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Abstract In this paper, by using the quaternion algebra, the
conventional complex-type moments (CTMs) for gray-scale
images are generalized to color images as quaternion-type
moments (QTMs) in a holistic manner. We first provide a
general formula of QTMs from which we derive a set of
quaternion-valued QTM invariants (QTMIs) to image rota-
tion, scale and translation transformations by eliminating the
influence of transformation parameters. An efficient compu-
tation algorithm is also proposed so as to reduce computa-
tional complexity. The performance of the proposed QTMs
and QTMIs are evaluated considering several application
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frameworks ranging from color image reconstruction, face
recognition to image registration. We show they achieve bet-
ter performance than CTMs and CTM invariants (CTMIs).
We also discuss the choice of the unit pure quaternion influ-
ence with the help of experiments. (i − j − k)/

√
3 appears

to be an optimal choice.

Keywords Color image · Quaternion · Moment · Moment
invariant · Color face recognition · Color image registration

1 Introduction

Nowadays, with the development of inexpensive digital cam-
eras, almost all acquired images are chromatic. At the same
time, a color image has the potential to convey more infor-
mation than a monochrome or a binary image. The three
red, green and blue (RGB) values associated to each pixel
or as well its brightness, hue, and saturation, can be success-
fully employed in many computer vision tasks such as object
recognition, tracking, segmentation and registration [1]. The
conventional approach to deal with color images consists in
processing each channel separately, using gray level tech-
niques, and to combine the individual output results. As a
consequence, this approach fails to capture the inherent cor-
relation between color channels [1] and the entirety of three
channels [2]. The main issue is therefore to handle three val-
ues of each pixel in a holistic manner.

In the past two decades, quaternions have been more
and more used in color image processing to represent color
images by encoding three channels into the imaginary parts
of quaternion numbers [1,3–16]. The main advantage of this
quaternion representation is that a color image can be treated
holistically as a vector field [1,9]. The quaternion algebra has
been exploited in digital color image processing by Sangwine

123



J Math Imaging Vis (2015) 51:124–144 125

[3] and Pei and Cheng [4]. Since then, many classical tools
used for gray-scale images have been successfully extended
to color image processing using the quaternion algebra.
They include the Fourier transform [3,9,17,18], neural net-
works [19,20], principal component analysis [8,14], the
wavelet transform [21,22], independent component analy-
sis [23,24], singular value decomposition [6,7], Fourier–
Mellin transform [25], polar harmonic transform [26], and
moments [12,13,15]. Recently, the Clifford algebra, also
known as geometric algebra which is a generalization of
quaternion algebra, has been reported in the literature allow-
ing the processing of higher dimensional signals like 3D
color images. Clifford Fourier transform [27–29], Clifford
Fourier–Mellin moments [30], Clifford neural network [31],
Clifford support vector machines [32], Clifford wavelet [33]
and geometric cross correlation [34] are examples of such
processes. A detailed overview of the related works based
on Clifford algebra can be found in [35]. In this paper, we
focus on the use of the quaternion algebra so as to extend the
conventional moments to color image processing.

Moments are scalar quantities used to characterize a func-
tion and to capture its significant features [36,37]. They have
been extensively considered for pattern recognition [15,38],
scene matching [12,15,39], object classification [15,40],
image registration [13], image reconstruction [41], water-
marking [42], and so on, owing to their image description
and invariance properties. More details about moments can
be found in [36] and [37]. However, moments are mainly
used to deal with binary or gray-scale images. For color
images, most of the published works are based on the con-
ventional approach mentioned before. Recently, the use of
quaternion-based moment functions for color images has
been investigated [12,13,15]. We introduced the notion of
the quaternion Zernike moments (QZMs) [12] and derived a
set of quaternion-valued QZM invariants (QZMIs) to image
rotation, scale and translation (RST) transformations [15]. In
parallel, Guo et al. proposed the quaternion Fourier–Mellin
moments (QFMMs) and also derived a set of invariants with
respect to RST transformations [13]. However, their rota-
tion invariance was achieved by taking the modulus of the
quaternion moments which leads to the loss of the phase
information and only provides one real-valued invariant.

Compared with [15], our main motivation here is there-
fore (i) to extend the conventional complex-type moments
(CTMs) to color images as quaternion-type moments (QTMs)
in a holistic way and to derive a set of quaternion-type
moment invariants (QTMIs) to RST transformations; (ii)
to propose an efficient algorithm to compute QTMs in
order to reduce their computational complexity; (iii) to carry
out experiments considering more application frameworks,
including color face recognition and color image registra-
tion, in order to demonstrate the efficiency of QTMs and
QTMIs in terms of image representation capability and

robustness to noise and blurring; and (iv) to consider a gen-
eral unit pure quaternion and discuss its choice. Regarding
the first point, the CTMs we extend in the sequel include
the commonly-used rotational moments (ROTMs), radial
moments (RADMs), Fourier–Mellin moments (FMMs),
orthogonal Fourier–Mellin moments (OFMMs), Zernike
moments (ZMs), and pseudo-Zernike moments (PZMs).
They all have been applied to solve a number of computer
vision problems with the advantage that their modulus is
invariant to image rotation.

This paper is organized as follows. In Sect. 2, we first
recall some basic features of quaternions and quaternion
color representation, and then we present the general for-
mulas of CTMs. Section 3, the theoretical part of this paper,
provides a general definition of QTMs, the derivation of the
moment invariants with respect to RST transformations and
an efficient implementation of QTMs. Experimental results
for evaluating the performance of the proposed methods are
given in Sect. 4. Overall discussion follows in Sects. 5 and 6
concludes the paper.

2 Some Preliminaries

2.1 Quaternion Number and Quaternion Color
Representation

Quaternions, introduced by the mathematician Hamilton [43]
in 1843, are generalizations of complex numbers. A quater-
nion has one real part and three imaginary parts given by

q = a + bi + cj + dk, (1)

where a, b, c, d ∈ R, and i, j, k are three imaginary units
obeying the following rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,

ki = −ik = j. (2)

If the real part a = 0, q is called a pure quaternion.
The conjugate and modulus of a quaternion are respec-

tively defined by

q∗ = a − bi − cj − dk, (3)

‖q‖ =
√

a2 + b2 + c2 + d2. (4)

Let f (x, y) be an RGB image function with the quater-
nion representation. Each pixel can be represented as a pure
quaternion

f (x, y) = fR(x, y)i + fG(x, y)j + fB(x, y)k, (5)

where fR (x, y), fG (x, y) and fB (x, y) are respectively the
red, green and blue components of the pixel.
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2.2 Complex-Type Moments

The general formula of the conventional CTM of order n with
repetition m of a gray-scale image g(r, θ) is defined as

Φn,m(g) =
∫ ∫

�

φn,m(r)g(r, θ)e
− jmθrdrdθ, j = √−1,

(6)

where φn,m(r) is the real-valued radial polynomial of dif-
ferent CTMs shown in Table 1. � is the image definition
domain, it corresponds to [0,∞)×[0, 2 π] for the three non-
orthogonal moments (i.e. ROTMs, RADMs, and FMMs), and
to the unit disk [0, 1] × [0, 2 π] for the orthogonal ones (i.e.
OFMMs, ZMs, and PZMs).

For a digital image of size N×N, (6) can be written in the
discrete form as

Φn,m(g) = 1

(N − 1)2

N∑

x=1

N∑

y=1

φn,m(rx,y)g(x, y)e− jmθx,y ,

(7)

where (rx,y , θx,y) is the image pixel coordinate representa-
tion in polar form corresponding to the Cartesian coordinate
(x, y). The mapping transformation to the interior of the unit
circle is given by [44]

rx,y =
√
(c1x + c2)2 + (c1 y + c2)2,

θx,y = tan−1
(

c1 y + c2

c1x + c2

)
, (8)

with c1 = √
2/(N − 1), c2 = −1/

√
2.

