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Abstract In recent years, �1-regularized least squares have
become a popular approach to image deblurring due to the
edge-preserving property of the �1-norm. In this paper, we
consider the nonnegatively constrained quadratic program
reformulation of the �1-regularized least squares problem
and we propose to solve it by an efficient modified New-
ton projection method only requiring matrix–vector oper-
ations. This approach favors nonnegative solutions without
explicitly imposing any constraints in the �1-regularized least
squares problem. Experimental results on image deblurring
test problems indicate that the developed approach performs
well in comparison with state-of-the-art methods.

Keywords Image restoration · �1 norm based
regularization · Convex optimization · Newton projection
methods · Inverse Problems

1 Introduction

Image deblurring is an important inverse problem arising in
many image processing applications in which an unknown
image x ∈ R

n has to be estimated from noisy observations
b ∈ R

m defined by

b = Ax + η (1)

where η is the unknown white Gaussian noise vector and
A ∈ R

m×n is the discretized linear blur operator. As usual,
images are assumed to be represented as vectors, by storing
the pixel values in some (e.g. lexicographical) order.
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Least squares optimization with �1-regularization is now
the state-of-the-art approach to image restoration. In fact, in
imaging problems, the presence of edges often causes the
prior distribution of the unknown image x to be not Gaussian
and leads to outliers in the regularization term. In this context,
the �1-norm, which is less sensitive to outliers, is advanta-
geous compared to the �2-norm employed in Tikhonov-like
regularization, and can be effectively used to promote sparse
solutions [11,43,49,52]. For these reason, the �1-regularized
least squares problem

min
x

φ(x) = 1

2
‖Ax − b‖2

2 + λ‖x‖1, λ > 0 (2)

has recently attracted considerable attention both in the con-
text of imaging inverse problems [1,26,42,58] and of com-
pressed sensing [14–19,21,50]. (For simplicity of notation,
hereafter ‖ · ‖ will denote the �2-norm ‖ · ‖2).

In this work, we focus on �1-regularized least squares
problems (2) arising in image deblurring applications where
the observation operator A describes spatially invariant blur
[6]. Under periodic boundary conditions, A is a block circu-
lant with circulant blocks (BCCB) matrix and matrix–vector
products can be efficiently performed via the FFT [33]. We
suppose that m ≥ n and that AH A has full rank. This assump-
tion is satisfied in a variety of practical applications and is
frequently used in image deblurring and in the literature
of imaging inverse problems (see, for example, [4,23,27–
29,33,34,58]).

A variety of algorithms have been proposed in the litera-
ture for the solution of (2), especially in compressed sens-
ing. The state-of-the-art methods for (2) are probably gradi-
ent descent-type methods since their computational cost is
mainly due to matrix–vector products with A and AH . This
class of methods includes the following popular methods:
IST [20], TwIST [10], SparSA [56], FISTA [4], NESTA [5]
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and AdaptiveSPARSA [30]. SPGL1 [53] and GPSS [42] are
gradient projection-type methods for the equivalent Lasso
formulation of (2).

Fixed-point continuation methods [31,32], as well as
methods based on Bregman iterations [25,57] and variable
splitting, as SALSA [1] and C-SALSA [2], have also been
recently proposed.

The dual formulation of (2) has been considered in the
literature; in [27] and [34], a Newton projection method and
an active-set-type method are respectively proposed to solve
the dual problem.

A different approach to handle the nondifferentiability of
the objective function of (2) consists in reformulating the
nondifferentiable unconstrained problem (2) as a constrained
differentiable one. The disadvantage of this strategy is that,
usually, the number of variable is doubled. The interior point
method of [35] solves a quadratic programming formulations
of (2) obtained by introducing an auxiliary variable; it has
been shown to be efficient for large scale problems since a
preconditioned gradient method is used to compute the search
direction.

An equivalent formulation of (2) as a quadratic program-
ming problem with nonnegativity constraints can be done
by splitting x into two nonnegative variables representing
its positive and negative parts. Several methods have been
proposed for the solution of the resulting bound constrained
quadratic program as gradient projection [22], interior point
[23] and Newton projection [45–47] methods.

The Newton projection methods (also referred to as Two-
Metric projection methods) can be interpreted as scaled gra-
dient projection methods where the scaling matrix is the
inverse of a modified Hessian [8,9,24]. In particular, only
the variables in the working set are scaled by the inverse
of the corresponding submatrix of the Hessian, where the
working set is defined as the complementary of the set of the
null variables with positive gradient. Under proper hypoth-
esis on the scaling matrix, the global convergence and local
superlinear convergence of Newton projection methods con
be proved [8,24].

In the literature, Newton-like projection methods have
been recently developed which are tailor-made for image
restoration problems formulated as �2-regularized optimiza-
tion problems under nonnegativity constraints, both in the
case of Gaussian and Poisson noise [38–40]. In these meth-
ods, the Hessian matrix is suitably approximated so that its
inversion can be performed in the Fourier space at a very low
computational cost. Then, the variables in the working set are
scaled by the corresponding submatrix of the inverse approxi-
mated Hessian. It is worth mentioning that, using this scaling,
the superlinear convergence rate of Newton-based methods
is lost. However, this Newton-like projection methods have
been shown to perform well compared to accelerated gra-

dient projection algorithms for �2-regularized least squares
problems [12,37].

