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Abstract We propose an exact global minimization frame-
work for certain variational image segmentation models, such
as the Chan–Vese model, involving four regions. A global
solution is guaranteed if the data term satisfies a certain con-
dition. We give a theoretical analysis of the condition for
L p type of data terms, such as in the Chan–Vese model and
Mumford Shah model for p = 2. We show experimentally
that the condition tends to hold in practice for p ≥ 2 and
also holds in many cases for more advanced data terms. If
the condition is violated, convex and submodular relaxations
are proposed which are not guaranteed to produce exact solu-
tions, but tend to do so in practice. We also build up simple
convex relaxations for some other four region segmentation
models, including Potts’ model. Algorithms are proposed
which are very efficient compared to related work due to the
simple and compact formulations.

Keywords Image segmentation · Variational models ·
Global optimization · Convex optimization · Combinatorial
optimization

1 Introduction

Image segmentation is one of the core problems in image
processing and computer vision. In mathematical terms, one
wishes to find a partition {Ωi }ni=1 of the closed image domain
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Ω ⊂ R
N . This paper deals with unsupervised image segmen-

tation, where the intensity values of the input image I defined
over Ω are the data available for making decisions about the
partition. Energy minimization formulations of such prob-
lems have demonstrated to be especially powerful, and have
been developed independently in the discrete and variational
community. The Mumford–Shah model [1] and Chan–Vese
model [2,3] have been established as some of the most fun-
damental variational image segmentation models, whereas
Potts’ model is one of the most important discrete optimiza-
tion models. Potts’ model and the Mumford–Shah model are
closely related in the limit as the number of pixels goes to
infinity.

Minimization of the energy in these models poses a funda-
mental challenge from a computational point of view. In a dis-
crete setting Potts’ model is NP-hard, therefore an algorithm
for minimizing the energy exactly with reasonable efficiency
is unlikely to exist. Numerical approaches for the variational
models, such as the level set method, involve the minimiza-
tion of non-convex energy functionals. Therefore algorithms
for minimizing the energy may easily get stuck in poor local
minima close to the initialization.

One notable exception where efficient global minimiza-
tion methods are available is segmentation problems with two
regions. Potts’ model restricted to two regions is computa-
tionally tractable in the discrete setting and can be minimized
by established algorithms such as max-flow/min-cut (graph
cuts) [4,5]. Convex reformulations of variational segmen-
tation models with two regions have been proposed in [5],
which can be used to design algorithms for computing global
minima.

If the number of regions is larger than two, there are
no available algorithms that can guarantee convergence to
a global minimum with reasonable efficiency (in polynomial
time). A level set formulation of the Chan–Vese model with

123



72 J Math Imaging Vis (2015) 51:71–97

multiple regions appeared in [3], which has since become
very popular. It was proposed to solve the resulting gradi-
ent descent equations numerically, leading to a local mini-
mum of the non-convex energy functional close to the ini-
tialization. In a discrete setting, alpha-expansion and alpha-
beta swap [4,6] are the most popular algorithms for approxi-
mately minimizing the energy in Potts’ model. More recently,
attempts to derive convex relaxations in a continuous varia-
tional setting have been proposed for image partition prob-
lems [7–12] and vector valued labeling problems [8,13,14].
Instead of solving the original non-convex problem to a local
minimum, a convex ”relaxation” of the problem is solved
globally. These approaches cannot in general produce global
solutions of the original problems, but instead lead to good
approximations in many practical situations. If the regu-
larization term promotes a linear inclusion property of the
regions, the optimization problem becomes easier and the
energy can be minimized exactly by graph cuts [15], but this
assumption is usually not valid in image segmentation appli-
cations.

The main advantages of variational models over dis-
crete optimization models are the rotational invariance and
ability to accurately represent geometrical entities such as
curve length and surface area without grid bias. The dis-
crete models are biased by the discrete grid, and will favor
curves or surfaces that are oriented along with the grid,
e.g. in horizontal, vertical or diagonal directions. On the
other hand, discrete optimization problems are much eas-
ier to analyze and characterize by the established field of
computational complexity. It is also easier to design global
minimization algorithms in the discrete setting, by apply-
ing established combinatorial optimization algorithms. This
includes in particular algorithms for max-flow and min-
cut, which may also be very efficient under certain imple-
mentations [4]. However, a disadvantage is that these algo-
rithms do not parallelize as easily, in contrast to contin-
uous optimization algorithms which are suitable for mas-
sive parallel implementation on graphics processing units
(GPUs).

1.1 Contributions

This paper proposes an exact global minimization framework
for segmentation problems with four regions in the level set
framework of Vese and Chan [3], both in a discrete setting
and in a convex variational setting. Because of a slight sim-
plification of the regularization term in this model, global
minimization is not NP-hard. It is shown that a discrete ver-
sion of the model can be minimized globally by computing
the minimum cut on a graph, under a (mild) submodular-
ity condition on the data term. Furthermore, a reformulation
of the Chan–Vese model is proposed in the variational set-
ting, which is convex under the same condition on the data

term that made the discrete version submodular. A threshold-
ing scheme, similar to the one that appeared in [16] for two
region problems, is proposed for converting solutions of the
convex relaxed problem into global solutions of the original
problem.

We give an analysis of a sufficient condition under which
L p type of data terms are submodular for p ≥ 1, which
includes the Chan–Vese /Mumford–Shah data terms for p =
2. Arguments are given that the condition is expected to
hold in practice for p ≥ 2, which is also confirmed by
experiments on a large image segmentation data base. If
the condition does not hold, simpler submodular and con-
vex relaxations are proposed. The relaxations are not guar-
anteed to produce global minima of the original problems,
but conditions on the computed solution are derived for
when they do. Experiments demonstrate that global solu-
tions can be obtained in practice also in these cases. We
also propose relaxations for some other regularization terms
including the continuous Potts’ regularizer, which are com-
pared experimentally with other recently proposed relax-
ations.

A dual formulation of the proposed convex problems is
derived and related to the maximum flow problem over the
graph used for combinatorial optimization of the discrete
problems, inspired by the previous work [17–19]. The deriva-
tion of the dual problem is presented informally for varia-
tional problems and we leave rigorous proofs of existence of
Lagrange multipliers as an open problem. After the eventual
spatial discretization, rigorous proofs are provided by apply-
ing known duality theory. Efficient algorithms are derived
based on the discretized dual problem, which are shown
experimentally to converge faster than algorithms for related
convex relaxations.

We focus fully on problems with four regions in this work.
Problems with four regions are important: By the 4-colour
theorem, four regions suffice to describe any partition of a
2D image. Some work has appeared on incorporating this
property in image segmentation models recently [20,21],
although a completely convex framework is still open. Our
methods apply directly in some settings like [22], where
the four colour theorem was used to segment 2D images
in a level set framework with four regions, in case rough a
priori information of the object locations was provided in
advance. Furthermore, in important applications one would
like to divide the image into four regions, such as brain
MRI segmentation where one wants to separate cerebrospinal
fluid, gray matter, white matter and background. The formu-
lations can also be extended to problems with more than
four regions, but the conditions which guarantee global min-
ima will be more strict, in which case one may need to set-
tle for approximate solutions. Such generalizations are out
of the scope of this paper and is the subject of a future
work.
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1.2 Organization

We start with a brief review of the segmentation models
and previous optimization approaches in Sect. 2. Section
3 presents the new discrete approach for computing global
minima by graph cuts, in case of submodular and non-
submodular data terms. In Sect. 4 we present an exact convex
reformulation of the segmentation models in a variational set-
ting, in case the data term is submodular. Section 5 gives a
detailed analysis of a condition that guarantees submodular-
ity/convexity of the energy. In Sect. 6, we present convex
relaxations in a variational setting for problems with non-
submodular data term and some other regularization terms.
Algorithms for the new convex models are derived in Sect. 7
and numerical experiments are presented Sect. 8.

The reader who is only interested in continuous optimiza-
tion may optionally skip Sect. 3 on discrete optimization.
However, Sect. 3 may be useful to understand the motiva-
tion behind some of the models and theorems, in particular
the primal and dual formulations which are closely linked to
min-cut and max-flow duality in the discrete setting.

Parts of this article are based on our preliminary confer-
ence paper [23]. More specifically, Sect. 3 on discrete opti-
mization is an extended and elaborated version of [23]. Prop
2 and 5 without proofs also appeared in [23]. The convex for-
mulation of the Chan Vese model in Sect. 4 and 6.1 appeared
initially as part of the first author’s Ph.D thesis [24].

2 Chan–Vese Model, the Mumford Shah Model and
Potts’ Model

2.1 Overview of the Models

We are interested in variational models which can generally
be formulated as

min
{Ωi }ni=1

n∑

i=1

∫

Ωi

fi (x) dx + ν

2
R({∂Ωi }ni=1) (1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k �= l .

The first term of the energy functional (1) is a data fitting term:
fi (x) is the cost of assigning x to region Ωi for each x ∈ Ω

and each i = 1, ..., n. In general, it assumed the functions
fi : Ω 
→ R, i = 1, . . . , n are uniformly bounded. A
prominent example of the data term, which was first proposed
in the seminal papers of Mumford-Shah [1] and Chan-Vese
[2,3], is as follows

fi (x) = |I (x)− ci |β, ∀x ∈ Ω, i = 1, . . . , n. (2)

Here ci ∈ R are parameters associated with each Ωi , for
instance the mean intensity value inside Ωi when β = 2.

The Chan–Vese model and the piecewise constant Mumford
Shah model [1] have the form of (1) with data terms (2)
and β = 2, but minimizes additionally over the parameters
ci ∈ R

min
{Ωi }ni=1,{ci }ni=1

n∑

i=1

∫

Ωi

|I (x)− ci |β dx + νR({∂Ωi }ni=1) (3)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k �= l .

For fixed c, (3) has the same form as (1). A simple algorithm
can be constructed which alternatingly minimizes (1) with
respect to ci and Ωi until convergence. Although a global
solution cannot be guaranteed, such a scheme is quite robust
as shown in [25]. There has also been attempts to derive
convex relaxations for the joint minimization problem (3) in
case n = 2 [26]. The most challenging problem is to optimize
in terms of the regions, and that will be the topic of this paper.

The last term R({∂Ωi }ni=1) is a regularization term,
weighted by the parameter ν ∈ R. Its purpose is to enforce
regular region boundaries, typically as a function of the
boundary lengths |∂Ωi |. A simple and intuitive example is
the total length of the region boundaries, i.e.

R({∂Ωi }ni=1) =
1

2

n∑

i=1

|∂Ωi | = 1

2

n∑

i=1

∫

∂Ωi

dHN−1. (4)

In a variational setting, such a boundary regularization was
proposed by Mumford and Shah [1]. If the image domain is
discrete, the equivalent discrete optimization problem with
the above regularization term is often called Potts’ model in
the discrete optimization community. We will also refer to
the continuous version (4) as Potts’ model in this paper.

2.2 Representation by Level Set Functions and Binary
Constrained Optimization

As a numerical realization, Chan and Vese [2,3] proposed to
represent the Mumford–Shah model with level set functions,
and solve the resulting gradient descent equations numeri-
cally. In case of two region (n = 2), the problem can be
expressed in terms of a level set function φ which satisfies
φ(x) > 0 for x ∈ Ω1 and φ(x) < 0 for x ∈ Ω2 as

min
φ

∫

Ω

{H(φ) f1 + (1− H(φ)) f2} + ν|DH(φ)|, (5)

where H(·) : R 
→ R is the Heaviside function H(x) = 0 if
x < 0 and H(x) = 1 if x ≥ 0.

Instead of using the non-convex heaviside functions, the
problem can also be written directly in terms of a binary
function φ such that φ(x) = 1 for x ∈ Ω1 and φ(x) =
0 for x in Ω2. This was first done in [27,28], coined the
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piecewise constant level set method (PCLSM), and resulted
in the energy functional

min
φ∈B

∫

Ω

{φ f1 + (1− φ) f2}dx + ν

∫

Ω

|Dφ|. (6)

In this paper we use the notation B for the set of binary
functions, i.e.

B = {φ ∈ BV(Ω) : φ(x) ∈ {0, 1} a.e x ∈ Ω}, (7)

where the space of functions of bounded variations is defined
as

BV(Ω) = {φ ∈ L1(Ω) :
∫

Ω

|Dφ| <∞}. (8)

The total variation is defined in a distributional sense as (see
e.g. [29])

ν

∫

Ω

|Dφ| := sup
q∈Cν

∫

Ω

φ div q, dx (9)

where

Cν = {q ∈ (C∞c (Ω))N : sup
x∈Ω
|q(x)|2 ≤ ν, }.

if Ω = R
N . In this work, we assume the image domain Ω is

closed and bounded, in which case the set Cν is

Cν = {q ∈ (C∞(Ω))N : sup
x∈Ω
|q(x)|2 ≤ ν, q · n = 0 at ∂Ω}.

(10)

The problem (6) is non-convex since the side constraint φ ∈
B is a non-convex set. In the seminal papers [16,30] it was
realized that the problem can be made convex by instead
minimizing of the convex set φ ∈ B′, where

B′ = {φ ∈ BV(Ω) : φ(x) ∈ [0, 1] a.e x ∈ Ω}. (11)

By first solving the convex relaxed problem (6) with the
above constraints, global minimizers of the binary con-
strained problem can be obtained by thresholding the solution
of the relaxed problem at any threshold in the interval (0, 1].

