipses that leads to the implicit
enforcement of the ellipticity constraint. The estimator that
we develop based on this parametrisation is conceptually and
practically simpler than its immediate predecessor involving
a barrier term. As a further extension of the barrier method,
we develop a measure of uncertainty of a Sampson distance
based ellipse estimate in two closely related forms. One of
these concerns the uncertainty in the algebraic parameters of
the estimate and the other pertains to the uncertainty in the
geometrically meaningful parameters of the estimate such as
the centre, axes, and major axis orientation. We also provide
a means for visualising the uncertainty of an estimate in the
form of planar confidence regions. By providing a measure
of uncertainty of an ellipse estimate, we facilitate principled
statistical decision making for users of our algorithm. Thus,
although the algorithm uses a parametrisation of the ellipses
that has no immediate geometric significance, practitioners
can apply our algorithm and still have a measure of reliabil-
ity of the geometrically meaningful parameters of an ellipse
estimate.

2 Background

A conic section, or simply a conic, is the locus of solutions
x = [m1,m2]T in the Euclidean plane R

2 of a quadratic
equation

am2
1 + bm1m2 + cm2

2 + dm1 + em2 + f = 0, (2.1)

where a, b, c, d, e, f are real numbers such that a2

+ b2 + c2 > 0. With θ = [a, b, c, d, e, f ]T and u(x)
= [m2

1,m1m2,m2
2,m1,m2, 1]T, Eq. (2.1) can equivalently

be written as

θTu(x) = 0. (2.2)

Any multiple of θ by a non-zero number corresponds to the
same conic. A conic is non-degenerate if the determinant of
the conic

D =
∣
∣
∣
∣
∣
∣

a b/2 d/2
b/2 c e/2
d/2 e/2 f

∣
∣
∣
∣
∣
∣

is non-zero. When D = 0, the conic is degenerate. A non-
degenerate conic is either an ellipse (possibly with no graph,
that is, an ellipse reduced to an empty set), a parabola, or
a hyperbola depending on whether the discriminant � =
b2−4ac is negative, zero, or positive, respectively. A degen-
erate conic can be either: a single point (� < 0); an empty
set, a straight line, or two parallel lines (� = 0); or a pair of
intersecting lines (� > 0). By convention, degenerate conics
with � < 0, � = 0, and � > 0 are referred to as degenerate
ellipses, degenerate parabolas, and degenerate hyperbolas,
respectively.

The condition � < 0 characterising the ellipses (non-
degenerate or otherwise, including the ellipses with no graph
or reduced to a point) can alternatively be written as

θTFθ > 0, (2.3)

where

F =
[

1 0
0 0

]

⊗
⎡

⎣

0 0 2
0 −1 0
2 0 0

⎤

⎦

and⊗ denotes Kronecker product [35]. Hereafter, of all con-
ics, we shall specifically be concerned with ellipses.

The task of fitting an ellipse to a set of points x1, . . . , xN
requires a meaningful cost function that characterises the
extent to which any particular θ fails to satisfy the system of
N copies of Eq. (2.2) associated with x = xn , n = 1, . . . , N .
Once a cost function is selected, the corresponding ellipse fit
is generated by minimising the cost function subject to the
constraint (2.3).
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Effectively, though not explicitly, Varah [59] and Fitzgib-
bon et al. [17] proposed to use for ellipse fitting the direct
ellipse fitting cost function defined by

JDIR(θ) =
{

θTAθ

θTFθ
if θTFθ > 0,

∞ otherwise,

whereA =∑N
n=1 u(xn)u(xn)T. The minimiser θ̂DIR of JDIR

is the same as the solution of the problem

minimise θTAθ

subject to θTFθ = 1,
(2.4)

and it is in this form that θ̂DIR was originally introduced.
The representation of θ̂DIR as a solution of the problem (2.4)
makes it clear that θ̂DIR is always an ellipse. Extending the
work of Varah and Fitzgibbon et al., Halíř and Flusser [21]
introduced a numerically stable algorithm for calculating
θ̂DIR.

Another cost function for ellipse fitting, and in fact more
generally for conic fitting, was first proposed independently
by Turner [58] and Sampson [50] and then popularised, in
a broader context, by Taubin [56] and Kanatani [27]. It is
associated with many names such as the Sampson, gradient-
weighted, and approximate maximum likelihood (AML) dis-
tance or cost function, and takes the form

JAML(θ) =
N
∑

n=1

θTAnθ

θTBnθ

with

An = u(xn)u(xn)T and Bn = ∂xu(xn)Λxn∂xu(xn)T

(2.5)

for each n = 1, . . . , N . Here, for any length-2 vector y,
∂xu(y) denotes the 6 × 2 matrix of the partial derivatives
of the function x �→ u(x) evaluated at y, and, for each
n = 1, . . . , N , Λxn is a 2 × 2 symmetric covariance matrix
describing the uncertainty of the data point xn [6,13,27]. The
function JAML is a first-order approximation of a genuine
maximum likelihood cost function JML which can be evolved
based on the Gaussian model of errors in conjunction with
the principle of maximum likelihood. In the case when iden-
tical independent homogeneous Gaussian noise corrupts the
data points, JML reduces—up to a numeric constant depend-
ing on the noise level—to the sum of orthogonal distances of
the data points and an ellipse. For the specific task of ellipse
fitting, the search space forminimising JAML is reduced from
the set of all length-6 vectors to the set E = {θ | � < 0} of all
ellipses, each member of the latter set being conventionally
referred to as a feasible point. The approximated maximum

likelihood estimate θ̂AML is, by definition, the minimiser of
JAML selected from among all feasible points.

The existence of a minimiser of JAML in the set of all
ellipses is not always guaranteed. In contrast, there always
exists aminimiser of JAML in the joint set EP = {θ | � ≤ 0}
of ellipses and parabolas. Indeed, JAML is homogeneous in θ

(meaning that JAML(λθ) = JAML(θ) for any scalar factor λ)
and this implies that the range of JAML—the set of values that
JAML can take—is the same as the range of the restriction
of JAML to the five-dimensional unit sphere S5 = {θ | ‖θ‖
= 1}, where ‖ ·‖ denotes the Euclidean norm. Consequently,
the search for a minimiser of JAML within EP may be
restricted to the search within the intersection of EP and
S5, EP ∩ S5, characterised by the conjunction of the condi-
tions� ≤ 0 and ‖θ‖ = 1. This intersection is a closed subset
of S5 and as such is compact in a topological sense. Now, the
function JAML is continuous, and, given that any continuous
function attains a minimum on a compact set, the function
JAML, considered over EP ∩ S5, attains its minimum on
EP ∩ S5.

Typically, when the data set adheres sufficiently closely
to a generative model producing data points based on a bona
fide ellipse, the minimiser of JAML within EP will represent
a genuine ellipse. In some scenarios, however, the minimiser
will be a member of P = {θ | � = 0}, the “parabolic”
boundary of the set E of all ellipses. For example, when
all data points lie on a line [7], the minimiser interpreted
geometrically coincides with the line on which the points
lie, this line being an instance of a degenerate parabola. In
other words, the problem of minimising JAML within the set
of ellipses is ill posed, and solving it requires some form of
regularisation. We shall regularise the minimisation problem
by adaptively restricting the search domain for aminimiser to
a subset of E . The restriction procedurewill take the formof a
stopping criterion for an optimisation algorithm, preventing
iteratively generated estimates from going too close to the
set of parabolas P . While this approach involves a good deal
of arbitrariness, one has to immediately point out that such
arbitrariness is unavoidable: no ill-posed problem admits a
unique, or canonical, regularisation.

3 Optimisation Using a Barrier Term

In our previous work [54] we developed a technique for near-
optimising JAML subject to the ellipticity constraint. The
method uses the merit function

P(θ , α) = JAML(θ) + αg(θ),

where g is a barrier function of the form

g(θ) = ‖θ‖4
(θTFθ)2

= ‖θ‖4�−2
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and α is a positive number. A solution representing an ellipse
is sought in the form of a local minimiser of P . The critical
property of the barrier function is that it tends to infinity as
θ approaches the parabolic boundary P = {θ | θTFθ = 0}
between the feasible elliptic region E = {θ | θTFθ > 0}
and the infeasible hyperbolic region H = {θ | θTFθ < 0} of
the search space. This property ensures that if P is optimised
in sufficiently short steps starting from a feasible point, then
any local miminiser reached on the way is feasible; and if
the value of α is small enough, this local minimiser is a good
approximation of a local minimiser of JAML. By design, the
parameter α is set to a very small number (of the order of
10−15). The search for an optimal solution is carried out by a
fast converging iterative procedure that takes the direct ellipse
fit θ̂DIR for a seed. The technique turns out to be statistically
accurate and computationally efficient. However, an issue
that might be of concern with regard to the method is that it
produces ellipse estimates that are not exact minimisers of
JAML.

4 Optimisation Using a Parametrisation

Below we present a method capable of isolating ellipse esti-
mates that are exact minimisers of JAML within the feasi-
ble part of the search space, provided that JAML admits a
local minimum on that part. When JAML has no local min-
imum amongst the ellipses, the method delivers an ellipse
estimate which is an approximation of a (possibly gener-
alised) parabola constituting the minimiser of JAML within
the joint set of ellipses and parabolas. The barrier term from
our previous method plays no role here—this term is simply
discarded. The method searches for a solution by employ-
ing a parametrisation of the set of all ellipses. The search
is conducted with the aid of a specially crafted Levenberg–
Marquardt (LM) algorithm,which ensures a fast convergence
towards the optimal solution starting from an initial guess
based on the direct ellipse fit. The specific design of our pro-
posed algorithm is a substantial contribution of the present
paper.

4.1 A Parametrisation of the Set of All Ellipses

The set of all ellipses admits a natural parametrisation. To
reveal it, consider an ellipse described by θ . Then a 	= 0
and c 	= 0, for otherwise—should a = 0 or c = 0 hold—the
discriminant� = b2−4ac = b2 would be non-negative, and
thiswould contradict the fact that for ellipses the discriminant
is always negative. Given this and the fact that the scale of
θ is irrelevant as far as the determination of the underlying
ellipse is involved, it is safe to assume that a = 1. Under
this assumption the condition � < 0 becomes 4c > b2,
and letting b = 2p, we see that c > p2, or, equivalently,

c = p2 + q−2 for some q. It is now clear that the set of
ellipses can be parametrised as

θ = κ(η), κ(η) = [1, 2p, p2 + q−2, r, s, t]T, (4.1)

with η = [p, q, r, s, t]T running over all possible length-5
vectors. A variant of the above parametrisation that will be
particularly useful in what follows is given by

θ = π(η), π(η) = ‖κ(η)‖−1κ(η). (4.2)

The significance of the unit-normalisation step will become
apparentwhenwe proceed to develop our customised version
of the LM algorithm.