This work aims at developing a new efficient and effec-
tive �1-based method for the restoration of images corrupted
by blur and Gaussian noise. In particular, we consider the
analysis formulation of the �1-regularized least squares prob-
lem for the restoration of images which are quite sparse in
the pixel representation as, for example, medical images and
astronomical images. This approach has been introduced in
[23,36] and recently in [58]. Observe that in astronomical
imaging, the �1-norm penalty is used as a flux conserva-
tion constraint. Therefore, the contribution of this paper is
twofold. First, we show, by numerical evidence, that the �1-
regularized least squares problem can be effectively used as
a mathematical model of the problem of restoring images
degraded by blur and Gaussian noise. Second, we develop
an efficient Newton-like projection method for its solution.
In the proposed approach, problem (2) is firstly formu-
lated as a nonnegatively constrained quadratic program by
splitting the variable x into the positive and negative parts.
Then, the quadratic program is solved by a special pur-
pose Newton-like projection method where a fair regular-
ized approximation to the Hessian matrix is proposed so
that products of its inverse and vectors can be computed
at low computational cost. As a result, the only operations
required for the search direction computation are matrix–
vector products involving A and AH . Since the developed
method uses a fair modification to the Hessian matrix, in the
sequel, it will be referred to as Modified Newton Projection
(MNP) method. Moreover, the regularization strategy, used
to improve the conditioning of the Hessian matrix, penal-
izes negative entries in x so that nonnegative solutions are
favored. The convergence of the MNP method is proved even
if MNP slows the convergence rate of Newton-type methods.
Even if the size of the problem is doubled, the low com-
putational cost per iteration and less iterative steps make
MNP quite efficient. It is worth mentioning that a similar
approach is described in [46]; however, the projection L1
method of [46] uses, as the classical Two-Metric projection
methods, a suitable sub-matrix of the Hessian for scaling the
gradient.

The performance of MNP is evaluated on some image
restoration problems and is compared with that of the state-
of-the-art methods. The results of the comparative study
show that MNP is competitive and in some cases is also
able to outperform the state-of-the-art methods in terms of
computational complexity and achieved accuracy.

The paper is organized as follows. In Sect. 2, the MNP
method is presented and its convergence is analyzed. In this
section, the computation of the search direction is also dis-
cussed. In Sect. 3, the numerical results are presented. Con-
clusions are given in Sect. 4.

123



J Math Imaging Vis (2015) 51:195–208 197

2 The Modified Newton Projection Method

Before introducing our MNP method, we need to reformulate
the �1-regularized least squares problem (2) as a nonnega-
tively constrained quadratic program (NCQP). This strategy
for dealing with the nondifferentiability of the �1-norm is
quite classic in the literature and has been previously adopted
by several authors [13,22,23,45,46].

2.1 Nonnegatively Constrained Quadratic Program
Formulation

If we split x into its positive and negative parts, that is

x = u − v

where

u = max(x, 0), v = max(−x, 0),

then, we obtain the following nonnegatively constrained
quadratic program formulation of the original �1-regularized
least squares problem (2):

min(u,v) F(u, v) = 1
2‖A(u − v) − b‖2 + λ1H u + λ1H v

s.t. u ≥ 0

v ≥ 0 (3)

where 1 denotes the n-dimensional column vector of ones.
In [13,22,44] it is shown that problems (2) and (3) share the
same solutions and that at the solution of (3) either ui or vi

or both are equal to zero.
The gradient of F(u, v) is defined by

∇(u,v)F(u, v) =
[

AH A(u − v) − AH b + λ1
−AH A(u − v) + AH b + λ1

]
. (4)

Henceforth, we will denote by y and g the 2n-dimensional
vectors

y =
[

u
v

]
, g =

[
gu

gv

]

where gu and gv are respectively the partial derivatives of F
with respect to u and v.

Observe that, even if by reformulating (2) as a NCQP
we have doubled the problem size, the computation of the
objective function and its gradient values indeed requires
only one multiplication by A and one by AH .

2.2 Hessian Approximation

The MNP method is basically a Newton-based method where
the search direction computation requires the inversion of the
Hessian matrix. Unfortunately, the Hessian H of F(u, v)

H =
[

AH A −AH A
−AH A AH A

]
(5)

is a positive semidefinite matrix. The idea underlying the
proposed approach is to substitute the Hessian with a non-
singular approximation. In MNP, we modify H by adding a
small perturbation to its negative part. More precisely, we
use the following Hessian approximation:

Hτ = H +
[

0 0
0 τ I

]
=

[
AH A −AH A

−AH A AH A + τ I

]
(6)

where τ is a positive parameter and I and 0 are respectively
the identity and zero matrix of size n. There are several rea-
sons for this choice of the Hessian modification. Firstly, an
explicit formula for the inverse of Hτ can be derived, sec-
ondly the search direction is computable at moderate cost and
finally, negative part of images are penalized. Naturally, other
nonsingular Hessian modifications are possible. Adding the
positive constant τ to all elements of the diagonal H results
in an Hessian modification such that the multiplication of its
inverse by a vector requires more computational cost. More-
over, our numerical experiments indicate that this Hessian
approximation tends to be more sensitive to the choice of the
parameter τ . On the other hand, adding a small perturbation
to the positive part of H would result in a penalization of the
positive part of images and in less accurate reconstructions.

