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Abstract This article provides an overview of various no-
tions of shape spaces, including the space of parametrized
and unparametrized curves, the space of immersions, the
diffeomorphism group and the space of Riemannian met-
rics. We discuss the Riemannian metrics that can be defined
thereon, and what is known about the properties of these
metrics. We put particular emphasis on the induced geodesic
distance, the geodesic equation and its well-posedness,
geodesic and metric completeness and properties of the cur-
vature.

Keywords Shape space · Diffeomorphism group ·
Manifolds of mappings · Landmark space · Surface
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1 Introduction

The variability of a certain class of shapes is of interest in
various fields of applied mathematics and it is of particular
importance in the field of computational anatomy. In mathe-
matics and computer vision, shapes have been represented
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in many different ways: point clouds, surfaces or images
are only some examples. These shape spaces are inherently
non-linear. As an example, consider the shape space of all
surfaces of a certain dimension and genus. The nonlinearity
makes it difficult to do statistics. One way to overcome this
difficulty is to introduce a Riemannian structure on the space
of shapes. This enables us to locally linearize the space and
develop statistics based on geodesic methods. Another ad-
vantage of the Riemannian setting for shape analysis is its
intuitive notion of similarity. Namely, two shapes that differ
only by a small deformation are regarded as similar to each
other.

In this article we will concentrate on shape spaces of sur-
faces and we will give an overview of the different Rieman-
nian structures, that have been considered on these spaces.

1.1 Spaces of Interest

We fix a compact manifold M without boundary of dimen-
sion d − 1. In this paper a shape is a submanifold of R

d

that is diffeomorphic to M and we denote by Bi(M,Rd)

and Be(M,Rd) the spaces of all immersed and embedded
submanifolds.

One way to represent Bi(M,Rd) is to start with the
space Imm(M,Rd) of immersions upon which the diffeo-
morphism group Diff(M) acts from the right via

Imm
(
M,Rd

)×Diff(M) � (q,ϕ) �→ q ◦ϕ ∈ Imm
(
M,Rd

)
.

The space Imm(M,Rd) is the space of parametrized type
M submanifolds of Rd and the action of Diff(M) represents
reparametrizations. The immersions q and q ◦ϕ have the
same image in R

d and thus one can identify Bi(M,Rd) with
the quotient

Bi

(
M,Rd

)∼= Imm(M,Rd)/Diff(M).
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The space Bi(M,Rd) is not a manifold, but an orbifold with
isolated singular points; see Sect. 3.3. To remove these we
will work with the slightly smaller space Immf (M,Rd) of
free immersions (see Sect. 3.1) and denote the quotient by

Bi,f

(
M,Rd

)∼= Immf

(
M,Rd

)
/Diff(M).

Similarly one obtains the manifold Be(M,Rd) as the quo-
tient of the space Emb(M,Rd) of embedded submanifolds
with the group Diff(M).

The spaces Imm(M,Rd) and Emb(M,Rd) are some-
times called pre-shape spaces, and Diff(M) is the reparame-
trization group. Their quotients Bi(M,Rd) and Be(M,Rd)

are called shape spaces.
We would like to note that our usage of the terms shape

and pre-shape space differs from that employed in [42, 68,
119]. In the terminology of [68] a pre-shape space is the
space of labelled landmarks modulo translations and scal-
ings and the shape space additionally quotients out rotations
as well. For the purposes of this paper, the pre-shape space
contains parametrized curves or surfaces and we pass to the
shape space by quotienting out the parametrizations.

A Riemannian metric on Imm(M,Rd) that is invari-
ant under the action of Diff(M) induces a metric on
Bi,f (M,Rd), such that the projection

π : Immf

(
M,Rd

)→ Bi,f

(
M,Rd

)
, q �→ q(M),

is a Riemannian submersion. This will be our method of
choice to study almost local and Sobolev-type metrics on
Imm(M,Rd) and Bi,f (M,Rd) in Sects. 5 and 6. These are
classes of metrics, that are defined via quantities measured
directly on the submanifold. We might call them inner met-
rics to distinguish them from outer metrics, which we will
describe next. This is however more a conceptual distinction
rather than a rigorously mathematical one.

Most Riemannian metrics, that we consider in this article,
will be weak, i.e., considered as a mapping from the tangent
bundle to the cotangent bundle the metric is injective, but not
surjective. Weak Riemannian metrics are a purely infinite-
dimensional phenomenon and they are the source of most of
the analytical complications, that we will encounter.

A way to define Riemannian metrics on the space of
parametrized submanifolds is via the left action of Diffc(Rd)

on Emb(M,Rd),

Diffc
(
R

d
)×Emb

(
M,Rd

) � (ϕ, q) �→ ϕ ◦q ∈ Emb
(
M,Rd

)
.

Here Diffc(Rd) denotes the Lie group of all compactly sup-
ported diffeomorphisms of R

d with Lie algebra the space
Xc(R

d) of all compactly supported vector fields, see Sect. 7.
Given a right-invariant metric on Diffc(Rd), the left action
induces a metric on Emb(M,Rd), such that for each embed-
ding q0 ∈ Emb(M,Rd) the map

πq0 :Diffc
(
R

d
)→ Emb

(
M,Rd

)
, ϕ �→ ϕ ◦q0,

is a Riemannian submersion onto the image. This construc-
tion formalizes the idea of measuring the cost of deforming
a shape as the minimal cost of deforming the ambient space,
i.e.,

GEmb
q (h,h)= inf

X ◦q=h
GDiff

Id (X,X). (1)

Here h ∈ Tq Emb(M,Rd) is an infinitesimal deformation of
q and the length squared GEmb

q (h,h), which measures its

cost, is given as the infimum of GDiff
Id (X,X), that is the cost

of deforming the ambient space. The infimum is taken over
all X ∈Xc(R

d) infinitesimal deformations of Rd , that equal
h when restricted to q . This motivates the name outer met-
rics, since they are defined in terms of deformations of the
ambient space.

The natural space to define these metrics is the space of
embeddings instead of immersions, because not all orbits of
the Diffc(Rd) action on Imm(M,Rd) are open. Defining a
Riemannian metric on Be(M,Rd) is now a two step process

Diffc
(
R

d
) πq0−→ Emb

(
M,Rd

) π−→ Be

(
M,Rd

)
.

One starts with a right-invariant Riemannian metric on
Diffc(Rd), which descends via (1) to a metric on
Emb(M,Rd). This metric is invariant under the reparametr-
ization group and thus descends to a metric on Be(M,Rd).
These metrics are studied in Sect. 8.

Riemannian metrics on the diffeomorphism groups
Diffc(Rd) and Diff(M) are of interest, not only because
these groups act as the deformation group of the ambient
space and the reparametrization group respectively. They
are related to the configuration spaces for hydrodynamics
and various PDEs arising in physics can be interpreted as
geodesic equations on the diffeomorphism group. While a
geodesic on Diffc(Rd) is a curve ϕ(t) of diffeomorphisms,
its right-logarithmic derivative u(t) = ∂tϕ(t)◦ϕ(t)−1 is a
curve of vector fields. If the metric on Diffc(Rd) is given
as GId(u, v)= ∫

Rd 〈Lu,v〉dx with a differential operator L,
then the geodesic equation can be written in terms of u(t) as

∂tm+ (u · ∇)m+mdivu+DuT .m= 0, m= Lu.

PDEs that are special cases of this equation include the
Camassa-Holm equation, the Hunter-Saxton equation and
others. See Sect. 7 for details.

So far we encoded shape through the way it lies in the
ambient space; i.e., either as a map q : M → R

d or as its
image q(M). One can also look at how the map q deforms
the model space M . Denote by ḡ the Euclidean metric on
R

d and consider the pull-back map

Imm
(
M,Rd

)→Met(M), q �→ q∗ḡ, (2)

where Met(M) is the space of all Riemannian metrics on
M and q∗ḡ denotes the pull-back of ḡ to a metric on M .
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Fig. 1 An overview of the relations between the spaces discussed in
this article. Here Vol+(M) is the space of all positive definite volume
densities, Diff(M) the diffeomorphism group, Met(M) the space of all

Riemannian metrics, Imm(M,Rd ) the space of immersed surfaces and
Bi(M,Rd ) the shape space of unparametrized surfaces; ḡ denotes the
Euclidean metric on R

d

Depending on the dimension of M one can expect to cap-
ture more or less information about shape with this map.
Elements of Met(M) with dim(M) = d − 1 are symmet-
ric, positive definite tensor fields of type

( 0
2

)
and thus have

d(d−1)
2 components. Immersions on the other hand are maps

from M into R
d and thus have d components. For d = 3, the

case of surfaces in R
3, the number of components coincide,

while for d > 3 we have d(d−1)
2 > d . Thus we would ex-

pect the pull-back map to capture most aspects of shape. The
pull-back is equivariant with respect to Diff(M) and thus we
have the commutative diagram

Immf (M,Rd)
q �→q∗ḡ

Met(M)

Bi,f (M,Rd) Met(M)/Diff(M)

The space in the lower right corner is not far away from
Met(M)/Diff0(M), where Diff0(M) denotes the connected
component of the identity. This space, known as super
space, is used in general relativity. Little is known about
the properties of the pull-back map (2), but as a first step
it is of interest to consider Riemannian metrics on the space
Met(M). This is done in Sect. 11, with special emphasis on
the L2- or Ebin-metric. See Fig. 1 for an overview of the
relations between the spaces discussed in this article.

1.2 Questions Discussed

After having explained the spaces, that will play the main
roles in the paper and the relationships between them, what
are the questions that we will be asking? The questions are
motivated by applications to comparing shapes.

After equipping the space with a Riemannian metric,
the simplest way to compare shapes is by looking at the
matrix of pairwise distances, measured with the induced
geodesic distance function. Thus an important question is,
whether the geodesic distance function is point-separating,
that is whether for two distinct shapes C0 �= C1 we have

d(C0,C1) > 0. In finite dimensions the answer to this ques-
tion is always “yes”. Even more, a standard result of Rie-
mannian geometry states that the topology induced by the
geodesic distance coincides with the manifold topology. In
infinite dimensions, when the manifold is equipped with a
weak Riemannian metric, this is in general not true any
more. The topology induced by the geodesic distance will
also be weaker than the manifold topology. We will there-
fore survey what is known about the geodesic distance and
the topology it induces.

The path realizing the distance between two shapes is, if
it exists, a geodesic. So it is natural to look at the geodesic
equation on the manifold. In finite dimensions the geodesic
equation is an ODE, the initial value problem for geodesics
can be solved, at least for short times, and the solution de-
pends smoothly on the initial data. The manifolds of interest
in this paper are naturally modeled mostly as Fréchet man-
ifolds and in coordinates the geodesic equation is usually a
partial differential equation or even involves pseudo differ-
ential operators. Only the regular Lie group Diffc(N) of dif-
feomorphisms with compact support on a noncompact man-
ifold are modeled on (LF)-spaces. Thus even the short-time
solvability of the initial-value problem is a non-trivial ques-
tion. For some of the metrics, in particular for the class of
almost local metrics, it is still open. For the diffeomorphism
group the geodesic equations for various metrics are of in-
terest in their own right. To reflect this we will discuss in
Sect. 7 first the geodesic equations before proceeding with
the properties of the geodesic distance.