3 Quaternion-Type Moments and Their RST Invariants

In this section, we first define the general formula of QTMs
for color images before constructing a set of quaternion-value
RST invariants; invariants that preserve the phase informa-
tion, an important piece of information in some practical
application frameworks. At last we propose an efficient algo-
rithm that implements QTMs.

3.1 Quaternion-Type Moments

According to the general definition of gray-scale image
CTMs shown in (6), and to quaternion algebra, the general
formula of the right-side QTM of a color image f (r, θ) of
order n with repetition m is introduced as

ΦR
n,m ( f ) =

∫ ∫

�

φn,m (r) f (r, θ) e−μmθrdrdθ, (9)

where φn,m(r) is the real-valued radial polynomial of QTMs
shown in Table 1, � is the image definition domain (like
for CTMs), µ is a unit pure quaternion. Basically, µ can
be defined as a linear combination of i, j, and k such as:
µ = αi + βj + γ k, α, β, γ ∈ R, ||µ|| = 1.

Due to the fact the difference between the three non-
orthogonal quaternion-type moments only stands on the
exponent k of φn,m(r) = rk (the quaternion rotational
moment of order n with repetition m is equivalent to the
quaternion radial moment of order (n + 1) with repetition
m, and to the quaternion Fourier–Mellin moment of order
(n + 2) with repetition m), in the following, we only con-
sider the quaternion rotational moments and three quaternion
orthogonal moments. These four types of QTMs are abbrevi-
ated hereafter as QROTMs, QOFMMs, QZMs and QPZMs,
respectively.

If the radial polynomials are orthogonal, the image f (r, θ)
can be reconstructed through the following inverse transform:

f (r, θ) =
∞∑

n=0

∞∑

m=−∞
ΦR

n,m ( f ) φn,m (r) eμmθ . (10)

However, in practice, one has to truncate the infinite series
in (10) at a finite number M [45]. This truncated expansion
is an approximation of f (r, θ) such as

f (r, θ) ≈
M∑

n=0

∑

m

ΦR
n,m( f )φn,m(r)e

μmθ . (11)

This approximation mainly induces three kinds of errors [46]:
the truncation error because a finite number of moments are
used; the geometric error due to the fact that moment compu-
tation is not conducted on the complete unit disk; the numer-
ical error that mostly results from the approximation of con-
tinuous moments in (9) by their discrete forms considering a
discrete digital image f (x, y) of N × N pixels, i.e. approx-
imating the double integration by a double summation as

ΦR
n,m( f ) = 1

(N − 1)2

N∑

x=1

N∑

y=1

φn,m(rx,y) f (x, y)e−μmθx,y ,

(12)

where (rx,y , θx,y) is defined in (8).
It can be seen from (2) that the multiplication of quater-

nions is not commutative. By shifting the exponential part
e−μmθ in (9) to the left-side of the f (r, θ), we can also define
the left-side QTM of order n with repetition m as

ΦL
n,m( f ) =

∫ ∫

�

φn,m(r)e
−μmθ f (r, θ)rdrdθ. (13)
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Table 1 Real-valued radial polynomial of different CTMs

Type of moments Real-valued radial polynomial

Rotational moments (ROTMs) rn

Radial moments (RADMs) rn−1

Fourier–Mellin moments (FMMs) rn−2

Orthogonal Fourier–Mellin moments (OFMMs) n+1
π

n∑

k=0
(−1)n+k (n+k+1)!

k!(k+1)!(n−k)!r
k

Zernike moments (ZMs) n+1
π

(n−|m|)/2∑

k=0

(−1)k (n−k)!
k!
(

n+|m|
2 −k

)
!
(

n−|m|
2 −k

)
! r

n−2k , |m| ≤ n and n − |m| being even

Pseudo–Zernike moments (PZMs) n+1
π

n−|m|∑

s=0

(−1)s (2n+1−s)!
s!(n−|m|−s)!(n+|m|+1−s)! r

n−s , |m| ≤ n

and the corresponding inverse transform

f (r, θ) ≈
M∑

n=0

∑

m

eμmθΦL
n,m( f )φn,m(r). (14)

The right-side of QTMs is not equal to the left-side ones.
However, using some properties of quaternions, the relation-
ship between them can be deduced as follows

ΦL
n,m( f ) =

∫ ∫

�

φn,m(r)e
−μmθ f (r, θ)rdrdθ

= −
∫ ∫

�

φn,m(r)e
−μmθ [ f (r, θ)]∗ rdrdθ

= −
⎡

⎣
∫ ∫

�

φn,m(r) f (r, θ)eμmθrdrdθ

⎤

⎦

∗
(15)

= −
[
ΦL

n,−m( f )
]∗
.

3.2 Translation Invariants

The common centroid (xc, yc) of all three channels intro-
duced by Suk and Flusser in [47] is defined as

xc = (m1,0( fR)+ m1,0( fG)+ m1,0( fB))/m0,0,

yc = (m0,1( fR)+ m0,1( fG)+ m0,1( fB))/m0,0, (16)

m0,0 = m0,0( fR)+ m0,0( fG)+ m0,0( fB),

where m0,0( fR), m1,0( fR) and m0,1( fR) are respectively the
zero-order and first-order geometric moments for R chan-
nel, m0,0 ( fG), m1,0 ( fG) and m0,1 ( fG) for G channel, and
m0,0( fB), m1,0( fB) and m0,1( fB) for B channel. Let the
origin of coordinate system be located at (xc, yc), the cen-
tral QTMs (translation invariants) can then be obtained as
follows

Φ̄R
n,m( f ) =

∫ ∫

�

φn,m(r̄)r̄ f (r̄ , θ̄ )e−μmθ̄dr̄d θ̄ , (17)

where (r̄ , θ̄ ) is the image pixel coordinate representation in
polar form with the mapping transformation (8) after locating
the origin at (xc, yc).

3.3 Rotation Invariants

Let f ′ be the rotated version of f , i.e., f ′(r, θ) = f (r, θ−α),
where α denotes the rotation angle, then we have

ΦR
n,m( f ′) =

∫ ∫

�

φn,m(r) f ′(r, θ)e−μmθrdrdθ

=
∫ ∫

�

φn,m(r) f (r, θ − α)e−μmθrdrdθ

=
∫ ∫

�

φn,m(r) f (r, θ)e−μm(θ+α)rdrdθ (18)

= ΦR
n,m( f )e−μmα.

Equation (18) shows that the modulus ofΦR
n,m is invariant to

rotation, which is the conventional magnitude-based method
adopted in [12,13] and [30] for achieving the rotation invari-
ance. However, such a process loses the phase information
which may be useful in some applications [48,49]. More-
over,

∥
∥ΦR

n,m

∥
∥ provides only one real-valued invariant. To

overcome these shortcomings, we provide here a new way to
construct a set of quaternion-valued rotation invariants.

For the left-side of QTMs, we can proceed by following
the way depicted in (18) with

ΦL
n,m( f ′) = e−μmαΦL

n,m( f ). (19)

Theorem 1 Let

ξm
n,k( f ) = ΦR

n,m( f )ΦL
k,−m( f ) = −ΦR

n,m( f )(ΦR
k,m( f ))∗,

(20)

then ξm
n,k( f ) is invariant to image rotation.
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Proof Let f ′ be the rotated image of f with rotation angle
α, using (18) and (19), we have

ξm
n,k( f ′) = ΦR

n,m( f ′)ΦL
k,−m( f ′)

= ΦR
n,m( f )e−μmαeμmαΦL

k,−m( f ) (21)

= ΦR
n,m( f )ΦL

k,−m( f ) = ξm
n,k( f ).