In [3], Vese and Chan proposed a multiphase level
set framework for the piecewise constant Mumford Shah
model. By using m = log2(n) level set functions, denoted
φ1, . . . , φm , n regions could be represented in terms of
the nonconvex heaviside functions H(φ1), ..., H(φm). An
important special case is the representation of four regions
by two level set functions φ1, φ2 as follows

min
φ1,φ2

E(φ1, φ2) = ν

∫

Ω

|DH(φ1)| + ν

∫

Ω

|DH(φ2)|

+
∫

Ω

{H(φ1)H(φ2) f2 + H(φ1)(1− H(φ2)) f1

+(1− H(φ1))H(φ2) f4

+(1− H(φ1))(1− H(φ2)) f3}dx . (12)

The above model can also be formulated directly in terms of
two binary functions φ1, φ2, which represent the four regions
as in Table 1. The resulting energy functional is then

min
φ1,φ2∈B

E(φ1, φ2)

= ν

∫

Ω

|Dφ1| + ν

∫

Ω

|Dφ2| + Edata(φ1, φ2), (13)

subject to (7), where

Edata(φ1, φ2) =
∫

Ω

{φ1φ2 f2 + φ1(1− φ2) f1

+(1− φ1)φ2 f4 + (1− φ1)(1− φ2) f3}dx, (14)

where f was given by (2) with β = 2. The problem (13)
is nonconvex because both the binary constraints (7) are
nonconvex and the energy functional Edata(φ1, φ2) is non-
convex in φ1, φ2. Since the energy functional itself it non-
convex, one cannot obtain global minimizers by simply min-
imizing over φ1, φ2 ∈ B′ as in the two region case. The
above level set formulation of the Mumford-Shah model is
often referred to as the Chan–Vese model.

Note that we have made a permutation in the interpretation
of the regions compared to [3], see Table 1. It can be checked
that the energy is still exactly the same for all possible φ1, φ2

(if the data functions fi are permuted accordingly). This per-
mutation is crucial for making the corresponding discrete
energy function submodular.

As pointed out in [3], the level set formulation (12), (13)
does not correspond exactly to the length term in Potts’
model, because two of the six boundaries are counted twice
in (13), namely the boundary between Ω1 and Ω4 and the
boundary between Ω2 and Ω3. The remaining 4 boundaries
are counted once.

Table 1 Representation of four regions by two binary functions

Original Permuted

x ∈ region 1 iff φ1(x) = 1, φ2(x) = 1 φ1(x) = 1, φ2(x) = 0

x ∈ region 2 iff φ1(x) = 1, φ2(x) = 0 φ1(x) = 1, φ2(x) = 1

x ∈ region 3 iff φ1(x) = 0, φ2(x) = 1 φ1(x) = 0, φ2(x) = 0

x ∈ region 4 iff φ1(x) = 0, φ2(x) = 0 φ1(x) = 0, φ2(x) = 1

The interpretation of the regions can be permuted without influencing
the energy
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2.3 Related Models and Convex Relaxations

In this section, we give a closer examination of two other
convex relaxation models that were discussed in the intro-
duction, which are especially related to our work.

In case the number of regions is larger than two, it is
possible to solve globally the simpler problem where the
regularization term promotes a linear inclusion property of
the regions. Define the integer valued ”labeling function” u
over the continuous image domain Ω . Any partition {Ωi }ni=1
can be described in terms of u by the convention u(x) = i
if x ∈ Ωi , i = 1, . . . , n. Consider the following integer
constrained problem

min
u

∫

Ω

fu(x)(x)+ ν

∫

Ω

|Du| , (15)

subject to u(x) ∈ {1, . . . , n} a.e. x ∈ Ω. In (15) the data
term fu(x)(x) is the data cost of assigning x to region Ωu(x).
However, the regularization term of (15) does not correspond
to the length term in the Potts’ model (1) because of its
dependency on the size of the discontinuities of u. Instead
of penalizing the jump from each region to the next equally,
the regularization term overpenalizes the boundary between
regions Ωi and Ω j where the indices i and j differ by more
than one. The overpenalization is much more severe than
the representation (13), see Fig. 1 for an illustration. Such
an overpenalization may cause the boundary between such
regions to split. Ishikawa [15] showed that a discrete version
of the model (15) could be minimized globally by computing
the minimum cut on a graph. Later, a convex optimization
framework was established for the continuous version (15)

Fig. 1 The model (15) overcounts more severely than (13). In the
model (15), the transition Ω1 −Ω4 is penalized three times, the tran-
sitions Ω1 −Ω3 and Ω2 −Ω4 are penalized 2 times while transitions
Ω1 −Ω2 and Ω3 −Ω4 are penalized once. In the model (13), the tran-
sition Ω1 − Ω4 is penalized two times, while all the other transitions
are penalized once

in [31]. The convex relaxation of Potts’ model [11] mini-
mizes (15) with additional constraints on the dual variables
to prevent overcounting of boundaries.

There has recently been attempts to generalize the relax-
ation of the model (15), to the case that the unknown is a
vector function, i.e. to solve

min
(u1,...,uK )

∫

Ω

f(u1,...,uK )(x)(x)+ ν

K∑

i=1

∫

Ω

|Dui |, (16)

The work [14] proposed the tightest convex relaxation of the
data term of this problem based on the convex envelope of the
data term of (16). This has been studied further in [32], where
convex relaxations for partition problems with generalized
representations of the regions in terms of several integer or
vector valued functions were derived. In case the unknown
(u1, . . . , uK ) is constrained to a discrete set of binary values,
the model (16) captures the model (13). By considering the
relaxation (11) in [14] for K = 2 and binary labels and
making a substitution of the simplex constrained variable v

such that v1
i = φi and v2

i = 1− φi , we obtain

min
{φi (x)∈[0,1] a.e. x∈Ω}mi=1

sup
{pk

0}mk=1,{pk
1}mk=1

×
∫

Ω

p1
0(1− φ1)+ p1

1φ
1 + p2

0(1− φ2)+ p2
1φ

2 dx

+
2∑

k=1

∫

Ω

|Dφk | (17)

such that

p1
1+ p2

0≤ f1, p1
1+ p2

1 ≤ f2, p1
0+ p2

0 ≤ f3, p1
0 + p2

1 ≤ f4.

Comparison of this problem with our convex models and
relaxations will be given in Sect. 4.3. A crucial tool for prov-
ing exactness of the relaxations is the coarea formula. Note
that it is not obvious that (17) satisfies the coarea formula,
therefore it cannot be determined if the relaxation will pro-
duce global minimizers.

3 Global Minimization of 4-Region Chan–Vese Model
in Discrete Setting by Graph Cuts

In this section we show how a discrete approximation of the
Chan–Vese model (13) can be minimized exactly by com-
puting the minimum cut on a novel graph.

3.1 Discrete Approximations

The variational problems in the last section can also be for-
mulated in the discrete setting as combinatorial optimization
problems. Let us first mention there are two variants of the
total variation term. The isotropic variant, by using 2-norm
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T V2(φ) =
∫

Ω

|Dφ|2 =
∫

Ω

√
|φx1 |2 + ...+ |φxN |2 (18)

and the anisotropic variant, by using 1-norm

T V1(φ) =
∫

Ω

|Dφ|1 =
∫

Ω

|φx1 | + ...+ |φxN |. (19)

The anisotropic version is not rotationally invariant and will
therefore favor results that are aligned along the coordi-
nate system. The isotropic variant is preferred, but cannot
be handled exactly by discrete optimization algorithms (e.g.
mapped to the cut on a graph). It can be approximated to arbi-
trary precision if the size of the neighborhood system in the
graph goes to infinity, a more detailed discussion is provided
below.

Let P denote the set of grid points, and N k
p denote the

set of k nearest neighbors of p ∈ P . In case N = 2, P =
{(i, j) ⊂ Z

2} and for each p = (i, j) ∈ P

N 4
p = {(i ± 1, j), (i, j ± 1)} ∩ P,

N 8
p = {(i ± 1, j), (i, j ± 1), (i ± 1, j ± 1)} ∩ P.

Let φ1
p and φ2

p denote the function values of φ1 and φ2 at
p ∈ P and denote the set of binary functions as

B = {φ : φp ∈ {0, 1} ∀p ∈ P} (20)

A discrete approximation of the two region model (6) can be
derived as

min
φ∈B

∑

p∈P
φp f1(p)+ (1− φp) f2(p)

+ν
∑

p∈P

∑

q∈N k
p

wpq |φp − φq |, (21)

where the usual choice of the data functions f are the discrete
version of (2)

fi (p) = |ci − u0
p|β. (22)

If the weights are set to wpq = 1, and the neighborhood
system is set to 4 (k = 4), the last term corresponds to a for-
ward discretization of the anisotropic total variation of φ. The
weights wpq can be derived by the Cauchy–Crofton formula
of integral geometry as in [33], to approximate the isotropic
total variation (13) (Euclidian curve length). However, this
requires that both the mesh size goes to zero and the number
of neighbors in the neighborhood system N k goes to infinity,
which complicates computation.

In the same manner, a discrete approximation of the model
with four regions (13) can be expressed as

min
φ1,φ2∈B

Ed(φ1, φ2) =
∑

p∈P
Edata

p (φ1
p, φ

2
p) (23)

+ ν
∑

p∈P

∑

q∈N k
p

wpq |φ1
p − φ1

q |+ν
∑

p∈P

∑

q∈N k
p

wpq |φ2
p − φ2

q |,

where

Edata
p (φ1

p, φ
2
p) = {φ1

pφ
2
p f2(p)+ φ1

p(1− φ2
p) f1(p))

+(1− φ1
p)φ

2
p f4(p)+ (1− φ1

p)(1− φ2
p) f3(p)}. (24)

3.2 Brief Review of Min-cut and Max-flow

Min-cut and max-flow are optimization problems defined
over a graph which are dual to each other. Important energy
minimization problems in image processing and computer
vision can be represented as min-cut or max-flow problems
over certain graphs, and be optimized globally by estab-
lished efficient max-flow algorithms. Such a min-cut/max-
flow approach is often called graph cuts in computer vision
[4,34].

A graph G = (V, E) is a set of vertices V and a set of
directed edges E . We let (v,w) denote the directed edge
going from vertex v to vertex w, and let c(v,w) denote the
weight on this edge. In the graph cut scenario there are two
distinguished vertices in V , the source {s} and the sink {t}.
A cut on G is a partition of the vertices V into two disjoint
connected sets (Vs , Vt ) such that s ∈ Vs and t ∈ Vt . The
cost of the cut is defined as

c(Vs,Vt ) =
∑

(v,w)∈E s.t. v∈Vs ,w∈Vt

c(v,w). (25)

The minimum cut problem is the problem of finding a cut of
minimum cost. The maximum flow problem can be defined
over the same graph. A flow p on G is a function p : E 
→ R.
The weights c(e) are upper bounds (capacities) on the flows
p(e) for all e ∈ E , i.e.

p(e) ≤ c(e), ∀e ∈ E . (26)

The max-flow problem aims to maximize the amount of from
from {s} to {t} under flow conservation at each vertex. The
theorem of Fulk–Fulkerson [35] states that this problem is
dual/equivalent to the min-cut problem. An efficient imple-
mentation of augmented paths max-flow algorithm [35], spe-
cialized for image processing problems can be found online
in [4]. This algorithm has been used in our experiments. For a
given flow p, it is useful to define the residual edge capacities
as R(e) = c(e)− p(e) ∀e ∈ E .

Graph cuts have been used in computer vision for mini-
mizing energy functions of the form

min
xi∈{0,1}

∑

i

Ei (xi )+
∑

i< j

Ei, j (xi , x j ), (27)

123



J Math Imaging Vis (2015) 51:71–97 77

where typically Ei is a data term, Ei, j is a regularization
term, i is the index of each grid point (pixel) and xi is a
binary variable defined for each grid point. In order to be
representable as a cut on a graph, it is required that the energy
function is submodular [34,36], i.e. the regularization term
must satisfy

Ei, j (0, 0)+ Ei, j (1, 1) ≤ Ei, j (0, 1)+ Ei, j (1, 0), ∀i < j.

3.3 Graph Construction for Energy Minimization Over
Multiple Regions

Observe that in the discrete energy function (23), not only
the regularization term, but also the data term is composed of
pairwise interactions between binary variables. In this section
we show how to construct a graph G such that there is a one-
to-one correspondence between cuts on G and the binary
functions φ1 and φ2, provided the data term is submodular,
i.e.

Edata
p (1, 1)+ Edata

p (0, 0) ≤ Edata
p (1, 0)+ Edata

p (0, 1)

(28)

for each p ∈ P . Furthermore, the minimum cost cut will
correspond to binary functions φ1 and φ2 that minimize the
energy (23)

min
(Vs ,Vt )

c(Vs,Vt ) = min
φ1,φ2∈B

Ed(φ1, φ2)+
∑

p∈P
σp, (29)

where σp ∈ R are fixed for each p ∈ P . In [34,36] a receipt
was provided for minimizing a submodular function of the
form (27) by computing the minimum cut on a graph. Prob-
lems of the form (23), where both the data term and regular-
ization term consist of interactions between pairwise binary
variables have not been directly considered. We provide a
different geometric derivation of the graph for the specific
problem (23) which does not rely on earlier results.

In the graph, two vertices are associated with each grid
point p ∈ P . They are denoted vp,1 and vp,2, and correspond
to each of the level set functions φ1 and φ2. Hence the set of
vertices is formally defined as

V = {vp,i | p ∈ P, i = 1, 2} ∪ {s} ∪ {t}. (30)

The edges are constructed such that the relationship (29)
is satisfied. We begin with edges constituting the data term
of (23). For each grid point p ∈ P they are defined as

ED(p) = (s, vp,1) ∪ (s, vp,2) ∪ (vp,1, t) ∪ (vp,2, t)

∪(vp,1, vp,2) ∪ (vp,2, vp,1). (31)

The set of all data edges are denoted ED and defined as
∪p∈PED(p). The edges corresponding to the regularization
term are defined as

ER = {(vp,1, vq,1), (vp,2, vq,2) ∀p, q ⊂ P s.t.q ∈ N k
p }.