4.2 Optimisation Algorithm

With the parametrisation (4.2) in place, the effective function
to optimise is

J ′
AML(η) = JAML(π(η)).

We shall next evolve a modified version of the LM algo-
rithm for efficient optimisation of this function. It will be
convenient to precede the description of our version of the
LM scheme with a presentation of the standard form of the
method.

4.2.1 Initialisation

Because the LM algorithm is an iterative technique, both
its standard and modified form will require a proper ini-
tialisation. An initial value of η, η0, can be extracted from
any estimate θ̂ representing a genuine ellipse by setting
η0 = c(̂θ), where c is the composition of the mapping
θ �→ θ/θ1 = [1, θ2/θ1, . . . θ6/θ1]T and the inverse of the
mapping η �→ κ(η). Specifically, c(θ) = [p, q, r, s, t]T is
given by

p = θ2

2θ1
, q =

(

θ3

θ1
−
(

θ2

2θ1

)2
)−1/2

,

r = θ4

θ1
, s = θ5

θ1
, t = θ6

θ1
. (4.3)

As the direct ellipse fit always represents a genuine ellipse,
a natural choice for η0 is c(̂θDIR).

4.2.2 Standard Form of LM

Both the standard and our version of the LM scheme will
rely on a least squares expression for J ′

AML. Let r(θ) =
[r1(θ), . . . , rN (θ)]T, where

rn(θ) =
(

θTAnθ

θTBnθ

)1/2
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for each n = 1, . . . , N . Then the function JAML can be writ-
ten in least squares form as

JAML(θ) = r(θ)Tr(θ) = ‖r(θ)‖2.
Similarly, the companion function J ′

AML can be expressed as

J ′
AML(η) = ‖r′(η)‖2,

wherer′(η) = [r ′
1(η), . . . , r ′

N (η)]T with r ′
n(η) = rn(π(η))

for each n = 1, . . . , N .
A full descriptionof anyvariant of theLMscheme requires

an explicit form of the Jacobian matrix of r′(η). A straight-
forward computation shows that the Jacobian matrix of r(θ),

∂θr(θ) = [(∂θr1(θ))T, . . . , (∂θrN (θ))T]T,

is fully determined by the relations

(∂θrn(θ))T = r−1
n (θ)Xn(θ)θ,

Xn(θ) = An

θTBnθ
− θTAnθ

(θTBnθ)2
Bn

for all n = 1, . . . , N . For each m = 1, 2, . . . , denote by Im
the m × m identity matrix. Let P⊥

θ be the symmetric matrix
representing the projection along θ onto the orthogonal com-
plement of θ , given by

P⊥
θ = I6 − ‖θ‖−2θθT. (4.4)

Then the Jacobian matrix of r′(η) can be expressed as

∂ηr′(η) = ∂θr(π(η)) ∂ηπ(η),

where

∂ηπ(η) = ‖κ(η)‖−1P⊥
κ(η)∂ηκ(η)

and

∂ηκ(η) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
2 0 0 0 0
2p −2q−3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can now summarise the standard LM algorithm for
optimising J ′

AML as follows. Starting with an initial estimate
η0, the scheme iteratively replaces a current estimate ηk with
a new estimate ηk+1 based on the update rule

ηk+1 = ηk + δηk, (4.5)

δηk = −((∂ηr′(ηk))T∂ηr′(ηk) + λkI5
)−1

(∂ηr′(ηk))Tr′(ηk).
(4.6)

Here λk is a non-negative scalar that dynamically changes
from step to step. Details concerning the choice of λk can be
found in [47]; see also Sect. 9.

4.2.3 Modified Form of LM

Experiments show that the standard form of the LM scheme
applied to J ′

AML can sometimes take relatively many itera-
tions before reaching an optimal solution. To achieve a faster
convergence, we shall modify the LM algorithm, replacing
the standard weight matrix λI5 in (4.6) by a non-standard,
step-dependent, positive-definite weight matrix λWη. The
customised scheme retains the logic of the standard scheme
in that for large values of the scale factor λ, the LM step
will align with a descent direction for J ′

AML, which is the
direction of −(λWη)

−1(∂ηr′(ηk))Tr′(ηk). This direction is
no longer the direction of the steepest descent in the ordinary
Euclidean norm on the parameter space, but rather in the
norm |||ζ ||| = (ζTWηζ )1/2 [43, Sect. 8.2.2]. For precedents
on the use of weight matrices in LM different frommultiples
of the identity matrix, see [5,44]. Passing to the specifics of
our scheme, we shall adopt

Wη = (∂ηπ(η))T∂ηπ(η), (4.7)

with the main ingredient of update rule then becoming

δηk = −((∂ηr′(ηk))T∂ηr′(ηk) + λkWηk

)−1
(∂ηr′(ηk))Tr′(ηk).

(4.8)

Themotivation behind this choice of the weight matrix has to
do with the experimentally observed fact that the LM algo-
rithm for optimising the non-parametrised function JAML

(which produces conics, but not necessarily ellipses, as opti-
mal solutions), based on the rule

θk+1 = θk + δθk, (4.9)

δθk = −((∂θr(θk))T∂θr(θk) + λkI6
)−1

(∂θr(θk))Tr(θk),
(4.10)

runs faster than the standard LM algorithm for optimising
J ′
AML (as per (4.5) and (4.6)). One might hope then that if

Wη is chosen in such a way that the increment

δη = −((∂ηr′)T∂ηr′ + λWη

)−1
(∂ηr′)Tr′

transformed into an increment of θ by means of the relation

δθ = ∂ηπ δη

becomes

δθ = −((∂θr)T∂θr + λI6
)−1

(∂θr)Tr

and in so doing mimics the rule given in (4.10), then the LM
algorithm employing such δη will run faster than the stan-
dard version of LM. Of course, the above is just a guiding
principle whose merit has to be scrutinised experimentally.
Fortunately, relevant results confirm the efficacy of the pro-
posed approach—see Sect. 10.
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We now discuss how the above condition on Wη leads to
formula (4.7). The defining property ofWη is

∂ηπ((∂ηr′)T∂ηr′ + λWη)
−1(∂ηr′)Tr′

= ((∂θr)T∂θr + λI6
)−1

(∂θr)Tr.

Here, of course, r′ and ∂ηr′ are evaluated at η, and r and ∂θr
are evaluated at π(η); in particular, r′ = r′(η) = r(π(η))

= r. Taking into account that

∂ηπ((∂ηr′)T∂ηr′ + λWη)
−1(∂ηr′)Tr′

= ∂ηπ((∂ηr′)T∂ηr′ + λWη)
−1(∂ηπ)T(∂θr)Tr′,

we see that Wη has to satisfy

∂ηπ((∂ηr′)T∂ηr′ + λWη)
−1(∂ηπ)T = ((∂θr)T∂θr+ λI6)−1.

(4.11)

For a given matrix A, denote by A+ the Moore–Penrose
pseudo-inverse of A [35]. It is easily seen that

(∂ηπ)+ = ((∂ηπ)T∂ηπ)−1(∂ηπ)T, (4.12a)

((∂ηπ)T)+ = ∂ηπ((∂ηπ)T∂ηπ)−1. (4.12b)

Hence, in particular,

(∂ηπ)+∂ηπ = I5, (4.13a)

(∂ηπ)T((∂ηπ)T)+ = I5. (4.13b)

Pre-multiplying and post-multiplying both sides of (4.11) by
(∂ηπ)+ and ((∂ηπ)T)+, respectively, and invoking (4.13a)
and (4.13b), we get

((∂ηr′)T∂ηr′ + λWη)
−1 = (∂ηπ)+((∂θr)T∂θr + λI6)−1

×((∂ηπ)T)+.

Now the critical ingredient of our argument is the equality

(∂ηπ)+((∂θr)T∂θr + λI6)−1((∂ηπ)T)+

= ((∂ηπ)T((∂θr)T∂θr + λI6)∂ηπ
)−1

. (4.14)

We defer the rather lengthy proof of this equality to Appen-
dix 1. Assuming (4.14) for now, we find that

((∂ηr′)T∂ηr′ + λWη)
−1 = ((∂ηπ)T((∂θr)T∂θr + λI6)∂ηπ

)−1

and further

(∂ηr′)T∂ηr′ + λWη = (∂ηπ)T((∂θr)T∂θr + λI6)∂ηπ

= (∂ηr′)T∂ηr′ + λ(∂ηπ)T∂ηπ .

Hence, immediately, Wη = (∂ηπ)T∂ηπ , as desired.

5 Two Forms of Estimate Covariances

To be truly useful, an estimate of an ellipsemust be accompa-
nied by a reliablemeasure of its uncertainty characterising the
dispersion of values that the estimate could reasonably attain.
A fundamental advantage of the AML cost function over the
ML cost function is that the former allows one to obtain,
in a relatively straightforward way, a quantitative measure of
uncertainty for any estimate related to that function. Themea-
sure takes the form of a covariance matrix. Here we present
two closely related expressions for the covariance matrix of
an AML estimate of an ellipse. The first of these concerns
the case that the estimate is expressed in terms of the familiar
algebraic parameters θ . The second concerns the case that the
estimate is represented via the natural geometric parameters
of an ellipse, namely centre co-ordinates, semi-major and
semi-minor axes, and orientation.

5.1 Covariance of the Algebraically Parametrised Estimate

Any effort to assess the uncertainty of an estimate like θ̂AML

has to involve assumptions as to the nature of noise in the
data. The assumption behind the formula for the covariance
matrix of θ̂AML, Λ

θ̂AML
, is the same as that underlying the

development of JAML, namely that the observed data points
x1, . . . , xN are noisy versions of noise-free data points, with
the noise in each xn independent and Gaussian, of zero mean
and covariance matrix Λxn .