The proof has been completed. 
�

The rotation invariants constructed by taking the mod-

ulus of ΦR
n,m (i.e k = n, ξm

n,k( f ) = − ∥
∥ΦR

n,m( f )
∥
∥2
) are

just a special case of Theorem 1. Note that each invariant
ξm

n,k( f ) is a quaternion number, which includes four real-
valued invariants (one real part and three imaginary parts)
except for ξm

n,n( f ).

3.4 Scaling Invariants and Combined RST Invariants

It is easy to rewrite (9) as

ΦR
n,m( f ) =

l∑

k=0

cm
l,kψ

R
p,m( f ), (22)

where ψ R
p,m( f ) is the QROTMs of order p with repetition m

defined as ψ R
p,m( f ) = ∫ ∫

�

r p f (r, θ)e−μmθrdrdθ , and the

coefficients cm
l,k are given by

cm
l,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 QROTMs
(−1)l+k l+1

π
(l+k+1)!

k!(k+1)!(l−k)! QOFMMs

(−1)l+k m+2l+1
π

(m+l+k)!
k!(l−k)!(m+k)! QZMs

(−1)l−k m+l+1
π

(2m+l+k+1)!
k!(l−k)!(2m+k+1)! QPZMs

(23)

l =

⎧
⎪⎪⎨

⎪⎪⎩

0 QROTMs
n QOFMMs
n−m

2 QZMs
n − m QPZMs

(24)

p =

⎧
⎪⎪⎨

⎪⎪⎩

n QROTMs
k QOFMMs
m + 2k QZMs
m + k QPZMs

(25)

From (22), ψ R
n,m( f ) can also be expressed as a series of

QTMs

ψ R
n,m( f ) =

l∑

k=0

dm
l,kΦ

R
p,m( f ), (26)

where Dm
l = (dm

i, j ), with 0 ≤ j ≤ i ≤ l, is the inverse
matrix of Cm

l = (cm
i, j ). Both Cm

l and Dm
l are lower triangular

matrices of size (l + 1)× (l + 1) and the elements of Cm
l are

defined by (23). The elements of Dm
l are given by [50]

dm
i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 QROTMs
2 i !(i+1)!π
(i− j)!(i+ j+2)! QOFMMs

i !(m+i)!π
(i− j)!(m+i+ j+1)! QZMs

2 i !(2m+i+1)!π
(i− j)!(2m+i+ j+2)! QPZMs

, 0 ≤ j ≤ i ≤ l.

(27)

Let f ′′ and f be two images having the same content but
scale (λ), that is, f ′′(r, θ) = f (r/λ, θ ). Using (22) and (26),
the QTMs of the transformed image can be obtained as

ΦR
n,m( f ′′) =

l∑

k=0

cm
l,k

∫ ∫

�

r p f (r/λ, θ)e−μmθrdrdθ

=
l∑

k=0

cm
l,kλ

2
∫ ∫

�

(λr)p f (r, θ)e−μmθrdrdθ

=
l∑

k=0

λp+2cm
l,kψ

R
p,m( f ) (28)

=
l∑

k=0

k∑

t=0

λp+2cm
l,kdm

k,tΦ
R
q,m( f ),

where l is defined in (24), p in (25), and

q =

⎧
⎪⎪⎨

⎪⎪⎩

p QROTMs
t QOFMMs
m + 2t QZMs
m + t QPZMs

(29)

Theorem 2 Let

L R
n,m( f ) =

l∑

k=0

k∑

t=0

Γ
−(p+2)
f cm

l,kdm
k,tΦ

R
q,m( f ), (30)

with Γ f =
√∥
∥
∥ΦR

0,0( f )
∥
∥
∥. Then, L R

n,m( f ) is invariant to scal-

ing.
The proof is given in Appendix A.

Corollary 1 Let f ′ be the rotated version of f with rotation
angle α. It holds for any non-negative integers n and m that

L R
n,m( f ′) = L R

n,m( f )e−μmα. (31)

The proof of Corollary 1 is very similar to (18) and it is thus
omitted.

Based on Corollary 1, we have

Corollary 2 Let

ϕm
n,k( f ) = L R

n,m( f )(L R
k,m( f ))∗, (32)

then ϕm
n,k( f ) is invariant to both image rotation and scaling.
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The proof of Corollary 2 is very similar to that of Theorem
1 and it is also omitted.

Combining (17) with (32), the RST invariants of QTMs
(QTMIs) can be obtained as follows.

Corollary 3 Let

ϕ̄m
n,k( f ) = L̄ R

n,m( f )(L̄ R
k,m( f ))∗, (33)

where L̄ R
n,m( f ) is the scaling invariant defined in (30) using

the central QTMs Φ̄R
q,m( f ) instead ofΦR

q,m( f ). Then ϕ̄m
n,k( f )

is invariant to image RST transformations for any non-
negative integers n, k, and integer m.

The four types of QTMIs based on (33) are abbreviated
as QROTMIs, QOFMMIs, QZMIs and QPZMIs. It is worth
mentioning that each invariant ϕ̄m

n,k( f ) includes four invari-
ants (one real part and three imaginary parts) except ϕ̄m

n,n( f ),
which has only one. Indeed, if n = k then ϕ̄m

n,k( f ) =
∥
∥L̄ R

n,m( f )
∥
∥2

is a real number. Moreover, it can be shown
that the set of QTMIs based on orthogonal moments, such
as QOFMMIs, QZMIs and QPZMIs, is a complete set. The
proof is similar to that in [51] for the conventional OFMM
invariants, it is thus omitted here.

This set of invariant descriptor QTMIs defined by equation
(33) are experimented and compared in Sect. 4 considering
various application frameworks.

3.5 Efficient Implementation of QTMs

It is well known that the computational load of quater-
nion moments is high and that efficient computation is a
major concern. This issue has been initially addressed for
QZMs in our previous paper [15] but without analyzing
the computational complexity. The same approach is con-
sidered and summarized here. It makes use of the rela-
tionships between QTMs and CTMs. These relationships
allow us exploiting fast algorithms previously developed for
computing CTMs [52–54]. Moreover, since 1/(N − 1)2,
φn,m(rx,y) and e−μmθx,y are independent of the image con-
tents, their products can be calculated before the computation
of moments and then saved, so they will not be considered.

Let us analyze the computational complexity of the direct
computation of QTMs defined in (12). Since f (r, θ) is a pure
quaternion number and the product of 1/(N −1)2,φn,m(rx,y)

and e−μmθx,y is a quaternion number, their multiplication
requires 12 real number multiplications and 8 additions.
Thus, the total amount of real number multiplications and
additions involved is respectively (12N 2 +1) and (9N 2 −1)
for the direct algorithm.

A faster solution we propose makes use of the relation-
ships between QTMs and CTMs, which can be derived in a
similar way as for QZMs [15]. Due to space limitation, the

detailed derivation is omitted. For µ = αi + βj + γ k, we
have

ΦR
n,m( f ) = AR

n,m + iB R
n,m + jC R

n,m + kDR
n,m, (34)

where

AR
n,m = −α Im (Φn,m( fR))− β Im (Φn,m( fG))

−γ Im (Φn,m( fB))],
B R

n,m = Re (Φn,m( fR))+ γ Im (Φn,m( fG))

−β Im (Φn,m( fB)),

C R
n,m = Re (Φn,m( fG))+ α Im (Φn,m( fB))

−γ Im (Φn,m( fR)), (35)

DR
n,m = Re (Φn,m( fB))+ β Im (Φn,m( fR))

−α Im (Φn,m( fG)).

Here Φn,m( fR), Φn,m( fG) and Φn,m( fB) are respectively
the discrete forms of CTMs defined in (7) for the red channel,
green and blue channels, Re(x) represents the real part of a
conventional complex number x , and Im(x) its imaginary
part, that is, Re(a + bi) = a, Im(a + bi) = b.