(32)

For any cut (Vs, Vt ), the corresponding binary functions are
defined by

φ1
p =

{
1 if vp,1 ∈ Vs,

0 if vp,1 ∈ Vt ,
φ2

p =
{

1 if vp,2 ∈ Vs,

0 if vp,2 ∈ Vt .
(33)

Weights are assigned to the edges such that the relationship
(29) is satisfied. Weights on the regularization edges are sim-
ply given by

c
(
vp,1, vq,1

) = c
(
vq,1, vp,1

) = c
(
vp,2, vq,2

) = c
(
vq,2, vp,2

)

= νwpq , ∀p ∈ P, q ∈ N k
p . (34)

We now concentrate on the weights on data edges ED . For
grid point p ∈ P , let

c(vp,1, t) = A(p), c(vp,2, t) = B(p), c(s, vp,1) = C(p),

c(s, vp,2) = D(p), c(vp,1, vp,2) = E(p), c(vp,2, vp,1) = F(p).

(35)

In Fig. 2a the graph corresponding to an image of one pixel
p is shown. It is clear that these weights must satisfy
⎧
⎪⎪⎨

⎪⎪⎩

A(p)+ B(p) = f2(p)+ σp

C(p)+ D(p) = f3(p)+ σp

A(p)+ E(p)+ D(p) = f1(p)+ σp

B(p)+ F(p)+ C(p) = f4(p)+ σp .

(36)

This is a non-singular linear system for the weights A(p),
B(p), C(p), D(p), E(p), F(p). Negative weights are not
allowed. By choosing σp large enough there will exist a
solution with A(p), B(p), C(p), D(p) ≥ 0. However, the
requirement E(p), F(p) ≥ 0 implies that

f1(p)+ f4(p) = A(p)+ B(p)+ C(p)

+ D(p)+ E(p)+ F(p)− 2σp ≥ A(p)+ B(p)

+ C(p)+ D(p)− 2σp = f2(p)+ f3(p) (37)

Fig. 2 a The graph corresponding to the data term at one grid point
p. b A sketch of the graph corresponding to the energy function of a
1D signal of two grid points p and q. Data edges are depicted as red
edges and regularization edges are depicted as blue arrows (Color figure
online)
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for all p ∈ P . By inserting the data term (24) for f , we obtain
the following requirement

|c2 − u0
p|β + |c3 − u0

p|β ≤ |c1 − u0
p|β + |c4 − u0

p|β, (38)

for all p ∈ P . If the distribution of the constant values satis-
fies (38), there exists a solution to (36) with E(p), F(p) ≥ 0
for all p ∈ P . Hence the problem can be solved globally
by computing the minimum cut on the graph. In Sect. 5, we
derive and analyze a sufficient condition that the data term
is submodular, that does not depend on the input image u0.
Together with numerical experiments, it is shown that it is
expected to hold in practice in case β ≥ 2.

Note 1 Three region segmentation can be handled as a
special case by putting infinite cost on one of the four assign-
ments. For instance, assignment to Ω4 will have infinite cost
by putting F(p) = ∞. The cost of the remaining assignments
are determined by finding a solution to the 3 first equations
of the linear system (36). This system always has a solution
with E(p) ≥ 0, consequently the data term can always be
made submodular in case of three regions. One solution is
simply D(x) = f1(x), E(x) = f2(x), A(x) = f3(x) and
F(x) = ∞. It should be noted however, that the resulting
graph becomes identical to the graph from [15] with the sim-
plification from [25] (where n−1 nodes are assigned to each
pixel instead of n). The resulting minimization problem is
exactly (15) with n = 3 in this case.

3.4 Submodular Relaxation of Non-submodular Data Terms

Consider the situation that the submodularity condition (37)
is violated. Although the problem can be represented with
negative E(.), F(.), it is not computationally tractable in gen-
eral, since this amounts to find the minimal cut on a graph
which contains negative edges, which is NP-hard in general.
However, the problem can be solved exactly for many practi-
cal input data by a relatively simple combinatorial relaxation.

Approximate minimization of non-submodular energy
functions in computer vision has been the subject of previous
research, see [37] for a review. One of the most successful
approaches is the Quadratic Pseudo Boolean Optimization
(QPBO) [37,38]. In [39] it was shown that removing negative
edges, often called truncation, can be effective in minimiz-
ing non-submodular functions. We show that such a compu-
tationally simple submodular relaxation often can produce
exact solutions in practice for our problem when the regions
are permuted as in Table 1, and derive a condition which can
checked after computation to verify whether one has obtained
an exact solution. The relaxation can also be extended to the
continuous setting, which is the topic of Sect. 6.1. The fol-
lowing relaxation was first published in shorter form in our
conference paper [23]. An algorithm for minimizing the dis-
crete energy (23) with QPBO was later proposed in [40].

QPBO can in theory give a better approximation (provided
the permutation in Table 1 is made), but we expect it to be
slower computationally because: (1) extra auxiliary nodes
must be added to the graph before computing the minimum
cut, (2) potential ”unlabeled” nodes must subsequently be
dealt with by an iterative brute force algorithm.

Observe that for all p ∈ P where (38) is violated, a solu-
tion can always be constructed to the linear system (36) where
either E(p) = 0 or F(p) = 0. To prove this, let

A(p), B(p), C(p), D(p), E(p), F(p) be any solution to
the linear system (36) where E(p)<0 or F(p)<0. : Assume
without loss of generality that E(p) < 0 and E(p) ≤ F(p).
Then another solution to (36) can be constructed with as fol-
lows: A(p)← A(p) − F(p)/2, B(p)← B(p) + F(p)/2,
C(p) ← C(p) + F(p)/2, D(p) ← D(p) − F(p)/2,
E(p) ← E(p) + F(p) and F(p) ← 0. Similarly, if
F(p) < 0 and F(p) ≤ E(p), one can construct another
solution where E(p) = 0.

Let G be the graph identically to G except that all edges
of negative weight are removed. That is, for each p ∈ P , the
weights on the data edges in G are constructed as

c(vp,1, t) = A(p), c(vp,2, t) = B(p),

c(s, vp,1) = C(p), c(s, vp,2) = D(p),

c(vp,1, vp,2) = max(E(p), 0), c(vp,2, vp,1)

= max(F(p), 0), (39)

while the regularization edges are given as before by (34).
The minimum cut on G can easily be computed by max-flow.
As will be discussed in Sect. 5, the condition (64) may only
be violated if c1, c2, c3 are close to each other compared to
c4 and u0

p at p ∈ P is close to c4. Measured by the data
term, the worst assignment of p is to phase 1, which has the
cost |c1 − u0

p|β . By removing the edge with negative weight
E(p) < 0, the cost of this assignment becomes even higher
|c1−u0

p|β−E(p). Alternatively, if c2, c3, c4 are close to each
other compared to c1 and u0

p is close to c1 then F(p) < 0. By
removing the edge with negative weight, the cost of the worst
assignment of u0

p becomes higher |c4 − u0
p|β − F(p). We

therefore expect minimum cuts on G to be almost identical
to minimum cuts on G. Define the sets

P1 = {p ∈ P | E(p) < 0, F(p) ≥ 0},
P2 = {p ∈ P | F(p) < 0, E(p) ≥ 0},

consisting of all p ∈ P for which either E(p) < 0 or F(p) <

0 (Fig. 3).
Assume the maximum flow has been computed on

G, let RA(p), RB(p), RC (p), RD(p) denote the residual
capacities on the edges (vp,1, t), (vp,2, t), (s, vp,1), (s, vp,2)

respectively. The following theorem gives a criterion for
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Fig. 3 Illustration of graph G in case E(p) < 0. a G. b G

when the minimum cut on G yields the optimal solution of
the original problem.

Theorem 1 Let G be a graph as defined in (30)-(32) and
(34), with weights A(p), B(p), C(p), D(p), E(p), F(p)

satisfying (36). Let G be the graph with weights as in G, with
the exception c(vp,1, vp,2) = 0 ∀p ∈ P1 and c(vp,2, vp,1) =
0 ∀p ∈ P2.

Assume the maximum flow has been computed on the
graph G. If

RA(p)+ RD(p) ≥ −E(p), ∀p ∈ P1

and RB(p)+ RC (p) ≥ −F(p), ∀p ∈ P2, (40)

then min-cut (G) = min-cut (G).

Proof We will create a graph G of only positive edge weights,
such that the minimum cut problem on G is a relaxation of
the minimum cut problem on G. The graph G is constructed
with weights as in G with the following exceptions

c(vp,1, t) = A(p)− RA(p), ∀p ∈ P1,

c(s, vp,2) = D(p)− RD(p), ∀p ∈ P1,

c(vp,2, t) = B(p)− RB(p), ∀p ∈ P2,

c(s, vp,1) = C(p)− RC (p), ∀p ∈ P2.

We first show min-cut(G) ≤ min-cut(G) ≤ min-cut(G).
The right inequality follows because all the edges in the
graph G have greater or equal weight than the edges in the
graph G. To prove the left inequality, observe that only data
edges for p ∈ P1 ∪ P2 differ between G and G. For each
p ∈ P1 there are 4 possibilities for the cut (Vs, Vt ). Since
RA(p), RB(p), RC (p), RD(p) ≥ 0, the cost of all the 3 cuts
vp,1, vp,2 ∈ Vs , vp,1, vp,2 ∈ Vt and vp,1 ∈ Vt , vp,2 ∈ Vs

are lower in G than in G. The last cut vp,1 ∈ Vs, vp,2 ∈ Vt

has the cost A(p) + B(p) + E(p) in the G and the cost
A(p)+ D(p)− (RA(p)+ RD(p)) ≤ A(p)+ D(p)+ E(p)

in the graph G. The same argument shows that all possible
cuts have a lower or equal cost in G than in G for p ∈ P2.

Both G and G have only positive edge weights. Since all
the edges have greater or equal weight in G than in G it follows
that

max-flow(G) ≤ max-flow(G).

Hence, since the max flow on G is feasible on G it is also opti-
mal on G. Therefore, by duality min-cut(G) = min-cut(G)

which implies min-cut(G) = min-cut(G). ��
Therefore, by computing the max flow onG and examining

the residual capacities for criterion (40), it can be checked
whether the solution is optimal on G.

4 Exact Convex Formulation of 4-Region Chan–Vese
Model in the Continuous Setting

Recall that the energy functional of the optimization problem
(13) is non-convex in φ1, φ2. In this section we derive a
formulation of (13) which is convex under the same condition
(64) that made the discrete energy function (23) submodular,
and hence allows for the computation of global minimizers.
The convex formulation allows to deal with the rotationally
invariant total variation (18), which cannot be handled by
discrete algorithms.

For each x ∈ Ω , let A(x), B(x), C(x), D(x), E(x), F(x)

be a solution to the linear system

⎧
⎪⎪⎨

⎪⎪⎩

A(x)+ B(x) = f2(x)+ σ(x)

C(x)+ D(x) = f3(x)+ σ(x)

A(x)+ E(x)+ D(x) = f1(x)+ σ(x)

B(x)+ F(x)+ C(x) = f4(x)+ σ(x)

(41)

where σ(x) can be an arbitrary finite number. This is the
same linear system as (36). Define the weights

C1
s (x) = C(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = B(x), (42)

C12(x) = E(x), C21(x) = F(x).

The above functions are uniformly bounded, since { fi }4i=1
are assumed to be uniformly bounded. It can be checked that
the following problem is equivalent to the original problem
(13)

min
φ1,φ2

E P (φ1, φ2) =
∫

Ω

{(1− φ1)C1
s + (1− φ2)C2

s }(x) dx

+
∫

Ω

φ1(x)C1
t (x)+ φ2(x)C2

t (x) dx

+
∫

Ω

max{φ1(x)− φ2(x), 0}C12(x) dx
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−
∫

Ω

min{φ1(x)− φ2(x), 0}C21(x) dx

+ν

∫

Ω

|Dφ1| + ν

∫

Ω

|Dφ2| , (43)

such that φ1, φ2 ∈ B, where B is the set of binary functions
defined in (7).

Proposition 1 Let φ1, φ2 be a minimizer of (43), then φ1, φ2

is a minimizer of (13).

Proof For any φ1, φ2 ∈ B, E(φ1, φ2) = E P (φ1, φ2) +∫
Ω

σ(x) dx . Therefore φ1, φ2 is a minimizer of (43) if and
only if φ1, φ2 is a minimizer of (13). ��
The energy functional of (43) is convex if and only if
C12(x), C21(x) ≥ 0 for all x ∈ Ω , i.e. iff E(x), F(x) ≥ 0
for all x ∈ Ω . The weights C1

s (x), C2
s (x), C1

t (x) and C2
t (x)

can be negative without influencing the convexity of (43).
As in Sect. 3, by comparing the sum of row 1–2 and row 3–4
and requiring E(x), F(x) ≥ 0 we get the condition

f2(x)+ f3(x) = A(x)+ B(x)+ C(x)+ D(x)

≤ A(x)+ B(x)+ C(x)+ D(x)+ F(x)+ E(x)

= f1(x)+ f4(x) (44)

for all x ∈ Ω . By inserting the usual data term (2), we get
the condition

|c2−u0(x)|β+|c3−u0(x)|β ≤ |c1−u0(x)|β+|c4−u0(x)|β,

(45)

for all x ∈ Ω . This is exactly the same condition (38) that
made the discrete energy function submodular. In Sect. 5
we derive and analyze a sufficient condition that (45) holds
for any possible input image. Analogously to the discrete
setting, we provide here the explicit expression for one of
the solutions of (41)

A(x) = max{ f2(x)− f4(x), 0},
C(x) = max{ f4(x)− f2(x), 0},
B(x) = max{ f4(x)− f3(x), 0},
D(x) = max{ f3(x)− f4(x), 0},
E(x) = f1(x)+ f4(x)− f2(x)− f3(x), F(x) = 0.

where fi (x), i = 1, . . . 4 are normally given by (2).
As in the discrete case, 3 region segmentation can be han-

dled by putting infinite cost on one of the four assignments.
In this case there are no restrictions on the data term and the
problem can always be made convex. See Note 1 in Sect. 3.3
for details on how to set the coefficients.