Proposition 2.1 Assume that AH A is nonsingular. Then, Hτ

is nonsingular and its inverse is

Mτ = 1

τ

[
τ(AH A)−1 + I I

I I

]
. (7)

Proof We prove that Hτ Mτ = Mτ Hτ = I2n where I2n is
the identity matrix of size 2n.

We have

Hτ Mτ = 1

τ

[
AH A −AH A

−AH A AH A + τ I

] [
τ(AH A)−1 + I I

I I

]

= 1

τ

[
τ I + AH A − AH A AH A−AH A

−τ I−AH A+AH A+τ I −AH A+AH A+τ I

]

=
[

I 0
0 I

]
.

Similarly, we have Mτ Hτ = I2n and this concludes the proof.

Proposition 2.2 The inverse Hessian approximation Mτ is
a symmetric positive definite matrix.

Proof Let z, w ∈ R
n . We have

[
zH wH

] 1

τ

[
τ(AH A)−1 + I I

I I

] [
z
w

]

= zH (AH A)−1z + 1

τ
‖z + w‖2 ≥ 0. (8)

Equality holds in (8) if and only if z = 0 and z + w = 0, i.e.
if and only if z = 0 and w = 0. This concludes the proof.
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Remark 2.1 The developed strategy for approximating the
Hessian matrix H is closely related to the method of Lavren-
tiev regularization [6,41,48,51]. In fact, in Lavretiev regular-
ization, a regularized solution of a linear ill-posed problem
with positive semidefinite linear operator K is obtained as the
solution of a slightly modified equation whose linear oper-
ator is K + τ I. Therefore, the Hessian approximation Hτ

is indeed a Lavretiev-type regularized approximation to H
where only the last n variables are penalized. In this way,
large values of the last n components of the search direction
are penalized.

2.3 Algorithm

Firstly, let us introduce the basic notation that enables us to
formalize the description of the MNP method. In the sequel,
A(y) will indicate the set of indices [8,9,55]:

A(y) =
{

i | 0 ≤ yi ≤ ε and gi > 0
}
,

ε = min{ε, ‖y − [y − g]+‖}
where ε is a small positive parameter and [·]+ denotes the
projection on the positive orthant.

Finally, let E and F denote the diagonal matrices [55] such
that

{E(y)}i i =
{

1, i /∈ A(y);
0, i ∈ A(y);

F(y) = I2n − E(y).

Given a feasible initial iterate y(0) ∈ R
2n , the MNP

method is defined by the general iteration

y(k+1) = [y(k) − α(k)p(k)]+, p(k) = S(k)g(k) (9)

where

S(k) = E(y(k))Mτ E(y(k)) + F(y(k)) (10)

and the step-length α(k) is determined by the Armijo rule
along the projection arc [8,9]. That is, α(k) is the first number
of the sequence {2−m}m∈N such that

F(
y(k)

) − F(
y(k)(2−m)

)

≥ β

⎛
⎝2−m

∑
i /∈A(k)

g(k)
i p(k)

i +
∑

i∈A(k)

g(k)
i

(
y(k)

i −yk
i (2−m)

)⎞
⎠

(11)

where y(k)(2−m) = [y(k)−2−mp(k)]+, β ∈ (0, 1
2 ). For easier

notation, in the following, E(k), F(k) and A(k) will denote
respectively the diagonal matrices E(y(k)) and F(y(k)) and
the index set A(y(k)).

Remark 2.2 In the Two-Metric projection method originally
proposed by Bertsekas [8,9,24], the scaling matrix is

S(k) =
(

E(k)HE(k) + F(k)
)−1

. (12)

Using this scaling, the standard Newton-like projection meth-
ods attain the superlinear convergence rate of Newton-
like methods. However, the inversion of a submatrix of H,
required in (12), is often impracticable in image deblurring
applications. Therefor, in practice, a conjugate gradient ver-
sion of the Newton-like projection method has to be used
where the CG iterations are terminated when the relative
residual becomes smaller than a given tolerance. The result-
ing approximate Newton-CG projection method may slow
the convergence rate.

On the other hand, the scaling matrix (10) involves the
inverse of the whole approximated Hessian matrix Hτ for
which an explicit formula is given in Proposition 2.1. As a
result, the search direction of MNP can be computed very
quickly.
However, the scaling (10) may significantly slow the conver-
gence rate and MNP may have worse convergence properties.

2.4 Convergence Analysis

As proved in [8,24], the convergence of Newton-like pro-
jection methods only requires the scaling matrices S(k) to be
positive definite matrices with uniformly bounded eigenval-
ues. In particular, the global convergence property of these
methods can be proved under the general following assump-
tions [8].