As for the direct algorithm, without considering the com-
putation of 1/(N–1)2, φn,m(rx,y) and e− jmθx,y , the CTM
defined in (7) needs 2N 2 real number multiplications and
(N 2–1) additions. It can be seen from (34) and (35) that
the computation of QTM requires the computation of CTM
three times and 9 real number multiplications as well as 8
additions. Therefore, the computational complexity of the
proposed efficient algorithm is (6N 2 +9) real number multi-
plications and (3N 2 + 5) additions, which is lower than half
of the direct algorithm.

Note that the computation of QTMs via CTMs not only
reduces the number of arithmetic operations by half, but also
allows us to further improve the computational efficiency by
using the fast algorithms previously developed for CTMs.
Among many efficient algorithms developed for CTMs, one
can adopt for example: the recursive algorithm with improved
numerical stability proposed in [52] for orthogonal Fourier–
Mellin moments (OFMMs), the recursive algorithm of [53]
for Zernike moments (ZMs) based on an improved polar
tiling scheme or the q-recursive algorithm of [54] for pseudo-
Zernike moments (PZMs).

In order to demonstrate the gain of our approach in terms
of complexity, let us consider another solution that can
be adopted and which consists in using the decomposition
method proposed by Ell and Sangwine in [55] for 2D hyper-
complex Fourier transforms. To exploit their algorithm for
computing QTMs, we first need to represent the quaternion-
valued image function f (x, y) shown in (5) in a symplectic
form by

f (x, y) = c1(x, y)+ c2(x, y)µ̃, (36)
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where µ̃ is a unit pure quaternion satisfying µ̃⊥µ, c1(x, y)
and c2(x, y) are respectively called the simplex and perplex
parts of f (x, y) with c1(x, y)|| c2(x, y)||µ. They can be
obtained as follows [55]

c1(x, y) = −1

2
( f (x, y)µ + µ f (x, y))µ

c2(x, y) = −1

2
( f (x, y)µ̃ + µ̃ f (x, y))

−1

2
( f (x, y)µµ̃ + µµ̃ f (x, y)) . (37)

Then, substituting (36) into (12), we have

ΦR
n,m ( f ) = 1

(N − 1)2

N∑

x=1

N∑

y=1

φn,m
(
rx,y

) (
C1 (x, y) e−µmθx,y

+ C2 (x, y) µ̃) e−µmθx,y

= 1

(N − 1)2

N∑

x=1

N∑

y=1

φn,m
(
rx,y

)
C1 (x, y) e−µmθx,y ,

+ µ̃
1

(N − 1)2

N∑

x=1

N∑

y=1

φn,m
(
rx,y

)
C2 (x, y) e−µmθx,y

= C1 ( f )+ µ̃C2 ( f ) , (38)

where

Cs( f ) = 1

(N − 1)2

N∑

x=1

N∑

y=1

φn,m(rx,y)cs(x, y)e−µmθx,y ,

s ∈ {1, 2}. (39)

Equation (38) means that a quaternion-type moment can be
decomposed into pairs of moments C1( f ) and C2( f ) that
are isomorphic to the CTMs. As example, if μ is chosen as
the luminance axis, i.e. μ = (i + j +k)/

√
3, then C1( f ) and

C2( f ) are associated to the luminance. Meanwhile, (38) also
provides an algorithm for computing QTMs through CTMs,
it is obvious that the calculation of C1( f ) or of C2( f ) needs
4N 2 + 1 real number multiplications and 3N 2–1 additions.
Thus, the computational complexity of this decomposition-
based algorithm is of 8N 2+2 real number multiplications and
6N 2–2 additions to which we should add the computational
complexity of the symplectic representation change of f into
c1 and c2 as shown in (36). Anyway, as it can be seen, the
resulting complexity of this solution is still greater than the
one of our proposal.

4 Experimental Results

In this section, in order to show the performance of the
approach proposed above, three distinct application frame-
works are considered. The first one dealing with image
reconstruction is briefly presented for orthogonal QTMs.
We then test QTMIs’ invariance to rotation and scaling and
their robustness to noise before evaluating their performance

Fig. 1 Color Lena image (128
× 128)

within the two other applications, a color face recognition
problem and a color image registration issue, aiming at high-
lighting that QTMIs are effective invariant features due to
their robustness and RST invariant properties.

Due to the fact an infinite number of unit pure quaternion
µ(µ = αi + βj + γ k, α, β, γ ∈ R, ||µ|| = 1) can be used
to build QTMs, 94 randomly generated values of µ: µt , t =
1, 2, . . ., 94 (with α, β, γ uniformly distributed in [0, 1]),
as well as 6 common values from the literature: µ95 = i
[56], µ96 = j [57], µ97 = (i + k)/

√
2 [13], µ98 = (−2j +

8k)/
√

68 [58], µ99 = (i + j + k)/
√

3 [1,6,8–12,15,16] and
µ100 = (i−j−k)/

√
3 [59], were considered in the following

experiments for performance assessment.

4.1 Color Image Reconstruction

The well known color Lena image shown in Fig. 1 of size 128
× 128 has been used. It was reconstructed using (11). Notice
that the reconstructed result is independent of the choice of
the unit pure quaternion µ since all the terms including µ in
(11) are eliminated by the corresponding conjugate terms in
the forward transform (9). This was also proved by Li using
quaternion polar harmonic transform through experiments
with 100 randomly generated µ [26]. The results for different
orthogonal QTMs and various maximum orders M are shown
in Fig. 2. It can be qualitatively seen that the reconstructed
images are close to the original image for a maximum order
M equals to or greater than 100.

Let f (x, y) be the original image and f̂ (x, y) the recon-
structed image with the quaternion color representation. The
following normalized mean square error (NMSE) ε2 is used
to measure the difference between f (x, y) and f̂ (x, y) [45]

ε2 =
∑N

x=1
∑N

y=1

∥
∥
∥ f (x, y)− f̂ (x, y)

∥
∥
∥

2

∑N
x=1

∑N
y=1 ‖ f (x, y)‖2

. (40)

The values of NMSE obtained with different orthogonal
QTMs and various maximum orders M are provided in Fig. 3.
These results confirm the comment made on Fig. 2: (1) all
the values of NMSE are small, they first decrease, reach a
minimum and then increase for all three types of QTMs.
Such behavior has also been observed and pointed out by
Liao and Pawlak in [45] when focusing on the conventional
Zernike moments. The reason mainly stands on the errors
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Fig. 2 Reconstructed Lena
image with different orthogonal
QTMs and various maximum
orders M . Rows are
successively the results of
QOFMMs, QZMs, and QPZMs
based reconstruction. Columns
are successively the results for
M = 20, 60, 100, and140

Fig. 3 Reconstruction errors with different maximum orders M

described in the Sect. 3.1: the truncation error decreases with
the increase of M , while both the numerical and the geometric
errors increase along with the number of moments used for
reconstruction; (2) when M is smaller than 50, the NMSE for
QOFMMs is smaller than for QPZMs and QZMs. However,
the opposite is observed for higher values of M .

4.2 Test of Invariance to Rotation, Scaling and Robustness
to Noise

For the experiments presented in this subsection, a set of
fourteen images (see Fig. 4) of 128 × 128 pixels has been
chosen from the public Columbia database [60]. In order
to contain the entire transformed image, all original images
are enlarged to 204 × 204 pixels by zero-padding so as to
ensure the rotation and translation do not change the image
size. From this image test set different datasets have been
derived for the following purposes : (1) to compare the invari-
ance against rotation, images were rotated by various angles
from 0◦ to 90◦ every 5◦ using at the same time a bilin-
ear interpolation when required; (2) to test the invariance
against scaling, images were scaled by different factors in
the range 20 % to 200 % with interval of 10 %; (3) to evaluate
the robustness to noise, images were corrupted by Gaussian
noise with standard deviations varying from 0 to 9 and salt-
and-pepper noise with a density in the range 0 to 4.5 %,
respectively.