Given anm×mmatrixA and a positive integer r no greater
than m, we denote by Ar the r-truncated SVD of A and by
A+
r the r-truncated pseudo-inverse ofA. These are defined as

follows. If A = UDVT is the singular value decomposition
(SVD) ofA, withD = diag(d1, . . . , dm), thenAr = UDrVT

with Dr = diag(d1, . . . , dr , 0, . . . , 0), and A+
r = VD+

r U
T

with D+
r = diag(d+

1 , . . . , d+
r , 0, . . . , 0), where d+

i = d−1
i

when di 	= 0 and d+
i = 0 otherwise. Continuing with the

preparations, we introduce the matrix

Mθ =
N
∑

n=1

An

θTBnθ
. (5.1)

We are now ready to present our first covariance matrix
formula. Under the assumption that θ̂AML is normalised,
‖̂θAML‖ = 1, the covariance matrix of θ̂AML is given by

Λ
θ̂AML

= P⊥̂
θAML

(Mθ̂AML
)+5 P

⊥̂
θAML

. (5.2)

We remark that the presence of P⊥̂
θAML

here makes the matrix

Λ
θ̂AML

singular, with θ̂AML in the null space of Λ
θ̂AML

. This
reflects the particular way in which the scale ambiguity of
the estimates has been eliminated, namely by scaling the
estimates to unit length. The details of the derivation of (5.2)
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are somewhat technical and are deferred to Appendix 2. For
additional results related to the content of Appendix 2, the
interested reader is referred to [18] and [31].

5.2 Covariance of the Geometrically Parametrised Estimate

Alongside a θ-vector of algebraic parameters, an ellipse
can be represented by a ξ -vector of geometric parameters,
ξ = [A, B, H, K , τ ]T. Here A and B denote the semi-major
axis and the semi-minor axis of the ellipse, H and K denote
the x and y coordinates of the centre of the ellipse, and τ is
the angle formed by the major axis with the positive x-axis.
Recalling that � denotes the discriminant (� = b2 − 4ac),
we let

λ± = 1

2

(

a + c ∓
(

b2 + (a − c)2
)1/2

)

,

ψ = bde − ae2 − b2 f + c(4a f − d2),

V± =
(

ψ

λ±�

)1/2

,

where± and∓ are shorthand for+ or − that allow presenta-
tion of two expressions in one formula, with the upper− of∓
associated with the+ of±. It is a matter of a straightforward
but tedious analysis to establish the following conversion
rules for passing from the θ -based to the ξ -based description
of the ellipse (see [62, Sect. 4.10.2] for the starting point of
the derivation of the formulae):

A = max(V+, V−), B = min(V+, V−), (5.3)

H = 2cd − be

�
, K = 2ae − bd

�
, (5.4)

τ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 arccot

( a−c
b

)

if b < 0, a < c and V+ ≥ V−,
π
4 if b < 0, a = c and V+ ≥ V−,
1
2 arccot

( a−c
b

)+ π
2 if b < 0, a > c and V+ ≥ V−,

0 if b = 0, a < c and V+ ≥ V−,
π
2 if b = 0, a ≥ c and V+ ≥ V−,
1
2 arccot

( a−c
b

)+ π if b > 0, a < c and V+ ≥ V−,
3π
4 if b > 0, a = c and V+ ≥ V−,
1
2 arccot

( a−c
b

)+ π
2 if b > 0, a > c and V+ ≥ V−,

1
2 arccot

( a−c
b

)+ π
2 if b < 0, a < c and V+ < V−,

3π
4 if b < 0, a = c and V+ < V−,
1
2 arccot

( a−c
b

)+ π if b < 0, a > c and V+ < V−,
π
2 if b = 0, a < c and V+ < V−,

0 if b = 0, a ≥ c and V+ < V−,
1
2 arccot

( a−c
b

)+ π
2 if b > 0, a < c and V+ < V−,

π
4 if b > 0, a = c and V+ < V−,
1
2 arccot

( a−c
b

)

if b > 0, a > c and V+ < V−.

(5.5)

We remark that the formula for τ is valid only under the
assumption that the ellipse is not a circle; that is, provided
the inequality (a − c)2 + b2 > 0 holds.

With the aid of (5.3)–(5.5), the geometric content of θ̂AML

can be revealed as ξ (̂θAML).We term ξ (̂θAML) theAML esti-
mate of the geometric parameters of an ellipse and denote it
by ξ̂AML. For consistency, we shall refer to θ̂AML as theAML
estimate of the algebraic parameters of an ellipse. The rule
of covariance propagation readily permits finding the covari-
ancematrix of theAMLestimate of the geometric parameters
of an ellipse from the covariance matrix of the AML estimate
of the algebraic parameters. Assuming that θ̂AML is normed
to unity, we have

Λ
ξ̂AML

= [∂θ ξ ]θ=θ̂AML
Λ

θ̂AML
[(∂θ ξ)]T

θ=θ̂AML
, (5.6)

The5×6 Jacobianmatrix ∂θ ξ = [∂θ AT, ∂θ BT, ∂θ HT, ∂θKT,

∂θτ
T]T can be specified explicitly as follows. The first two

rows are given by

∂θ A =
{

∂θV+ if A = V+,

∂θV− if A = V−,
(5.7)

∂θ B =
{

∂θV+ if B = V+,

∂θV− if B = V−,
(5.8)

where ∂θV± = [∂aV±, ∂bV±, ∂cV±, ∂dV±, ∂eV±, ∂ f V±]
is given by

∂aV
± = 1

2λ±�

(
ψ

λ±�

)−1/2
[

4c f − e2 + 4�−1cψ

− ψ

2λ±

(

1 ± c − a
(

(a − c)2 + b2
)1/2

)]

, (5.9)

∂bV
± = 1

2λ±�

(
ψ

λ±�

)−1/2
[

de − 2b f − 2�−1bψ

± bψ

2λ±
(

(a − c)2 + b2
)1/2

]

, (5.10)

∂cV
± = 1

2λ±�

(
ψ

λ±�

)−1/2
[

4a f − d2 + 4�−1aψ

− ψ

2λ±

(

1 ± a − c
(

(a − c)2 + b2
)1/2

)]

, (5.11)

∂dV
± =

(
ψ

λ±�

)1/2 be − 2cd

2ψ
, (5.12)

∂eV
± =

(
ψ

λ±�

)1/2 bd − 2ae

2ψ
, (5.13)

∂ f V
± = − 1

2λ±

(
ψ

λ±�

)−1/2

. (5.14)
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The remaining three rows are given by

∂θ H =
[
4c(2cd − be)

�2 ,
b2e + 4ace − 4bcd

�2 ,

2b(bd − 2ae)

�2 ,
2c

�
,− b

�
, 0

]

, (5.15)

∂θK =
[
2b(be − 2cd)

�2 ,
b2d + 4acd − 4abe

�2 ,

4a(2ae − bd)

�2 ,− b

�
,
2a

�
, 0

]

, (5.16)

∂θτ =
[

− b

2
(

b2 + (a − c)2
) ,

a − c

2
(

b2 + (a − c)2
) ,

b

2
(

b2 + (a − c)2
) , 0, 0, 0

]

. (5.17)

6 Confidence Regions

The reliability of an AML estimate of an ellipse can be sug-
gestively expressed using the concept of a confidence region.
It is standard to build a confidence region of a parameter vec-
tor estimate as a portion of the parameter space that contains
the true parameter vector with a given high probability. The
parameter space for all ellipses is five dimensional and as
such is difficult to grasp. Here we propose a more visually
appealing form of ellipse-specific confidence region, namely
a confidence region in the plane. Such a region is meant to
cover the in-plane locus of the true ellipse with a given high
probability.

The probability statement associated with a confidence
region requires some explanation if it is not to be misin-
terpreted. The point is that the statement is not meant to
imply that every confidence region contains the true parame-
ters with a specified high probability. Rather, the probability
expresses how frequently a confidence region canbe expected
to contain the true parameters in the long-run process of tak-
ing random data points and obtaining regions.

The first to consider planar confidence regions for ellipse
fits was Porrill [46]. Our approach is inspired by Scheffé’s S-
method for constructing simultaneous confidence bands for
linear regression [51], [34, Sect. 9.4–5]. The starting point for
the construction is the observation that when θ̂AML is viewed
as a multivariate normally distributed random vector,

θ̂AML ∼ N (θ∗,Λθ∗),

where θ∗ is the parameter vector of the true ellipse andΛθ∗ is

a covariance matrix, the scalar random variable θ̂
T
AMLu(x) is

normally distributed with variance u(x)TΛθ∗u(x) for every

point x on the locus Eθ∗ = {x ∈ R
2 | θT∗ u(x) = 0} of the

true ellipse. The observation is based on the fact that θ̂
T
AML

u(x) = (̂θAML−θ∗)Tu(x)whenever x ∈ Eθ∗ and the fact that
by the rule of covariance propagation (̂θAML −θ∗)Tu(x) has
varianceu(x)TΛθ∗u(x). Consequently, under the assumption

that θ̂AML is an unbiased estimate of θ∗,1

zx = (̂θ
T
AMLu(x))2

u(x)TΛθ∗u(x)

is a squared normal random variable for every x ∈ Eθ∗ . Each
zx, insofar as x belongs to Eθ∗ , attains large values with less
probability than small values, with the probability of any
particular set of values regarded as large or small being inde-
pendent of x. This suggests using the zx as building blocks
in the construction of a confidence region in the plane. Since
the covariance Λθ∗ is unknown, the zx do not have observ-
able realisations and, for the sake of construction, have to be
replaced with these variables’ observable variants

ẑx = (̂θ
T
AMLu(x))2

u(x)TΛ
θ̂AML

u(x)
, (6.1)

where the covariance estimate Λ
θ̂AML

serves as a natural

replacement for Λθ∗ . Again, large observed values of ẑx are
less plausible than small observed values as long as x ∈ Eθ∗ .
It is thus natural to consider confidence regions for θ̂AML in
the form
{

x ∈ R
2 | ẑx ≤ c

}

,

where c is a positive constant. Ideally, for a confidence region
at (confidence) level 1 − α, we should choose c such that

P
(

zx ≤ c for all x ∈ Eθ∗
) = P

(

sup
x∈Eθ∗

zx ≤ c

)

= 1 − α,

where P(A) denotes the probability of the event A. But the
distribution of supx∈Eθ∗ zx is not easy to determine, so as a
second best choice we shall replace supx∈Eθ∗ zx by a random
upper bound whose distribution can be readily calculated.
Proceeding to the specifics, we may assume, in line with fact
that the parameter space of all ellipses is five-dimensional,
that (̂θAML − θ∗)Tθ∗ = 0, or equivalently, θ̂AML − θ∗ =
P⊥

θ∗ (̂θAML − θ∗). This then leads to

P⊥
θ∗Λθ∗ = Λθ∗P

⊥
θ∗ = Λθ∗ . (6.2)

Now, if x ∈ Eθ∗ , then

θ̂
T
AMLu(x) = (θ̂AML − θ∗

)T
u(x) = (̂θAML − θ∗)TP⊥

θ∗u(x).