A1 The gradient ∇(u,v)F is Lipschitz continuous on each
bounded set of R

2n .
A2 There exist positive scalars c1 and c2 such that

c1‖y‖2 ≤ yH S(k)y ≤ c2‖y‖2, ∀y ∈ R
2n, k = 0, 1, . . .

The key convergence result is provided in Proposition 2 of
[7] which is restated here for the shake of completeness.

Proposition 2.3 [7, Proposition 2] Let {y(k)} be a sequence
generated by iteration (9) where S(k) is a positive definite
symmetric matrix which is diagonal with respect to A(k) and
αk is computed by the Armijo rule along the projection arc.
Under assumptions A1 and A2 above, every limit point of a
sequence {y(k)} is a critical point with respect to problem (3).

Since the objective F of (3) is twice continuously differ-
entiable, it satisfies assumption A1.

The inverse Hessian approximation Mτ is a symmetric
positive definite matrix (Proposition 2.2) and hence, the scal-
ing matrix S(k) defined by (10) is a positive definite symmet-
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ric matrix which is diagonal with respect to A(k). Therefore,
the global convergence of the MNP method is guaranteed if
S(k) verifies assumption A2.

Proposition 2.4 Given a positive parameter τ > 0, there
exist two positive scalars cτ

1 and cτ
2 such that

cτ
1‖y‖2 ≤ yH S(k)y ≤ cτ

2‖y‖2, ∀y ∈ R
2n, k = 0, 1, . . .

Proof Since Mτ is positive definite, then

σ τ
1 ‖y‖2 ≤ yH Mτ y ≤ σ τ

2n‖y‖2, ∀y ∈ R
2n . (13)

where σ τ
1 and σ τ

2n are the largest and smallest eigenvalue of
Mτ , respectively. We have

yH S(k)y = yH (
E(k)Mτ E(k) + F(k)

)
y = (

E(k)y
)H Mτ

(
E(k)y

) + yH F(k)y.

From (13) it follows that

σ τ
1 ‖E(k)y‖2 + yH F(k)y ≤ (

E(k)y
)H M

(
E(k)y

) + yH F(k)y

≤ σ τ
2n‖E(k)y‖2 + yH F(k)y.

Moreover we have

yH F(k)y =
∑

i∈A(k)

y2
i , ‖E(k)y‖2 =

∑
i /∈A(k)

y2
i .

Hence, we obtain

σ τ
1

∑
i /∈A(k)

y2
i +

∑
i∈A(k)

y2
i ≤yH S(k)y≤σ τ

2n

∑
i /∈A(k)

y2
i +

∑
i∈A(k)

y2
i

and

min{σ τ
1 , 1}‖y‖2 ≤ yH S(k)y ≤ max{σ τ

2n, 1}‖y‖2.

The thesis immediately follows by setting

cτ
1 = min{σ τ

1 , 1} cτ
2 = max{σ τ

2n, 1}.
Propositions 2.3 and 2.4 ensure the global convergence of

the MNP method.

2.5 Implementation of the Search Direction Computation

The computation of the search direction p(k) requires the

multiplication of a vector by Mτ . Let

[
z
w

]
∈ R

2n be a given

vector, then it immediately follows that

Mτ

[
z
w

]
= 1

τ

[
τ(AH A)−1z + z + w

z + w

]

=
[
(AH A)−1z + (z + w)/τ

(z + w)/τ

]
. (14)

In many image restoration applications, the blurring matrix
A is severely ill-conditioned and computing (AH A)−1z
requires a regularization strategy. Therefore, in our imple-
mentation, a Tikhonov-like technique is employed in the

search direction computation by approximating the matrix–
vector product (14) with

Mτ

[
z
w

]
≈

[
(AH A + γ I)−1z + (z + w)/τ

(z + w)/τ

]
(15)

where γ is a positive parameter. The inversion of AH

A+γ I can be efficiently performed in the Fourier space with
computational complexity of two Fast Fourier Transforms as
follows. In fact, assuming periodic boundary conditions, A
can be factorized as

A = U∗DU

where U is the two dimensional unitary Discrete Fourier
Transform (DFT) matrix and D is the diagonal matrix con-
taining the eigenvalues of A. Thus

(AH A + γ I)−1 = U∗(|D|2 + γ I)−1U.

The products involving U and U∗ can be performed by using
the FFT algorithm at the cost of O(n log2 n) operations while
the inversion of the diagonal matrix (|D|2 + γ I) has the cost
O(n).

3 Numerical Results

In this section, we present the numerical results of several
image restoration test problems. The numerical experiments
aim at illustrating the performance of MNP compared with
several state-of-the-art methods as SALSA [1], SPARSA
[56], FISTA [4], NESTA [5], CGIST [26] and the Split Breg-
man method [25,57]. In our comparative study, we also con-
sider first and second-order methods solving, as MNP, the
quadratic program (3) such as the nonmonotonic version of
GPSR using the Barzilai Borwein technique for the step-
length selection [22], the original Two-Metric Projection
(TMP) method of Gafni and Bertsekas [8,24,45] employing
the scaling (12) and a modified Newton projection method
obtained by regularizing the full diagonal of the Hessian
matrix (5). This last method, which will be indicated as
MNP2, requires the inversion of the Hessian approximation:

Hτ =
[

AH A + τ I −AH A
−AH A AH A + τ I

]
.