Let I ( f ) = {
I1, I2, . . ., Ip

}
be a moment invariant vector,

where It = at + bt i + ct j + dt k, t = 1, 2, . . ., p, are the
QTMIs defined in (33) and p is the number of QTMIs used.
In order to evaluate the invariance of QTMIs, we define the
relative error between the two quaternion vectors I ( f ) and
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Fig. 4 Fourteen objects
selected from the Columbia
database

I (g) corresponding to an image f and its transformed version
g as

E( f, g) = ‖I ( f )− I (g)‖2

‖I ( f )‖2
, (41)

where ||.||2 is the quaternion vector distance defined in [14]
as follows
‖I ( f )− I (g)‖2

=
√√
√
√

p∑

t=1

[
(at ( f )−at (g))2 + (bt ( f )−bt (g))2 + (ct ( f )−ct (g))2 + (dt ( f )−dt (g))2

]
,

(42)

The four different QTMIs we constructed and the QFMM
invariants (QFMMIs) derived by Guo et al. [13] of order
up to 5 were considered. Notice that when n and m are
fixed in (33), it is preferable to use the lower order moments
with a small value of k for the second term L̄ R

k,m( f ) due
to the fact lower order moments are less sensitive to image
noise than higher order ones [61] (see the upcoming Sect.
4.2(b)). For this reason, L̄ R

0,m( f ), with k = 0 in (33), is

chosen for QROTMIs and QOFMMIs while L̄ R
m,m( f ), with

k = m, is retained for QZMIs and QPZMIs since the
order k should not be smaller than the repetition m. More
clearly and to summarize, according to (33), the set of invari-

ants
{
ϕ̄m

n,0( f ) |0 ≤ n,m ≤ M
}

is used for QROTMIs and

QOFMMIs, while
{
ϕ̄m

n,m( f )
∣
∣0 ≤ m ≤ M,m ≤ n ≤ M,

n − m being even
}

for QZMIs and
{
ϕ̄m

n,m( f )
∣
∣0 ≤ m ≤ M,

m ≤ n ≤ M
}

for QPZMIs, where M is the maximum order

used. Notice also that in order to achieve the scaling invari-
ance, invariants in these sets with order 0 and repetition 0 are
not considered.

(a) Performance comparison with different choices of µ

In order to compare the performance of the 100 differ-
ent values of µ mentioned above, we have considered one
image from our original image dataset (see Fig. 4a) and four
of its degraded: one rotated with an angle of 30 degree, one
scaled with a factor of 40 %, one with a Gaussian noise of
standard deviation 3, and one with a salt-and-pepper noise
of density 2 %. Then, five types of QTMIs based on our
different µ test set were computed on these four degraded
images and Fig. 4a. Herein, the maximum order M was set
to 5 for all QTMIs. As measure of performance, we con-
sidered the relative error E( f, g) in between QTMIs of one
degraded image g and its original version f . Relative errors
we obtained are shown in Fig. 5 where our 100 different test
values of µ are placed in abscise. The relative error stan-
dard deviation on our µ test set has also been computed as
follows

σ =
√√
√
√ 1

100

100∑

k=1

(
Ek( f, g)− Ē

)
, (43)

where Ek( f, g) is the relative error in between QTMIs of f
and g for the kth µ value of our µ test set and Ē is the aver-
age relative error of Ek( f, g). Average errors and standard
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Fig. 5 Relative error comparison for 100 different values of µ under different kinds of image degradations

deviations are provided in Table 2. It can be observed from
Fig. 5 and Table 2 that: (1) all five types of QTMIs achieve
good invariance to rotation and scaling; (2) three orthogo-
nal moment invariants (QPZMIs, QZMIs and QOFMMIs)
are still perfect though the images are corrupted by noise,
while the other two non-orthogonal QROTMIs and QFMMIs
appear to be sensitive to such a noises, especially QFMMIs.
This conclusion is in accordance with the results reported in
[61] for CTMs; (3) performance of different µ are closed.
Since the experiments here are only simulations, we will
come back on this discussion in Sect. 4.3a where experi-
ments have been conducted in real environments. Neverthe-
less, although the difference of performance is not very clear,
we can still find that µ100, i.e. (i − j − k)/

√
3, appears as

the overall optimal value of µ among our test set. This is the

reason why µ100 is considered for each type of QTMIs in the
following Sects. 4.2b and 4.2c.

(b) Robustness to noise when considering lower order
moments to construct rotation invariants This experiment
was carried out so as to evaluate the robustness of rotation
invariants in (20) and (33) to noise when they are based on
lower order moments instead of higher order ones. Regarding
RST invariants defined in (33), we compared them when the
subscript k is set to 0, 1, . . ., 5 for QROTMIs and QOFMMIs,
to m, m+2, m+4 for QZMIs, and to m, m + 1, . . .,m + 5 for
QPZMIs, respectively. Notice that for QZMIs and QPZMIs,
when the value of k is greater than 5, this one is fixed to 5
which is the maximum order M we considered in this exper-
iment.
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Table 2 Average (AVE) and standard deviations (STD) of the relative errors of QTMIs using 100 different µ under different degradations

Different QTMIs Rotation Scaling Gaussian noise Salt-and-pepper noise

AVE STD AVE STD AVE STD AVE STD

QFMMIs [13] 5.9e–04 2.6e–05 3.0e–03 1.0e–04 1.0e–01 6.8e–04 2.1e–01 3.8e–03

QROTMIs 7.2e–04 1.7e–05 2.8e–03 6.7e–05 3.4e–02 6.1e–04 1.1e–01 2.0e–03

QOFMMIs 5.5e–05 5.0e–06 3.3e–04 4.1e–05 8.0e–03 6.3e–05 1.5e–02 1.6e–03

QZMIs 2.6e–05 2.9e–06 1.6e–04 4.8e–06 7.9e–03 7.9e–05 1.4e–02 1.2e–03

QPZMIs 8.3e–07 6.1e–08 9.7e–06 6.0e–07 4.0e–04 2.2e–05 7.0e–04 6.1e–05

Table 3 Average relative errors for different k in (33) after adding noise

Different QTMIs Gaussian noise with the standard deviation 3 Salt-and-pepper noise with the density 2 %

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

QROTMIs 0.0342 0.0509 0.0837 0.1498 0.2772 0.5086 0.1055 0.1412 0.2022 0.3210 0.5510 0.9693

QOFMMIs 0.0080 0.0088 0.0102 0.0120 0.0143 0.0167 0.0151 0.0163 0.0184 0.0214 0.0251 0.0292

Different QTMIs Gaussian noise with the standard deviation 3 Salt-and-pepper noise with the density 2 %

k = m k = m+1 k = m+2 k = m+3 k = m+4 k = m+5 k = m k = m+1 k = m+2 k = m+3 k = m+4 k = m+5

QZMIs 0.0079 – 0.0101 – 0.0142 – 0.0140 – 0.0176 – 0.0246 –

QPZMIs 0.0004 0.0005 0.0005 0.0007 0.0008 0.0010 0.0007 0.0008 0.0009 0.0011 0.0014 0.0018

Results given here have been achieved using images from
our datasets with Gaussian noise of standard deviation 3 and
salt-and-pepper noise of density 2 % and the corresponding
original images. Table 3 provides the relative error average
of our four types of QTMIs. Whatever the type of QTMIs,
these results demonstrate that QTMIs based on lower order
moments with a small value of k can indeed obtain the smaller
relative error than those based on higher order moments.