1 This is a realistic assumption, as θ̂AML is known to be an unbiased
estimate of θ∗ up to the first order. See [26], [27, Sect. 10.2.2], and [37]
for more details.
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But it follows from (6.2) that (Λ+
θ∗)

1/2Λ
1/2
θ∗ = P⊥

θ∗ , so

θ̂
T
AMLu(x) = (θ̂AML − θ∗

)T
(Λ+

θ∗)
1/2Λ

1/2
θ∗ u(x)

=
((

Λ+
θ∗

)1/2 (
θ̂AML − θ∗

)
)T

Λ
1/2
θ∗ u(x).

By the Cauchy–Bunyakovsky–Schwarz inequality,

(̂θ
T
AMLu(x))2 ≤ ‖(Λ+

θ∗)
1/2(̂θAML − θ∗)‖2‖Λ1/2

θ∗ u(x)‖2.
Also
∥
∥
∥(Λ

+
θ∗)

1/2(̂θAML − θ∗)
∥
∥
∥

2

= (θ̂AML − θ∗
)T

Λ+
θ∗
(

θ̂AML − θ∗
)

and
∥
∥
∥Λ

1/2
θ∗ u(x)

∥
∥
∥

2 = u(x)TΛθ∗u(x).

Hence

zx ≤ (θ̂AML − θ∗
)T

Λ+
θ∗
(

θ̂AML − θ∗
)

.

Since x is an arbitrary member of Eθ∗ , we have

sup
x∈Eθ∗

zx ≤ (θ̂AML − θ∗
)T

Λ+
θ∗
(

θ̂AML − θ∗
)

. (6.3)

Now the random variable (̂θAML − θ∗)TΛ+
θ∗ (̂θAML − θ∗)

has approximately a chi-squared distribution with 5 degree
of freedom. Let χ2

5,α denote the 100(1 − α)% percentile of

the χ2 distribution with 5 degrees of freedom, characterised

by the relation P
(

χ2 ≤ χ2
5,α

)

= 1 − α. Inequality (6.3)

guarantees that

P

(

sup
x∈Eθ∗

zx ≤ χ2
5,α

)

≥ 1 − α

Substituting Λ
θ̂AML

for Λθ∗ , we also approximately have

P

(

sup
x∈Eθ∗

ẑx ≤ χ2
5,α

)

≥ 1 − α.

This allows an approximate confidence region at level 1− α

for θ̂AML to be taken as

�α =
{

x ∈ R
2 | ẑx ≤ χ2

5,α

}

. (6.4)

We finally point out that if α is set to the standard conven-
tional value of 0.05, then χ2

5,α = 11.07.

7 Data Normalisation

For reason of numerical stability, it is important to incorpo-
ratedata normalisation, orpre-conditioning, in the process of
calculating AML estimates and their covariances. One pop-
ular form of data normalisation is due to Hartley [12,14,23]
and can be formulated with the aid of a data-dependent 3×3
matrix T given by

T =
⎡

⎣

s−1 0 −s−1m1

0 s−1 −s−1m2

0 0 1

⎤

⎦ ,

where

mi = 1

N

N
∑

n=1

mn,i (i = 1, 2)

and

s =
(

1

2N

N
∑

n=1

(mn,1 − m1)
2 + (mn,2 − m2)

2

)1/2

.

If m = [m1,m2, 1]T represents a data point in the original,
un-normalised coordinates, then m̃ = [m̃1, m̃2, 1]T defined
by m̃ = Tm represents the samepoint in the normalised coor-
dinates. The formofT reflects the fact that the transformation
m �→ m̃ scales down the data set to a unit box with centre
at the origin. In the normalised coordinates, Eq. (2.2) can be

equivalently written as θ̃
T
u(x̃) = 0 with x̃ = [m̃1, m̃2]T and

θ̃ related to θ via the relation

θ̃ = E−1P(34)D
+
3 (T ⊗ T)−TD3P(34)Eθ . (7.1)

Here, D3 is the 9 × 6 duplication matrix given by

D3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P(34) is the permutationmatrix for interchanging the 3rd and
4th entries of length-6 vectors, given by

P(34) = diag(0, 1, 0) ⊗
[

0 1
1 0

]

+ diag(1, 0, 1) ⊗
[

1 0
0 1

]

,

and E = diag(1, 2−1, 1, 2−1, 2−1, 1). The computation of
θ̂AML involving data normalisation proceeds in two steps.
First, anAMLestimate of θ̃ relative to the normalised coordi-

nates, ̂̃θAML, is extracted by minimising the AML cost func-
tion

J̃AML(θ̃) =
N
∑

n=1

θ̃
T
Ãn θ̃

θ̃
T
B̃n θ̃

where, for each n = 1, . . . , N , Ãn = u(x̃n)u(x̃n)T, B̃n =
∂xu(x̃n)Λx̃n

∂x̃u(x̃n)T, andΛx̃n
is the result of the propagation

of Λxn to the normalised coordinates, namely
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[
Λx̃n

0
0T 0

]

= T
[
Λxn 0
0T 0

]

TT.

Next, θ̂AML is obtained by the un-normalisation procedure
captured in the formula

θ̂AML = E−1P(34)D
+
3 (T ⊗ T)TD3P(34)E

̂̃
θAML. (7.2)

This formula is an instance of the inverse equation to (7.1)
and is an immediate consequence of the identity JAML(θ) =
J̃AML(θ̃). Notice that θ̂AML given in (7.2) does not necessar-
ily have unit length.

The computation of Λ
θ̂AML

involving data normalisation
starts with the computation of Λ

̂̃
θAML

which is nothing else

but an application of (5.2) with P⊥̂
θ̃AML

substituted for P⊥̂
θAML

and M̂̃
θAML

substituted for Mθ̂AML
, where, of course,

M̂̃
θAML

=
N
∑

n=1

Ãn

̂̃
θ

T

AMLB̃n
̂̃
θAML

.

Here ̂̃θAML is assumed to be of unit length. Once Λ
̂̃
θAML

is

found, Λ
θ̂AML

is given by

Λ
θ̂AML

= ‖̂θAML‖−2P⊥̂
θAML

FΛ
̂̃
θAML

FTP⊥̂
θAML

, (7.3)

where F is short for E−1P(34)D
+
3 (T ⊗ T)TD3P(34)E and

θ̂AML on the right-hand side is given by (7.2)—that is, θ̂AML

= F̂̃θAML. The above expression forΛθ̂AML
is the result of an

application of the rule of covariance propagation to Λ
̂̃
θAML

and the mapping θ̃ �→ Fθ̃/‖Fθ̃‖.
Similarly, the data normalisation based computation of

Λ
ξ̂AML

starts with the computation of Λ
̂̃
θAML

. The matrix

Λ
̂̃
ξAML

is next retrieved by applying the formula

Λ
̂̃
ξAML

= [∂
θ̃
ξ̃ ]

θ̃=̂̃θAML
Λ
̂̃
θAML

[(∂
θ̃
ξ̃)]T

θ̃=̂̃θAML
,

which is a variant of (5.2) relative to the normalised coordi-
nates. Finally, Λ

ξ̂AML
is given by the expression

Λ
ξ̂AML

= SΛ
̂̃
ξAML

ST, S = diag(s, s, s, s, 1),

which encodes the covariance propagation for geometric
parameters from the normalised to the un-normalised coor-
dinates.

The procedures described above involve an arbitrary set of
covariance matrices Λxn . A common assumption in practice
is that the noise in the data set is homogeneous isotropic
Gaussian, so that Λxn = σ 2I2 for each n = 1, . . . , N , where
σ is a common standard deviation. The value ofσ is generally
not known a priori. This value can, however, be learned from

the data. The key is the fact that two variants of JAML, one
based on the covariances Λxn = σ 2I2 and one based on
the covariances Λxn = I2, differ only by a multiplicative
constant and, as a result, lead to a common value of θ̂AML.
In other words, θ̂AML can be obtained without knowing the
actual value of σ , by minimising JAML under the default
assumption that Λxn = I2. Once this is done, one can take

σ̂ =
√

JAML (̂θAML)

N − 5

for an estimate of σ (cf. [27, Sect. 7.1.4]). For all practical
purposes, σ may safely be identified with σ̂ . With this in
effect, the Λxn may be assumed to be fully known.

8 Normalised Confidence Regions

Data normalisation can also be used in forming confidence
regions. To generate a confidence region based on normalised
data, we first define

ˆ̃zx̃ = (
̂̃
θ
T

AMLũ(x̃))2

ũ(x̃)TΛ
̂̃
θAML

ũ(x̃)
,

where ̂̃θAML is assumed to have unit norm. We then let

�̃α =
{

x̃ ∈ R
2 | ˆ̃zx̃ ≤ χ2

5,α

}

and finally take

�α =
{

x ∈ R
2 | x̃ ∈ �̃α

}

for an approximate confidence region at level 1−α for θ̂AML.
Equivalently, �α can be defined as

�α =
{

x ∈ R
2 | ẑx ≤ χ2

5,α

}

provided that ẑx is taken with θ̂AML = F̂̃θAML and Λ
θ̂AML

=
FΛ

̂̃
θAML

FT, 2 with ̂̃θAML remaining normalised; this follows

from the fact that with θ̂AML and Λ
θ̂AML

as above, we have

ẑx = ˆ̃zx̃. Now, as a rule, the set �α will be different from
the set �α , specified in (6.4), representing an approximate
confidence region at level 1−α for θ̂AML based on raw data.
While typically the difference between confidence regions
constructed using normalised versus raw data is rather small,
normalised confidence regions tend to bemore visually pleas-
ing.