Consider now the convex relaxed problem, where the
binary constraints φ1, φ2 ∈ B are replaced by the convex
constraints φ1, φ2 ∈ B′ defined in (11), i.e.

B′ = {φ ∈ BV(Ω) : φ(x) ∈ [0, 1] a.e x ∈ Ω}.

A solution to the minimization problem (43) with the above
constraints exists in BV(Ω) since the energy functional is
convex, lower semi-continuous, coercive, bounded below
and the constraint set is a closed convex set. The next theorem
shows that a global minimizer of the binary constrained non-
convex problem can be obtained by thresholding the solution
of the convex relaxed problem.

Theorem 2 Assume the data term of (13) satisfies the con-
dition (44), such that C12(x), C21(x) ≥ 0 for all x ∈ Ω

in (43). Let φ1∗, φ2∗ be any solution of (43) subject to the
binary constraints φ1, φ2 ∈ B′. Denote by φ�

i : Ω 
→ {0, 1}
the binary function

φ�
i (x) =

{
1 if φi ∗(x) ≥ �

0, if φi ∗(x) < �
(46)

Then for any � ∈ (0, 1], (φ�
1, φ

�
2) is a solution of (43) and

(13) subject to φ1, φ2 ∈ B.

This theorem shows two important things. First, the convex
relaxation (43) subject to (11) is exact, the minimum energy
of the relaxed problem always equals the minimum energy of
the original problem. Secondly, the thresholding technique
allows to convert solutions of the relaxed problem into binary
solutions of the original problem, in case of non-uniqueness.

Proof For any x ∈ Ω , if φi (x) ∈ [0, 1] then
∫ 1

0 φ�
i (x) d� =

φi (x) and
∫ 1

0 1 − φ�
i (x) d� = 1 − φi (x). Furthermore, if

φ1(x) > φ2(x) then φ�
1(x) ≥ φ�

2(x) and if φ1(x) ≤ φ2(x)

then φ�
1(x) ≤ φ�

2(x) for all � ∈ (0, 1]. Therefore

1∫

0

max(φ�
1(x)− φ�

2(x), 0) d� = max(φ1(x)− φ2(x), 0)

and

−
1∫

0

min(φ�
1(x)− φ�

2(x), 0) d� = −min(φ1(x)− φ2(x), 0).

By the coarea formula

1∫

0

∫

Ω

|Dφ�
i | d� =

∫

Ω

|Dφi | .
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Combining the above properties we obtain that for any
φ1, φ2 ∈ B′

1∫

0

E P (φ�
1, φ

�
2) d�

=
1∫

0

{ ∫

Ω

(1− φ�
1(x))C1

s (x)+ (1− φ�
2(x))C2

s (x)

+ φ�
1(x)C1

t (x)+ φ�
2(x)C2

t (x)

+max{φ�
1(x)− φ�

2(x), 0}C12(x)

−min{φ�
1(x)− φ�

2(x), 0}C21(x) dx

+ ν|Dφ�
1| + ν|Dφ�

2|
}
d�

= E P (φ1, φ2). (47)

For a pair φ1, φ2 that minimizes the energy, clearly E P (φ1,

φ2) ≤ E P (φ�
1, φ

�
2) for any � ∈ (0, 1]. However, equality (47)

can then only be true provided E P (φ1, φ2) = E P (φ�
1, φ

�
2)

for almost every � ∈ (0, 1]. In other words, φ�
1, φ

�
2 also min-

imizes the energy for almost every � ∈ (0, 1].
It can also be shown that the theorem is valid for every

� ∈ (0, 1]. The transition from ”almost every” to ”every” was
proved for two regions in [41]. We use the same arguments
to prove our theorem involving four regions. For some fixed
� ∈ (0, 1], there exists a strictly decreasing sequence {�k}∞k=1

converging to � such that φ
�k
1 , φ

�k
2 is a minimizer of (43) for

every k = 1, ... and φ
�k
1 , φ

�k
2 converges to φ�

1, φ
�
2 for almost

every x ∈ Ω . By lower semi-continuity of the functional
(43), it follows that φ�

1, φ
�
2 is a minimizer of (43). ��

Discretization In order to use the convex relaxation (43) in a
numerical algorithm, discretization is necessary. We assume
in general that φ1 and φ2 are defined over a discrete domain,
also denoted Ω , containing finitely many grid points. For
example, a 2D rectangular image domain can be regarded as
a regular grid Ω = {(i, j) : i = 1, . . . , nx , j = 1, . . . , ny}
where each grid point corresponds to a pixel. The notations
B and B′ denote the set of functions that are binary and con-
tained in [0, 1] respectively, at each grid point in Ω . There
are many choices of discretization of the differential and inte-
gration operators. In this paper, we avoid dependency on a
particular choice of discretization and use the notations D,

∫

also for general discrete differential and integration opera-
tors acting on functions defined over the discrete domain Ω .
Using these notations, we can refer to (13) as a discretized
model by specifying that all operators are discrete. An impor-
tant distinction from the discrete models in Sect. 3, is the use
of the 2-norm total variation (18), which has the advantage of
being rotationally invariant. It should be noted that the coarea
formula does not hold exactly for any known discretization
of the 2-norm total variation (but does so for the 1-norm),

therefore the thresholding theorem above only holds approx-
imately after discretization. Importantly, the approximation
error goes to zero as the discretization becomes finer. The
graph representable models (23) require that also the num-
ber of neighbors in the neighborhood system goes to infitinity
in order to converge to the rotationally invariant continuous
regularization.

4.1 Primal–Dual Model

In the following parts of this section, we build up primal–
dual and dual formulations of the primal model (43) in case
C12(x), C21(x) ≥ 0. The dual formulation eliminates the
problem of non-differentiability of the data term in (43), and
allows to build up very efficient algorithms which are pre-
sented in Sect. 7. Another reason for deriving the dual prob-
lem is to reveal connections between the convex relaxation
(43) and the discrete min-cut/max-flow approach developed
in Sect. 3. The dual model is inspired by our previous work
[18,19], where continuous max-flow and min-cut models cor-
responding to binary (two region) problems were derived.

Remark The dual and primal–dual formulations are pre-
sented with continuous notation. We keep the presentation
of the spatially continuous formulations somewhat informal.
Questions regarding existence of dual and primal–dual solu-
tions in the continuous setting are quite technical and left
open to future research. For spatially discretized problems,
these properties are proved by existing duality theory.

Define the functional

D(φ1, φ2)

= sup
ps ,pt ,p12,q

∫

Ω

{(1− φ1)p1
s + (1− φ2)p2

s }(x) dx

+
∫

Ω

φ1(x)p1
t (x)+ φ2(x)p2

t (x)

+(φ1(x)− φ2(x))p12(x) dx

+
∫

Ω

φ1(x) div q1(x) dx +
∫

Ω

φ2(x) div q2(x) dx,

(48)

subject to

p1
s (x) ≤ C1

s (x), p2
s (x) ≤ C2

s (x), (49)

p1
t (x) ≤ C1

t (x), p2
t ≤ C2

t (x), (50)

− C21(x) ≤ p12(x) ≤ C12(x), a.e. x ∈ Ω (51)

q1 ∈ Cν, q2 ∈ Cν, (52)

where in the continuous setting, pi
s, pi

t , p12 ∈ L1(Ω) and
Cν is defined in (10). Observe that all the dual variables
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pi
s, pi

t , p12, qi , i = 1, 2 in (48) are independent, and can be
optimized separately.

We will show that the minimization problem (43) with the
convex constraints φ1, φ2 ∈ B′ can be reformulated as the
primal–dual model

inf
φ1,φ2

D(φ1, φ2). (53)

For each x ∈ Ω , the integrand of the first 4 terms of (48) can
be rewritten for i = 1, 2 as

sup
pi

s (x)≤Ci
s (x)

((1− φi )pi
s)(x)

=
{

((1− φi )Ci
s)(x) if φi (x) ≤ 1

∞ if φi (x) > 1
(54)

sup
pi

t (x)≤Ci
t (x)

φi (x)pi
t (x) =

{
(φi Ci

t )(x) if φi (x) ≥ 0
∞ if φi (x) < 0.

(55)

Note that (53) is bounded above. To see this, define the zero
function ∅(x) = 0 ∀x ∈ Ω . Then infφ1,φ2 D(φ1, φ2) ≤
D(∅,∅) = ∫

Ω
C1

s (x) + C2
s (x) dx due to constraints (49).

Since C1
s and C2

s are uniformly bounded, this expression is
finite. From (54) and (55) it therefore follows that optimal
variables φ1, φ2 must satisfy the constraints

φ1(x), φ2(x) ∈ [0, 1] a.e. x ∈ Ω. (56)

If this was not the case, the primal–dual energy (48) would
be infinite, contradicting boundedness from above.

The dual representation of total variation (9) can be used
to rewrite the two last terms of (48)

sup
qi∈Cν

∫

Ω

φi div qi dx = ν

∫

Ω

|Dφi | , i = 1, 2. (57)

From (57) it follows that optimal variables φ1, φ2 satisfy∫
Ω
|Dφi | <∞, otherwise the energy would be infinite, again

contradicting boundedness from above. Together with obser-
vation (56), it therefore follows that optimal variables φ1, φ2

are contained in the set B′.
The 5th term can also be optimized for p12 pointwise as

follows

sup
−C21(x)≤p12(x)≤C12(x)

(φ1(x)− φ2(x)) p12(x)

= max{φ1(x)− φ2(x), 0}C12(x)

−min{φ1(x)− φ2(x), 0}C21(x). (58)

Therefore, combining (54), (55), (57) and (58), by maximiz-
ing the primal dual model (48) for p1

s , p2
s , p1

t , p2
t , p12, q1, q2,

we obtain the primal model (43) subject to the convex con-
straints φ1, φ2 ∈ B′.

Discretization We can also use the above notation for
the discretized problem. After discretization, the functions
pi

s, pi
t i = 1, 2 and p12 are defined over the same discrete

domain Ω as φ1, φ2, while the spatial flow functions q1 and
q2 are defined between neighboring grid points. For exam-
ple, if Ω is a 2D regular grid, the flow functions are typically
defined on the middle points Ωx = {(i − 1/2, j) : i =
1, . . . , nx+1, j = 1, . . . , ny} and Ω y = {(i, j−1/2) : i =
1, . . . , nx , j = 1, . . . , ny + 1} and div : Ωx

d ×Ω
y
d 
→ Ωd

maps q onto Ωd . The set Cν is in this case

Cν = {(q1, q2) : Ωx
d ×Ω

y
d 
→ R

2 :
(|q

1(i − 1
2 , j)+ q1(i + 1

2 , j)

2
|2

+ |q
2(i, j − 1

2 )+ q2(i, j + 1
2 )

2
|2) 1

2 ≤ ν

i = 1, . . . , nx , j = 1, . . . , ny }. (59)

There are several choices for the discrete divergence div, but
it must satisfy div = −D∗ for the particular choice of discrete
gradient D, such that the defining identity

∫
Ω

φ div q dx =
− ∫

Ω
Dφ · q dx is valid for all discrete φ and q. A simple

choice of discretization is a forward scheme for D : Ωd 
→
Ωx

d×Ω
y
d and a backward scheme for div. In our experiments,

we use a mimetic discretization scheme [42]. Note that if Ω

contains finitely many points, the expression a.e. x ∈ Ω has
the same meaning as ∀x ∈ Ω .

4.2 Dual model

The terms in the primal–dual functional (48) can be
rearranged as follows

D(φ1, φ2) = {
sup

ps ,pt ,p12,q

∫

Ω

p1
s (x)+ p2

s (x) dx (60)

+
∫

Ω

φ1(x)(div q1(x)− p1
s (x)+ p1

t (x)+ p12(x)) dx

+
∫

Ω

φ2(x)(div q2(x)− p2
s (x)+ p2

t (x)− p12(x)) dx
}
,

subject to (49)–(52). Observe that since the variables φ1, φ2

are unconstrained in the primal–dual model (53), they can be
interpreted as Lagrange multipliers for the constraints

div q1(x)− p1
s (x)+ p1

t (x)+ p12(x) = 0, a.e. x ∈ Ω

(61)

div q2(x)− p2
s (x)+ p2

t (x)− p12(x) = 0, a.e. x ∈ Ω.

(62)

see e.g. [43] (0.0.13)-(0.0.14).
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Remark In the continuous setting, i.e. for variational prob-
lems, it is complicated to establish existence of Lagrange
mulipliers unless the constraints satisfy conservative condi-
tions. The nature of the open set Cν makes it difficult to
apply well known theory, see discussion below more detail.
We therefore leave strict proofs of existence of solutions as an
open problem. The derivations in this section regarding con-
tinuous spatial domains must therefore be seen in an informal
sense. After discretization, the existence of Lagrange mul-
tipliers follows directly from the min-max theorem, more
details are given below.

By removing the Lagrange multipliers, we obtain the dual
problem

sup
ps ,pt ,p12,q

E D(ps, pt , p12, q) =
∫

Ω

p1
s (x)+ p2

s (x) dx

(63)

subject to the constraints (49)–(52), (61) and (62). The dual
problem (63) can be interpreted as a maximum flow prob-
lem over a continuous generalization of the graph proposed
in Sect. 3.3. The dual variables pi

s, pi
t , p12, qi i = 1, 2 are

interpreted as flow functions on the edges and the constraints
(61) and (62) are flow conservation constraints. The inter-
ested reader can find the details in Appendix 1.