(c) Comparison of the performance of different types of
QTMIs The four image datasets were used in this experi-
ment so as to evaluate the performance of our four types
of QTMIs and compare them with those of the QFMMIs
of Guo et al. [13]. Fig. 6 depicts the average relative errors
Ēk , k = 1, 2, . . ., K , where k corresponds to the kth inten-
sity level of the image degradation; herein K equals 19 as
each kind of image degradation has been parameterized with
19 distinct values (as example, the Gaussian noise is added
considering 19 different standard deviation values). It can be
observed that: (1) all the errors caused by rotation and scal-
ing degradations are small, especially for the three orthog-
onal moment invariants (i.e. QPZMIs, QZMIs and QOFM-
MIs); (2) the three orthogonal moment invariants are more
robust to noise than the other two non-orthogonal QROT-
MIs and QFMMIs; (3) in general, the errors increase with
the increase of the intensity level of image degradation; (4)

QPZMIs performs best among the compared five types of
QTMIs.

We have also calculated the maximal value of the stan-
dard deviation (MSTD) of the relative error Ek( ft , gt ),
t = 1, 2, . . ., N , k = 1, 2, . . ., K , as follows

σmax = max
1≤k≤K

√√
√
√ 1

N

N∑

t=1

(
Ek( ft , gt )− Ēk

)
, (44)

where N and K are the number of original images and the
number of intensity levels of a degradation, respectively.
They are respectively equal to 14 and 19 in this experiment.
The MSTD values of different QTMIs under different degra-
dations are given in Table 4. The small MSTD values in this
table demonstrate that the constructed QTMIs have a stable
behavior.

4.3 Color Face Recognition

The objective of this test is to evaluate the performance of
QTMIs in one practical application. We combined the pro-
posed descriptors with a quaternion back-propagation neural
network (QBPNN), which were simultaneously introduced
by Arena et al. [19] and Nitta [20] in the mid-1990s to deal
with 3D or 4D input data. The basic block diagram is shown
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Fig. 6 Evaluation and comparison of different types of QTMIs through the relative error under different kinds of degradations

Table 4 MSTD values of
different QTMIs under different
degradations

Different QTMIs Rotation Scaling Gaussian noise Salt-and-pepper noise

QFMMIs [13] 2.5e–04 3.4e–03 8.5e–02 1.2e–01

QROTMIs 6.7e–05 5.3e–03 3.8e–02 8.6e–02

QOFMMIs 3.7e–05 4.3e–04 7.8e–03 7.2e–03

QZMIs 2.9e–05 3.2e–04 7.8e–03 6.3e–03

QPZMIs 9.2e–07 1.8e–05 5.2e–04 4.5e–04

in Fig. 7. First, color faces in the training set are represented
using the quaternion representation with (5). After that, the
QTMI features are extracted from these color faces. Then,
the extracted features are fed into the three QBPNN layers.
For the test set, we also compute the QTMI features from
these color face images after quaternion representation and

calculate the output with the trained weights and threshold
values. Finally, the minimum quaternion vector distance [14]
is used for decision. A similar method was first presented
in one of our previous work [62] for the real-valued QZMIs
derived in [12] without considering the important phase infor-
mation. However, in this paper the algorithms based on the
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Fig. 7 Basic block diagram of the proposed recognition algorithm

quaternion-valued QTMIs with phase information are evalu-
ated and are compared with the algorithm based on the quater-
nion bidirectional principal component analysis (QBDPCA),
which offers the best performance when compared to other
quaternion-based principal component analysis according to
[14].

Three color face databases (faces95, faces96 and grimace)
provided by the University of Essex [63] were chosen. Their
properties are summarized in Table 5. A few examples are
shown in Fig. 8. We used 600 face samples of 30 individuals
from the faces95 database and the faces96 database, and 360
samples of the 18 individuals included in the grimace data-
base. For each individual, 10 random samples are retained
for training and the remaining 10 for recognition.

By following the procedure described in Sect. 3 for color
images, we can also derive invariants with respect to RST
transformations for single channel using different CTMs.
These invariants for three channels are combined into a whole
set as face features. This is the conventional approach men-

tioned in Sect. 1. For four different types of CTMs, the fea-
tures extracted by this approach are denoted respectively
hereafter by ROTMIs, OFMMIs, ZMIs and PZMIs. Note that
the non-zero real and imaginary parts of CTMIs are both used
as features. It makes the size of feature vector almost twice
as large. Then, the real-valued CTMIs were fed into the con-
ventional back-propagation neural network (BPNN), while
the quaternion-valued QTMIs were trained by QBPNN.

We also compared the proposed algorithm with the other
quaternion-based algorithm based on QFMMIs [13] features
and BPNN.

(a) Comparison of the performance of different µ

Because the comparison was made in a simulation exper-
iment in Sect. 4.2a, we propose herein to compare the per-
formance of different µ in a real environment so as to find
the optimal value of µ.

In this experiment, different types of QTMIs based on our
100 test values of µ were used as features for face recogni-
tion of faces95 database. Again, the maximum order of all
QTMIs was set to 5. In order to clearly show the recogni-
tion rates achieved with the five types of QTMIs, two figures
are given: QFMMIs, QOFMMIs and QPZMIs are shown in
Fig. 9a, while QROTMIs and QZMIs in Fig. 9b. Obtained
results show that µ100 (i.e. (i − j − k)/

√
3) has the overall

best performance among µ test set though it is not the best one
for each type of QTMIs. The average recognition rate of the
five types of QTMIs based on µ100 is about 92 %. This is con-
sistent with the conclusion drawn in Sect. 4.2a. Beyond, for
each types of QTMIs, µ32 (i.e. 0.9610i+0.1080j+0.2545k)
and µ100 are two relatively optimal choices for QFM-
MIs; µ8 (i.e. 0.1236i + 0.8553j + 0.5032k) and µ97 (i.e.
(i + k)/

√
2) are the best choices for QROTMIs, µ43 (i.e.

0.3322i+0.7646j+0.5523k) the one for QOFMMIs,µ19 (i.e.
0.5502i + 0.4888j + 0.6770k), µ99 (i.e. (i + j + k)/

√
3) and

µ100 for QZMIs, and µ26 (i.e. 0.1383i +0.8536j +0.5023k)
for QPZMIs. As a consequence, the choice of µ may become
critical in real applications. Base on this statement, in the fol-

Table 5 Properties of three
color face databases Databases Number of

individuals
Number of images/
individual

Image reso-
lution

Main variation

faces95 72 20 180 × 200 Illumination,
position
translation,
background
and head scale

faces96 152 20 196 × 196 background,
illumination,
position
translation and
head scale

grimace 18 20 180 × 200 expression
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Fig. 8 Some examples of three color face databases

lowing Sect. 4.3b and c, each type of QTMIs is tested with
its optimal µ. However, let us notice that only one optimal
µ was used for QFMMIs, QROTMIs and QZMIs. Our pref-
erence went on µ100, µ8 and µ99 for QFMMIs, QROTMIs,
and QZMIs, respectively.

(b) Verification of the phase information importance In
object and scenes recognition, phase information plays a
role more important than magnitude information [47,48].
As a consequence, to achieve rotation invariant, we decided
to use the method based on Theorem 1 instead of the con-
ventional magnitude-based method by directly considering
the modulus of QTMs [12,13,30]. In order to evaluate our
method and compare with a more conventional strategy, we
have constructed new set of QTMIs based on the magnitude-
based method. These new QTMIs were respectively denoted
as NQROTMIs, NQOFMMIs, NQZMIs, and NQPZMIs. We
did not consider QFMMIs due to the fact they were orig-
inally constructed with the help of this magnitude-based
method in [13]. New QTMIs features with order up to 5
were trained by BPNN. This is possible since new QTMIs
are real values. Table 6 presents the recognition results for
faces95 database using our QTMIs and these new QTMIs.
The results demonstrate that the proposed method is bet-
ter than the magnitude-based method. This again confirms
the discrimination power of the phase information in pattern
recognition.