It is desirable for applications that the Riemannian metric
possesses some completeness properties. It can be either in
form of geodesic completeness, i.e., that geodesics are ex-
tendable for all time, or metric completeness with respect
to the induced geodesic distance. Since we are considering
only weak Riemannian metrics on spaces of smooth shapes,
we cannot expect the space to be metrically complete, but in
some examples it is possible to at least describe the metric
completion of shape space.

In order to perform statistics on shape space one can
choose a reference shape, for example by computing the
mean of a given set of shapes, and linearize the space around
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this shape via the Riemannian exponential map and nor-
mal coordinates. The curvature tensor contains information
about the accuracy of this approximation. In general com-
puting the curvature leads to long formulas that are hard to
interpret, but in some cases curvature admits a simple ex-
pression. We collect the examples, where more is known
about the curvature, usually the sectional curvature, than just
the formula for it.

To summarize, we will deal with the following four prop-
erties of Riemannian metrics on shape spaces:

– Geodesic distance
– Geodesic equation and existence of geodesics
– Geodesic and metric completeness
– Properties of the curvature

Riemannian geometry on shape spaces is currently an
active area of research. Therefore this paper is less an en-
cyclopedic treatment of the subject but rather resembles an
interim report highlighting what is known and more impor-
tantly, what is not.

1.3 Topics Not Discussed

There are many topics that lie outside the scope of this paper,
among which are the following.

Changes in Topology In certain applications it may be of
interest to consider deformations of a shape that allow for
the development of holes or allow the shape to split into
several components. In this paper we fix the model mani-
fold M and only consider submanifolds of R

d diffeomor-
phic to M . Thus by definition all deformations are topology-
preserving. See [21, 41, 131] for topologically robust ap-
proaches to shape matching.

Non-geodesic Distances Many interesting distances can
be defined on shape spaces, that are not induced by an un-
derlying Riemannian metric; see for example [81, 83, 103].
As we are looking at shape spaces through the lens of Rie-
mannian geometry, these metrics will necessarily be left out
of focus.

Subgroups of the Diffeomorphism Groups The Rieman-
nian geometry of the diffeomorphism group and its sub-
groups, especially the group of volume-preserving diffeo-
morphisms, has been studied extensively; see for example
[120]. It plays an important role in hydrodynamics, being
the configuration space for incompressible fluid flow [44].
While the full diffeomorphism group itself is indispensable
for shape analysis, its subgroups have not been used much
in this context.

Utmost Generality We did not strive to state the results in
the most general setting. It is possible to consider shapes
of higher codimension inside R

d or curved ambient spaces;
see [5]. This would include examples like space curves or
curves that lie on a sphere. It would also make the presenta-
tion more difficult to read.

Numerical Methods Since shape space is infinite-dimen-
sional, computing the exponential map, the geodesic be-
tween two shapes or the geodesic distance are numerically
non-trivial tasks. While we present some examples, we do
not attempt to provide a comprehensive survey of the nu-
merical methods that have been employed in the context
of shape spaces. Finding stable, robust and fast numerical
methods and proving their convergence is an area of active
research for most of the metrics and spaces discussed in this
paper. See [4, 38, 39, 57, 111, 113] for various approaches
to discretizing shape space.

2 Preliminaries

2.1 Notation

In this section we will introduce the basic notation that we
will use throughout this article. On R

d we consider the Eu-
clidean metric, which we will denote by ḡ or 〈·, ·〉. Unless
stated otherwise we will assume that the parameter space M

is a compact, oriented manifold without boundary of dimen-
sion dim(M)= d−1. Riemannian metrics on M are usually
denoted by g. Tensor fields like g and its variations h are
identified with their associated mappings T M → T ∗M . For
a metric g this yields the musical isomorphisms

� : T M → T ∗M and � : T ∗M → T M.

Immersions from M to R
d—i.e., smooth mappings with ev-

erywhere injective derivatives—are denoted by q and the
corresponding unit normal field of an (orientable) immer-
sion q is denoted by nq . For every immersion q :M → R

d

we consider the induced pull-back metric g = q∗ḡ on M

given by

q∗ḡ(X,Y )= ḡ(T q.X,T q.Y ),

for vector fields X,Y ∈ X(M). Here T q denotes the tan-
gent mapping of the map q :M → R

d . We will denote the
induced volume form of the metric g = q∗ḡ as vol(g). In
positively oriented coordinates (u,U) it is given by

vol(g)=
√

det
(
ḡ(∂iq, ∂j q)

)
du1 ∧ · · · ∧ dud−1.

Using the volume form we can calculate the total volume
Volq =

∫
M

vol(q∗ḡ) of the immersion q .
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The Levi-Civita covariant derivative determined by a
metric g will be denoted by ∇g and we will consider the in-
duced Bochner–Laplacian �g , which is defined for all vec-
tor fields X ∈X(M) via

�gX =−Tr
(
g−1∇2X

)
.

Note that in R
d the usual Laplacian � is the negative of the

Bochner–Laplacian of the Euclidean metric, i.e., �ḡ =−�.
Furthermore, we will need the second fundamental form

sq(X,Y ) = ḡ(∇q∗ḡ
X T q.Y,nq). Using it we can define the

Gauß curvature Kq = det(g−1sq) and the mean curvature
Hq = Tr(g−1sq).

In the special case of plane curves (M = S1 and d = 2)
we use the letter c for the immersed curve. The curve param-
eter θ ∈ S1 will be the positively oriented parameter on S1,
and differentiation ∂θ will be denoted by the subscript θ , i.e.,
cθ = ∂θ c. We will use a similar notation for the time deriva-
tive of a time dependent family of curves, i.e., ∂t c= ct .

We denote the corresponding unit length tangent vector
by

v = vc = cθ

|cθ | = −Jnc where J =√−1 on C=R
2,

and nc is the unit length tangent vector. The covariant deriva-
tive of the pull-back metric reduces to arclength derivative,
and the induced volume form to arclength integration:

Ds = ∂θ

|cθ | , ds = |cθ |dθ.

Using this notation the length of a curve can be written as

	c =
∫

S1
ds.

In this case Gauß and mean curvature are the same and are
denoted by κ = 〈Dsv,n〉.

2.2 Riemannian Submersions

In this article we will repeatedly induce a Riemannian met-
ric on a quotient space using a given metric on the top space.
The concept of a Riemannian submersion will allow us to
achieve this goal in an elegant manner. We will now ex-
plain in general terms what a Riemannian submersion is and
how geodesics in the quotient space correspond to horizon-
tal geodesics in the top space.

Let (E,GE) be a possibly infinite dimensional weak Rie-
mannian manifold; weak means that GE : T E → T ∗E is
injective, but need not be surjective. A consequence is that
the Levi-Civita connection (equivalently, the geodesic equa-
tion) need not exist; however, if the Levi-Civita connection
does exist, it is unique. Let G be a smooth possibly infinite
dimensional regular Lie group; see [77] or [76, Sect. 38]

for the notion used here, or [106] for a more general notion
of Lie group. Let G × E → E be a smooth group action
on E and assume that B := E/G is a manifold. Denote by
π : E → B the projection, which is then a submersion of
smooth manifolds by which we means that it admits local
smooth sections everywhere; in particular, T π : T E → T B

is surjective. Then

Ver=Ver(π) := ker(T π)⊂ T E

is called the vertical subbundle. Assume that GE is in addi-
tion invariant under the action of G. Then the expression

‖Y‖2
GB

:= inf
{‖X‖2

GE
:X ∈ TxE,T π.X = Y

}

defines a semi-norm on B . If it is a norm, it can be shown (by
polarization pushed through the completion) that this norm
comes from a weak Riemannian metric GB on B; then the
projection π :E → B is a Riemannian submersion.

Sometimes the GE-orthogonal space Ver(π)⊥ ⊂ T E is
a fiber-linear complement in T E. In general, the orthogo-
nal space is a complement (for the GE-closure of Ver(π))
only if taken in the fiberwise GE-completion T E of T E.
This leads to the notion of a robust Riemannian manifold:
a Riemannian manifold (E,GE) is called robust, if T E is
a smooth vector-bundle over E and the Levi-Civita connec-
tion of GE exists and is smooth. See [88] for details. We
will encounter examples, where the use of T E is necessary
in Sect. 8.

The horizontal subbundle Hor = Hor(π,G) is the GE-
orthogonal complement of Ver in T E or in T E, respectively.
Any vector X ∈ T E can be decomposed uniquely in vertical
and horizontal components as

X =Xver +Xhor.

Note that if we took the complement in T E, i.e., Hor⊂ T E,
then in general Xver ∈Ver. The mapping

Txπ |Horx :Horx → Tπ(x)B or Tπ(x)B

is a linear isometry of (pre-)Hilbert spaces for all x ∈ E.
Here Tπ(x)B is the fiber-wise GB -completion of Tπ(x)B . We
are not claiming that T B forms a smooth vector-bundle over
B although this will be true in the examples considered in
Sect. 8.

Theorem 2.1 Consider a Riemannian submersion π :E →
B between robust weak Riemannian manifolds, and let γ :
[0,1]→E be a geodesic in E.

1. If γ ′(t) is horizontal at one t , then it is horizontal at all t .
2. If γ ′(t) is horizontal then π ◦ γ is a geodesic in B .
3. If every curve in B can be lifted to a horizontal curve

in E, then, up to the choice of an initial point, there is
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a one-to-one correspondence between curves in B and
horizontal curves in E. This implies that instead of solv-
ing the geodesic equation in B one can equivalently solve
the equation for horizontal geodesics in E.

See [92, Sect. 26] for a proof, and [88] for the case of
robust Riemannian manifolds.

3 The Spaces of Interest

3.1 Immersions and Embeddings

Parametrized surfaces will be modeled as immersions or em-
beddings of the configuration manifold M into R

d . We call
immersions and embeddings parametrized since a change in
their parametrization (i.e., applying a diffeomorphism on the
domain of the function) results in a different object. We will
deal with the following sets of functions:

Emb
(
M,Rd

) ⊂ Immf

(
M,Rd

)

⊂ Imm
(
M,Rd

)⊂ C∞(M,Rd
)
. (3)

Here C∞(M,Rd) is the set of smooth functions from M to
R

d , Imm(M,Rd) is the set of all immersions of M into R
d ,

i.e., all functions q ∈ C∞(M,Rd) such that Txq is injective
for all x ∈M . The set Immf (M,Rd) consists of all free im-
mersions q; i.e., the diffeomorphism group of M acts freely
on q , i.e., q ◦ϕ = q implies ϕ = IdM for all ϕ ∈Diff(M).

By [26, Lemma 3.1], the isotropy group Diff(M)q :=
{ϕ ∈ Diff(M) : q ◦ϕ = q} of any immersion q is always a
finite group which acts properly discontinuously on M so
that M →M/Diff(M)q is a covering map. Emb(M,N) is
the set of all embeddings of M into R

d , i.e., all immersions
q that are homeomorphisms onto their image.

Theorem 3.1 The spaces Imm(M,Rd), Immf (M,Rd) and
Emb(M,Rd) are Fréchet manifolds.