2 This is a genuine formula for the covariance matrix of θ̂AML corre-
sponding a different gauge constraint than the one underlying formula
(7.3), which is the constraint that θ̂AML be scaled to unit norm. Gauge
constraints serve to eliminate redundant degrees of freedom in the para-
metrisation and lead to gauged covariances. See [57, Sect. 9] for more
details.
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9 Algorithms
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Our overall optimisation scheme is summarised in Algo-
rithms 1 and 2. Algorithms 3 and 4 give standalone proce-
dures for computing the covariances of the algebraic and geo-
metric parameters of an ellipse estimate obtained by applying
our scheme. It should be noted that an integral part of Algo-
rithm 1 are conditions for operation termination. We shall
elaborate on these conditions in Sect. 10.2.3 while discussing
details of our implementation of Algorithm 1.

10 Performance Analysis

In order to characterise the accuracy and computational effi-
ciency of our method, we conducted numerous simulations
under diverse experimental conditions. We manipulated the
eccentricity of ellipses, the number of data points sampled
from ellipses, the level of noise that was applied to data
points, as well as the length of ellipse segments from which
data points were generated. Taking into account the length of
ellipse segments allowed us to determine how an ellipse esti-
mate is influenced by the proportion of the length of an ellipse
segment to the length of the entire underlying ellipse. Based
on experiments with changing this proportion, we learned to
distinguish between ill-posed and well-posed ellipse fitting
problems. We now consider an ellipse fitting problem as ill-
posed when the length of a segment of an ellipse is less than
half of the ellipse’s perimeter, and as well-posed when the
length of a segment of an ellipse is greater than half of the
ellipse’s perimeter.

In evaluating the quality of ellipse estimates, we distin-
guished between training data and testing data. Training data
consists of noise perturbed points sampled from an ellipse
possibly reduced to a small fragment. In contrast, testing data
consists of noiseless data points uniformly sampled from an
entire ellipse. Any particular ellipse in our experiments was
estimated using training data, and the ellipse’s estimateswere
evaluated using corresponding testing data. By distinguish-
ing between training data and testing data, we were explic-
itly interpreting ellipse fitting as a prediction problem. This
means that we were not interested in finding the best ellipse
that fits a given training data per se, but expected the esti-
mated ellipse to be representative of the true ellipse in all
regions, not just in the region from which the training data
was sampled.

10.1 Procedure for Generating Synthetic Data and
Evaluating Ellipse Estimates

Wenowsummarise the procedure for generating training data
and testing data, and explain in more detail how the quality
of ellipse estimates was characterised.

10.1.1 Data Generation

The first step of the data generation procedure is to determine
an ellipse in standard form x2/a2 + y2/b2 = 1 by choosing
first a random value of a in the interval (101, 200) and next
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a random value of b in the interval (100, a). Such a choice
ensures that the inequality a > b holds and, consequently,
that a is the length of the semi-major axis and b is the length
of the semi-minor axis of the ellipse in question.

Once an initial ellipse has been selected, training and test-
ing data-sets are constructed using the following steps:

1. Sample K points equidistantly along a segment of the
ellipse with a specified length. The length of the segment
is a fraction of the ellipse perimeter, and is measured
clockwise starting from the positive y-axis. For example,
the segment length can be half of the ellipse perimeter
(see Fig. 1a). The K points will serve as a basis for the
training data.

2. Sample N points equidistantly along the entire perimeter
of the ellipse. These N points will serve as a basis for the
testing data.

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Summary of the simulation procedure. (a) Training data points
are sampled from a segment of an ellipse. In this example, the length
of the segment is half of the ellipse perimeter. (b) Testing data points
are sampled equidistantly from the entire ellipse. (c) Training data is
randomly rotated and translated. (d) The same rotation and translation is
applied to testing data. (e) Noise perturbed training data serves as input
to ellipse estimation methods. (f) The quality of an estimated ellipse
is characterised in terms of the root-mean-square orthogonal distance
between the testing data set and the estimated ellipse. The orthogonal
distance is depicted by straight lines joining testing data points and the
corresponding closest points on the ellipse

3. Rotate and translate the ellipse together with the points
generated in the first two steps by a random angle and
random offset (see Fig. 1d).

4. Add zero-mean Gaussian noise with desired standard
deviation to the rotated K points (see Fig. 1e). Take these
noise-perturbed data points as the training data (serving
as input to the ellipse estimation methods).

5. Take the rotated set of N points as the testing data.

10.1.2 Estimates Evaluation

After an ellipse has been estimated on the training data with
anyparticular estimationmethod, the quality of the respective
estimate is evaluated on the testing data using the root-mean-
square (RMS) orthogonal distance
√
√
√
√

1

2N

N
∑

n=1

d2n ,

where dn denotes the orthogonal distance between the nth
data point and the ellipse constituting the estimate (see
Fig. 1f). The RMS orthogonal distance measures the geo-
metric error of the estimate with respect to the testing data
points. The process of computing the orthogonal distances dn
is rather involved—detailed formulae can be found in [11]
and [61].

10.2 Results

We compared our estimation technique with the orthogo-
nal distance regression method and the direct ellipse fitting
method, which represent the gold standard and the baseline
technique for ellipse fitting, respectively. Both the orthogonal
distance regression method and our proposed method were
initialisedwith the result of the direct ellipsefitting technique.
All estimation schemes operated on Hartley-normalised data
points.

10.2.1 Synthetic Data

In the first set of simulations we held the noise level fixed at
σ = 5 pixels, and varied the number of training data points
and the length of ellipse segments fromwhich the data points
were sampled. For each combination of the number of data
points and the length of an ellipse segment,we conducted 250
simulation trials and recorded the mean root-mean-square
error. Themean-root-mean-square errors are displayed using
two-dimensional contour plots in Fig. 2.

Two important conclusions can be drawn from the results
of the first experiment:

1. When the length of an ellipse segment is less than half
of the length of the entire ellipse, the direct ellipse
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Fig. 2 Comparison of mean root-mean-square orthogonal distance
error for a fixed noise level of σ = 5 pixels, as both the number of
data points and the portion from which the data points are sampled
are varied. The colour intensity of the plot is correlated with the mean
root-mean-square orthogonal distance error—the lighter the colour, the
larger the error. Contour lines represent level sets with constant error.
When the fraction of the ellipse from which data points are sampled
is less than half of the ellipse perimeter, the error of the direct ellipse
estimation (DIR) method fails to improve as the number of data points

is increased. In contrast, both our fast guaranteed ellipse estimation
method (FGEE) and the gold standard orthogonal distance estimation
(ODE) method exhibit a consistent reduction in error as the number of
data points is increased. (d) may be interpreted as comparing a sample
of values on the “number of points” axis in (a–c), while holding the cor-
responding “fraction of ellipse perimeter” axis fixed at 0.55. (a) Direct
ellipse estimation. (b) Fast guaranteed ellipse estimation. (c) Orthogo-
nal distance estimation. (d) Comparing all three methods (Color figure
online)

estimate does not improve as the number of data points
is increased.

2. The Sampson distance based ellipse fitting method and
the orthogonal distance regression method yield almost
indistinguishable results.

In the second set of simulations we utilised only 25
data points, but still varied the noise level and the length
of ellipse segments from which data points were sampled.
The results of the second simulation are summarised using
two-dimensional contour plots in Fig. 3. The second experi-
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Fig. 3 Comparison of mean root-mean-square orthogonal distance
error for 25 data points, as both the portion from which the data points
are sampled and the standard deviation of the noise level (measured in
pixels) are varied. The colour intensity of the plot is correlated with
the mean root-mean-square orthogonal distance error—the lighter the
colour, the larger the error. Contour lines represent level-sets with con-
stant error. When the fraction of the ellipse from which data points are
sampled is less than half of the ellipse perimeter, the error of the direct

ellipse estimation method is considerably higher than that of the other
methods. In contrast, our fast guaranteed ellipse estimation method and
the gold standard orthogonal distance estimationmethod exhibit similar
error levels. (d) may be interpreted as comparing a sample of values on
the “number of points” axis in (a–c), while holding the corresponding
“fraction of ellipse perimeter” axis fixed at 0.45. (a) Direct ellipse esti-
mation. (b) Fast guaranteed ellipse estimation. (c ) Orthogonal distance
estimation. (d) Comparing all three methods (Color figure online)

ment confirms that our Sampson distance based ellipse fitting
method produces similar results to those of the gold standard
orthogonal distance regression method for a variety of noise

levels. The second experiment also shows that our Sampson
distance based ellipse fitting imitates the orthogonal distance
regression even when both the noise level and the ellipse
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segment length are varied. The direct ellipse fitting method
does not share this desirable property, and instead yields infe-
rior results.

10.2.2 Stability and Efficiency

For every experiment, we verified that our algorithm was
indeed producing an ellipse fit by confirming that the dis-
criminant of the estimated parameters was less than zero.
We also monitored the average running time of a MATLAB
implementation of our algorithm,3 while we varied the num-
ber of data points as well as the fraction of the ellipse perime-
ter from which data points were sampled. A summary of our
findings together with a comparison against the running time
of the orthogonal distance regression method is presented
using two-dimensional density plots in Fig. 4.

Based on the outcome of the experiment, we make the
following two observations:

1. The running time of our fast guaranteed ellipse fitting
algorithm increases gradually and smoothly as the num-
ber of data points is increased, and as the problem
becomes more ill-posed.

2. The running time of the orthogonal distance regression
method follows a similar trend, but does not increase
gradually nor smoothly.

Our experiments indicate that the running time of the orthog-
onal distance regression method is much more unpredictable
than the running time of our technique.

In Sect. 4.2 we mentioned that utilising the LMmethod in
standard form to optimise our cost functionmay occasionally
take many iterations to converge, and proposed a modifica-
tion to the LM scheme. A comparison of the running time of
our fast guaranteed ellipse fitting algorithm against the basic
guaranteed ellipse fitting algorithm that uses the standard
LM method is presented in Fig. 5. The results show that for
ill-posed ellipse fitting problems, our fast guaranteed ellipse
implementation is twice as fast as the basic guaranteed ellipse
fitting algorithm.