(c) Performance comparison of different types of QTMIs and
CTMIs In order to choose the relatively optimal moment
invariants features, we compared the recognition rates of dif-
ferent types of QTMIs and CTMIs up to various maximum-
orders M = 3, 5, . . ., 15, 17. Having different values for M
leads to different feature sets which are:

{
barϕm

n,0( f )
∣
∣0 ≤ n,

m ≤ M
}

for QROTMIs and QOFMMIs,
{
ϕ̄m

n,m( f )
∣
∣0 ≤

m ≤ M,m ≤ n ≤ M
}

for QPZMIs, and
{
ϕ̄m

n,m( f )
∣
∣0 ≤

m ≤ M,m ≤ n ≤ M, n − m being even
}

for QZMIs. Here,
ϕ̄m

n,m( f )is a RST invariant as defined by (33). The recognition
rates for faces95 database with various values of M are shown
in Table 7. It can be seen that: (1) an optimal order exists for
every set of moment invariant features though these optimal
orders are not equal. In this experiment, the optimal orders for
ROTMIs, QROTMIs, OFMMIs, QOFMMIs, ZMIs, QZMIs,
PZMIs, QPZMIs and QFMMIs are 9, 7, 9, 9, 11, 9, 7, 5 and 5,
respectively; (2) the rate first increases, reaches a maximum
value and then decreases for all descriptors. This behaviour
has also been already mentioned and pointed out in the above
color image reconstruction experiments and also for object
classification as shown in [64].

We also extracted all nine types of moment invariants
features up to their corresponding optimal order from the
other two databases used for recognition, while for the algo-
rithm using QBDPCA, the dimensionality for the principal
subspace was chosen when the cumulative energy is greater
than 99 %. The recognition rates of different algorithms are
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Fig. 9 Recognition rates (%) for 100 different values of µ and different QTMIs

Fig. 10 Reference image, template image and their mosaicked images with pixel value halved obtained by different types of moment invariants

Table 6 Recognition rates (%) for different QTMIs based on the magnitude-based method and our proposed method to construct rotation invariants

QTMIs Magnitude-based method Proposed method

NQROTMIs NQOFMMIs NQZMIs NQPZMIs QROTMIs QOFMMIs QZMIs QPZMIs

Recognition rate 88.33 90.67 91.67 92.67 90.67 93.00 93.67 95.67
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Table 7 Recognition rates (%) of different algorithms for various order M

Algorithms M = 3 M = 5 M = 7 M = 9 M = 11 M = 13 M = 15 M = 17

ROTMIs + BPNN 81.33 82.00 84.33 86.67 83.33 81.33 80.33 78.33
QROTMIs + QBPNN 89.33 90.67 91.67 89.67 87.00 85.33 82.67 81.33
OFMMIs + BPNN 84.67 85.33 86.67 91.00 89.33 88.33 84.33 83.33
QOFMMIs + QBPNN 89.33 93.00 93.00 93.33 90.33 87.33 85.67 83.67
ZMIs + BPNN 82.67 89.33 89.33 90.00 91.67 86.67 86.67 84.67
QZMIs + QBPNN 90.67 93.67 93.67 94.00 93.33 93.00 90.33 90.33
PZMIs + BPNN 87.67 92.33 92.67 91.33 90.00 88.67 87.67 85.67
QPZMIs + QBPNN 92.33 95.67 94.00 93.33 92.00 91.67 90.00 88.00
QFMMIs [13] + BPNN 82.67 90.00 89.67 89.67 88.67 87.33 85.67 83.67

Table 8 Recognition rates (%) of different algorithms

Algorithms faces95 faces96 grimace

ROTMIs + BPNN 86.67 94.00 95.33

QROTMIs + QBPNN 91.67 95.67 97.44

OFMMIs + BPNN 91.00 94.67 96.67

QOFMMIs + QBPNN 93.33 96.67 99.44

ZMIs + BPNN 91.67 96.33 100.00

QZMIs + QBPNN 94.00 98.33 100.00

PZMIs + BPNN 92.67 98.00 100.00

QPZMIs + QBPNN 95.67 99.00 100.00

QFMMIs[13] + BPNN 90.00 93.67 98.33

QBDPCA [14] 86.33 97.00 99.44

shown in Table 8. It can be seen from this table that: (1)
no matter what databases and what moments, the perfor-
mance of the proposed quaternion-based algorithms using
QTMIs and QBPNN are better than the conventional algo-
rithms using CTMIs and BPNN; (2) the algorithms based
on orthogonal moment invariants are superior to those based
on non-orthogonal moment invariants, regardless of whether
the conventional algorithms or the quaternion-based algo-
rithms are used. This conclusion is in accordance with the
results reported in [61] in terms of noise robustness, infor-
mation redundancy and capability for image representation;
(3) among three algorithms using orthogonal QTMIs, the
performance of the algorithm using QPZMIs is better than
the other two algorithms. The same conclusion can be drawn
from three conventional algorithms using orthogonal CTMIs.
This is consistent with the conclusion in Sect. 4.2; (4) the
recognition rates of almost all algorithms for grimace (mainly
with expression variation) are higher than those obtained for
faces95 and faces96 (which mainly suffer from illumination
and background variations). Such result can be explained
by: (i) the grimace database is preprocessed through a face
location procedure which allows eliminating the background
influence; (ii) the proposed QTMIs being invariant to geo-
metric transformations, they are robust to expression change.

4.4 Color Image Registration

Image registration is a fundamental preprocessing for image
fusion and other image processing tasks. In this experiment,
color image registration was carried out to further illustrate
the efficiency of QTMIs. We use the automatic registration
method proposed by Wang et al. [65]. The main difference is
that QTMIs were used for feature points (FPs) matching in
this experiment. The main steps of registration are as follows

(1) Extract FPs from both reference image and template
image using the Harris-Laplace detector;

(2) Extract QTMIs feature with the optimal order of the
neighborhood of these FPs;

(3) Match FPs using the minimum Euclidean distance;
(4) Improve matching results using the random sample con-

sensus (RAMSAC) algorithm;
(5) Estimate the similarity transformation through the coor-

dinates of matched FPs by the least-square method;
(6) Transform the template image with the estimated trans-

formation to match the reference image.

Two pictures were taken by digital camera with differ-
ent focus depth and varying position through a rotation of
the camera. One (Fig. 10a) is taken as reference image. The
other (Fig. 10b) serves as template image. In order to evaluate
the robustness to blurring for different invariant feature, the
template image was taken with a little out-of-focus. Then, the
above registration steps are carried out. To quantify the regis-
tration accuracy, we compute the intensity root mean square
error (RMSE) for the overlapped areas � of the reference
image RI(x, y) and the registered template image TI(x, y),
which is defined by [66]

RM SE =
√∑

(x,y)∈� [RI (x, y)− T I (x, y)]2

N�
, (45)

where N� is the size of overlapped areas �.
All nine types of moment invariant features with the opti-

mal order used in the former test are evaluated in this test. We
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Table 9 RMSE values between the registered image pairs for different types of moment invariants

Invariants ROTMIs QROTMIs QFMMIs OFMMIs QOFMMIs ZMIs QZMIs PZMIs QPZMIs

RMSE Fail Fail Fail 0.1919 0.1689 0.1864 0.1685 0.1775 0.1673

found that if the template image was taken well without out-
of-focus, two images can be registered correctly for all nine
types of moment invariants. This demonstrates the efficiency
of the proposed algorithm. But, it is not the case for the out-of-
focus template image. The RMSE values for the algorithms
using different moment invariants are provided in Table 9. To
show visually, we also give the mosaicked images MI(x, y)
in Fig. 10c–h by fusing the registered template image TI(x ,
y) into the reference image RI(x, y) with the weight 0.5, i.e.
MI(x, y) = 0.5*RI(x, y) + 0.5*TI(x, y). It can be observed
that: (1) QPZMIs performs best among nine types of moment
invariants. The reference image and the transformed template
image are completely overlapped. The RMSE value is also
smallest though this one is not so small due to the blurring of
template image. Three algorithms separately using the non-
orthogonal ROTMIs, QROTMIs and QFMMIs completely
fail to register two images. This is in accordance with their
performance in the previous face recognition test; (2) three
algorithms respectively using PZMIs, ZMIs and OFMMIs
register two images with some error. There are some arti-
facts in their overlapped images, especially at the top of the
pavilion; (3) the algorithms using quaternion-valued invari-
ants (QPZMIs, QZMIs and QOFMMIs) also outperform ones
using real-valued invariants (PZMIs, ZMIs, OFMMIs and
ROTMIs).