Proof Since M is compact by assumption it follows that
C∞(M,Rd) is a Fréchet manifold by [76, Sect. 42.3];
see also [58, 90]. All inclusions in (3) are inclusions of
open subsets: first Imm(M,Rd) is open in C∞(M,Rd)

since the condition that the differential is injective at ev-
ery point is an open condition on the one-jet of q [90,
Sect. 5.1]. Immf (M,Rd) is open in Imm(M,Rd) by [26,
Theorem 1.5]. Emb(M,Rd) is open in Immf (M,Rd) by
[76, Theorem 44.1]. Thus all the spaces are Fréchet mani-
folds as well. �

3.2 Shape Space

Unparametrized surfaces are equivalence classes of param-
etrized surfaces under the action of the reparametrization
group.

Theorem 3.2 [26, Theorem 1.5] The quotient space

Bi,f

(
M,Rd

) := Immf

(
M,Rd

)
/Diff(M)

is a smooth Hausdorff manifold and the projection

π : Immf

(
M,Rd

)→ Bi,f

(
M,Rd

)

is a smooth principal fibration with Diff(M) as structure
group.

For q ∈ Immf (M,Rd) we can define a chart around
π(q) ∈ Bi,f (M,Rd) by

π ◦ψq : C∞(M,(−ε, ε)
)→ Bi,f

(
M,Rd

)

with ε sufficiently small, where

ψq : C∞(M,(−ε, ε)
)→ Immf

(
M,Rd

)

is defined by ψq(a)= q+anq and nq is the unit-length nor-
mal vector to q .

Corollary 3.3 The statement of Theorem 3.2 does not
change, if we replace Bi,f (M,Rd) by Be(M,Rd) and
Immf (M,Rd) by Emb(M,Rd).

The result for embeddings is proven in [18, 58, 89, 90].
As Emb(M,Rd) is an open subset of Immf (M,Rd) and is
Diff(M)-invariant, the quotient

Be

(
M,Rd

) := Emb
(
M,Rd

)
/Diff(M)

is an open subset of Bi,f (M,Rd) and as such itself a smooth
principal bundle with structure group Diff(M).

3.3 Some Words on Orbifolds

The projection

Imm
(
M,Rd

)→ Bi

(
M,Rd

) := Imm
(
M,Rd

)
/Diff(M)

is the prototype of a Riemannian submersion onto an infinite
dimensional Riemannian orbifold. In the article [122, Propo-
sition 2.1] it is stated that the finite dimensional Riemannian
orbifolds are exactly of the form M/G for a Riemannian
manifold M and a compact group G of isometries with fi-
nite isotropy groups. Curvature on Riemannian orbifolds is
well defined, and it suffices to treat it on the dense regular
subset. In our case Bi,f (M,Rd) is the regular stratum of the
orbifold Bi(M,Rd). For the behavior of geodesics on Rie-
mannian orbit spaces M/G see for example [1]; the easiest
way to carry these results over to infinite dimensions is by
using Gauss’ lemma, which only holds if the Riemannian
exponential mapping is a diffeomorphism on an GImm-open
neighborhood of 0 in each tangent space. This is rarely true.
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Given a Diff(M)-invariant Riemannian metric on
Imm(M,Rd), one can define a metric distance distBi on
Bi(M,Rd) by taking as distance between two shapes the in-
fimum of the lengths of all (equivalently, horizontal) smooth
curves connecting the corresponding Diff(M)-orbits. There
are the following questions:

– Does distBi separate points? In many cases this has been
decided.

– Is (Bi(M,Rd),distBi ) a geodesic metric space? In other
words, does there exists a rectifiable curve connecting two
shapes in the same connected component whose length is
exactly the distance? This is widely open, but it is settled
as soon as local minimality of geodesics in Imm(M,Rd)

is established.

In this article we are discussing Riemannian metrics
on Bi,f (M,Rd), that are induced by Riemannian met-
rics on Immf (M,Rd) via Riemannian submersions. How-
ever all metrics on Immf (M,Rd), that we consider, arise
as restrictions of metrics on Imm(M,R2). Thus, when
dealing with parametrized shapes, we will use the space
Imm(M,R2) and restrict ourselves to the open and dense
subset Immf (M,R2), whenever we consider the space
Bi,f (M,R2) of unparametrized shapes.

3.4 Diffeomorphism Group

Concerning the Lie group structure of the diffeomorphism
group we have the following theorem.

Theorem 3.4 [76, Theorem 43.1] Let M be a smooth man-
ifold, not necessarily compact. The group

Diffc(M)= {ϕ : ϕ,ϕ−1 ∈ C∞(M,M),
{
x : ϕ(x) �= x

}

has compact closure
}

of all compactly supported diffeomorphisms is an open sub-
manifold of C∞(M,M) (equipped wit a refinement of the
Whitney C∞-topology) and composition and inversion are
smooth maps. It is a regular Lie group and the Lie algebra
is the space Xc(M) of all compactly supported vector fields,
whose bracket is the negative of the usual Lie bracket.

An infinite dimensional smooth Lie group G with Lie
algebra g is called regular, if the following two conditions
hold:

– For each smooth curve X ∈ C∞(R,g) there exists a
unique smooth curve g ∈ C∞(R,G) whose right logarith-
mic derivative is X, i.e.,

g(0)= e

∂tg(t)= Te

(
μg(t)

)
X(t)=X(t).g(t).

(4)

Here μg :G→G denotes the right multiplication:

μgx = x.g.

– The map evolrG : C∞(R,g) → G is smooth, where
evolrG(X)= g(1) and g is the unique solution of (4).

If M is compact, then all diffeomorphisms have com-
pact support and Diffc(M) = Diff(M). For R

n the group
Diff(Rd) of all orientation preserving diffeomorphisms is
not an open subset of C∞(Rd ,Rd) endowed with the com-
pact C∞-topology and thus it is not a smooth manifold
with charts in the usual sense. Therefore, it is necessary to
work with the smaller space Diffc(Rd) of compactly sup-
ported diffeomorphisms. In Sect. 7 we will also introduce
the groups DiffH∞(Rd) and DiffS(Rd) with weaker decay
conditions towards infinity. Like Diffc(Rd) they are smooth
regular Lie groups.

3.5 The Space of Riemannian Metrics

We denote by Met(M) the space of all smooth Riemannian
metrics. Each g ∈Met(M) is a symmetric, positive definite( 0

2

)
tensor field on M , or equivalently a pointwise positive

definite section of the bundle S2T ∗M .

Theorem 3.5 [52, Sect. 1.1] Let M be a compact manifold
without boundary. The space Met(M) of all Riemannian
metrics on M is an open subset of the space Γ (S2T ∗M)

of all symmetric
( 0

2

)
tensor fields and thus itself a smooth

Fréchet-manifold.

For each g ∈Met(M) and x ∈M we can regard g(x) as
either a map

g(x) : TxM × TxM →R

or as an invertible map

gx : TxM → T ∗
x M.

The latter interpretation allows us to compose g,h ∈
Met(M) to obtain a fiber-linear map g−1.h : T M → T M .

4 The L2-Metric on Plane Curves

4.1 Properties of the L2-Metric

We first look at the simplest shape space, the space of plane
curves. In order to induce a metric on the manifold of un-
parametrized curves Bi,f (S1,R2) we need to define a metric
on parametrized curves Imm(S1,R2), that is invariant under
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reparametrizations, c.f. Sect. 2.2. The simplest such metric
on the space of immersed plane curves is the L2-type metric

G0
c(h, k)=

∫

S1

〈
h(θ), k(θ)

〉
ds.

The horizontal bundle of this metric, when restricted to
Immf (S1,R2), consists of all tangent vectors, h that are
pointwise orthogonal to cθ , i.e., h(θ)= a(θ)nc(θ) for some
scalar function a ∈ C∞(S1). An expression for the metric
on the quotient space Bi,f (S1,R2), using the charts from
Theorem 3.2, is given by

G0
C

(
Tcπ(a.nc), Tcπ(b.nc)

)=
∫

S1
a(θ)b(θ)ds.

This metric was first studied in the context of shape anal-
ysis in [94]. The geodesic equation for the G0-metric on
Immf (S1,R2) is given by

(|cθ |ct )t =−1

2

( |ct |2cθ

|cθ |
)

θ

. (5)

Geodesics on Bi,f (S1,R2) correspond to horizontal geo-
desics on Immf (S1,R2) by Theorem 2.1; these satisfy ct =
a.nc, with a scalar function a(t, θ). Thus the geodesic equa-
tion (5) reduces to an equation for a(t, θ),

at = 1

2
κa2.

Note that this is not an ODE for a, because κc , being the cur-
vature of c, depends implicitly on a. It is however possible
to eliminate κ and arrive at (see [94, Sect. 4.3])

att − 4
a2
t

a
− a6aθθ

2w4
+ a6aθwθ

w5
− a5a2

θ

w4
= 0,

w(θ)= a(0, θ)
√|cθ (0, θ)|,

a nonlinear hyperbolic PDE of second order.

Open Question Are the geodesic equations on either of the
spaces Imm(S1,R2) or Bi,f (S1,R2) for the L2-metric (lo-
cally) well-posed?

The L2-metric is among the few for which the sectional
curvature on Bi,f (S1,R2) has a simple expression. Let C =
π(c) ∈ Bi,f (S1,R2) and choose c ∈ Immf (S1,R2) such
that it is parametrized by constant speed. Take a.nc, b.nc ∈
HorG0(c) two orthonormal horizontal tangent vectors at c.
Then the sectional curvature of the plane spanned by them
is given by the Wronskian

kC

(
P
(
Tcπ(a.nc), Tcπ(b.nc)

))= 1

2

∫

S1
(abθ − aθb)2 ds. (6)

In particular the sectional curvature is non-negative and un-
bounded.

Remark 4.1 This metric has a natural generalization to the
space Imm(M,Rd) of immersions of an arbitrary compact
manifold M . This can be done by replacing the integration
over arc-length with integration over the volume form of the
induced pull-back metric. For q ∈ Imm(M,Rd) the metric
is defined by

G0
q(h, k)=

∫

M

〈
h(x), k(x)

〉
vol
(
q∗ḡ
)
.

The geodesic spray of this metric was computed in [17] and
the curvature in [65].

For all its simplicity the main drawback of the L2-
metric is that the induced geodesic distance vanishes on
Imm(S1,R2). If c : [0,1] → Imm(S1,R2) is a path, denote
by

LenG
Imm(c)=

∫ 1

0

√
Gc(t)

(
ct (t), ct (t)

)
dt

its length. The geodesic distance between two points is de-
fined as the infimum of the pathlength over all paths con-
necting the two points,

distGImm(c0, c1)= inf
c(0)=c0,
c(1)=c1

LenG
Imm(c).

For a finite dimensional Riemannian manifold (M,G) this
distance is always positive, due to the local invertibility of
the exponential map. This does not need to be true for a
weak Riemannian metric in infinite dimensions and the L2-
metric on Bi,f (S1,R2) was the first known example, where
this was indeed false. We have the following result.

Theorem 4.2 The geodesic distance function induced by
the metric G0 vanishes identically on Imm(S1,R2) and
Bi,f (S1,R2).

For any two curves c0, c1 ∈ Imm(S1,R2) and ε > 0 there
exists a smooth path c : [0,1] → Imm(S1,R2) with c(0) =
c0, c(1)= c1 and length LenG0

Imm(c) < ε.

For the space Bi,f (S1,R2) an explicit construction of the
path with arbitrarily short length was given in [94]. Heuris-
tically, if the curve is made to zig-zag wildly, then the nor-
mal component of the motion will be inversely proportional
to the length of the curve. Since the normal component is
squared the length of the path can be made arbitrary small.
This construction is visualized in Fig. 2.