10.2.3 Attributes of the Estimate

While our ellipse specific parametrisation explicitly excludes
hyperbola fits, it does permit degenerate ellipses or ellipses
that approach parabolas in the limit. As discussed in Sect. 2,
degenerate ellipses are those for which the corresponding
determinant D is zero. In turn, ellipses close to parabolas are
those for which the corresponding discriminant � is close to
zero. To avoid producing degenerate ellipses, our algorithm
terminates when the absolute value of the determinant of an

3 http://sites.google.com/site/szpakz/.

ellipse falls below a user-specified threshold. To prevent the
solution from coming too close to the parabolas, our algo-
rithm stops when the discriminant approaches zero.

In our experiments the threshold for the determinant was
set to 10−5, and the discriminant was ensured to be large
enough in modulus by forcing the algorithm to terminate
when log(‖θ‖2/θTFθ) rose above a threshold of 15.5.

We label close to degenerate ellipses and ellipses that
approximate parabolas as depreciated ellipses. In contrast to
bona fide ellipses, depreciated ellipses are characterised by
the property that only a subset of geometric ellipse parame-
ters are estimated with reasonable certainty. Although not as
informative as genuine ellipses, depreciated ellipses still pro-
vide useful knowledge. For example, an ellipse that approxi-
mates a parabolawill have tremendous uncertainty associated
with its semi-major axis, but the semi-minor axis and orien-
tation of the axes may still be estimated with great precision,
and this will be reflected in the covariance matrix.

In order to determine how frequently depreciated ellipses
occur in typical scenarios, we conducted numerous simula-
tions which are summarised in Table 1.

The results of our simulations are based on 10,000 trials.
For each trial an ellipse was generated by randomly select-
ing a length for the semi-major and semi-minor axes, while
keeping the axes alignedwith the Cartesian axes. Points were
then sampled from the upper half, right half, and upper right
quarter of the ellipse. Our experiments revealed that with
small noise levels and with at least ten data points, depreci-
ated ellipses occur on rare occasions. The most challenging
situation arises when data points are sampled from the upper
right quarter of an ellipse and the noise level is large. This
constitutes a very ill-posed problem—neither orthogonal dis-
tance regression nor AML estimation are capable of produc-
ing an ellipse that is close to a true ellipse without recourse
to some kind of regularisation. We believe that ill-posed esti-
mation problems are best solved within a Bayesian setting,
where regularisation is achieved through a suitable choice
of a prior distribution over the parameter space. The design
of an appropriate prior over the space of ellipses that might
serve to guide the estimate away from degenerate ellipses
and parabolas is a challenging problem which we intend to
pursue in future work.

10.2.4 Real Data

To validate the conclusions drawn from the synthetic exper-
iments, we also compared the ellipse fitting methods on real
images. In Fig. 6, we utilised two images of a Martian moon
eclipse captured by the Opportunity rover, and in Fig. 7, we
used images of twoof Saturn’smoons captured by theCassini
spacecraft. Our experiments confirm that the estimates pro-
duced by our fast guaranteed ellipse fittingmethod agreewith
the estimates obtained via the orthogonal distance regression.
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Fig. 4 Comparison ofmean running time for fixed noise level of σ = 5
pixels, as both the portion from which the data points are sampled and
the number of data points are varied. The running time is measured in
seconds. The colour intensity of the plot is correlated with the average
running time—the lighter the colour, the greater the running time. In
(a) and (b) the same colour scaling function was used to map running
time to colour, thereby ensuring that the two plots are directly compa-
rable. According to (a), the average running time of the fast guaranteed
ellipse estimation method increases smoothly as the number of points
is increased and as the fraction of the ellipse perimeter from which
data points are sampled is decreased. Whilst the running time of the
orthogonal distance estimation method in (b) follows a similar trend,

the trade-off is not as smooth, indicating that the running time of the
orthogonal distance estimation method for a sample of data points is
much more unpredictable. In (c) the irregularity of the running time of
the orthogonal distance estimation method is made more prominent by
a different choice of the colour scaling function. (d) may be interpreted
as comparing a sample of values on the “fraction of ellipse perimeter”
axis in (a) and (b), while holding the corresponding “number of points”
axis fixed at 350. (a) Fast guaranteed ellipse estimation. (b) Orthog-
onal distance estimation. (c) Orthogonal distance estimation. (d) Fast
guaranteed ellipse estimation vs orthogonal distance estimation (Color
figure online)

123



J Math Imaging Vis (2015) 52:173–199 191

FGEE BGEE

0.006 0.008 0.010 0.012 0.014 0.016
0

50

100

150

200

250

300

Running Time s

F
re
qu

en
cy

FGEE BGEE

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

Running Time s

F
re
qu

en
cy

(a) (b)

Fig. 5 Comparison of smoothed histograms of the number of seconds
that elapsed before our algorithm that uses a modified damping matrix
in the LM optimisation scheme converged for (a) well-posed and (b)
ill-posed problems, and of similar histograms for the basic guaranteed
ellipse fitting method that uses an identity damping matrix. The results
indicate that the use of the modified damping matrix in the LM scheme

can considerably decrease the running time for ill-posed problems.
On average, the modified damping matrix reduces the running time
by half for ill-posed problems. For well-posed problems, there is no
notable difference in running time as both algorithms converge within a
handful of iterations. (a) 25 data points sampled from the entire ellipse.
(b) 25 data points sampled from one third of the ellipse

Table 1 Prevalence of ellipses, depreciated ellipses, and hyperbolaswhenminimisingAMLusing the conic parametrisation (θ ) or the ellipse-specific
parametrisation (η)

Parametrisation Conic type Upper half of ellipse Right half of ellipse Quarter of ellipse

Noise level
σ = 1 (%) σ = 5 (%) σ = 1 (%) σ = 5 (%) σ = 1 (%) σ = 5 (%)

(a) Results based on 10,000 simulations with 10 data points

η Ellipse 100.0 100.0 100.0 100.0 96.61 61.43

Depreciated Ellipse 0.0 0.0 0.0 0.0 3.39 38.57

θ Ellipse 100.0 99.9 100.0 100.0 95.92 61.89

Hyperbola 0.0 0.1 0.0 0.0 4.08 38.11

(b) Results based on 10,000 simulations with 50 data points

η Ellipse 100.0 100.0 100.0 100.0 99.86 74.44

Depreciated Ellipse 0.0 0.0 0.0 0.0 0.14 25.56

θ Ellipse 100.0 100.0 100.0 100.0 99.83 72.23

Hyperbola 0.0 0.0 0.0 0.0 0.17 27.77

Results are based on 10,000 simulations with 10 data points and 10,000 simulations with 50 data points

10.2.5 Accuracy of Geometric Parameter Covariance
Estimation

We performed additional simulations to test the validity of
our geometric parameter covariance formulae.Our validation
was based on comparing the covariance matrix given by the
propagation formula (5.6) to a covariance matrix resulting
from a Monte Carlo simulation. In particular, we sampled
250 points equidistantly between 0◦ and 225◦ on the ellipse
parametrised by ξ = [100, 50, 250, 250, 0.7854]T. We then
added zero-mean Gaussian noise at a pre-set noise level to
the data points, and produced 10,000 simulation trials. The
Monte Carlo covariance matrix was computed with the aid
of the formula

Λ
ξ̂MONTE

= 1

9995

10000
∑

n=1

(

ξ̂AML,n−ξ̄AML
) (

ξ̂AML,n−ξ̄AML
)T

,

where ξ̂AML,n is the geometric parameter estimate corre-
sponding to the nth trial and ξ̄AML represents the corre-
sponding mean geometric parameter vector. We then com-
pared the relative error between our propagated covariance
matrix and theMonte Carlo covariancematrix for each simu-
lation trial. The relative error is defined as the absolute error
between our propagated covariance matrix and the Monte
Carlo covariance matrix, divided by the Frobenius norm of
the Monte Carlo covariance matrix. The relative error is sen-
sitive to very small differences. We also computed the angu-
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DIR FGEE ODE DIR FGEE ODE

(a) (b)

Fig. 6 Comparison of ellipse fitting methods on two images of a Mar-
tian moon eclipse. The two images capture the Martian moon Phobos
as it occludes the sun. A Canny edge detector was applied to the two
images, and the maximum edge response corresponding to the common
border of the moon and the sun was used as input to the ellipse fitting

methods. In both cases the smallest ellipse corresponds to the direct
ellipse fit, whilst our fast guaranteed ellipse estimation method and the
orthogonal distance estimation method yield indistinguishable results
(the ellipse contours overlap). Image Credit: NASA/JPL/Cornell. (a)
Martian moon eclipse stage 1. (b) Martian moon eclipse stage 2

DIR FGEE ODE DIR FGEE ODE

(a) (b)

Fig. 7 Comparison of ellipse fitting methods on Saturn’s crescent
moons. A Canny edge detector was applied to the two images, and
the maximum edge response corresponding to the outer border of the
crescents was used as input to the ellipse fitting methods. In both cases
the smallest ellipse corresponds to the direct ellipse fit, whilst our fast

guaranteed ellipse estimation method and the orthogonal distance esti-
mationmethod yield indistinguishable results (the ellipse contours over-
lap) Image Credit: NASA/JPL/Space Science Institute. (a) Rhea. (b)
Mimas

lar error defined as the angle between vectorised and unit-
normalised variants of the propagated covariance and Monte
Carlo covariance matrices. The angular error is invariant to
differences in scale between the two covariance matrices.
The median relative and median angular errors are presented
in Table 2 for various noise levels. The results show that our
covariance matrix estimates are very accurate, achieving a
relative error of less than 15%, provided that the noise level
is less than σ = 3 pixels.