It can be prove (the proof is similar to that of Proposition
2.1) that the inverse of Hτ is defined as

Mτ = 1

τ

[
AH A + τ I AH A

AH A AH A + τ I

]
[
(2AH A + τ I)−1 0

0 (2AH A + τ I)−1

]
. (16)
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Formula (16) indicates that, in MNP2, the computation of
the search direction requires more computational effort than
in MNP.

Finally, MNP has also been compared with the OWLQN
method of Andrew and Gao [3] which is probably one of
the most effective method proposed for general large-scale
�1-regularized learning.

3.1 Overall Assessment of the Considered Methods

The Matlab source code of the considered methods, when
made publicly available by the authors, has been used in the
numerical experiments. The OWLQN method is coded, by
the authors, in C; a Matlab version, following the instruction
provided in [3], has been implemented.

In TMP, the linear system for the search direction com-
putation has been solved by the Conjugate Gradient method.
The relative residual tolerance has been fixed at 0.01 and a
maximum number of 100 iterations has been allowed. We
remark that lower values for the CG relative tolerance pro-
duce restorations of worse quality since the Hessian matrix
is ill-conditioned.

The numerical experiments have been executed on a Sun
Fire V40z server consisting of four 2.4 GHz AMD Opteron
850 processors with 16 GB RAM using Matlab 7.10 (Release
R2010a).

For all the considered methods, the initial iterate x(0) has
been chosen to be the zero image whose pixel values are all
equal to zero. The regularization parameter λ of (2) has been
heuristically chosen.

MNP depends on the τ and γ parameters. After a wide
experimentation, we heuristically found that good values for
these parameters are

τ = 50λ, γ = λ. (17)

These values have been used in all the presented numeri-
cal experiments. It is worth remarking that the values (17)
for τ and γ are not optimal for each experiments and that
the numerical results could be further improved. However,
with this parameter setting, the MNP algorithm only depends
on the regularization parameter λ. We also observe that the
SALSA method depends on a penalty parameter μ [1] and
that the Split Bregman method depends on a “splitting” reg-
ularization coefficient ν [25,57]. In all the presented exper-
iments, the values of these parameters have been handtuned
for the best mean squared error reduction. The default para-
meters of the other methods, suggested by the authors have
been chosen.

The termination criterion of all the considered methods is
based on the relative change in the objective function at the
last step. In particular, the methods iteration is terminated
when

Fig. 1 Experiment 1: deblurring of the satellite image. Left original
image; right observed image (NL = 5 × 10−3)

|φ(x(k+1)) − φ(x(k))| ≤ tolφ φ
(
x(k+1)

)
(18)

where tolφ is a small positive parameter. The selection of a
fair stopping criterium in image deblurring application is a
critical issue. In our numerical experiments, this criterium,
also used in [5,56] appears to provide sufficiently accu-
rate solutions while avoiding excessive computation costs.
In general, criterion (18) may not always reliably indicate
progress towards optimality, although we did not observe this
in our experiments. In such cases, a more appropriate stop-
ping criterion would be based on the norm of the projected
gradient or on the duality gap.

A maximum number of 500 iterations has been allowed
for each method.

The quality of the restorations provided by the compared
methods has been measured by using the Peak Signal-to-
Noise Ratio (PSNR) values.

All pixels of the original images described in the following
experiments have been first scaled into the range between 0
and 1.

3.2 Experiment 1: The Satellite Image

In the first experiment, the famous 256 × 256 satellite image
has been considered. The satellite image is a good test image
for �1-based image restoration because it has many pixels
with value equal to zero. The observed image of Fig. 1 has
been generated by convolving the original image, also shown
in Fig. 1, with a Gaussian PSF with variance equal to 2,
obtained with the code psfGauss from [33], and then by
adding Gaussian noise with noise level equal to 5 · 10−3.
(The noise level NL is defined as NL := ‖η‖/‖Axoriginal‖
where xoriginal is the original image.) In Fig. 1 and follow-
ing, the satellite image intensities are displayed in “negative
gray-scale”.

For this test problem, the μ and ν parameters of the
SALSA and Split Bregman methods have been set to μ = 5λ

and ν = 0.025λ, respectively.
Table 1 reports the PSNR values, the objective values, the

CPU times in seconds, the number of performed iterations
and the percentage of negative pixel values in the restored
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Table 1 Experiment 1:
numerical results Method tolφ PSNR Obj Time It Neg %