For Imm(S1,R2) vanishing of the geodesic distance is
proven in [6]; the proof makes use of the vanishing of the
distance on Bi,f (S1,R2) and on Diff(S1).

Remark 4.3 In fact, this result holds more generally for the
space Imm(M,Rd). One can also replace Rd by an arbitrary
Riemannian manifold N ; see [93].
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Fig. 2 A short path in the space of un-parametrized curves that con-
nects the bottom to the top line. Original image published in [94]

The vanishing of the geodesic distance leads us to con-
sider stronger metrics that prevent this behavior. In this arti-
cle we will present three different classes of metrics:

– Almost local metrics:

GΨ
q (h, k)=

∫

M

Ψ (q)〈h, k〉vol
(
q∗ḡ
)
,

where Ψ : Imm(M,Rd) → C∞(M,R>0) is a suitable
smooth function.

– Sobolev type metrics:

GL
q (h, k)=

∫

M

〈Lqh, k〉vol
(
q∗ḡ
)
,

where Lq : Tq Imm(M,Rd)→ Tq Imm(M,Rd) is a suit-
able differential operator.

– Metrics that are induced by right invariant metrics on the
diffeomorphism group of the ambient space.

4.2 Gradient Flows on Curves

The L2-metric is used in geometric active contour models to
define gradient flows for various energies. For example the
curve shortening flow

ct = κcnc

is the gradient flow of the energy E(c) = ∫
S1 ds = 	c with

respect to the L2-metric.
The following example is taken from [84]. The centroid

based energy E(c)= 1
2 |μ(c)−w|2, with w ∈ R

2 fixed and
μ(c) = 1

	c

∫
S1 c ds denoting the centroid, attains its mini-

mum when μ(c)=w. The L2-gradient of the energy is

∇0E(c)= 〈μ(c)−w,nc

〉
nc + κc

〈
μ(c)− c,μ(c)−w

〉
nc.

We see from the second term that the gradient flow

ct =−∇0E(c)

tries to decrease the length of the curve for points with
〈μ(c)−c,μ(c)−w〉 ≤ 0, but increase for 〈μ(c)−c,μ(c)−
w〉 > 0. This latter part is ill-posed. However the ill-
posedness of the gradient flow is not an intrinsic property
of the energy, it is a consequence of the metric we chose
to define the gradient. For example the gradient flow with
respect to the H 1-metric

G1
c(h, k)=

∫

S1

1

	c

〈h, k〉 + 	c〈Dsh,Dsk〉ds

is locally well-posed. See [123–125] for more details on
Sobolev active contours and applications to segmentation
and tracking. The same idea has been employed for gradi-
ent flows of surfaces in [140].

5 Almost Local Metrics on Shape Space

Almost local metrics are metrics of the form

GΨ
q (h, k)=

∫

M

Ψ (q)〈h, k〉vol
(
q∗ḡ
)
,

where Ψ : Imm(M,Rd)→ C∞(M,R>0) is a smooth func-
tion that is equivariant with respect to the action of Diff(M),
i.e.,

Ψ (q ◦ ϕ)= Ψ (q) ◦ ϕ, q ∈ Imm
(
M,Rd

)
, ϕ ∈Diff(M).

Equivariance of Ψ then implies the invariance of GΨ and
thus GΨ induces a Riemannian metric on the quotient
Bi,f (M,Rd).

Examples of almost local metrics that have been consid-
ered are of the form

GΦ
q (h, k)=

∫

M

Φ(Volq,Hq,Kq)〈h, k〉vol
(
q∗ḡ
)
, (7)

where Φ ∈ C∞(R3,R>0) is a function of the total volume
Volq , the mean curvature Hq and the Gauß curvature Kq .
The name “almost local” is derived from the fact that while
Hq and Kq are local quantities, the total volume Volq in-
duces a mild non-locality in the metric. If Φ = Φ(Vol) de-
pends only on the total volume, the resulting metric is con-
formally equivalent to the L2-metric, the latter correspond-
ing to Φ ≡ 1.

For an almost local metric GΨ the horizontal bundle at
q ∈ Immf (M,Rd) consists of those tangent vectors h that
are pointwise orthogonal to q ,
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HorΨ (q)

= {h ∈ Tq Immf

(
M,Rd

) : h= a.nq, a ∈ C∞(M,R)
}
.

Using the charts from Theorem 3.2, the metric GΨ on
Bi,f (M,Rd) is given by

GΨ
π(q)

(
Tqπ(a.nq), Tqπ(b.nq)

)=
∫

M

Ψ (q).a.b vol
(
q∗ḡ
)
,

with a, b ∈ C∞(M,R).
Almost local metrics, that were studied in more detail in-

clude the curvature weighted GA-metrics

GA
c (h, k)=

∫

S1

(
1+Aκ2

c

)〈h, k〉ds, (8)

with A > 0 in [94] and the conformal rescalings of the L2-
metric

GΦ
c (h, k)=Φ(	c)

∫

S1
〈h, k〉ds,

with Φ ∈ C∞(R>0,R>0) in [115, 135], both on the space
of plane curves. More general almost local metrics on the
space of plane curves were considered in [95] and they have
been generalized to hypersurfaces in higher dimensions in
[3, 10, 11].

5.1 Geodesic Distance

Under certain conditions on the function Ψ almost lo-
cal metrics are strong enough to induce a point-separating
geodesic distance function on the shape space.

Theorem 5.1 If Ψ satisfies one of the following conditions

1. Ψ (q)≥ 1+AH 2
q

2. Ψ (q)≥AVolq

for some A > 0, then the metric GΨ induces a point-
separating geodesic distance function on Bi,f (M,Rd), i.e.,
for C0 �= C1 we have distΨBi,f

(C0,C1) > 0.

For planar curves the result under assumption 1 is proven
in [94, Sect. 3.4] and under assumption 2 in [115, Theo-
rem 3.1]. The proof was generalized to the space of hyper-
surfaces in higher dimensions in [10, Theorem 8.7].

The proof is based on the observation that under the
above assumptions the GΨ -length of a path of immersions
can be bounded from below by the area swept out by the
path. A second ingredient in the proof is the Lipschitz-
continuity of the function

√
Volq .

Theorem 5.2 If Ψ satisfies

Ψ (q)≥ 1+AH 2
q ,

then the geodesic distance satisfies

∣∣
√

VolQ1 −
√

VolQ2

∣∣≤ 1

2
√

A
distG

Ψ

Bi,f
(Q1,Q2).

In particular the map

√
Vol : (Bi,f

(
M,Rd

)
,distG

Ψ

Bi,f

)→R≥0

is Lipschitz continuous.

This result is proven in [94, Sect. 3.3] for plane curves
and in [10, Lemma 8.4] for hypersurfaces in higher dimen-
sions.

In the case of planar curves [115] showed that for the al-
most local metric with Ψ (c) = 	c the geodesic distance on
Bi,f (S1,R2) is not only bounded by but equal to the infi-
mum over the area swept out,

dist	Bi,f
(C0,C1)= inf

π(c(0))=C0
π(c(1))=C1

∫

S1×[0,1]
∣∣detdc(t, θ)

∣∣dθ dt.

Remark 5.3 No almost local metric can induce a point sepa-
rating geodesic distance function on Immf (M,Rd) and thus
neither on Imm(M,Rd). When we restrict the metric GΨ to
an orbit q ◦Diff(M) of the Diff(M)-action, the induced met-
ric on the space q ◦ Diff(M)∼= Diff(M) is a right-invariant
weighted L2-type metric, for which the geodesic distance
vanishes. Thus

distΨImm(q, q ◦ ϕ)= 0,

for all q ∈ Immf (M,Rd) and ϕ ∈Diff(M). See Sect. 7.4 for
further details.

This is not a contradiction to Theorem 5.1, since a point-
separating distance on the quotient Bi,f (M,Rd) only im-
plies that the distance on Immf (M,Rd) separates the fibers
of the projection π : Bi,f (M,Rd) → Immf (M,Rd). On
each fiber π−1(C)⊂ Immf (M,Rd) the distance can still be
vanishing, as it is the case for the almost local metrics.

It is possible to compare the geodesic distance on shape
space with the Fréchet distance. The Fréchet distance is de-
fined as

distL
∞

Bi,f
(Q0,Q1)= inf

q0,q1
‖q0 − q1‖L∞, (9)

where the infimum is taken over all immersions q0, q1 with
π(qi)=Qi . Depending on the behavior of the metric under
scaling, it may or may not be possible to bound the Fréchet
distance by the geodesic distance.

Theorem 5.4 [10, Theorem 8.9] If Ψ satisfies one of the
conditions,
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1. Ψ (q)≤ C1 +C2H
2k
q

2. Ψ (q)≤ C1 Volkq ,

with some constants C1,C2 > 0 and k < d+1
2 , then there

exists no constant C > 0, such that

distL
∞

Bi,f
(Q0,Q1)≤ C distΨBi,f

(Q0,Q1),

holds for all Q0,Q1 ∈ Bi,f (M,Rd).

Note that this theorem also applies to the GA-metric for
planar curves defined in (8). Even though Theorem 5.4 states
that the identity map

ι : (Bi,f

(
S1,R2),distG

A)→ (
Bi,f

(
S1,R2),distL

∞)

is not Lipschitz continuous, it can be shown that is continu-
ous and thus the topology induces by distG

A
is stronger than

that induced by distL
∞

.

Theorem 5.5 [94, Corollary 3.6] The identity map on

Bi,f (S1,R2) is continuous from (Bi,f (S1,R2),distG
A
) to

(Bi,f (S1,R2),distL
∞

) and uniformly continuous on every
subset, where the length 	C is bounded.

As a corollary to this result we obtain another proof that
the geodesic distance for the GA-metric is point-separating
on Bi,f (S1,R2).

5.2 Geodesic Equation

Since geodesics on Bi,f correspond to horizontal geodesics
on Immf (M,Rd), see Theorem 2.1, to compute the geodesic
equation on Bi,f (M,Rd) it is enough to restrict the geodesic
equation on Immf (M,Rd) to horizontal curves.

As an example for the resulting equations we will present
the geodesic equations on Bi,f (M,Rd) for the almost lo-
cal metric with Ψ (q)= 1+AH 2

q , which is a generalization
of the metric (8), and the family of metrics with Ψ (q) =
Φ(Volq), which are conformal rescalings of the L2-metric.

Theorem 5.6 Geodesics of the almost local GΨ -metric with
Ψ (q)= 1+AH 2

q on Bi,f (M,Rd) are given by solutions of

qt = anq, g = q∗ḡ,

at = 1

2
a2Hq + 2A

1+AH 2
q

g
(
Hq∇ga + 2a∇gHq,∇ga

)

− Aa2

1+AH 2
q

(
�gHq + Tr

((
g−1sq

)2))
.

For the family of metrics with Ψ (q) = Φ(Volq) geodesics
are given by

qt = b(t)

Φ(Volq)
nq, g = q∗ḡ,

at = Hq

2Φ(Volq)

(
a2 − Φ ′(Volq)

Φ(Volq)

∫

M

a2 vol(g)

)
.

For the GA-metric and planar curves the geodesic equation
was calculated in [94, Sect. 4.1], whereas for conformal met-
rics on planar curves it is presented in [115, Sect. 4]. For
hypersurfaces in higher dimensions the equations are calcu-
lated in [10, Sects. 10.2 and 10.3].