To further illustrate the practical insight that can be
gleaned from the covariance matrices, we plot a 95% con-
fidence region and report the estimated geometric parame-

ters and corresponding parameter standard errors on four
different data-sets (see Fig. 8). In accordance with theoreti-
cal expectations, the true ellipses happened to fall inside the
confidence regions and the confidence regions became nar-
rower as the number of data points was increased. While
the results presented in Fig. 8 are representative of the
kinds of confidence regions one would typically observe
in many practical scenarios, they may not be representa-
tive of confidence regions arising when data points are
sampled from a very short fragment of an ellipse (an
ill-posed problem)—in that case the assumptions under-
lying the generation of confidence regions may not be
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Table 2 Median errors between our propagated geometric parameter
covariance matrix and a Monte Carlo estimate of the geometric para-
meter covariance matrix

σ (pixels) Relative error (%) Angular error (◦)

1 6.8232 0.8348

2 9.3241 1.4280

3 15.3709 2.6416

4 21.7922 3.5146

5 34.0976 5.4763

Results are based on 10,000 trials. The relative error is sensitive to
very small differences between the propagated covariance estimate and
the Monte Carlo covariance estimate. The angular error is invariant to
differences in scale between the two covariance matrices. The results
show that our covariance matrix estimates are very accurate, achieving
a relative error of less than 15% provided that the noise level is less than
σ = 3 pixels

satisfied and the confidence regions may thus be too
narrow.

11 Discussion

Our experiments show that the Sampson distance is an excel-
lent approximation to the orthogonal distance for the pur-
pose of fitting an ellipse to data. Our results are in agreement
with the findings of Kanatani and Rangarajan who report that
“[it] has also been observed that the solution that minimizes
the Sampson error agrees with the ML [orthogonal distance]
solution up to several significant digits.” [30, p. 2204].

The utility of the Sampson distance was also acknowl-
edged by Rosin. This author conducted a comprehensive
comparison of various ellipse fitting cost functions and con-
cluded that “…for small amounts of noise EOF2 [the Samp-
son distance] is the overall best approximation to use …”
[49, p. 501].

Some researchers, however, including Chernov and Ma
[10, p. 299], have cautioned against replacing the orthogonal
distance estimate with the Sampson distance. Their concerns
are based on a list of disadvantages associated with algebraic
fitting methods,4 which was compiled by Anh [1]. The list
includes the following items:

1. Error definition does not comply with the measurement
guidelines.

2. Conversion of the algebraic parameters to the physical
parameters (shape, size, position, and rotation parame-
ters) is highly difficult.

3. Fitting errors are weighted.

4 The Sampson distance based estimation technique is sometimes clas-
sified as a geometric fittingmethod and sometimes as an algebraic fitting
method. Chernov and Ma as well as Anh regard the Sampson distance
optimisation as an algebraic fitting method.

4. The estimated model parameters are biased.
5. It is very difficult to test the reliability of the estimated

model parameters (particularly in terms of physical para-
meters).

6. The fitting procedure sometimes endswith an unintended
model feature (e.g. a hyperbola instead of an ellipse).

7. The model parameters are not invariant to coordinate
transformation (e.g. a parallel shift of the set of given
points causes changes not only in position, but also in the
form and rotation of the estimated model feature).

In the context of ellipse fitting, the disadvantages are not so
severe. We offer the following rejoinder to some of the above
criticisms (the numbers in brackets will refer to the original
item numbers):

[2]. The formulae for the conversion of algebraic ellipse
parameters to physical ellipse parameters are straight-
forward, albeit tedious, to derive—see Sect. 5.2.

[3]. The fact that fitting errors areweighted is not necessarily
a disadvantage. It is through the introduction of gradient-
cum-covariance weights into the algebraic distance that
the Sampson distance is able to produce accurate esti-
mates.

[4]. Bias in the estimated model parameters is not limited
to algebraic fitting methods. The orthogonal distance
estimate is also biased even in the case of ellipse fit-
ting [16,38–41].

[5]. Our fitting procedure includes a reliability measure for
both algebraic and geometric ellipse parameters.

[6]. Our fitting procedure always produces an ellipse esti-
mate.

[7]. If data points and data point covariancematrices are both
jointly and appropriately modified in accordance with a
change of coordinate system, then the Sampson distance
is theoretically unchanged. However, certain coordinate
systems (e.g. scaling all data points to lie within a unit
box [14]) present favourable numerical advantages.

Our response above reduces the list of disadvantages to item
(1).Now, passing to this remaining item, given that the Samp-
son distance yields accurate estimates, does it really matter
that the error definition does not comply with measurement
guidelines? In our view, it does not, but we concede that the
answer may be domain dependent.

An astute reader would have probably noticed that the
Sampson distance was devised more than forty years ago,
and now may wonder whether the accuracy of the Samp-
son distance based estimation method has been surpassed
by more recent techniques. To answer this question, a com-
prehensive evaluation of several new schemes was recently
conducted [55]. These schemes are not based on optimisa-
tion of any particular cost function but rather exploit the idea

123



194 J Math Imaging Vis (2015) 52:173–199

y

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
True Ellipse
FGEE
Data Point

y

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
True Ellipse
FGEE
Data Point

x

y

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
True Ellipse
FGEE
Data Point

x

y

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
True Ellipse
FGEE
Data Point

(a) (b)

(c) (d)

x x

Fig. 8 Fast guaranteed ellipse estimation with corresponding 95 %
confidence band (shaded region). (a) The estimated ellipse is centred
at (254.218± 3.176, 254.866± 3.580), with semi-major axis length of
199.347±4.965 pixels, semi-minor axis length of 29.447±1.683 pixels,
and orientation of 45.612±0.549◦. (b) The estimated ellipse is centred
at (245.330± 2.612, 250.868± 2.403), with semi-major axis length of
200.105±3.613 pixels, semi-minor axis length of 23.596±1.327 pixels,
and orientation of 44.035± 0.419◦. (c) The estimated ellipse is centred
at (245.316 ± 5.478, 236.282 ± 7.851), with semi-major axis length
of 201.939± 3.629 pixels, semi-minor axis length of 110.769± 9.859
pixels, and orientation of 132.503 ± 1.772◦. (d) The estimated ellipse
is centred at (256.101 ± 3.549, 256.386 ± 3.490), with semi-major
axis length of 197.207 ± 1.719 pixels, semi-minor axis length of
88.211 ± 5.447 pixels, and orientation of 134.868 ± 0.782◦. (a) 10
data points sampled from an ellipse centred at (250, 250), with semi-

major axis length of 200 pixels, semi-minor axis length of 25 pixels,
and orientation of 45◦. The data points were perturbed with zero-mean
homogeneous Gaussian noise of σ = 5 pixels. (b) 40 data points sam-
pled froman ellipse centred at (250, 250),with semi-major axis length of
200 pixels, semi-minor axis length of 25 pixels, and orientation of 45◦.
The data points were perturbed with zero-mean homogeneous Gaussian
noise of σ = 5 pixels. (c) 10 data points sampled from an ellipse centred
at (250, 250), with semi-major axis length of 200 pixels, semi-minor
axis length of 100 pixels, and orientation of 135◦. The data points were
perturbed with zero-mean homogeneous Gaussian noise of σ = 5 pix-
els. (d) 40 data points sampled from an ellipse centred at (250, 250),
with semi-major axis length of 200 pixels, semi-minor axis length of
100 pixels, and orientation of 135◦. The data points were perturbed with
zero-mean homogeneous Gaussian noise of σ = 5 pixels

of unbiasing existing estimators. The results of the compar-
ison showed that whilst in some instances the newer tech-
niques may lead to more accurate estimates, the improve-
ments they yield are very small and can usually only be mea-
sured using several decimal places. Hence, in many situa-
tions, the improvement in accuracy that may be gleaned by
using one of the more recently proposed techniques may not
be practically useful.

12 Conclusion and Future Work

We have presented a straightforward and efficient algorithm
for fitting an ellipse to data. Themethod exploits a parametri-
sation of the set of all ellipses to implicitly enforce the ellipse
constraint. Computational efficiency is accomplished with a
custom variant of the Levenberg–Marquardt algorithm. The
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technique yields estimates that are almost indistinguishable
from the estimates produced by the gold-standard orthogo-
nal distance regression method, even at moderate noise lev-
els. The proposed method is easy to implement, thanks to the
reliance on the Sampson distance. Additionally, we have pro-
vided a means for plotting confidence regions and a measure
of uncertainty for both algebraic and geometric parameters of
an ellipse estimate. This measure of uncertainty may prove
useful in various industrial applications and may also help
in low-level vision tasks where deciding whether a group of
pixels belong to a line, circle, or ellipse is often a prerequi-
site for higher-level image analysis. In future workwe plan to
investigate robust variants of our cost function to neutralise
the impact of outliers on the estimate, and plan to explore
suitable priors over the space of ellipses to improve the qual-
ity of the estimate for ill-posed problems. We also intend
to characterise the empirical and theoretical accuracy of our
measure of uncertainty more comprehensively by extending
the scope of the Monte Carlo simulations and experiments.
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Appendices

Appendix 1: Proof of Equation (4.14)

In this appendix, we establish Eq. (4.14). The proof will
not rely on general identities for pseudo-inverse matrices but
rather will involve the specifics of r(θ) and π(η).

Differentiating r(tθ) = r(θ)with respect to t and evaluat-
ing at t = 1, we find that ∂θr(θ)θ = 0. Hence, in particular,
∂θr(π(η))π(η) = 0. Consequently, recalling (4.4), we have

∂θr(π(η))P⊥
π(η) = ∂θr(π(η))

− ‖π(η)‖−2∂θr(π(η))π(η)π(η)T

= ∂θr(π(η)).

We summarise this simply as

∂θr P⊥
π(η) = ∂θr

in line with our earlier convention that ∂θr be evaluated at
π(η). As an immediate consequence, we obtain

((∂θr)T∂θr + λI6)P⊥
π(η) = (∂θr)T∂θr + λP⊥

π(η).

This together with the observation that (∂θr)T∂θr + λP⊥
π(η)

is symmetric (being the sum of the symmetric matrices

(∂θr)T∂θr and λP⊥
π(η)) yields

((∂θr)T∂θr + λI6)P⊥
π(η) = (((∂θr)T∂θr + λI6)P⊥

π(η))
T

= (P⊥
π(η))

T((∂θr)T∂θr + λI6)T

= P⊥
π(η)((∂θr)T∂θr + λI6). (13.1)

Now note that if A and B are square matrices of the same
sizes,A is invertible, andAB = BA, thenA−1B = BA−1, as
is easily seen by pre- and post-multiplying the both sides of
AB = BA by A−1. This in conjunction with (13.1) implies

((∂θr)T∂θr + λI6)−1P⊥
π(η) = P⊥

π(η)((∂θr)T∂θr + λI6)−1.