5 Discussion

The proposed approach has been shown of relevance on the
four examples we have selected. The reconstruction prob-
lem addressed here shows that there exists some “optimal
order” minimizing the error made (Fig. 3). This “optimal
order” varies with the type of moments and presumably with
the image contents. Therefore and although the slope of the
curves are low after this order value, it must be adapted to the
data set under consideration. A theoretical analysis would be
of interest to more objectively understand this behavior but
it is not so straightforward.

The QZMIs presented here have been compared in [15]
to ZMIs. This comparison has shown that the recognition
of objects submitted to RST transformations was largely in
favor of QZMIs in noise-free situations and with additive
noise (Gaussian and salt-and-pepper) as well. For other types
of moment invariants, similar conclusions have been drawn
by color face recognition from Tables 7, 8 and color image
registration from Table 9. Moreover, performance of each

type of QTMIs depends on the unit pure quaternion. How-
ever, it is difficult to experimentally find an optimal unit pure
quaternion µ. Conducted experiments with 100 different val-
ues of µ have shown that (i − j − k)/

√
3 is the overall best

choice but not the best one for each type of QTMIs. Cer-
tainly, one can directly define real-valued invariants under
the choice of unit pure quaternion choice constraint with the
help of the magnitude-based method of Mennesson et al. [30]
at the cost of losing the important phase information. This has
been verified again in Sect. 4.3b. Therefore, the only disad-
vantage of the quaternion-based descriptor QTMIs concerns
the increased computational load. This was the main pur-
pose of the efficient algorithm designed in this paper. This
may be of critical importance in particular applications like
face recognition, object matching and tracking. The compu-
tation time required to extract the QTMIs up to order 5 in the
face recognition problem is about 0.1225 s for QOFMMIs,
0.1572 s for QZMIs, and 0.1717 s for QPZMIs implemented
in Matlab R2006b on a PC with Dual Core 2.33 GHz CPU
and 2 GB RAM. They can meet the need for a particular
application. In addition, they will be faster if implemented in
C/C++.

Of course, the final result in any pattern recognition prob-
lem depends not only on the extracted features but also on
the data set used for learning (exhaustivity, size, etc.) and on
the classification method. The neural network approach used
here can be replaced by others like PCA, ICA, and SVM for
which quaternion-versions of these approaches have been
reported [8,14,23,24,32]. For the three selected face data-
bases, there also exists an optimal order of each moment
invariant feature for face recognition. The same is true for
the color image registration problem. The final registration
result depends on the selected FPs, the extracted features and
the matching method, etc.

6 Conclusions

In this paper, the general formula of QTMs has been intro-
duced to extend commonly-used CTMs defined for gray-
scale images to color images. Based on these QTMs, a set
of invariants to RST transformations has been constructed.
In addition, an efficient algorithm for computing QTMs
was proposed. The advantages of the proposed QTMs and
QTMIs over the existing descriptors are as follows: (1) the
quaternion color representation, processing a color image
in a holistic manner, is used in the definition of QTMs;
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(2) the constructed QTMIs are quaternion-valued invari-
ants instead of real-valued invariants, thus, they retain the
important phase information and provide more real-valued
invariants. Experimental results on real images corrupted
by additive noise, color face recognition and color image
registration demonstrate that the proposed descriptors and
especially the QPZMIs are more effective than the exist-
ing methods. Conducted experiments show that performance
varies unit pure quaternion and the proposed method for con-
structing the rotation invariants is superior to the conven-
tional magnitude-based method. The unit pure quaternion
(i − j − k)/

√
3 appears to be a relatively optimal choice but

not the best one for each type of QTMIs. As future work, we
expect to generalize CTMs to process higher dimensional
signals with the help of Clifford algebra as Clifford-type
moments.
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7 Appendix A

Proof of Theorem 2 Equation (28) can be written in a matrix
form as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ΦR
s,m( f ′′)
ΦR

s+v,m( f ′′)
ΦR

s+2v,m( f ′′)
...

ΦR
s+hv,m( f ′′)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= Cm
l diag(λ2+s, λ2+s+v, λ2+s+2v, · · · , λ2+s+hv)

Dm
l

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ΦR
s,m( f )
ΦR

s+v,m( f )
ΦR

s+2v,m( f )
...

ΦR
s+hv,m( f )

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (46)

where (h+1) is the size of the vector, and

s =
{

0 QROTMs, QOFMMs
m QZMs, QPZMs

v =
{

1 QROTMs, QOFMMs, QPZMs
2 QZMs

Applying (30) to the transformed image f ′′, it can also be
written in a matrix form as
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L R
s,m( f ′′)

L R
s+v,m( f ′′)

L R
s+2v,m( f ′′)

.

.

.

L R
s+hv,m( f ′′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Cm
h diag(Γ −(2+s)

f ′′ , Γ
−(2+s+v)
f ′′ , Γ

−(2+s+2v)
f ′′ , · · · , Γ −(2+s+hv)

f ′′ )

Dm
h

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΦR
s,m( f ′′)
ΦR

s+v,m( f ′′)
ΦR

s+2v,m( f ′′)
.
.
.

ΦR
s+hv,m( f ′′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (47)

Based on the definition of Γ f it can be easily verified that

Γ f ′′ = λΓ f . (48)

Substituting (46) and (48) into (47), and using the identity
Dm

h Cm
h = I , where I is the identity matrix, we obtain

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L R
s,m( f ′′)

L R
s+v,m( f ′′)

L R
s+2v,m( f ′′)

.

.

.

L R
s+hv,m( f ′′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Cm
h diag(Γ −(2+s)

f , Γ
−(2+s+v)
f , Γ

−(2+s+2v)
f , · · · , Γ −(2+s+hv)

f )

diag(λ−(2+s), λ−(2+s+v), λ−(2+s+2v), · · · , λ−(2+s+hv))

×Dm
h Cm

h diag(λ2+s , λ2+s+v, λ2+s+2v, · · · , λ2+s+hv)

Dm
h

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΦR
s,m( f )
ΦR

s+v,m( f )
ΦR

s+2v,m( f )
.
.
.

ΦR
s+hv,m( f )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Cm
h diag(Γ −(2+s)

f , Γ
−(2+s+v)
f , Γ

−(2+s+2v)
f , · · · , Γ −(2+s+hv)

f )

Dm
h

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΦR
s,m( f )
ΦR

s+v,m( f )
ΦR

s+2v,m( f )
.
.
.

ΦR
s+hv,m( f )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L R
s,m( f )

L R
s+v,m( f )

L R
s+2v,m( f )

.

.

.

L R
s+hv,m( f )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (49)

The proof has been completed. 
�
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