Note that both for A= 0 and Φ(q)≡ 1 one recovers the
geodesic equation for the L2-metric,

at = 1

2
Hqa2.

Similarly to the case of the L2-metric it is unknown,
whether the geodesic equations are well-posed.

Open Question Are the geodesic equations on either of
the spaces Imm(M,R2) or Bi,f (M,R2) for the almost lo-
cal metrics (locally) well-posed?

5.3 Conserved Quantities

If the map Ψ is equivariant with respect to the Diff(M)-
action, then the GΨ -metric is invariant, and we obtain by
Noether’s theorem that the reparametrization momentum is
constant along each geodesic. The reparametrization mo-
mentum for the GΨ -metric is given by

Ψ (q)g
(
q�t , ·)vol

(
q∗ḡ
) ∈ Γ

(
T ∗M ⊗Λd−1T ∗M

)
,

with g = q∗ḡ and the pointwise decomposition of the tan-
gent vector qt = q�t + q⊥t of qt into q⊥t = ḡ(qt , nq)nq and
q�t (x) ∈ Tq(x)q(M). This means that for each X ∈X(M) we
have
∫

M

Ψ (q)g
(
q�t ,X

)
vol
(
q∗ḡ
)= const.

If Ψ is additionally invariant under the action of the
Euclidean motion group R

d
� SO(d), i.e., Ψ (O.q + v) =

Ψ (q), then so is the GΨ -metric and by Noether’s theo-
rem the linear and angular momenta are constant along
geodesics. These are given by
∫

M

Ψ (q)qt vol
(
q∗ḡ
) ∈R

d

∫

M

Ψ (q)q ∧ qt vol
(
q∗ḡ
) ∈
∧2

R
d ∼= so(d)∗.

The latter means that for each Ω ∈ so(d) the quantity
∫

M

Ψ (q)ḡ(Ω.q, qt )vol
(
q∗ḡ
)

is constant along geodesics.
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If the function Ψ satisfies the scaling property

Ψ (λq)= λ−dim(M)−2Ψ (q), q ∈ Imm
(
M,Rd

)
, λ ∈R>0,

then the induced metric GΨ is scale invariant. In this case
the scaling momenta are conserved along geodesics as well:
∫

M

Ψ (q)〈q, qt 〉vol
(
q∗ḡ
)

(scaling momentum)

For plane curves the momenta are
∫

S1
Ψ (c)〈cθ , ct 〉μds (reparametrization momentum)

∫

S1
Ψ (c)ct ds (linear momentum)

∫

S1
〈Jc, ct 〉ds (angular momentum)

∫

S1
Ψ (c)〈c, ct 〉ds (scaling momentum)

with μ ∈ C∞(S1) and J denoting rotation by π
2 .

5.4 Completeness

Regarding geodesic completeness, one can look at the set of
spheres with a common center. This one-dimensional subset
of Bi,f (Sd−1,Rd) is a totally geodesic submanifold, i.e., a
geodesic up to parameterization. One can explicitly calcu-
late the length of this geodesic as spheres shrink towards a
point and when they expand towards infinity. When it is pos-
sible to shrink to a point with a geodesic of finite length, the
space can obviously not be geodesically complete. This is
the case under the following conditions.

Theorem 5.7 [10, Theorem 9.1] If Ψ satisfies one of the
conditions,

1. Ψ (q)≤ C1 +C2H
2k
q

2. Ψ (q)≤ C1 Volkq ,

with some constants C1,C2 > 0 and k < d+1
2 , then the

spaces Imm(Sd−1,Rd) and Bi,f (Sd−1,Rd) are not geodesi-
cally complete with respect to the GΨ -metric.

Note that these are the same conditions as in Theo-
rem 5.4. For other choices of M scalings will in general not
be geodesic, but under the same condition an immersion can
be scaled down to a point with finite energy. What conditions
are sufficient to prevent geodesics from developing singu-
larities and thus make the spaces geodesically complete is
unknown.

Concerning metric completeness, it cannot be expected
that a weighted L2-type metric will be able to prevent im-
mersions from losing smoothness in the completion. We

have only a partial result available for the GA-metric (8) on
plane curves.

Similarly to the definition of Bi,f (S1,R2), we can define
the larger space

B
lip
i

(
S1,R2)= Lip

(
S1,R2)/∼

of equivalence classes of Lipschitz curves. We identify
two Lipschitz curves, if they differ by a monotone corre-
spondence. This can be thought of as a generalization of
reparametrizations, which allow for jumps and intervals of
zero speed; see [94, Sect. 2.11]. Equipped with the Fréchet-
distance (9), the space B

lip
i (S1,R2) is metrically complete.

A curve C ∈ B
lip
i (S1,R2) is called a 1-BV rectifiable

curve, if the turning angle function α of an arc-length
parametrized lift c ∈ Lip(S1,R2) of C is a function of
bounded variation.

Theorem 5.8 [94, Theorem 3.11] The completion of the
metric space (Bi,f (S1,R2),distG

A
) is contained in the

shape space B
lip
i (S1,R2) of Lipschitz curves and it contains

all 1-BV rectifiable curves.

5.5 Curvature

The main challenge in computing the curvature for almost
local metrics on Imm(M,Rd) is finding enough paper to
finish the calculations. It is probably due to this that apart
from the L2-metric we are not aware of any curvature calcu-
lations on the space Imm(M,Rd). For the quotient space
Bi,f (M,Rd) the situation is a bit better and the formu-
las a bit shorter. This is because Bi,f (M,Rd) is modeled
on C∞(M,R), while the space Imm(M,Rd) is modeled
on C∞(M,Rd). In coordinates elements of Bi,f (M,Rd)

are represented by scalar functions, while immersions need
functions with d components. For plane curves and con-
formal metrics the curvature has been calculated in [115]
and for Ψ (c) = Φ(	c, κc) in [95]. Similarly for higher di-
mensional surfaces the curvature has been calculated for
Ψ (q)=Φ(Volq,Hq) in [10].

The sectional curvature for the L2-metric on plane curves
(6) is non-negative. In general the expression for the sec-
tional curvature for almost local metrics with Φ �≡ 1 will
contain both positive definite, negative definite and indefi-
nite terms. For example the sectional curvature of the metric
(8) with Ψ (c)= 1+Aκ2

c on plane curves has the following
form.

Theorem 5.9 [94, Sect. 4.6] Let C ∈ Bi,f (S1,R2) and
choose c ∈ Imm(S1,R2) such that C = π(c) and c is
parametrized by constant speed. Let a.n, b.n ∈ Hor(c)
two orthonormal horizontal tangent vectors at c. Then
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the sectional curvature of the plane spanned by a, b ∈
TCBi,f (S1,R2) for the GA metric is

kC

(
P(a, b)

)

=−
∫

S1
A
(
a.D2

s b− b.D2
s a
)2

ds

+
∫

(1−Aκ2)2 − 4A2κ.D2
s κ + 8A2(Dsκ)2

2(1+Aκ2)

· (a.Dsb− b.Dsa)2ds

It is assumed, although not proven at the moment, that for
a generic immersion, similar to Theorem 7.14, the sectional
curvature will assume both signs.

5.6 Examples

To conclude the section we want to present some examples
of numerical solutions to the geodesic boundary value prob-
lem for given shapes Q0,Q1 ∈ Bi,f (M,Rd) with metrics of
the form (7). One method to tackle this problem is to directly
minimize the horizontal path energy

Ehor(q)=
∫ 1

0

∫

M

Φ(Volq,Hq)〈qt , nq〉2 vol
(
q∗ḡ
)

dt

over the set of paths q of immersions with fixed endpoints
q0, q1 that project onto the target surfaces Q0 and Q1, i.e.,
π(qi) = Qi . The main advantage of this approach for the
class of almost local metrics lies in the simple form of the
horizontal bundle. Although we will only show one specific
example in this article it is worth to note that several numer-
ical experiments are available; see:

– Michor and Mumford [94, 95] for the GA-metric and pla-
nar curves.

– Yezzi and Mennucci [135, 136] for conformal metrics and
planar curves.

– Bauer et al. [3, 10, 11] for surfaces in R
3.

The example we want to present here, is concerned with the
behavior of the GA-metric matching curves that are far apart
in space. In the article [94] the authors showed that pure
translation of a cigar-like shape with a cross-section of 2

√
A

is (locally) a geodesic for the GA-metric. Thus one might
expect that a geodesic between distant curves will asymp-
totically utilize this cigar shaped curve, translate this opti-
mal curve and then deform it to the target shape. In fact the
numerical examples resemble this behavior as can be seen
in Fig. 3. Note that the cross-section of the middle figure—
which is highlighted—is slightly bigger than 2

√
A. A reason

for this might be that the distance between the two boundary
shapes is not sufficiently large. In the article [10] it has been
shown that this behavior carries over to the case of higher-
dimensional surfaces, c.f. Fig. 4. Note that the behavior of

Fig. 3 A geodesic in the GA-metric joining two shapes of size about
1 at distance 5 apart with A= .25, using 20 time samples and a 48-gon
approximation for all curves. Original image published in [94]

Fig. 4 Middle figure of a geodesic between two unit spheres at dis-
tance 3 apart for A = 0.2, A = 0.4, A = 0.6, A = 0.8. In each of the
simulations 20 time steps and a triangulation with 720 triangles were
used. Original image published in [10]

the geodesics changes dramatically if one increases the dis-
tance further, namely for shapes that are sufficiently far apart
the geodesics will go through a shrink and grow behavior.
This phenomenon is based on the fact that it is possible
to shrink a sphere to zero in finite time for the GA-metric.
Then geodesics of very long translations will go via a strong
shrinking part and growing part, and almost all of the trans-
lation will be done with the shrunken version of the shape.
This behavior, which also occurs for the class of conformal
metrics, is described in [10].

6 Sobolev Type Metrics on Shape Space

Sobolev-type inner metrics on the space Imm(M,Rd) of im-
mersions are metrics of the form

GL
q (h, k)=

∫

M

〈Lqh, k〉vol
(
q∗ḡ
)
,

where for each q ∈ Imm(M,Rd), Lq is a pseudo-differen-
tial operator on Tq Imm(M,Rd). To be precise we assume
that the operator field

L : T Imm
(
M,Rd

)→ T Imm
(
M,Rd

)

is a smooth base-point preserving bundle isomorphism, such
that for every q ∈ Imm(M,Rd) the map

Lq : Tq Imm
(
M,Rd

)→ Tq Imm
(
M,Rd

)

is a pseudo-differential operator, that is symmetric and pos-
itive with respect to the L2-metric. Ordinarily, Lq will be
elliptic and of order ≥ 1, with the order being constant in q .
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However, the operator fields in [105] are not elliptic. An ex-
ample for such an operator field L is

Lqh= h+ (�g
)l

h, l ≥ 0, (10)

where �g is the Laplacian of the induced metric g = q∗ḡ
on M .

We will also assume that the operator field L is invari-
ant under the action of the reparametrization group Diff(M),
i.e.,

(Lqh) ◦ ϕ = Lq◦ϕ(h ◦ ϕ), (11)

for all ϕ,q and h. Then the metric GL is invariant under
Diff(M) and it induces a Riemannian metric on the quotient
space Bi,f (M,Rd).