Discussion on existence of primal–dual solutions In the
spatially continuous setting, the above functional spaces are
not reflexive, therefore one cannot directly apply the mini-
max theorem to prove existence of a primal–dual solution. As
established under (55), the dual problem is bounded above.
This guarantees the existence of a maximizing sequence

{pi
s

k}∞k=1, {pi
t
k}∞k=1, {p12k}∞k=1, {qi k}∞k=1 inside the constraint

set (10) such that limk→∞ E D(pk, qk) is equal to the supre-
mum in problem (63). In the classical definition of existence,
there must exist a maximizing subsequence converging to a
point within the constraint set. However, this is not true for
this problem, because the supremum with respect to the flow
variable q may be attained for a discontinuous flow field q,
which is in the closure of the constraint set of smooth q (10)
and not contained in the set itself. When we speak of a dual
solution, we shall mean a solution where q may be discon-
tinuous.

After discretization, the functional spaces become finite
dimensional Hilbert spaces. One can therefore directly apply
the minimax theorem, Prop. 2.4 of [44] Chapter VI, to con-
clude that a primal–dual solution exists to the problem (48)
and the duality gap between the primal and dual problems is
zero.

4.3 Comparison to Product Space relaxation [14]

It is interesting to compare our convex model (43) to the con-
vex relaxation (17) derived from [14]. The data term of the

relaxation (17) is based on the convex envelope of the data
term of the original problem, which is the tightest convex
relaxation of the data term that theoretically exists (meaning
it has at least as high value as any other convex relaxation for
each feasible φ1, φ2). However, after the regularization term
is added, there is no guarantee that an exact solution will be
produced. In the last section it was established that our convex
model with regularization term exactly represents the original
problem: It has the same minimal value and minimizers of the
original problem can be obtained by thresholding the solu-
tion to the convex problem. This indicates that the relaxation
(17) is also exact in case of submodular data terms with regu-
larizer, since the relaxation of the data term must be at least as
tight as the proposed relaxation. Therefore (17) should also
satisfy the coarea formula and thresholding theorem under
these conditions. If the data term is not submodular, one can-
not guarantee that (17) will give a global minimizer. If this
was true in general, one would have a polynomial algorithm
for solving an NP-hard problem, which is unlikely to exist.

In fact, our primal–dual problem (60) has a closer resem-
blance to (17). An important distinction is that the dual con-
straints in our problem are all separable, which allows us to
prove the coarea formula for our model. This also implies that
for a fixed φ1, φ2, our model can be maximized for all dual
variables simultaneously, by maximizing in terms of each
dual variable separately. This important property allows us
to design very efficient algorithms, which are presented in
Sect. 7. In contrast, the dual variables are coupled through
the dual constraints in (17), which makes projection more dif-
ficult. Since no closed form solution exists, a more expensive
inexact iterative algorithm for projecting onto the constraint
set of p1

0, p2
0, p1

1, p2
1 each iteration would be required.

5 Analysis of Submodularity/Convexity Condition

We give an analysis of the condition (44) for making the opti-
mization problems submodular/convex in case of data terms
of the form (2). By assuming the input image contains all
gray values I ∈ [0, L], we get from (38) or (45) the follow-
ing sufficient condition on the distribution of the constant
values c1, . . . , c4

|c2− I |β +|c3− I |β ≤ |c1− I |β +|c4− I |β, ∀I ∈ [0, L].
(64)

If (64) holds, the problem is submodular for any input image
u0. This condition says something about how evenly {ci }4i=1
are distributed. The following two results show that (64)
becomes less strict as β increases

Proposition 2 Let 0 ≤ c1 < c2 < c3 < c4. If (64) is satis-
fied for some β0 ≥ 1, then (64) is satisfied for all β ≥ β0.
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Fig. 4 a, b and c distributions of {ci }4i=1 which makes energy function
submodular for all β. d distribution of {ci }4i=1 which may make energy
function nonsubmodular for small β

Proposition 3 Let 0 ≤ c1 < c2 < c3 < c4. There exists a
C ∈ N such that (64) is satisfied for any β ≥ C.

The proofs of all propositions in this section can be found
in Appendix 1. It can also be observed that the condition
can only be violated if I is closer to c1 or c4 than the other
variables

Proposition 4 Let 0 ≤ c1 < c2 < c3 < c4. (64) is satisfied
for all I ∈ [ c2+c1

2 , c4+c3
2 ] for any β ≥ 1.

And lastly, if the constants are perfectly symmetrically dis-
tributed around their mean, the condition is satisfied for any
β ≥ 1

Proposition 5 Let 0 ≤ c1 < c2 < c3 < c4. (64) is satisfied
for any β ≥ 1 if c2 − c1 = c4 − c3.

For β > 1, greater assymetry is tolerated by Prop 2. These
propositions suggest that the condition can only be violated
if the assymetry of the distribution of c1, . . . , c4 around their
mean becomes too ”bad”.

Examples where the condition is satisfied and may fail are
depicted in Fig. 4. Prop. 2 is illustrated in Fig. 4b, c. Figure
4d shows the possibility in which (64) may be violated, i.e.
c1, c2, c3 are clustered compared to c4 (the opposite version
where c2, c3, c4 are clustered would also be a problem).

We are mostly interested in the case that β = 2 and are
interested in knowing how often the condition is expected to
be satisfied. To get a raw empirical estimate, we have picked
the constant values c1, . . . , c4 randomly in the interval [0, 1]
and investigated how often the condition (64) is violated for
I ∈ [0, 1]. The condition was satisfied in 39.6 percent out of
10000 random selections of c1, . . . , c4. In cases that the con-
dition was violated, the constants were distributed unevenly
around their mean as illustrated in Fig. 4d. However, such
distributions of the constants are not expected in practice,
because when minimized over the region parameters, the
model (13) will favor solutions where the data functions (2)
corresponding to each region are dissimilar. In fact, when the
model (13) was optimized over the constants c1, . . . , c4 in
addition to the regions, the condition was satisfied on all 100
images in the Berkeley image segmentation database [45].
More details will be given in Sect. 8.3.

6 Convex Relaxations of NP-Hard Data and
Regularization Terms in Continuous Setting

In this section, we develop convex relaxations which can be
applied on a broader set of variational problems than the
models in Sect. 4. We start by considering data terms where
the convexity/submodularity condition (44) is not satisfied
in Sect. 6.1. Section 6.2 deals with some other regularization
terms such as the Potts’ regularizer. In contrary to the mod-
els in Sect. 4, it cannot be guaranteed in advance that exact
solutions will be produced. Instead, conditions are derived
which can be checked after computation whether a global
minimum has been attained. Especially for problems with
non-submodular data terms, it is our observation that these
hold in practice. If they do not hold exactly, the relaxations
will provide good approximate solutions. The relaxation (17)
could also be used to approximately solve the problem in case
of non-submodular data terms. The advantage of the follow-
ing approach is that the thresholding operation (2) can be
applied for producing a global binary minimizer in case the
conditions on the computed solution holds. The relaxed prob-
lem is also easier to deal with computationally than (17) for
the same reasons described in Sect. 4.3.

6.1 Convex Relaxation of Non-convex Data Term

Recall that if E(x) or F(x) are negative for some x ∈ Ω ,
the variational problem (43) is non-convex, hence any mini-
mization algorithm based on steepest descent may get stuck
in a local minimum. We propose a convex relaxation for this
problem, inspired by the submodular relaxation from Sect.
3.4 and derive a condition for determining whether the com-
puted solution is globally optimal.

For all points x ∈ Ω where (64) is violated, let
A(x), B(x), C(x), D(x), E(x), F(x) be a solution to the lin-
ear system with E(x) < 0 or F(x) < 0. As discussed in Sect.
3.4, there always exists a solution where either E(x) = 0 or
F(x) = 0.

Let Ω1 be the set of points where E(x) < 0 and Ω2 the
set of points where F(x) < 0, i.e.

Ω1 = {x ∈ Ω : E(x) < 0}, Ω2 = {x ∈ Ω : F(x) < 0}.
(65)

Let P denote the original primal problem (43) with weights
set to

C1
s (x) = C(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = B(x), (66)

C12(x) = E(x), C21(x) = F(x), ∀x ∈ Ω
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as before. Since C12(x) or C21(x) are assumed negative for
some x ∈ Ω , the minimization problem (43) is nonconvex.

A problem is now defined where all the negative terms are
removed. Primal–dual and dual formulations of this problem
can be derived as in Sect. 4.2. We denote the primal problem
as P , primal–dual problem as P D and dual problem as D
and define them as the optimization of (43), (48) and (63)
respectively, with weights constructed as

C1
s (x) = C(x), C2

s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = B(x), (67)

C12(x) = max(E(x), 0), C21(x) = max(F(x), 0), ∀x ∈ Ω.

Since all the weights are non-negative, the problem P is con-
vex and can be minimized globally. We are interested to know
when a solution to the convex problem P is also optimal to
the problem P . This can be answered by investigating the
solution of the dual problem D.

In the following theorem and proof it is assumed for sim-
plicity that the problems are discretized such that φi , pi

s, pi
t ,

i = 1, 2 and p12 are defined over a discrete domain Ω con-
taining finitely many grid points. The spatial discretization is
denoted D, div = −D∗ and can be arbitrary, see Sect. 4 for
a more detailed discussion about discretization. In this case,
the existence of primal–dual solutions and a zero duality gap
follows by the minimax theorem. If one assumes a continu-
ous spatial domain, the following derivations are carried out
in an informal way.

Theorem 3 Let φ
i ; pi

s, pi
t , p12, qi ; i = 1, 2 be a solution of

P D, i.e. φ
1
, φ

2
is a solution of P and pi

s, , pi
t , p12, qi ; i =

1, 2 a solution of D. Define the residual capacities as

R1
s (x) = C1

s (x)− p1
s (x), R2

s (x) = C2
s (x)− p2

s (x),

R1
t (x) = C1

t (x)− p1
t (x), R2

t (x) = C2
t (x)− p2

t (x).

(68)

If

R1
t (x)+ R2

s (x) ≥ −E(x), ∀x ∈ Ω1 (69)

and

R2
t (x)+ R1

s (x) ≥ −F(x), ∀x ∈ Ω2, (70)

then (φ
1
, φ

2
) is optimal to the original problem P.

Proof Let E P denote the energy functional of the primal

problem (43) with original weights (66), and let E
P

denote
the energy functional of (43) with weights (67). Then for
any functions φ1, φ2 such that φ1(x), φ2(x) ∈ [0, 1] for all
x ∈ Ω

E
P
(φ1, φ2) ≥ E P (φ1, φ2). (71)

Define a new problem P as the minimization of (43) with
weights (67) for all x ∈ Ω\(Ω1 ∪Ω2) and

C1
s (x) = C(x), C2

s (x) = p2
s (x),

C1
t (x) = p1

t (x), C2
t (x) = B(x), ∀x ∈ Ω1, (72)

C1
s (x) = p1

s (x), C2
s (x) = D(x),

C1
t (x) = A(x), C2

t (x) = p2
t (x), ∀x ∈ Ω2, (73)

C12(x) = 0, C21(x) = 0, ∀x ∈ Ω1 ∪Ω2. (74)

Let E P denote the energy functional of (43) with the above
defined weights. We will show that

E P (φ1, φ2) ≤ E P (φ1, φ2) ≤ E
P
(φ1, φ2), ∀φ1, φ2 ∈ B′.

(75)

The right inequality is just a repetition of (71). To show the
left inequality, observe that for each x ∈ Ω1

(1− φ1(x))C(x)+ (1− φ2(x))p2
s (x)

+ φ1(x)p1
t (x)+ φ2(x)B(x)

= (1− φ1(x))C(x)+ (1− φ2(x))(D(x)− R2
s (x))

+ φ1(x)(A(x)− R1
t (x))+ φ2(x)B(x)

= (1− φ1(x))C(x)+ (1− φ2(x))D(x)+ φ1(x)A(x)

+ φ2(x)B(x)+ φ1(x)(−R1
t (x))+ (1− φ2(x))(−R2

s (x)).

The last two terms can be bounded by

φ1(x)(−R1
t (x))+ (1− φ2(x))(−R2

s (x))

≤ φ1(x)(1− φ2(x))(−R1
t (x))

+ φ1(x)(1− φ2(x))(−R2
s (x))

= φ1(x)(1− φ2(x))(−R1
t (x)− R2

s (x))

≤ max(φ1(x)− φ2(x), 0)(−R1
t (x)− R2

s (x))

≤ max(φ1(x)− φ2(x), 0)E(x).

Therefore the integrand of the the data term of E P is
lower than E P for any x ∈ Ω1. Exactly the same argu-
ment can be used to show that this is also true for any
x ∈ Ω2. For any x ∈ Ω\(Ω1 ∪ Ω2), the integrand of
the data term is identical in E P and E P . The regulariza-
tion term is identical in E P and E P , hence it follows that
E P (φ1, φ2) ≤ E P (φ1, φ2) for any φ1, φ2 ∈ B′. Observe
that since the maximum flow pi

t , p12, qi ; i = 1, 2 in prob-
lem D is feasible in D, it is by (75) also optimal on D.

It follows that E P (φ
1
, φ

2
) = E

P
(φ

1
, φ

2
), which by (75)

implies E P (φ
1
, φ

2
) = E

P
(φ

1
, φ

2
). ��
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6.2 Convex Relaxation of Potts’ Regularizer and Some
Other Regularizers

In this section we show that the convex reformulation (43)
can be used as the basis of a new convex relaxation of Potts’
regularization term (4) and some other regularization terms
with four regions.