MNP 10−3 2.92e+01 3.54e+01 0.42 10 0.16
10−5 2.94e+01 3.53e+01 0.80 17 0.00

SALSA 10−3 2.83e+01 3.51e+01 0.09 6 42.03

10−5 2.92e+01 3.52e+01 0.63 35 39.19

GPSR 10−3 2.80e+01 3.54e+01 0.34 16 0.00

10−5 2.89e+01 3.53e+01 0.78 37 0.00

Bregman 10−3 2.85e+01 4.09e+01 0.87 48 44.60

10−5 2.83e+01 3.90e+01 3.46 200 44.72

CGIST 10−3 2.72e+01 3.56e+01 0.43 15 0.00

10−5 2.91e+01 3.53e+01 3.44 114 0.00

SPARSA 10−3 2.70e+01 3.57e+01 0.24 10 0.00

10−5 2.93e+01 3.53e+01 0.85 47 0.00

FISTA 10−3 2.77e+01 3.54e+01 0.37 16 0.00

10−5 2.92e+01 3.53e+01 1.67 75 0.00

NESTA 10−3 2.70e+01 3.70e+01 4.21 70 44.74

10−5 2.79e+01 3.77e+01 38.94 933 44.67

MNP2 10−3 2.69e+01 3.57e+01 0.80 20 0.02

10−5 2.88e+01 3.53e+01 8.41 150 0.00

TMP 10−3 2.83e+01 3.54e+01 2.61 7 0.00

10−5 2.88e+01 3.53e+01 17.83 75 0.00

OWLQN 10−3 2.78e+01 3.54e+01 0.39 10 0.00

10−5 2.85e+01 3.53e+01 3.60 65 0.00
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Fig. 2 Experiment 1: PSNR values versus time (in seconds) obtained at tolφ = 10−3 (left) and tolφ = 10−5 (right)

images. All the results are averaged over ten runs of each
method. The numerical results given in Table 1 have been
obtained by using the stopping tolerance values tolφ = 10−3

and tolφ = 10−5. Smaller values of tolφ do not improve
the visual quality of the restored images even if they produce
more accurate solutions to the optimization problem (2). The
information in Table 1 is summarized in Fig. 2 where the
PSNR values versus time are plotted for all the considered
methods.

The results in Table 1 and Fig. 2 show that MNP is able
to provide good quality restorations at low computational
effort. They also indicate that the inversion of the modi-
fied Hessian adopted in MNP2 requires more computational
effort.

In Fig. 3, the performance of MNP is compared to the
performance of the first-order and second order methods
(NESTA has been omitted from these comparisons because
of its high computational time, see Table 1). Since PSNR is
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Fig. 3 Experiment 1: comparison between the considered methods. Top line relative error histories versus time; bottom line objective function
decrease versus time (in seconds)
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Fig. 4 Experiment 1: comparison between MNP and the second-order
methods (MNP2, TMP, OWLQN): gradient norm reduction versus time
(in seconds)

inversely proportionally to the Mean Squared Error (MSE),
Fig. 3 illustrates, in a semi-logarithmic scale, the MSE behav-
ior and the decreasing of the objective function versus time.
For the sake of readability, all the methods are not repre-
sented in the same picture. The convergence rates of the
considered second-order methods (MNP, MNP2, TMP and
OWLQN) have also been compared. For these methods, Fig.
4 shows, in a semi-logarithmic scale, the behavior of the
gradient norm values versus time; from the graphs it is evi-
dent that MNP, MNP2 and TMP decrease the gradient norm
slower than OWLQN. As expected, the scaling of the gradi-
ent direction employed by MNP and MNP2 reduces the local
convergence rate; moreover, in TMP, the use of an iterative
solver for the search direction computation leads to slower
convergence rate.

Figure 5 compares the image obtained by MNP at tolφ =
10−3 with those provided by SALSA, Split Bregman, CGIST,
MNP2 and OWLQN at tolφ = 10−5. (For these methods, the
images obtained at tolφ = 10−3 are not shown since their
visual quality is clearly poor.) In the Bregman image, for a
better visualization, the pixels with negative values image has
been set to zero. The images restored by SPARSA and FISTA
are not shown because they are practically indistinguishable
from those obtained by SALSA and MNP. The visual quality
of the GPSR, NESTA and TMP images is inferior and there-
fore these images are not displayed (see also their PSNR
values in Table 1). Observe that the MNP image is visually
comparable to the SALSA image while the CGIST image has
an inferior visual quality even if its PSNR value is compa-
rable to that of SALSA. Moreover, the MNP2 and OWLQN
images are not comparable, in terms of visual quality, to the
MNP image; in particular, the MNP2 image seems to be too
smooth.

The restored images obtained by SALSA, NESTA and the
Split Bregman methods have pixels with negative entries.
They are displayed in Fig. 6 where the black pixels corre-
spond to nonnegative pixels values of the reconstructions.

Finally, in order to assess the performance of the image
restoration criterium (2), we have compared the �1-norm reg-
ularizer with the �2-norm and the Total Variation (TV) reg-
ularizers, which are widely-used in image restoration. The
Lagged Diffusivity Fixed Point method [54] has been con-
sidered for the solution of the TV-regularized least squares
problem. The �2-regularized least squares problem has been
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Fig. 5 Experiment 1:
restorations provided by some
of the considered methods with
tolφ = 10−5. For MNP, the
restoration at tolφ = 10−3 is
depicted

MNP (tol = 10−3 namgerBASLAS)

NQLWO2PNMTSIGC

SALSA Bregman NESTA

Fig. 6 Experiment 1: pixels with negative entries. The black pixels cor-
respond to pixels with nonnegative values. The white pixels correspond
to pixels with negative values

Table 2 Experiment 1: comparison between �1-norm, �2-norm and TV
regularizers

Regularization PSNR Neg %

�1 2.94e+01 0
�2 2.75e+01 44

TV 2.96e+01 45

solved by inverting, in the Fourier space, the linear system
of its first order conditions. The MNP method is used for
the solution of (2). Table 2 reports the PSNR values and the
percentage of negative pixels; Fig. 7 displays the restored
images. The superiority of the �1-norm regularized image
is evident both in terms of PSNR values and visual quality
improvement. In fact, edges are preserved by the restoration
model (2) without any staircasing or blurring effects which
are respectively evident in the TV-regularized and �2-norm
regularized images.