In contrast to the class of almost local metrics, for whom
the horizontal bundle of the submersion

Immf

(
M,Rd

)→ Bi,f

(
M,Rd

)

consisted of tangent vectors, that are pointwise orthogonal to
the surface, here the horizontal bundle cannot be described
explicitly. Instead we have

HorL(q)= {h ∈ Tq Immf

(
M,Rd

) : Lqh= a.nq

}
,

where a ∈ C∞(M,R) is a smooth function. Thus to param-
etrize the horizontal bundle we need to invert the opera-
tor Lq .

General Sobolev-type inner metrics on the space of im-
mersed plane curves have been studied in [95] and on sur-
faces in higher dimensions in [5]. Numerical experiments
for special cases of order one Sobolev type metrics are pre-
sented in the articles [4, 62, 121]. In Fig. 5, one can see the
mean of five shapes with respect to a Sobolev-type metric of
order one.

In [12] the authors consider metrics of the form

GL
q (h, k)=Φ(Volq)

∫

M

〈Lqh, k〉vol
(
q∗ḡ
)
.

These are a combination of Sobolev-type metrics with a
non-local weight function, that can be chosen such that the
resulting metric is scale-invariant. Sobolev type metrics are
far better investigated and understood on the manifold of
plane curves than in higher dimension. Therefore, we will
discuss this case separately in Sect. 6.1.

6.1 Sobolev Metrics on Plane Curves

A reparametrization invariant Sobolev-type metric on the
space of plane curves has been first introduced by Younes
in [137]. There he studied the homogeneous Ḣ 1 metric

GḢ 1

c (h, k)=
∫

S1
〈Dsh,Dsk〉ds.

Fig. 5 In this figure we show the Karcher mean of five vase-shaped
objects with respect to the Sobolev metric of order one—as defined
in (10)—on the space of parametrized surfaces Imm(S1 × [0,1],R3).
The mean shape, which is displayed in the center of the figure is com-
puted using an iterated shooting method. The colored regions on the
averaged shapes encode the Euclidean length of the initial velocity of
the geodesic, which connects each shape to the mean. The color of the
mean was chosen for artistic purposes only. Original image published
in [4] (Color figure online)

However, this is not a metric on Imm(S1,R2) but only on
the quotient space Imm(S1,R2)/ transl. In order to penalize
bending and stretching of the curve differently it has been
generalized in [99, 100] to

Ga,b
c (h, k)

=
∫

S1
a2〈Dsh,nc〉〈Dsk,nc〉 + b2〈Dsh,vc〉〈Dsk, vc〉ds.

(12)

In this metric the parameters a, b can be interpreted as the
tension and rigidity coefficients of the curves. For a = 1, b=
1
2 a computationally efficient representation of this metric—
called the Square Root Velocity Transform (SRVT)—has
been found in [121] and it has been generalized for arbitrary
parameters a, b in [7]. Following [121] we will describe this
transformation for the case a = 1, b= 1

2 :

R :
{

Imm(S1,R2)/transl.→ C∞(S1,R2)

c �→√|cθ |v.

The inverse of this map is given by

R−1 :
{

C∞(S1,R2)→ Imm([0,2π],R2)/transl.

e �→ ∫ θ

0 |e(σ )|e(σ )dσ.

Here Imm([0,2π],R2)/transl. is viewed as the subspace of
curves c with c(0)= 0.
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Fig. 6 A geodesic in the shape space Bi,f (S1,R2) equipped with the
elastic metric that connects the cat-shaped figure to the dog-shaped
figure. Original image published in [7]

Note that R−1(e) is a closed curve if and only if

∫ 2π

0

∣
∣e(θ)

∣
∣e(θ)dθ = 0.

Theorem 6.1 Consider the flat L2-metric

GL2,flat
q (e, f )=

∫

S1
〈e, f 〉dθ

on C∞(S1,R2). The pullback of the metric GL2,flat by the R-
transform is the elastic metric with coefficients a = 1, b= 1

2 .
The image of the space Imm(S1,R2)/transl. under the

R-transform is a co-dimension 2 submanifold of the flat
space C∞(S1,R2).

This representation not only allows to efficiently dis-
cretize the geodesic equation, but also to compute the cur-
vature of Imm(S1,R2); see [7, 121] for details. An example
of a geodesic can be seen in Fig. 6.

A scale invariant version of the Ḣ 1-metric

Gc(h, k)= 1

	c

∫

S1
〈Dsh,Dsk〉ds

has been studied in [139]. There the authors derive an ex-
plicit solution formula for the geodesic equation and calcu-
late the sectional curvature. More general and higher order
Sobolev metrics on plane curves have been studied in [85,
95], and they have been applied to the field of active con-
tours in [27, 123]. Other Sobolev type metrics on curves that
have been studied include a metric for which translations,
scale changes and deformations of the curve are orthogonal
[125] and an H 2-type (semi)-metric whose kernel is gener-
ated by translations, scalings and rotations [116].

For curves we can use arclength to identify each ele-
ment C ∈ Bi,f (S1,R2) of shape space with a (up to rotation)
unique parametrized curve c ∈ Imm(S1,R2). This observa-
tion has been used by Preston to induce a Riemannian metric
on the shape space of unparametrized curves, via metrics on
the space of arclength parametrized curves; see [109, 110].
A similar approach has been chosen in [74].

6.2 Geodesic Distance

Sobolev-type metrics induce a point-separating geodesic
distance function on Bi,f (M,Rd), if the order of the op-

erator field L is high enough. For the H 1-metric

GH 1

q (h, k)=
∫

M

〈(
Id+�g

)
h, k
〉
vol
(
q∗ḡ
)
, (13)

one can bound the length of a path by the area (volume)
swept-out, similarly to the case of almost local metrics.

Theorem 6.2 If the metric GL induced by the operator field
L is at least as strong as the H 1-metric (13), i.e.,

GL
q (h,h)≥ CGH 1

q (h,h)

for some constant C > 0, then GL induces a point-sep-
arating geodesic distance function on the shape space
Bi,f (M,Rd).

A proof can be found in [5, Theorem 7.6]. An ingredient
in the proof is the Lipschitz continuity of

√
Volq .

Theorem 6.3 The H 1-metric satisfies

∣
∣
√

VolQ1 −
√

VolQ2

∣
∣≤ 1

2
distH

1

Bi,f
(Q1,Q2).

In particular the map

√
Vol : (Bi,f

(
M,Rd

)
,distH

1

Bi,f

)→R>0

is Lipschitz continuous.

A proof for plane curves can be found in [95, Sect. 4.7]
and for higher dimensional surfaces in [5, Lemma 7.5].

The behavior of the geodesic distance on the space
Immf (M,Rd) is unknown. Similar to Sect. 5.1 we can re-
strict the GL-metric to an orbit q ◦Diff(M) and the induced
metric on Diff(M) will be a right-invariant Sobolev metric.
Since Sobolev-type metrics of a sufficiently high order on
the diffeomorphism group have point-separating geodesic
distance functions, there is no a-priori obstacle for the dis-
tance distLImm not to be point-separating.

Open Question Under what conditions on the operator
field L does the metric GL induce a point-separating
geodesic distance function on Immf (M,Rd)?

6.3 The Geodesic Equation

The most concise way to write the geodesic equation on
Imm(M,Rd) for a general operator field L involves its
covariant derivative ∇L and adjoint Adj(∇L). See [5,
Sect. 4.2] for the definition of ∇L; note that ∇ here is not
related to the metric GL. For a general operator field L on
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Imm(M,Rd) we define the adjoint Adj(∇L) to be the ad-
joint of (∇kL)h in the k variable with respect to the L2-
metric, i.e., for all h, k,m ∈ Tq Imm(M,Rd) we have

∫

M

〈
(∇kL)h,m

〉
vol
(
q∗ḡ
)

=
∫

M

〈
k,Adj(∇L)(h,m)

〉
vol
(
q∗ḡ
)
. (14)

The existence and smoothness of the adjoint has to be
checked for each metric by hand. This usually involves
partial integration and even for simple operator fields like
L = Id + (�g)l the expressions for the adjoint quickly be-
come unwieldy.

Assuming the adjoint in the above sense exists, we can
write the geodesic equation in the following form in terms
of the momentum.

Theorem 6.4 [5, Theorem 6.5] Let L be a smooth pseudo-
differential operator field, that is invariant under reparam-
etrizations, such that the adjoint Adj(∇L) exists in the sense
of (14). Then the geodesic equation for the GL-metric on
Imm(M,Rd) is given by:

p = Lqqt ⊗ vol
(
q∗ḡ
)

pt = 1

2

(
Adj(∇L)(qt , qt )

⊥ − 2T q.〈Lqqt ,∇qt 〉�

−Hq〈Lqqt , qt 〉nq

)⊗ vol
(
q∗ḡ
)

(15)

Note, that only the normal part of the adjoint

Adj(∇L)(qt , qt )
⊥ = 〈Adj(∇L)(qt , qt ), nq

〉
nq

appears in the geodesic equation. The tangential part is de-
termined by the reparametrization invariance of the operator
field L; see [5, Lemma 6.2].

Example 6.5 Consider the simple operator field L=Ds on
the space Imm(S1,R2) of plane curves. To emphasize the
nonlinear dependence of L on the footpoint c we write it
as Lch= 1

|cθ |hθ . The covariant derivative ∇L is simply the
derivative of L with respect to the footpoint,

(∇kL)h=− 1

|cθ |3 〈kθ , cθ 〉hθ =−〈Dsk, vc〉Dsh.

for the operator field L=Ds . To compute its adjoint, we use
the following identity, obtained by integration by parts,

∫

S1
〈Dsk, vc〉〈Dsh,m〉ds

=−
∫

S1
〈k, κcnc〉〈Dsh,m〉 + 〈k, vc〉Ds〈Dsh,m〉ds,

which leads to

Adj(∇L)(h,m)= 〈Dsh,m〉κcnc +Ds

(〈Dsh,m〉)vc.

The normal part Adj(∇L)⊥, which is necessary for the
geodesic equation is

Adj(∇L)⊥(h,m)= 〈Dsh,m〉κcnc.

Note that while the full adjoint is a second order differential
operator field, the normal part has only order one. This re-
duction in order will be important for the well-posedness of
the geodesic equation.

To prove that geodesics on Bi,f (M,Rd) can be repre-
sented by horizontal geodesics on Immf (M,Rd) we need
the following lifting property.

Lemma 6.6 [5, Lemmas 6.8 and 6.9] Let L be a smooth
pseudo-differential operator field with order constant in q ,
that is invariant under reparametrizations, and such that for
each q , the operator Lq is elliptic, symmetric, and positive-
definite. Then the decomposition

T Immf

(
M,Rd

)=HorL⊕Ver

of tangent vectors into horizontal and vertical parts is a
smooth operation.

For any smooth path q(t) in Immf (M,Rd) there exists
a smooth path ϕ(t) in Diff(M) depending smoothly on q(t)

such that the path q̃(t)= q(t) ◦ ϕ(t) is horizontal, i.e.,

GL
q̃(t)

(
∂t q̃(t), T q̃.X

)= 0, ∀X ∈X(M).

Thus any path in shape space can be lifted to a horizontal
path of immersions.

6.4 Well-Posedness of the Geodesic Equation

The well-posedness of the geodesic equation can be proven
under rather general assumptions on the operator field.