In [11,46] it was observed that multiple countings of
boundaries in the model (15) with linearly ordered labels,
could be suppressed by introducing additional constraints on
the dual variables of the total variation term of (15). The
number of constraints grow quadratically in the number of
regions. In particular, 3 dual variables and 6 dual constraints
are necessary to represent four regions. The resulting con-
vex relaxation is not guaranteed to produce a global binary
solution, but as shown in [11,46], such an approach may pro-
duce good approximations after thresholding. Furthermore,
as shown in [11], Prop 4, the relaxation is strictly tighter
than other recently proposed approaches [7,10,12]. In sect.
4 it was shown that the model (43) could be optimized glob-
ally by relaxing the binary constraints of φ1 and φ2. As dis-
cussed in Sect. 2.3, this model approximates Potts’ model
more closely than the model (15). Two of the boundaries are
measured twice in (43), while all the remaining four bound-
aries are measured once. In contrast, the model (15) over-
counts the boundaries much more severely, see e.g. Fig. 1.
This motivates us to use (43) as a starting point for a new
convex relaxation of Potts’ model.

Consider first the convex model (43), expressed in terms
of the dual formulation of total variation (57). We then obtain

inf
φ1,φ2

sup
q1,q2

E P (φ1, φ2) =
∫

Ω

(1− φ1(x))C1
s (x)

+(1− φ2(x))C2
s (x)+ φ1(x)C1

t (x)+ φ2(x)C2
t (x) dx

+
∫

Ω

max{φ1(x)− φ2(x), 0}C12(x) dx

−
∫

Ω

min{φ1(x)− φ2(x), 0}C21(x) dx

+
∫

Ω

φ1 div q1 dx +
∫

Ω

φ2 div q2 dx, (76)

subject to φ1, φ2 ∈ B and q1, q2 ∈ Cν , where Cν is defined
in (10).

The distributional derivative Dφ can be decomposed as
[46–48] Dφ = ∇φ dx + Cφ + (φ+ − φ−)nφdHN−1� Jφ ,
where ∇φdx is the part which is continuous with respect to
the Lebesgue measure and Cφ is the Cantor part. Here Jφ

is the discontinuity set of φ and φ+ and φ− are the values
of φ at the upper and lower side of the discontinuity respec-
tively, such that φ+ > φ−. The vector nφ(x) ∈ S

N−1 is the
normal vector at point x of the discontinuity Jφ pointing in

the direction of the lower side of the discontinuity. A more
formal definition of the jump set and normal vector can be
found in [46] page 1118. By integration by parts, we have that
for a q with compact support or which satisfies the boundary
conditions in (10) that

∫

Ω

φ div q dx = −
∫

Ω

q · Dφ

= −
∫

Ω

q · ∇φdx −
∫

Ω

q · Cu

−
∫

Jφ

q(x) · nφ(x) dHN−1(x)

The Cantor part can be shown to vanish for N−1 dimensional
subsets of finite measure [46]. Assuming that φ ∈ B, the two
first terms of the above expression therefore disappear. If
φ1, φ2 ∈ B, the regularization term can therefore be written
∫

Ω

φ1 div q1 + φ2 div q2 dx

= −
2∑

i=1

∫

J
φi

qi (x) · nφi (x) dHN−1(x)

which is maximized over q1, q2 ∈ Cν by picking qi (x) =
−νnφi (x) for x ∈ Jφi , i = 1, 2. Observe first that the integral
can be decomposed as

−
∫

J
φ1∩J

φ2

2∑

i=1

qi (x) · nφi (x) dHN−1(x)

−
∫

J
φ1\Jφ1∩J

φ2

q1(x) · nφ1(x) dHN−1(x)

−
∫

J
φ2\Jφ1∩J

φ2

q2(x) · nφ2(x) dHN−1(x).

The set Jφ1 ∩ Jφ2 can be decomposed as J+ ∪ J−, where
J+ = {x ∈ Jφ1 ∩ Jφ2 : nφ1(x) = nφ2(x)} and J− = {x ∈
Jφ1 ∩ Jφ2 : nφ1(x) = −nφ2(x)}. Then the first integral can
be written as follows

−
∫

J
φ1∩J

φ2

2∑

i=1

qi (x) · nφi (x) dHN−1(x)

= −
∫

J+
(q1(x)+ q2(x)) · nφ1(x) dHN−1(x)

−
∫

J−
(q1(x)− q2(x)) · nφ1(x) dHN−1(x).
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From Table 1 it follows that J+ is the boundary between Ω2

and Ω3. J− is the boundary between Ω1 and Ω4. By inserting
the maximizer qi (x) = −nφi (x), it can be seen that the
integrals over J+ and J− are valued twice their total length
(weighted by ν): 2ν

∫
J+ dHN−1(x) and 2ν

∫
J− dHN−1(x).

In order to count the length of the boundary between Ω2 and
Ω3 only once, we add the constraint

sup
x∈Ω
|q1(x)+ q2(x)|2 ≤ ν. (77)

Similarly, to count the boundary between Ω1 and Ω4 only
once, add the constraint

sup
x∈Ω
|q1(x)− q2(x)|2 ≤ ν. (78)

The integral is maximized over q1, q2 ∈ Cν , (77) and (78)
by picking q1 = −nφ1 in Jφ1\Jφ1 ∩ Jφ2 , q2 = −nφ2 in
Jφ2\Jφ1 ∩ Jφ2 , q1+ q2 = −nφ1 in J+ and q1− q2 = −nφ1

in J−. If one inserts these values for q1 and q2 one obtains

= ν

∫

J+
dHN−1(x)+ ν

∫

J−
dHN−1(x)

+ν

∫

J 1
φ \J 1

φ∩J 2
φ

dHN−1(x)+ ν

∫

J 2
φ \J 1

φ∩J 2
φ

dHN−1(x),

which is the total length of each boundary.
Observe that for any q1, q2 ∈ Cν which satisfy |q1+q2| =

ν, it must hold that |q1 − q2| ≤ ν, for the following reason

|q1 + q2|22 =
N∑

i=1

|q1
i + q2

i |2 =
N∑

i=1

(q1
i )2 + 2q1

i q2
i + (q2

i )2

|q1 − q2|22 =
N∑

i=1

|q1
i − q2

i |2 =
N∑

i=1

(q1
i )2 − 2q1

i q2
i + (q2

i )2,

therefore

|q1 + q2|22 + |q1 − q2|22

=
N∑

i=1

(q1
i )2 + (q2

i )2 = |q1|22 + |q2|22 ≤ 2ν2.

If |q1+q2|22 = ν2, this can only be true provided |q1−q2|22 ≤
ν2. Vice versa, if |q1−q2|2 = ν then |q1+q2|2 ≤ ν. There-
fore, the measure of the transition Ω1−Ω4 is not influenced
by adding the constraint (77) and vice versa for Ω2 − Ω3

regarding the constraint (78). By adding both constraints
(77) and (78) to the optimization problem, we obtain the
length/area of each boundary weighted by ν, i.e. Potts’ reg-
ularization term (4). It is also possible derive different seg-
mentation models by only adding some of the constraints.

Table 2 Number of variables and constraints in relaxation of Potts’
model, N is the dimension of the image domain

Primal
variables

Primal
constraints

Dual
variables

Dual
constraints

Pock et. al. 3 4 3 ∗ N (+4) 6 (+4)

Simplex [12] 4 5 4 ∗ N (+5) 4 (+4)

Proposed 2 2 2 ∗ N (+3) 4 (+3)

Each variable is regarded as a scalar function defined over the image
domain. The numbers in parentheses indicate additional dual variables
and constraints, in case the data term is represented in primal–dual form
(which is used in the algorithms in the experiment section)

This can be an advantage if one knows in advance that cer-
tain regions are not supposed to share a common border.
Examples will be given in the experiment section to illustrate.
Non-standard regularization terms were also investigated in
[9], but in the context of the simpler simplex constrained
relaxation [10,12].

In order to derive a completely convex problem, the
non-convex binary constraints φ1, φ2 ∈ B are replaced by
φ1, φ2 ∈ B′. In contrast to the model (43), the threshold-
ing Theorem 2 is not generally valid if the additional con-
straints on the dual variables are introduced. However, if the
computed solution φ1, φ2 is binary everywhere, it is also a
global solution to the original problem. Otherwise, thresh-
olding of φ1, φ2 will result in good approximate solutions.
In the same manner, the relaxation for Potts’ model [11] is
not generally exact either, but will provide good approximate
solutions after thresholding. To analyze theoretical relations
between our relaxation and [11] is quite involved and is out
of the scope of this paper. Some experimental comparisons
are given in Sect. 8, which indicate our relaxation performs
as least as well as [11]. Our approach involves significantly
less primal and dual variables and constraints than [11] and is
consequently easier to handle computationally. The number
of primal and dual variables and constraints are summarized
in Table 2.

7 Algorithms

Algorithms for the convex formulations and relaxations
in Sects. 4 and 6 are presented based on the augmented
Lagrangian method. In [17–19] the augmented Lagrangian
method was applied on continuous max-flow formulations
of minimization problems with binary and linearly ordered
labels. The algorithms were shown to be very efficient and
outperform alternative approaches. We derive similar algo-
rithms based on the max-flow formulations of the prob-
lems (43) and (76). Observe that the Lagrange multipliers
φ1, φ2 are unconstrained in (60). However, by construction
optimal φ1, φ2 will satisfy the relaxed binary constraints
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Algorithm 1 Multiplier-Based Algorithm

Choose some initialization for pi
s , pi

t , qi and φi , set k = 1 and repeat
until convergence:

– Optimize pi
s , i = 1, 2 by fixing other variables

pi
s

k+1 := arg max
pi

s (x)≤Ci
s (x)

Lc(pi
s , pi

t
k
, p12k

, qi k
, φk)

:= arg max
pi

s (x)≤Ci
s (x)

∫

Ω

pi
s dx

− c

2

∥∥∥pi
s − (pi

t
k + (−1)i+1 p12k + div qk

i )+ φi k
/c

∥∥∥
2
.

– Optimize p12 by fixing other variables

p12k+1 := arg max
−C21(x)≤p12(x)≤C12(x)

Lc(pi
s

k+1
, pi

t
k
, p12, qi k

, φk)

:= arg max
−C21(x)≤p12(x)≤C12(x)

−
∑

i=1,2

c

2

∥∥∥(−1)i+1 p12 − pi
s

k+1 + pi
t
k + div qi k − φi k

/c
∥∥∥

2
.

– Optimize qi , i = 1, 2, by fixing other variables

(q1, q2)
k+1 := arg max

(q1,q2)∈K
Lc(pk+1

s , pk
t , p12k

, q, φk) .

:= arg max
(q1,q2)∈K

− c

2

2∑

i=1

∥∥∥div qi − pi
s

k+1 + pi
t
k + (−1)i+1 p12k+1 − φi k

/c
∥∥∥

2
,

(79)

for i = 1, 2. The above problem can either be solved iteratively
by Chambolle’s projection algorithm [49], or approximately in one
step through

q̃i =
(

qi k + c∇(div qi − pi
s

k+1 + pi
t
k + (−1)i+1 p12k+1 − φi k

/c)

)
,

(q1, q2)k+1 = Π(q1,q2)∈K (q̃1, q̃2), (80)

where Π(q1,q2)∈K is the projection operator onto K .
– Optimize pi

t , i = 1, 2 by fixing other variables

pi
t
k+1 := arg max

pi
t (x)≤Ci

t (x)

Lc(pi
s

k+1
, pi

t
k
, p12k+1

, qi k
, φk)

:= arg max
pi

t (x)≤Ci
t (x)

− c

2

∥∥∥pi
t − pi

s
k+1 + (−1)i+1 p12k+1 + div qi k+1 − φi k

/c
∥∥∥

2

– Update multipliers φi , i = 1, 2, by

φi k+1 = φi k − c (div qi k+1− pi
s

k+1+ pi
t
k+1+ (−1)i+1 p12k+1

) ;
– If not converged, set k = k + 1 and repeat.

(11). In this section it is assumed that Ω , the unknowns
pi

s, pi
t , p12, qi , φi ; i = 1, 2 and the differential and inte-

gration operators are discretized, but we stick with the con-
tinuous notation for simplicity. The augmented Lagrangian
functional can be formulated as

L(ps, pt , p12, q, φ) =
∫

Ω

p1
s (x)+ p2

s (x) dx (81)

+
2∑

i=1

∫

Ω

{φi (div qi − pi
s + pi

t + (−1)i+1 p12)}(x) dx

− c

2

2∑

i=1

|| div qi − pi
s + pi

t + (−1)i+1 p12||2.

An algorithm for optimizing (60) is constructed based on the
alternating direction method of multipliers [50], see Alg. 6.2.
The set K in (79) consists of the unit disks

K = {(q1, q2) : Ω 
→ R
N × R

N :
||qi ||∞ ≤ ν, qi

n|∂Ω = 0 i = 1, 2}.

Here ||q||∞ = maxx∈Ω |q(x)|2. Note that the optimization
problems in (79) and (80) decouple and can be solved sep-
arately for q1 and q2. The optimization for pi

s, p12 and pi
t

can be easily computed in closed form pointwise at each
x ∈ Ω .

7.1 Algorithm for Convex Relaxed Potts’ model

The algorithm for the convex relaxed Potts’ model does not
change, except the variables q1 and q2 in step (79) are opti-
mized over the set

K = {(q1, q2) : Ω 
→ R
N × R

N :
||qi ||∞ ≤ ν, qi

n|∂Ω = 0, i = 1, 2,

||q1 + q2||∞ ≤ ν, ||q1 − q2||∞ ≤ ν}.
There are no closed form solution for such a projection, but it
can be computed approximately by a few iterations of Dyk-
stra’s algorithm [51] in the same way as [11].

8 Experiments

In most experiments, we choose the data term (2) and set β =
2 or β = 1. In order to estimate the optimal constant values
{ci }4i=1, an alternating minimization algorithm is applied as
follows:

Find initialization {c0
i }4i=1 and solve for k = 1, ... until

convergence
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1. {φk
i }4i=1 = arg min

{φi }4i=1

E({φi }4i=1, {ck−1
i }4i=1),

2. {ck
i }4i=1 = arg min

{ci }4i=1

E({φk
i }4i=1, {ci }4i=1).