(13.2)

Differentiating the identity ‖π(η)‖2 = π(η)Tπ(η) = 1
with respect to η, we get

(∂ηπ)Tπ(η) = 0. (13.3)

Hence

(∂ηπ)TP⊥
π(η) = (∂ηπ)T − ‖π(η)‖−2(∂ηπ)Tπ(η)π(η)T

= (∂ηπ)T.

Pre-multiplyingboth sides of this equality by ((∂ηπ)T∂ηπ)−1

and invoking (4.12a), we obtain

(∂ηπ)+P⊥
π(η) = (∂ηπ)+. (13.4)

Now recall that for any matrix A, the matrix A+A repre-
sents the orthogonal projection onto the range (column space)
of AT, or equivalently, the orthogonal projection onto the
orthogonal complement of the null space of A. Since, on
account of (13.3), the null space of (∂ηπ)T is spanned by
π(η), it follows that

((∂ηπ)T)+(∂ηπ)T = P⊥
π(η). (13.5)

We now have all ingredients needed to establish (4.14).
We calculate as follows:

(∂ηπ)+((∂θ r)T∂θ r + λI6)−1((∂ηπ)T)+(∂ηπ)T((∂θ r)T∂θ r + λI6)∂ηπ

= (∂ηπ)+((∂θ r)T∂θ r + λI6)−1P⊥
π(η)((∂θ r)T∂θ r + λI6)∂ηπ

= (∂ηπ)+P⊥
π(η)((∂θ r)T∂θ r + λI6)−1((∂θ r)T∂θ r + λI6)∂ηπ

= (∂ηπ)+P⊥
π(η)∂ηπ

= (∂ηπ)+∂ηπ

= I5.

In the above the second line comes from the first by
(13.5); the third line comes from the second by (13.2); the
fourth line comes from the third by the tautological identity
((∂θr)T∂θr + λI6)−1((∂θr)T∂θr + λI6) = I6; the fifth line
comes from the fourth by (13.4); and the sixth line comes
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from the fifth by (4.13a). The end result of our calculation is
what is exactly needed to establish (4.14).

Appendix 2: Proof of Equation (5.2)

In this appendix, we establish the covariance formula (5.2).
The derivation is based on two ingredients: an equation char-
acterising θ̂AML and a covariance propagation formula. The
first ingredient, embodied in Eq. (13.7) below, comes from
the optimality condition that θ̂AML satisfies as the minimiser
of JAML:

[∂θ JAML(θ; x1, . . . , xN )]θ=θ̂AML
= 0T. (13.6)

Direct computation shows that

[∂θ JAML(θ; x1, . . . , xN )]T = 2Xθ θ,

where

Xθ =
N
∑

n=1

An

θTBnθ
−

N
∑

n=1

θTAnθ

(θTBnθ)2
Bn .

Accordingly, (13.6) can be reformulated as

X
θ̂
θ̂ = 0, (13.7)

where θ̂AML is abbreviated to θ̂ for clarity.
The second ingredient, which will be used in combination

with the first, is the covariance propagation formula

Λ
θ̂

=
N
∑

n=1

∂xn θ̂Λxn (∂xn θ̂)T (13.8)

(cf. [15,22]). Here it is tacitly assumed that, corresponding to
varying sets of data pointsx1, . . . , xN , the normalised vectors
θ̂ = θ̂(x1, . . . , xN ) have been chosen in a coordinated way,
so that θ̂ varies smoothly, without sign flipping, as a function
of x1, . . . , xN and in particular may be differentiated.

As a first step towards the derivation of formula (5.2), we
differentiate‖θ̂‖2 = 1with respect toxn to get (∂xn θ̂)Tθ̂ = 0.
This jointly with (4.4) and (13.8) then implies

P⊥
θ̂
Λ

θ̂
= Λ

θ̂
P⊥

θ̂
= Λ

θ̂
. (13.9)

Next, letting xn = [mn,1,mn,2]T and θ̂ = [θ̂1, . . . , θ̂6]T, and
differentiating (13.7) with respect to mn,i , we obtain
⎡

⎣[∂mn,iXθ ]θ=θ̂
+

6
∑

j=1

[∂θ jXθ ]θ=θ̂
∂mn,i θ̂ j

⎤

⎦ θ̂ + X
θ̂
∂mn,i θ̂ = 0.

Introducing the Gauss-Newton approximation, i.e., neglect-

ing the terms that contain θ̂
T
u(xn), we arrive (after some

calculations) at

u(xn)[∂mn,iu(xn)]Tθ̂

θ̂
T
Bn θ̂

+
[

N
∑

n=1

An

θ̂
T
Bn θ̂

]

∂mn,i θ̂ = 0.

This together with the observation that the scalar

[∂mn,iu(xn)]Tθ̂ can also be written as θ̂
T
∂mn,iu(xn) leads to

[
N
∑

n=1

An

θ̂
T
Bn θ̂

]

∂mn,i θ̂ = −u(xn)[∂mn,iu(xn)]Tθ̂

θ̂
T
Bn θ̂

= −u(xn)θ̂
T
∂mn,iu(xn)

θ̂
T
Bn θ̂

.

Consequently,
[

N
∑

n=1

An

θ̂
T
Bn θ̂

]

∂xn θ̂ = −u(xn)θ̂
T
∂xnu(xn)

θ̂
T
Bn θ̂

and further, recalling the definitions of An and Bn given in
(2.5),
[

N
∑

n=1

An

θ̂
T
Bn θ̂

]

∂xn θ̂Λxn (∂xn θ̂)T

[
N
∑

n=1

An

θ̂
T
Bn θ̂

]

= u(xn)θ̂
T
∂xnu(xn)Λxn [∂xnu(xn)]Tθ̂u(xn)T

(θ̂
T
Bn θ̂)2

= u(xn)u(xn)T

θ̂
T
Bn θ̂

= An

θ̂
T
Bn θ̂

.

Now
[

N
∑

n=1

An

θ̂
T
Bn θ̂

][
N
∑

n=1

∂xn θ̂Λxn (∂xn θ̂)T

][
N
∑

n=1

An

θ̂
T
Bn θ̂

]

=
N
∑

n=1

An

θ̂
T
Bn θ̂

.

By (5.1) and (13.8), the last equality becomes

M
θ̂
Λ

θ̂
M

θ̂
= M

θ̂
. (13.10)

At this stage, one might be tempted to conclude that Λ
θ̂

= M−1
θ̂

, but this would contravene the fact that Λ
θ̂
is sin-

gular. In order to exploit (13.10) properly as an approximate
equality, we first note that, in view of (13.9) and the fact that
P⊥

θ̂
is idempotent, P⊥

θ̂
= (P⊥

θ̂
)2, we have

P⊥
θ̂
Λ

θ̂
P⊥

θ̂
= Λ

θ̂
, (13.11)

so (13.10) can be rewritten as

M
θ̂
P⊥

θ̂
Λ

θ̂
P⊥

θ̂
M

θ̂
= M

θ̂
.
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Pre- and post-multiplying the last equation by P⊥
θ̂
and letting

M⊥
θ̂

= P⊥
θ̂
M

θ̂
P⊥

θ̂

now leads to

M⊥
θ̂
Λ

θ̂
M⊥

θ̂
= M⊥

θ̂
. (13.12)

In turn, pre- and post-multiplying (13.12) by (M⊥
θ̂
)+ yields

(M⊥
θ̂
)+M⊥

θ̂
Λ

θ̂
M⊥

θ̂
(M⊥

θ̂
)+ = (M⊥

θ̂
)+M⊥

θ̂
(M⊥

θ̂
)+. (13.13)

The matrix M⊥
θ̂
is symmetric and its null space is spanned

by θ̂ , so

M⊥
θ̂
(M⊥

θ̂
)+ = (M⊥

θ̂
)+M⊥

θ̂
= P⊥

θ̂

(cf. [4, Cor. 3.5]). We also have (M⊥
θ̂
)+M⊥

θ̂
(M⊥

θ̂
)+ =

(M⊥
θ̂
)+ by virtue of one of the four defining properties of

the pseudo-inverse [4, Thm. 3.9]. Therefore (13.13) can be
restated as

P⊥
θ̂
Λ

θ̂
P⊥

θ̂
= (M⊥

θ̂
)+,

which, on account of (13.11), implies

Λ
θ̂

= (M⊥
θ̂
)+. (13.14)

We now deduce our final formula for Λ
θ̂
, namely

Λ
θ̂

= P⊥
θ̂
(M

θ̂
)+5 P

⊥
θ̂
, (13.15)

which is nothing else but Eq. (5.2) transcribed to the present
notation. First we note that as, by (13.7), θ̂ spans the null
space of X

θ̂
, X

θ̂
has rank 5. Next we observe that in the

Gauss–Newton approximationX
θ̂
is equal toM

θ̂
, so, having

rank 5,X
θ̂
is also approximately equal to (M

θ̂
)5. This in turn

implies that, approximately,

(M
θ̂
)+5 = X+

θ̂
,

given that the function A �→ A+ is continuous when consid-
ered on sets of matrices of equal rank [20,36,45,52], The last
equality together with P⊥

θ̂
X+

θ̂
P⊥

θ̂
= X+

θ̂
, which immediately

follows from the facts that X
θ̂
is symmetric and that θ̂ spans

the null space of X
θ̂
, implies

P⊥
θ̂
(M

θ̂
)+5 P

⊥
θ̂

= X+
θ̂
. (13.16)

As M
θ̂
is approximately equal to X

θ̂
, it is clear that M⊥

θ̂

(= P⊥
θ̂
M

θ̂
P⊥

θ̂
) is approximately equal to P⊥

θ̂
X

θ̂
P⊥

θ̂
= X

θ̂
.

BothM⊥
θ̂
and X

θ̂
have rank 5, so, as they are approximately

equal, their pseudo-inverses are also approximately equal,

(M⊥
θ̂
)+ = X+

θ̂
,

by the aforementioned continuity property of the pseudo-
inverse. Combining this last equation with (13.16) yields

(M⊥
θ̂
)+ = P⊥

θ̂
(M

θ̂
)+5 P

⊥
θ̂
,

and this together (13.14) establishes (13.15).
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