Assumptions For each q ∈ Imm(M,Rd) the operator Lq is
an elliptic, pseudo-differential operator of order 2l and it is
positive and symmetric with respect to the L2-metric.

The operator field L, the covariant derivative ∇L, and the
normal part of the adjoint Adj(∇L)⊥ are all smooth sections
of the corresponding bundles. For fixed q the expressions

Lqh, (∇hLq)k, Adj(∇L)q(h, k)⊥

are pseudo-differential operators of order 2l in h, k sepa-
rately. As mappings in the footpoint q they can be a compo-
sition of non-linear differential operators and linear pseudo-
differential operators as long as the total order is less than 2l.
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The operator field L is reparametrization invariant in the
sense of (11).

With these assumptions we have the following theorem
from [5, Theorem 6.6]. A similar theorem has been proven
for plane curves in [95, Theorem 4.3].

Theorem 6.7 Let the operator field L satisfy the above as-
sumptions with l ≥ 1 and let k >

dim(M)
2 + 2l + 1. Then the

geodesic spray of the GL-metric is smooth on the Sobolev
manifold Immk(M,Rd) of Hk-immersions.

In particular the initial value problem for the geodesic
equation (15) has unique solutions

(
t �→ q(t, ·)) ∈ C∞((−ε, ε), Immk

(
M,Rd

))
,

for small times and the solution depends smoothly on the
initial conditions q(0, ·), qt (0, ·) in T Immk(M,Rd).

Remark 6.8 For smooth initial conditions q(0, ·), qt (0, ·)
in T Immk(M,Rd) we can apply the above theorem for
different k and obtain solutions in each Sobolev comple-
tion Immk(M,Rd). It can be shown that the maximal inter-
val of existence is independent of the Sobolev order k and
thus the solution of the geodesic equation itself is in fact
smooth. Therefore the above theorem continues to hold, if
Immk(M,Rd) is replaced by Imm(M,Rd).

Remark 6.9 Due to the correspondence of horizontal geo-
desics on Immf (M,Rd) to geodesics on shape space
Bi,f (M,Rd) the above well-posedness theorem implies in
particular the well-posedness of the geodesic problem on
Bi,f (M,Rd).

Example 6.10 The assumptions of this theorem might look
very abstract at first. The simplest operator fulfilling them is

Lq = Id+�g

or any power of the Laplacian, Lq = Id+(�g)l . We can also
introduce non-constant coefficients, for example

Lq = f1(Hq,Kq)+ f2(Hq,Kq)
(
�g
)l

,

as long as the operator remains elliptic, symmetric and posi-
tive. To check symmetry and positivity it is sometimes easier
to start with the metric. For example the expression

Gq(h, k)=
∫

M

g1(Volq)〈h, k〉

+ g2(Volq)

d∑

i=1

g
(∇ghi,∇gki

)
vol
(
q∗ḡ
)
,

defines a metric and the corresponding operator Lq will be
symmetric and positive, provided g1 and g2 are positive

functions. We can compute the operator via integration by
parts,

(Lqh)i = g1(Volq)hi − divg
(
g2(Volq)∇ghi

)
.

For this operator field to satisfy the assumptions of Theo-
rem 6.7, if g2 is the constant function, because Lqh has or-
der 2 in h, so it can depend at most on first derivatives of q .

6.5 Conserved Quantities

If the operator field L is invariant with respect to reparam-
etrizations, the GL-metric will be invariant under the action
of Diff(M). By Noether’s theorem the reparametrization
momentum is constant along each geodesic, c.f. Sect. 5.3.
This means that for each X ∈X(M) we have
∫

M

〈Lqqt , T q.X〉vol
(
q∗ḡ
)= const.

If L is additionally invariant under the action of the Eu-
clidean motion group R

d
� SO(d) then so is the GL-metric

and the linear and angular momenta are constant along
geodesics. These are given by
∫

M

(Lqqt )vol
(
q∗ḡ
) ∈R

d

∫

M

q ∧ (Lqqt )vol
(
q∗ḡ
) ∈
∧2

R
d ∼= so(d)∗.

If the operator field L satisfies the scaling property

Lλ.q = λ−dim(M)−2Lq, q ∈ Imm
(
M,Rd

)
, λ ∈R,

then the induced metric GL is scale invariant. In this case the
scaling momentum is conserved along geodesics as well. It
is given by:
∫

M

〈q,Lqqt 〉vol(g) ∈R.

See Sect. 5.3 for a more detailed explanation of the meaning
of these quantities.

6.6 Completeness

Concerning geodesic completeness it is possible to derive a
result similar to Theorem 5.7. The set of concentric spheres
with a common center is again a totally geodesic submani-
fold and we can look for conditions, when it is possible to
shrink spheres to a point with a geodesic of finite length.

Theorem 6.11 [5, Lemma 9.5] If L = Id+(�g)l and
l <

dim(M)
2 + 1, then the spaces Imm(Sd−1,Rd) and

Bi,f (Sd−1,Rd) are not geodesically complete with respect
to the GL-metric.
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For other choices of M scalings will in general not be
geodesic, but under the same condition an immersion can
be scaled down to a point with finite energy. Under what
conditions these spaces become geodesically complete is
unknown. We do however suspect that similarly as Theo-
rem 7.5 for the diffeomorphism group, a differential oper-
ator field of high enough order will induce a geodesically
complete metric.

The metric completion of Bi,f (S1,R2) is known for the
Sobolev metrics

GHj

c (h, k)=
∫

S1

1

	c

〈h, k〉 + 	
2j
c

〈
D

j
s h,D

j
s k
〉
ds,

with j = 1,2. For the metric of order 1 we have the follow-
ing theorem.

Theorem 6.12 [85, Theorems 26 and 27] The metric com-
pletion of (Bi,f ,distH

1
) is B

lip
i (S1,R2), the space of all rec-

tifiable curves with the Fréchet topology.

See Sect. 5.4 for details about B
lip
i (S1,R2). There is a

similar result for the metric of second order.

Theorem 6.13 [85, Theorem 29] The completion of the met-
ric space (Bi,f ,distH

2
) is the set of all those rectifiable

curves that admit curvature κc as a measurable function and∫
S1 κ2

c ds <∞.

6.7 Curvature

Apart from some results on first and second order metrics
on the space of plane curves, very little is known about the
curvature of Sobolev-type metrics on either Immf (M,Rd)

or Bi,f (M,Rd).
The family (12) of H 1-type metrics on the space

Imm([0,2π],R2)/trans of open curves modulo translations
is isometric to an open subset of a vector space and there-
fore flat; see [7]. It then follows from O’Neil’s formula that
the quotient space Bi,f (M,Rd) has non-negative sectional
curvature.

The scale-invariant H 1-type semi-metric

Gc(h, k)= 1

	c

∫

S1
〈Dsh,Dsk〉ds,

descends to a weak metric on Bi,f (S1,R2)/(sim), which is
the quotient of Bi,f (S1,R2) by similarity transformations—
translations, rotations and scalings. The sectional curva-
ture has been computed explicitly in [139]; it is again non-
negative and upper bounds of the following form can be de-
rived.

Theorem 6.14 [139, Sect. 5.8] Take a curve c ∈
Imm(S1,R2) and let h1, h2 ∈ Tc Imm(S1,R2) be two or-
thonormal tangent vectors. Then the sectional curvature at

C = π(c) of the plane spanned by the projections of h1, h2

in the space Bi,f (S1,R2)/(sim) is bounded by

0 ≤ kC

(
P(h1, h2)

)

≤ 2+A1(κc)+A2(κc)‖Dsh2 · n‖∞
+A3(κc)

∣∣Ds(Dsh2 · n)
∣∣∞.

where Ai : C∞(S1,R)→ R are functions of κ that are in-
variant under reparametrizations and similarity transforma-
tions.

Explicit formulas of Ai(κ) can be found in [139]. This is
a bound on the sectional curvature, that depends on the first
two derivatives of h2 and is independent of h1. Moreover,
the explicit formulas for geodesics given in [139] show that
conjugate points are not dense on geodesics.

A similar bound has been derived in [116] for a second
order metric on the space of plane curves.

7 Diffeomorphism Groups

In the context of shape spaces diffeomorphism groups arise
two-fold:

– The shape space Bi,f (M,Rd) of immersed submanifolds
is the quotient

Bi,f

(
M,Rd

)= Immf

(
M,Rd

)
/Diff(M)

of the space of immersions by the reparametrization
group Diff(M).

– By fixing an embedding q0 ∈ Emb(M,Rd) we have the
map

Diffc
(
R

d
)→ Emb

(
M,Rd

)
, ϕ �→ ϕ ◦ q0

A right-invariant Riemannian metric on Diffc(Rd) in-
duces a Riemannian metric on Emb(M,Rd) such that the
above map is a Riemannian submersion. See Sect. 8 for
this construction.

These are the two main applications of the diffeomorphism
group discussed in this paper. Thus we mainly will treat the
group

Diff(M)= {ϕ ∈ C∞(M,M) : ϕ bij., ϕ−1 ∈ C∞(M,M)
}

of smooth diffeomorphisms of a closed manifold M and
groups of diffeomorphisms of Rd with the following decay
conditions towards infinity
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Diffc
(
R

d
)= {ϕ : supp(ϕ − Id) compact

}

DiffS
(
R

d
)= {ϕ : (ϕ − Id) ∈ S

(
R

d
)}

DiffH∞
(
R

d
)= {ϕ : (ϕ − Id) ∈H∞(

R
d
)}

.

Here H∞(Rd) denotes the intersection of all Sobolev
spaces Hk(Rd), k ∈ N≥0, S(Rd) denotes the Schwartz
space of all rapidly decreasing functions. All these are
smooth regular Lie groups. Their Lie algebras are the spaces
Xc(R

d),XS(Rd) and XH∞(Rd) of compactly supported,
rapidly decreasing and Sobolev vector fields, respectively.
See [91] and [96] for details.

None of the diffeomorphism groups on R
d introduced

above contain translations, rotations, or, more generally,
affine maps, since they require the diffeomorphisms to decay
towards the identity. It is possible to extend the groups by
considering a semidirect product, for example Diffc(Rd) �

SO(d). But for our purposes this is not necessary: given two
embedding q1, q2 ∈ Emb(M,Rd) differing by an affine map
q2 = A ◦ q1, since M is compact, there exists a diffeomor-
phism ϕ, decaying to the identity such that q2 = ϕ ◦q1. Thus
when considering the action of Diffc(Rd) or the other dif-
feomorphism groups on Emb(M,Rd) in Sect. 8, we are not
really losing affine maps, although they are not literally ele-
ments of the considered groups.

On general non-compact manifolds N one can also con-
sider the group of compactly supported diffeomorphisms
like on R

d ; see [76, Sect. 43].

7.1 Right-Invariant Riemannian Metrics

A right-invariant metric on Diffc(Rd) is determined via

Gϕ(Xϕ,Yϕ)= 〈Xϕ ◦ ϕ−1, Yϕ ◦ϕ−1〉
L
,

Xϕ,Yϕ ∈ Tϕ Diffc
(
R

d
)
, (16)

by an inner product 〈·, ·〉L on the space Xc(R
d) of vector

fields. We assume that the inner product is defined via a sym-
metric, positive definite, pseudo-differential operator field
L :X(Rd)→X(Rd) by

〈X,Y 〉L =
∫

Rd

LX · Y dx.