Step 1. is solved by the algorithms developed in this paper.
The optimization problem in step 2 is simple and has a closed
form solution: ci is the mean intensity value within region
Ωk

i when β = 2 and median intensity when β = 1. Con-
vergence means that the partition does not change from one
iteration to the next, and will usually occur in around 10 iter-
ations. The constant values can be initialized efficiently by
the isodata algorithm [52]. In all experiments reported, the
condition which guarantee submodularity/convexity was sat-
isfied during each iteration of the algorithm unless otherwise
specifed. We have used a mimetic spatial discretization [42]
of the differential operators in Algorithm 1.

Abbreviations: We have used the following abbreviations
in the comparison experiments:

GT: ground truth
CVl: Chan–Vese model (13) solved with level set method
CVg: Chan–Vese model (13) solved by graph cut
CVC: convex Chan–Vese model before thresholding

CVCt: convex Chan–Vese model after thresholding
AE: Alpha expansion algorithm [6]

ABS: Alpha–beta swap algorithm [6]
SR: Simplex relaxation [12]

SRt: Simplex relaxation [12] after thresholding
PR: Pock relaxation [11]

PRt: Pock relaxation [11] after thresholding
NR: New relaxation of Potts’ model

NRt: New relaxation of Potts’ model after thresholding

On the relatively simple image in Fig. 5, the level set method
finds a good local minimum. If the initialization is bad, the
level set method gets stuck in an inferior local minimum also
for this simple image as shown in Fig. 6, courtesy of [3].
White points indicate the zero level set of φ1 and dark points
indicate the zero level set of φ2 (Fig. 6).

More difficult images are presented in Figs. 7, 8, 9, 10,
11. The different methods are compared by keeping the same
optimal constant values {c∗i }4i=1 and regularization parameter
ν fixed, while minimizing in terms of the regions. We depict
the results of the relaxed problems φ1, φ2 before thresholding
in one single image I as

I = φ1φ2c2 + φ1(1− φ2)c1 + (1− φ1)φ2c4

+(1− φ1)(1− φ2)c3

In the same way, the results of relaxations [12,53] before
threshold are depicted in a single image using the integrand
of the data terms of their convex energy functionals. As seen
in the figures, the convex Chan–Vese model tends to favor

(a) Input (b) CVl (c) AE/ABS (d) CVg

(e) SRt (f) PRt (g) NRt (h) NRt

Fig. 5 L2 data fidelity. a Input, b level set method gradient descent, c
alpha expansion/alpha beta swap, d Chan–Vese model graph cut eight
neighbors (global minimum). 2nd row Convex relaxations after thresh-
old: e simplex, f Pock et al. g proposed Potts’, h proposed special

Fig. 6 Level set method: a bad initialization, b result

(d) AE(a) Input (b) GT (c) CVl

(h) CVCt(e) ABS (f) CVg (g) CVC

(l) PRt(i) SR (j) SRt (k) PR

Fig. 7 L1 data term, ν = 0.245. a Input image, b ground truth, c Chan–
Vese model level set method, d alpha expansion Potts’ model, e alpha–
beta swap alpha expansion Potts’ model, f graph cut for Chan–Vese
model (global minimum), g convex Chan–Vese model before threshold,
h convex Chan–Vese model after threshold, i simplex relaxation [12],
j simplex relaxation [12] after threshold, k relaxation [53], l relaxation
[53] after threshold

solutions that are closer to binary than the other relaxations
[12,53] for Pott’ model on difficult images with high levels
of noise. The percentage of misclassified pixels compared to
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(a) Input (b) CVg

(d) CVCt(c) CVC

(e) SRt (f) PRt

Fig. 8 L2 data fidelity: a Input; b graph cut for discrete Chan–Vese
model four neighbors (global minimum); c convex Chan–Vese model
before threshold; d convex Chan–Vese model after threshold; e special
relaxation after threshold; f Potts relaxation after threshold

ground truth, depicted in subfigures b, are shown in Table 3
and indicate that our approach performs favorably. Note that
it is not so relevant to compare energies, since the regularizer
in the Chan–Vese model is slightly heavier for some bound-
aries than the Potts’ model and therefore has a higher energy
value.

In subfigure 8, 9, and 10b the computed global minimum
of the discrete energy is shown. In subfigures 8, 9 and 10c
the computed global minimizer of the convex reformulation
of the Chan–Vese model are shown, which takes values in
[0, 1], but is binary at most points. The binary result after
thresholding φ1∗, φ2∗ at the level � = 1

2 are shown in sub-
figures d. Observe that the continuous version is rotationally
invariant and, in contrast to the discrete approach, produces
results that are not biased by the discrete grid.

In Fig. 12, the problem (13) with non-convex data term
(14) is solved simultaneously for φ1 and φ2 by the gradient
descent method. For simplicity, we have removed the noise
and set the regularization parameter to zero. Both initial-
izations lead to incorrect results. The recent inexact convex

(a) (b)

(c) (d)

Fig. 9 Chan–Vese model with L2 data term: a Input, b graph cut
approach 4 neighbors, c convex formulation before threshold, d convex
formulation after threshold

(a) Input (b) CVg

(c) CVC (d) CVCt

Fig. 10 Chan–Vese model with L2 data term. a Input, b graph cut eight
neighbors in discrete setting, c convex formulation before threshold,
d convex formulation after threshold

relaxation for the Chan–Vese model [8] was demonstrated to
almost find a global minimum on Fig. 5 (except for a few pix-
els), but differed more substantially on more difficult images
like the brain image. Our approach finds exact solutions and
is more computationally efficient, since [8] involves more
unknown variables in a higher dimensional space.

8.1 Experiments on L2 data Fitting Term: Submodularity

In Sect. 5 we gave theoretical insights on how submodular-
ity of the energy function was related to the distribution of
the values ci , i = 1, . . . , 4. It was shown that the condi-
tion becomes less strict as β increases. In this section, the
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(a) Input (b) GT (c) CVl

(d) AE (e) ABS (f) CVg

(g) SR (h) PR (i) CVC

(l) CVCt(k) PRt(j) SRt

Fig. 11 L1 data term and ν = 0.19. a Input image, b ground truth, c
Chan–Vese model level set method. 2nd row discrete algorithms eight
neighbors, d alpha expansion Potts’ model, e alpha–beta swap Potts’
model, f discrete Chan–Vese model proposed (global minimum). 3rd
row convex relaxations before threshold: g simplex relaxation [12],
h relaxation [53] i convex Chan–Vese model. 4th row Convex relax-
ations after threshold: j simplex relaxation [12], k relaxation [53], l
convex Chan–Vese model

Fig. 12 Coupled gradient descent minimization of non-convex energy
(13) over constraint φ1(x), φ2(x) ∈ [0, 1] ∀x ∈ Ω and regulariza-
tion ν = 0: a Input image, b result initialization φ1, φ2 = 0, c result
initialization φ1, φ2 = 1

Table 3 Percentage of misclassified pixels compared to ground truth
for experiments in Figs. 7 and 11

α-exp α-β-swap Simplex
relaxation

Pock [11]
relaxation

Convex
Chan–Vese

Figure 11 21.7 9.75 8.45 8.04 4.54

Figure 7 5.24 9.30 4.19 4.11 3.57

condition is analyzed empirically and experimentally for the
L2 data fitting term (β = 2 in (2)).

In Sect. 5 the constant values c1, . . . , c4 were sampled
randomly in the interval [0, 1]. The condition (5) was satis-
fied for all I ∈ [0, 1] in 39.6 percent out of the 10000 ran-
dom selections of c1, . . . , c4. In cases that the condition was
violated, the constants were clustered asymetrically around
their mean. However, such distributions of the constants are

(a) (b) (c) (d)

Fig. 13 Chan Vese model L1 data fidelity. Note that the constant values
c1, c2, c3 are close to each other compared to c4: c1 = 36, c2 = 60,
c3 = 110, c4 = 230. a Input image, b set of pixels P1 ∪ P2 where
the submodularity condition was violated, c set of pixels where the
residual capacity criterion (40) is not satisfied (empty set), d output
image (global minimum)

not expected in practice, because when minimized over the
region parameters, the model (2) will favor solutions where
the data functions (2) corresponding to each region are as
dissimilar as possible. We have run the alternating optimiza-
tion algorithm described at the beginning of this section for
optimizing the parameters ci , i = 1, . . . , 4 on all 100 images
from the image segmentation data base [45]. In all experi-
ments, the submodularity condition (45) was satisfied during
each iteration of the algorithm.

8.2 Non-submodular Data Terms

The purpose of this section is to demonstrate the relaxation
approaches from Sect. 6 for minimization the energy in case
the data term is not submodular/convex. For that reason, we
have used L1 data term and fixed the constant values c in
such a way that the submodularity condition is violated.

One such example is shown in Fig. 13, which is a mod-
ified version of the example in Fig. 5, where the average
intensity values of 3 of the objects are close compared to the
4th object. Some more natural examples are shown in Fig.
14. Subfigures (b) show the set of pixels p ∈ P1∪P2, where
the submodularity condition was violated. In all experiments
β = 1. Subfigures (c) show the set of pixels where the resid-
ual capacity conditions (40) ((69) and (70) in continuous
setting) were violated, which is the empty set in all cases.
Therefore, the solutions obtained by the cut on the graphs G
and the solutions obtained from the convex relaxations, are
also global solutions to the original problems. If the regular-
ization parameter ν is set to a very large number, the residual
capacity condition may be more easily violated. An example
is shown in Fig. 14g, h). The set of pixels where it is violated,
shown in (g), is small and constitutes 0.2 percent of the pixels
in the image. It cannot be concluded whether the solution of
the relaxed problem, shown in (h), is also a solution of the
original problems, but is in any case a good approximation.

These examples are typical: if the regularization parameter
ν is not set extremely high, the residual capacity condition
tends to be satisfied. In cases the condition is violated, it only
happens for a very small set of the pixels, which means the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 14 Chan–Vese model with L1 data term: a input, b set of points
where submodularity condition (64) was violated, c set of points where
the residual capacity conditions ((40) for graph cut and (69), (70) for
convex model) were not satisfied (empty set), d graph cut method eight
neighbors (global minimum), e convex formulation before threshold,
f convex formulation after threshold. g–h High regularization parameter
ν: g set of points where residual capacity condition (69) was violated
(0.2 % of pixels), h resulting partition (approximate solution)

results are good approximations. To save space, only a subset
of our experiments are shown.

8.3 Experiments with Other Data Terms

In this section, we demonstrate the global minimization
methods on some other data terms. The data term in the
Chan–Vese model (2) can be derived via the maximum a
posteriori estimate

Π4
i=1Πx∈Ωi

1

2πσi
exp

(
(I (x)− ci )

2

2σi

)
(82)

The above expression can be maximized by minimizing its
negative logarithm. By adding regularization, one ends up

(a) (b) (c)

Fig. 15 a Input image: the square in the middle is divided into two
regions of the same mean, but different variances. Segmentation with
data term involving mean and variance (83). b λ1, c λ2 (white: λi = 1,
dark: λi = 0)

(a) (b)

Fig. 16 Segmentation with data term (83). The optimal
mean and variance were estimated by the altenating algo-
rithm. a Result Fig. 8a, c = (0.0078, 0.2158, 0.5808, 0.7935),
σ = (0.0079, 0.1152, 0.0779, 0.0551). b Result Fig. 9a,
c = (0.2188, 0.4909, 0.7390, 0.9950), σ = (0.0563, 0.0783, 0.0578,

0.0066)

with the the general model (1) with data term

fi (x) = (I (x)− ci )
2

2σi
− log(2πσi ) . (83)

The Chan–Vese model involves minimizing (1) with data
term (83) with respect to {Ωi }4i=1 and {ci }4i=1 while keep-
ing the standard deviations σi = 1/2 fixed. In the more
advanced model, (83) is minimized with respect to all vari-
ables {Ωi }4i=1, {ci }4i=1 and {σi }4i=1. The minimization prob-
lem can be solved numerically by a modification of the alter-
nating algorithm described in the beginning of this section,
by updating both ci and σi for the given Ωi in step 2. each
iteration. An illustrative example is given in Figure 15. The
square in the middle is divided diagonally into regions of
the same mean, but different standard deviations. The more
advanced model is able to separate these regions based on
the differing standard deviations as shown in (b) and (c). The
submodularity condition (44) was satisfied for all points in
this example. Results on the other more natural images are
shown in Fig. 16. Also in this case the submodularity con-
dition was satisfied during each iteration of the alternating
algorithm. The final parameters c and σ are shown in the
caption of the figure.

We have repeated the experiments on the 100 images in
the segmentation data base [45], by iteratively optimizing in
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Table 4 Relaxations for Potts’ model, final energy after binarization

Simplex relaxation Relaxation [11] New relaxation

Figure 8 1.8938 ∗ 103 1.8897 ∗ 103 1.8897 ∗ 103

Figure 5 60.9827 60.9686 60.9686

terms of regions and updating c, σ . The submodularity con-
dition (44) was satisfied in 65 % of the experiments. In the
remaining experiments, we can check whether the condition
on the residual capacities (69) and (70) are satisfied. As men-
tioned, this depends on the strength of the regularization. In
our case we used the moderate value of ν = 0.12 and the
condition held in all cases. For high values of ν this cannot
be expected in general as discussed in Sect. 8.2, in which
case the solutions are approximate.

8.4 Convex Relaxation of Other Regularization Terms

The convex relaxation of the Potts’ model and other regular-
ization terms from Sect. 6.2 are demonstrated and compared
with other recent relaxations. Table 4 depicts the energy of
the final binary results after thresholding, i.e. lower energy
means better approximation of the global minimum. The
curve lengths on the discrete grid have been calculated by
the Cauchy–Crofton formula of integral geometry [33] with
an 8 neighborhood system. The images are scaled between
0 and 1, ν = 0.05 in Fig. 5 and ν = 0.026 in Fig. 8. As we
see, our approach performs on par with [11] and better than
the simplex relaxation [12].