3.3 Experiment 2: The Flintstones Image

In the second experiment, the 512 × 512 Flintstones image
(Fig. 8) has been used. This image is a good test image since

Fig. 7 Experiment 1: comparison between �1-norm, �2-norm and TV
regularizers

has a nice mixture of detail and flat regions. The original
Flintstones image has been degraded by two blurring oper-
ators, shown in Fig. 8, and by adding varying amounts of
Gaussian noise.

In this experiment, MNP has been compared to SALSA,
Split Bregman, FISTA, MNP2 and OWLQN. The reasons
why we limit our comparative study to these methods are
the following. From experiment 1, it is evident that SALSA
and FISTA are able to achieve good quality results in lit-
tle time. Moreover, Split Bregman and OWLQN have been
considered because they are well-known methods for gen-
eral �1 minimization not only proposed for image restoration
applications. Finally, MNP2 has been considered because
closely-related to MNP.

We have fixed the values μ = 2.5λ and ν = λ for the
SALSA and Split Bregman parameter. The numerical results
are summarized in Table 3 where the level of the added noise
(first column), the PSNR values, the objective values and the
CPU times in seconds are reported for each blurring operator.
The reported numerical values are the average over 10 run
of each experiment and have been obtained using the toler-
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Fig. 8 Experiment 2: original
Flintstones image and blur
operators

Table 3 Experiment 2: numerical results

NL Method Blur h1 Blur h2

PSNR Obj Time PSNR Obj Time

0.001 MNP 3.40e+01 1.39e+03 1.67 2.49e+01 4.21e+02 1.08
SALSA 3.25e+01 1.39e+03 0.76 2.49e+01 4.19e+02 0.51

BREGMAN 3.72e+01 1.40e+03 0.20 2.73e+01 4.21e+02 0.24

FISTA 2.65e+01 1.39e+03 1.47 2.14e+01 4.22e+02 1.78

MNP2 2.45e+01 1.40e+03 3.42 2.25e+01 4.21e+02 7.41

OWLQN 2.83e+01 1.39e+03 1.42 2.18e+01 4.22e+02 1.61

0.0025 MNP 3.16e+01 2.08e+03 0.96 2.42e+01 6.99e+02 1.36

SALSA 2.91e+01 2.06e+03 0.39 2.41e+01 6.98e+02 0.51

BREGMAN 3.16e+01 2.10e+03 0.18 2.45e+01 7.03e+02 0.24

FISTA 2.57e+01 2.08e+03 1.22 2.10e+01 7.02e+02 1.54

MNP2 2.34e+01 2.09e+03 3.31 2.06e+01 7.05e+02 3.04

OWLQN 2.56e+01 2.08e+03 0.98 2.11e+01 7.03e+02 1.09

0.005 MNP 2.94e+01 2.42e+03 0.77 2.38e+01 9.78e+02 0.92

SALSA 2.83e+01 2.40e+03 0.40 2.35e+01 9.76e+02 0.51

BREGMAN 2.87e+01 2.46e+03 0.27 2.31e+01 9.85e+02 0.32

FISTA 2.56e+01 2.42e+03 1.32 2.07e+01 9.82e+02 1.34

MNP2 2.31e+01 2.44e+03 3.67 2.00e+01 9.86e+02 2.75

OWLQN 2.55e+01 2.42e+03 0.97 2.11e+01 9.82e+02 1.11

0.0075 MNP 2.84e+01 2.48e+03 0.65 2.33e+01 1.12e+03 1.18

SALSA 2.84e+01 2.48e+03 0.59 2.31e+01 1.12e+03 0.51

BREGMAN 2.72e+01 2.53e+03 0.32 2.23e+01 1.13e+03 0.40

FISTA 2.50e+01 2.49e+03 0.96 2.07e+01 1.12e+03 1.34

MNP2 2.30e+01 2.51e+03 3.02 1.99e+01 1.13e+03 2.73

OWLQN 2.54e+01 2.49e+03 0.84 2.10e+01 1.12e+03 1.10

0.01 MNP 2.83e+01 2.60e+03 0.47 2.28e+01 1.26e+03 1.36

SALSA 2.73e+01 2.55e+03 0.60 2.27e+01 1.25e+03 0.52

BREGMAN 2.64e+01 2.60e+03 0.40 2.15e+01 1.27e+03 0.41

FISTA 2.49e+01 2.56e+03 0.96 2.05e+01 1.26e+03 1.26

MNP2 2.29e+01 2.58e+03 3.07 1.97e+01 1.27e+03 2.77

OWLQN 2.54e+01 2.56e+03 0.84 2.10e+01 1.26e+03 1.11

ance values tolφ = 10−3 since smaller values of tolφ do not
improve the visual quality of the restored images. Figure 9
depicts the MNP restorations from the degraded images with
highest noise level (NL=0.01). They asses the ability of the
image restoration model (2) to remove blur and noise from
the degraded images.