In some applications, one know in advance that certain
regions are not supposed to share a common border. In brain
MRI imaging, for example, the white matter should only
border with gray matter and cerebrospinal fluid, but not the
background. Therefore, the transition Ω1−Ω4 can favorably
be given a higher penalty in the regularization term. As a new
segmentation model for brain imaging, we therefore propose
to optimize (76) over φ1, φ2 ∈ B′, q1, q2 ∈ Cν and the
extra dual constraint (77). Finally, a binary (approximate)
solution is obtained by thresholding φ1, φ2 as in Theorem 2.
The result is depicted in Fig. 8e. In Fig. 5, region 1 and 4 are
not supposed to share a common border, therefore the same
constraint set also makes sense in this application.

The special regularization term can also be used to enforce
uniqueness in applications where the Potts’ model suffer
from multiple global minima. In the inpainting experiment
depicted in Fig. 17, one would like to fill in the middle dark
area in (a). The partition problem is solved with data term set
to zero in the dark area and the maximum double precision
value elsewhere. With Potts’ regularizer, this problem has
two solutions of equal energy, shown in Fig. 17 c, d respec-
tively. Therefore, a convex relaxation for Potts’ model can

(a) (b) (c) (d)

Fig. 17 a Input, all data terms are set to zero in the dark region.
b Result of relaxation [10,12] and [7] and Chan–Vese model (13).
c–d Convex relaxation (76) over (10), φ1, φ2 ∈ B′ and extra dual con-
straint (77) (c) and (78) (d)

at best obtain a convex combination of these two solutions,
which is certainly not binary. By instead using the relax-
ation from Sect. 6.2 with either constraint (77) or (78), we
are able to obtain the correct two solutions of minimal curve
lengths. It was reported in [11] that one of the solutions could
be obtained on a similar example via their Potts relaxation.
However, this is due to asymmetry of their underlying dis-
cretized problem, which results in a bias towards one solution
over the other.

8.5 Analysis of Runtime and Efficiency

A major advantage of the proposed algorithms is the simple,
compact and convex representation of the partition problem
which results in a significant speedup over state of the art
approaches. Table 5 summarizes the number of iterations
and flops (floating point operations) of our algorithms com-
pared to two other convex relaxations. We have calculated
the number of flops manually, by direct counting in the code
taking into account the number of pixels, in order to avoid
operating system and compiler specific uncertainties.

The tight convex relaxation [11] was implemented with the
primal–dual algorithm of [11] and the simplex constrained
relaxation [12] was implemented with the algorithm of [54],
which is the fastest for this problem in our experience. As
stopping criteria, we estimate the minimal energy E∗ using a
huge amount of iterations and determine the iteration k when

the relative energy precision Ek−E∗
E∗ falls below 10−3.

The convex formulation of the Chan–Vese model is the
fastest and significantly outperforms relaxations [11,12,54]
in terms of total number of flops and iterations. The relax-
ation for Potts’ model, the special relaxation and [11] are
bottle necked by Dykstra’s algorithm for projecting dual vari-
ables onto the feasible set every iteration. We have used five
iterations of Dykstra’s algorithm in all these relaxations, as
we found that to be the most optimal balance between effi-
ciency and accuracy. This is reflected in a larger number of
flops each iteration in the table. Our relaxations involve the
least number of variables and dual constraints and are conse-
quently faster than [11]. Overall, our algorithm runs on par
with the algorithm [54] for the simpler simplex constrained
relaxation [12].
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Table 5 Number of iterations k, number of flops per iteration and total number of flops to reach energy precision Ek−E∗
E∗ < 10−3

Figure 5 Figure 8

Iterations Flops/iteration Total flops Iterations Flops/iteration Total flops

Chan–Vese convexification 11 9.94 ∗ 105 1.09 ∗ 107 60 4.20 ∗ 106 2.52 ∗ 108

Special relaxation 12 3.92 ∗ 106 4.70 ∗ 107 60 1.65 ∗ 107 9.93 ∗ 108

Potts relaxation 12 5.07 ∗ 106 6.09 ∗ 107 60 2.14 ∗ 107 1.29 ∗ 109

Simplex relaxation [54] 60 1.96 ∗ 106 1.18 ∗ 108 190 8.21 ∗ 106 1.56 ∗ 109

Relaxation [11] 295 1.12 ∗ 107 3.31 ∗ 109 1020 4.71 ∗ 107 4.79 ∗ 1010

The discrete graph cut method in Sect. 3 is also very effi-
cient, particularly due to the relatively low number of nodes
and edges. Comparatively, alpha expansion is an iterative
algorithm, which solves a sequence of graph cut problems
until convergence. Our algorithm only needs to solve one
graph cut problem and consequently converges around 5–7
times faster than alpha expansion in the experiments. Over-
all, the graph cut method was slightly faster than our matlab
implementation of the convex algorithms. However, the con-
vex algorithms consist mainly of floating point matrix and
vector operations, which are much better suited for parallel
implementation on GPU. We expect a GPU implementation
of our algorithms to beat the graph cut method in terms of
speed.

9 Conclusions

We have presented an exact global optimization frame-
work for certain image segmentation models involving four
regions, such as the Chan–Vese model, both in a discrete
setting and a variational setting. If a condition on the data
term was satisfied, a global minimum was guaranteed. A
theoretical analysis of the condition was given and it was
shown experimentally that the condition tends to hold for L p

type of data terms for p ≥ 2. It also often holds for statisti-
cal data terms taking into account the means and variances
the regions. If the condition was violated, relaxations were
proposed for producing either exact or approximate solu-
tions. Conditions on the “residual capacities” of the com-
puted solution could be checked to verify whether a global
minimum of the original problem had been obtained. Exper-
iments showed that these relaxations could produce global
minima in practice provided the strength of spatial regular-
ization was not too high. A new convex relaxation of Potts’
regularization term and some other regularization terms were
also proposed. Experiments demonstrated results on par with
[11] for Potts’ model energy wise. Algorithms were pro-
posed for the new energy minimization problems. Experi-
ments demonstrated a significant speed up over alternative
convex relaxations, which is mainly explained by the com-

pactness and simplicity of our convex minimization prob-
lems.

In this work, we have restricted our attention to four (or
less) regions. The results can be generalized to 2m regions
by using m binary functions. In case of m = 3 and 8 regions,
the linear system which determines the data term contains
12 unknowns (edges) and 8 equations. In general, we expect
the conditions which guarantee submodularity to be more
strict as m increases, therefore it will be valueable to derive
relaxations as in Sect. 6. However, the case of four regions
is important and deserves special attention: It is possible to
obtain exact binary solutions, both in a discrete and continu-
ous setting; Important practical problems, such as brain MRI
segmentation involve four distinct regions; Four regions suf-
fice in theory to segment any 2D image by the four color
theorem, therefore it would be interesting to attempt for-
mulating the overall problem in term of four disconnected
regions, where different data cost functions are assigned
to each disconnected component. Some developments have
already been made in this direction recently [20–22].
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Appendix 1: A Proofs of Prop 2–5

Appendix 1.1: Proof of Prop 4

Proof Let c2+c1
2 ≤ I ≤ c4+c3

2 . Then

|c2 − I |β ≤ |c1 − I |β and |c3 − I |β ≤ |c4 − I |β,

for any β ≥ 1. Therefore, adding these two inequalities

|c2 − I |β + |c3 − I |β ≤ |c1 − I |β + |c4 − I |β.

��
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Appendix 1.2: Proof of Prop 2

When c1+c2
2 ≤ I ≤ c4+c3

2 , the result follows from Prop 4.
Consider I < c2+c1

2 , then

|I − c1|β0 ≤ |I − c2|β0 ≤ |I − c3|β0 ≤ |I − c4|β0 .

Together with (64), this implies

0 < |I − c2|β0 − |I − c1|β0 ≤ |I − c4|β0 − |I − c3|β0 .

Therefore, there exists θ1 ≥ θ2 > 1 such that

|I − c4|β0 = θ1|I − c3|β0 and |I − c2|β0 = θ2|I − c1|β0 .

For β ≥ β0

|I − c4|β = θ
β−β0
1 |I − c3|β and

|I − c2|β = θ
β−β0
2 |I − c1|β,

where θ
β−β0
1 ≥ θ

β−β0
2 > 1, hence

|I − c2|β + |I − c3|β = θ
β−β0
2 |I − c1|β + 1

θ
β−β0
1

|I − c4|β

≤ θ
β−β0
1 |I − c1|β + 1

θ
β−β0
1

|I − c4|β ≤ θ
β−β0
1 |I − c1|β

+ 1

θ
β−β0
1

|I − c4|β,

where the last inequality follows from |I − c1|β ≤ |I − c4|β .
Exactly the same argument can be used to show Prop 2 when
I > c4+c3

2 .

Appendix 1.3: Proof of Prop 3

Proof Assume first I > c3, then

|c1 − I | > |c2 − I | > |c3 − I |.
Therefore, there exists a θ > 1 s.t.

|I − c1| = θ |c2 − I |.
Pick C1

I ∈ N s.t.

θβ ≥ 2, ∀β ≥ C1
I .

Then

|c1 − I |β + |c4 − I |β ≥ |c1 − I |β ≥ 2|c2 − I |β
> |c2 − I |β + |c3 − I |β ∀β ≥ C1

I

If I < c2, then

|c4 − I | > |c3 − I | > |c2 − I |
and thus the same argument can be used to show there exists
C2

I ∈ N such that

|c4 − I |β + |c1 − I |β > |c2 − I |β + |c3 − I |β, ∀β ≥ C2
I .

In case c2 ≤ I ≤ c3, the existence of such a C was proved in
Prop 4, e.g. C = 1.

Therefore the condition (64) is satisfied for any I ∈ [0, L]
by choosing β ≥ C = maxI∈[0,L]max{C1

I , C2
I }. ��

Appendix 1.4 Proof of Prop 5

We will show the condition holds for β = 1, which by Prop
2 implies it holds for all β ≥ 1. Observe that if c1, c2 and
c3, c4 are equidistant it follows that c1 + c4 = c2 + c3. For
I < c2

|I − c2| + |I − c3| = (c2 − I )+ (c3 − I )

= −2I + (c2 + c3)

= −2I + (c1 + c4) = (c1 − I )+ (c4 − I )

≤ |I − c1| + |I − c4|.
For I ≥ c3

|I − c2| + |I − c3| = (I − c2)+ (I − c3)

= 2I − (c2 + c3)

= 2I − (c1 + c4) = (I − c1)+ (I − c4)

≤ |I − c1| + |I − c4|.

Appendix 2: Relation Between Dual Problem (63) and
Discrete Max-flow Problem

Recall that for each p ∈ P the data term was represented
by the six edges (31). The flow on each of these edges are
constrained by the capacities defined in (35) and (34), i.e.

P1
s (p) ≤ c(s, vp,1) flow ≤ capacity on (s, vp,1)

P2
s (p) ≤ c(s, vp,2) flow ≤ capacity on (s, vp,2)

P1
t (p) ≤ c(vp,1, t) flow ≤ capacity on (vp,1, t)

P2
t (p) ≤ c(vp,2, t) flow ≤ capacity on (vp,2, t)

P̃12(p) ≤ c(vp,1, vp,2) flow ≤ capacity on (vp,1, vp,2)

P̃21(p) ≤ c(vp,2, vp,1) flow ≤ capacity on (vp,2, vp,1).

For notational convenience, we use capital letters P, Q to
denote flow on discrete edges. The dual variables p1

s , p2
s , p1

t ,

p2
t , p̃12, p̃21 over the continuous domain Ω are inspired by

these discrete flow functions. They are constrained by the
capacities C1

s (x), C2
s (x), C1

t (x), C2
t (x), C12(x) and C21(x)

respectively. Note that p̃12 and p̃21 should satisfy

0 ≤ p̃12(x) ≤ C12(x), 0 ≤ p̃21(x) ≤ C21(x)

for all x ∈ Ω , but can be merged in p12 = p̃12 − p̃21. The
above two constraints then transform into (51).

For each pair of neighboring pixels (p, q) ∈ N , two edges
were constructed in the discrete graph G: (vp,1, vq,1) and
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(vp2 , vq,2). Let Q1 denote the flow function on (vp,1, vq,1)

and Q2 the flow function on (vp,2, vq,2). These flows are
constrained by

0 ≤ Q1(vp,1, vq,1) ≤ wpq , 0 ≤ Q2(vp2 , vq,2) ≤ wpq ,

for all (p, q) ∈ N . In the same vein, the two spatial flow
fields qi ∈ (C∞(Ω))N i = 1, 2 are defined in the continuous
setting, and should satisfy (52). Observe that the continuous
counterpart allows to measure the magnitude of q1, q2 with
2-norm, which in turn produces rotationally invariant results.

Flow conservation should hold at each vp,1 and vp,2, i.e.

∑

q∈N k
p

Q1(vp,1, vq,1)− P1
s (p)+ P1

t (p)− P̃12(p)+ P̃21(p)

= 0,
∑

q∈N k
p

Q2(vp,2, vq,2)− P2
s (p)+ P2

t (p)+ P̃12(p)− P̃21(p)

= 0,

∀p ∈ P . Here N+(v) is defined as all w ∈ V such that
(v,w) ∈ E and N−(v) is defined as all w ∈ V such that
(w, v) ∈ E . The final two constraints (61) and (62) are gen-
eralizations of discrete flow conservation to the continuous
setting. The total amount of discrete flow in the graph is in
this case
∑

p∈P
P1

s (p)+ P2
s (p) .

The objective functional (63) is a generalization of the above,
and measures the total amount of flow that originates from
the source.
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