3.4 Experiment 3

This last experiment is based on four famous test images with
different features: the 256 × 256 Text image, the 358 × 358
Moon image, the 364×364 Concord image and the 490×490
Spine image (see Fig. 10). These images are example images
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Fig. 9 Experiment 2: Top line degraded image (NL=0.01). Bottom line
MNP restorations. Left column blur h1; right column blur h2

from the Matlab distribution. They have been corrupted by
the blurring operators depicted in Fig. 8 and then Gaussian
noise has been added with the same noise level values used
in experiment 2. For each noise level, 10 Gaussian noise
vectors have been obtained with different noise realizations.
This amounts to 100 experiments for each image and to 400
experiments in total.

Also in this experiment, MNP has been compared to
SALSA, Split Bregman, FISTA, MNP2 and OWLQN. The
numerical results have been obtained by using the tolerance

Fig. 10 Experiment 3: MNP restorations for h1 blurring operator and
NL=0.005. From left to right and from top to bottom: Text, Moon, Con-
cord and Spine images

value tolφ = 10−3. The μ and ν parameters of the SALSA
and Split Bregman methods have been set to the same values
of the previous experiment.

Let PSNRmethod denote the PSNR value given by a
method among those considered (MNP, SALSA, Split Breg-
man, FISTA, MNP2 and OWLQN) and let Timemethod

denote the corresponding CPU time, in seconds. The per-
formance of the methods has been compared in terms of
percentage of experiments producing a reconstructed image
such that

Table 4 Experiment 3:
percentage of experiments
such that PSNRmethod
≥ C1 · PSNRmax

Image C1 MNP SALSA BREG. FISTA MNP2 OWQLN

Text 1 70 10 20 0 0 0
0.9 82 89 35 43 0 6

0.8 99 100 75 90 31 83

Moon 1 50 0 10 0 20 20

0.9 80 70 20 70 80 80

0.8 99 90 50 100 100 100

Concord 1 20 60 10 0 0 10

0.9 100 100 20 50 48 60

0.8 100 100 60 90 90 90

Spine 1 0 21 20 0 29 30

0.9 0 60 51 90 89 100

0.8 53 80 60 100 100 100

Total 1 35.00 22.75 15.00 0.00 12.25 15.00

0.9 65.50 79.75 31.50 63.25 54.25 61.50

0.8 87.75 92.50 61.25 95.00 80.25 93.25
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Table 5 Experiment 3:
percentage of experiments such
that Timemethod ≤ C2 · Timemin

Image C2 MNP SALSA BREG. FISTA MNP2 OWQLN

Text 1 3 80 20 0 0 0
0.9 34 96 48 1 0 10

5 47 100 100 54 0 55

Moon 1 0 82 10 2 0 9

3 45 90 59 48 40 90

5 86 100 60 90 40 90

Concord 1 0 15 86 0 0 0

3 26 100 100 0 0 19

5 38 100 100 30 6 32

Spine 1 0 9 32 10 0 52

0.9 30 70 80 70 70 70

5 60 70 97 70 70 70

Total 1 0.75 46.50 37.50 2.50 0.00 15.75

0.9 34.75 89.00 70.25 28.75 27.50 48.25

5 58.00 92.50 89.25 61.00 31.00 63.50

PSNRmethod ≥ C1 · PSNRmax, C1 = 1, 0.9, 0.8

and

Timemethod ≤ C2 · Timemin, C2 = 1, 3, 5

where, for each experiment, PSNRmax is the maximum
PSNR value and Timemin is the minimum time. For each
image and for the total 400 experiments, the corresponding
percentage values are reported in Tables 4 and 5. Figure 10
depicts the MNP restorations from the images degraded by
the h1 blurring operator and Gaussian noise with NL=0.005.

4 Conclusions

This paper describes a new approach to the solution of �1-
regularized least squares problems whose matrix is supposed
to be overdetermined and full-rank. This approach solves
the nonnegatively constrained quadratic programming refor-
mulation of the original least squares problem by a mod-
ified Newton projection method where the Hessian matrix
is approximated so that it can be efficiently inverted in the
Fourier space. The developed MNP method favors nonneg-
ative solutions of the �1-regularized least squares problem
without explicitly imposing any constraints in the optimiza-
tion problem. Thus, MNP can also be applied to image
restoration problems whose solution may have negative com-
ponents as in compressed sensing when x represents the coef-
ficient vector of the image under some basis. A comparative
study with some state-of-the-art methods has been performed
in order to evaluate the potential of the described approach.
The numerical results show that MNP is competitive with the

considered methods in terms of PSNR values while SALSA
is often the fastest method.
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