Examples of such inner products include

– The L2-metric with L= Id,

〈X,Y 〉L2 =
∫

Rd

〈X,Y 〉dx.

– The Sobolev-type metrics of order s with s > 0,

〈X,Y 〉Hs =
∫

Rd

(
1+ |ξ |2)s 〈X̂(ξ), Ŷ (ξ)

〉
dξ,

with X̂(ξ) = (2π)−d/2
∫
Rd e−i〈x,ξ〉X(x)dx being the

Fourier transform. Note that for s ∈ N these metrics can
be written as

〈X,Y 〉Hs =
∫

Rd

〈
(Id−�)sX,Y

〉
dx,

i.e., L= (Id−�)s .
– The family of a-b-c-metrics, introduced in [71],

〈X,Y 〉a,b,c =
∫

Rd

a〈X,Y 〉 + b divX divY

+ c
〈
dX�, dY �

〉
dx. (17)

Recall that � = −�g denotes the usual Laplacian on
R

d , which is the negative of the geometric Laplacian; see
Sect. 2.1. In dimension d = 1 the second and the third term
coincide and the metric simplifies to the family of a-b met-
rics

〈X,Y 〉a,b =
∫

R

aXY + bX′Y ′ dx.

On manifolds other than R
d , one can use the intrinsic dif-

ferential operator fields to define inner products on X(M),
which are then extended to right-invariant Riemannian met-
rics on Diff(M) via (16). For example, when (M,g) is a
Riemannian manifold Sobolev-metrics of integral order can
be defined using the Laplacian �g via

〈X,Y 〉Hk =
∫

M

g
((

Id+�g
)k

X,Y
)

volg .

Similarly the family of a-b-c metrics have an intrinsic rep-
resentation given by (where δ =−∗d∗ is the codifferential)

〈X,Y 〉a,b,c =
∫

M

ag(X,Y )+ bg
(
δX�, δY �

)

+ cg
(
dX�, dY �

)
volg .

More general Sobolev spaces Hs(M) with s /∈ N and the
corresponding norms can be introduced using partitions
of unity and Riemannian exponential coordinates. See the
books [127] and [45] for the theory of function spaces, in-
cluding Sobolev spaces of fractional order, on manifolds.

Remark 7.1 An alternative approach to induce a metric on
the diffeomorphism group is to use a reproducing kernel
Hilbert space H of vector fields, with X(Rd)⊂H and con-
sider the restriction of the inner product on H to X(Rd). This
approach is described in Sect. 8.2.

7.2 Geodesic Equation

The geodesic equation on any Lie group G with a right-
invariant metric is given as follows. A curve g(t) ∈ G
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is a geodesic if the right logarithmic derivative u(t) =
∂tg(t)g(t)−1 satisfies

∂tu=− adT
u u,

where adT is the transpose of ad with respect to the given
inner product γ (·, ·) on the Lie algebra, i.e.,

γ
(
adT

u v,w
)= γ (v, adu w)

On Diff(Rd) with a metric given via an operator field L

we can write the equation as a PDE in terms of the momen-
tum m= Lu,

∂tm+ (u · ∇)m+mdivu+DuT .m= 0, m= Lu, (18)

and ∂tϕ = u ◦ ϕ. For different choices of L one can obtain
the following PDEs as geodesic equations.

The L2-metric with Lu = u in one dimension has as
geodesic equation Burgers’ equation,

ut + 3uux = 0.

This equation was used as a model equation for turbulence
in [24].

The H 1-metric with Lu= u− uxx in one dimension has
as geodesic equation the Camassa-Holm equation [25],

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0.

It describes the propagation of shallow water waves on the
free surface under gravity. It is a completely integrable equa-
tion and possesses a bihamiltonian structure, that gives rise
to an infinite number of conservation laws.

The homogeneous Ḣ 1 semi-metric on Diff(S1) with the
operator Lu=−uxx descends to a metric on the right coset
space Rot(S1)\Diff(S1) of diffeomorphisms modulo rigid
rotations. The geodesic equation is the periodic Hunter-
Saxton equation

uxxt + 2uxuxx + uuxxx = 0.

The Hunter-Saxton equation was proposed as a model for
the propagation of orientation waves in nematic liquid crys-
tals in [60]. Its geodesic nature was discovered in [69]. It
is also a completely integrable, bihamiltonian equation with
an infinite number of conservation laws [61]. As a Rieman-
nian manifold (Diff(S1), Ḣ 1) is isometric to an open subset
of a sphere and as such has positive constant curvature [80].
It was shown recently in [9], that a related result also holds
for the non-periodic Hunter-Saxton equation, which is the
geodesic equation for the Ḣ 1-metric on a certain extension
of Diffc(R).

Between the Hunter-Saxton and the Camassa-Holm
equation lies the μ-Hunter-Saxton equation,

uxxt − 2μ(u)ux + 2uxuxx + uuxxx = 0,

which is the geodesic equation on the circle with respect to
the μḢ 1-metric defined by the operator Lu = μ(u)− uxx ,
with μ(u)= 1

2π

∫
S1 udx being the mean. It was introduced

in [70] as a non degenerate metric on Diff(S1), such that the
projection

(
Diff

(
S1),μḢ 1)→ (

Rot
(
S1)\Diff

(
S1), Ḣ 1)

is a Riemannian submersion. It is also a completely inte-
grable, bihamiltonian equation.

The geodesic equation for the homogeneous Ḣ 1/2-metric
is the modified Constantin-Lax-Majda (mCLM) equation,

mt + umx + 2uxm= 0, m=Hux.

The mCLM equation is part of a family of one dimensional
models for the vorticity equation [36, 40, 107]. Its geodesic
nature was recognized in [132]. As for the Hunter-Saxton
equation we have to regard the mCLM equation on the coset
space Rot(S1)\Diff(S1).

In the context of hydrodynamics a closely related space
is the Virasoro-Bott group

Vir
(
S1)=Diff

(
S1)×c R,

with the group operations

(
ϕ

α

)(
ψ

β

)
=
(

ϕ ◦ψ

α + β + c(ϕ,ψ)

)
,

(
ϕ

α

)−1

=
(

ϕ−1

−α

)

for ϕ,ψ ∈Diff(S1), and α,β ∈R. The Virasoro-Bott group
is a central extension of Diff(S1) with respect to the Bott-
cocycle:

c :Diff
(
S1)×Diff

(
S1)→R

c(ϕ,ψ)= 1

2

∫
log
(
ϕ′ ◦ψ

)
d logψ ′,

and it is the unique non-trivial central extension of Diff(S1).
For a detailed exposition of the Virasoro-Bott group see the
book of Guieu and Roger [56]. It was found in [108, 114]
that the geodesic equation of the right invariant L2-metric on
the Virasoro-Bott group is the Korteweg-de Vries equation

ut + 3uxu+ auxxx = 0, a ∈R.

Similarly the Camassa Holm equation with dispersion

ut − uxxt + 3uux − 2uxuxx − uuxxx + 2κux = 0

was recognized to be the geodesic equation on the Virasoro-
Bott group with respect to the H 1-metric in [101].

Figure 7 presents a summary of the metrics and their
geodesic equations.



80 J Math Imaging Vis (2014) 50:60–97

Space Metric Geod. equation

Diff(S1) L2 Burgers
Diff(S1) H 1 Camassa-Holm
Diff(S1) μḢ 1 μ-Hunter-Saxton

Rot(S1)\Diff(S1) Ḣ 1 Hunter-Saxton
Rot(S1)\Diff(S1) Ḣ 1/2 mCLM

Vir(S1) L2 KdV
Vir(S1) H 1 Camassa-Holm w. disp.

Fig. 7 Some geodesic equations on diffeomorphism groups, that are
relevant in mathematical physics

The geodesic equation (18) can be rewritten as an integral
in Lagrangian coordinates. For a metric given by a differen-
tial operator, let K(x,y) be its Green’s function. We assume
that the initial momentum m0 is a vector-valued distribution,
whose components are finite measures. The initial velocity
can be obtained from m0 via u0(x)= ∫

Rd K(x, .)m0(.) and
conversely m0 = Lu0 ⊗ dx. Then (18) can be written as

∂tϕ(t, x)=
∫

Rd

K
(
ϕ(t, x), .

)
ϕ(t)∗m0(.). (19)

7.3 Well-Posedness of the Geodesic Equation

One possible method to prove the well-posedness of the
geodesic equations is to extend the group and the metric to
the Sobolev-completion

Diffq(M)= {ϕ ∈Hq(M,M) : ϕ bij., ϕ−1 ∈Hq(M,M)
}

which is a Hilbert manifold and a topological group for q >

dim(M)/2+1. It is however not a Lie group any more, since
the right-multiplication is only continuous but not smooth.
Nevertheless it is possible to show that the geodesic spray
of various metrics on the Sobolev-completion is smooth for
q large enough and then an application of the theorem of
Picard-Lindelöf for ODEs shows the existence and smooth-
ness of the exponential map. This method was first applied
in [44] for the L2-metric on the group of volume-preserving
diffeomorphisms to show the existence of solutions for Eu-
ler’s equations, which model inviscid, incompressible fluid
flows. On the full diffeomorphism group the following well-
posedness results can be obtained via the same method.

Theorem 7.2 [50, Theorem 3.3] Let (M,g) be a compact
Riemannian manifold without boundary. The geodesic spray
of the H 1-metric

〈u,v〉 =
∫

M

g(u, v)+ g(∇u,∇v)volg

is smooth as a map T Diffq(M) → T 2 Diffq(M) for q >
dim(M)

2 + 1.

The (higher-dimensional) Camassa-Holm equation with
initial condition u0 ∈ Xq(M,M) admits a unique solution
u(t) for small times, the map t �→ u(t) is in C0((−ε, ε),

Xq(M))∩C1((−ε, ε),Xq−1(M)), and the map u0 ∈Xq(M)

�→ u(t) ∈Xq(M) is continuous.

This result holds more generally also for manifolds with
boundary with either Dirichlet, Navier or mixed bound-
ary conditions. See [50] for more details. For the one-
dimensional case the smoothness of the geodesic spray was
noted already in [75].

For the circle M = S1 we have the stronger result that
the geodesic sprays for Sobolev metrics Hs are smooth for
s ≥ 1

2 .

Theorem 7.3 [46, Corollary 4.2] The geodesic spray of the
Hs -metric

〈u,v〉 =
∑

n∈Z

(
1+ n2)s û(n)̂v(n)

on the diffeomorphism group Diffq(S1) of the circle is
smooth for s ≥ 1

2 and q > 2s+ 3
2 . Here û denotes the Fourier

series of u. Thus the geodesic equation is, similarly to The-
orem 7.2, locally well-posed.

The case of Sobolev metrics of integer order, which in-
cludes the periodic Camassa-Holm equation, was proven
in [35]. For the homogeneous Ḣ 1/2-metric this result was
proven in [47] and the estimates were then extended to cover
general metrics given via Fourier multipliers in [46].

As a consequence of the well-posedness result for
Sobolev metrics on Imm(M,Rd) it has been shown that the
Lagrangian form of the geodesic equation is locally well
posed for higher order Sobolev metrics on Diff(M).

Theorem 7.4 [5, Theorem 10] Let (M,g) be a compact
Riemannian manifold without boundary and let k ≥ 1 with
k ∈ N. For q >

dim(M)
2 + 2k + 1 the geodesic spray of the

Hk-metric is smooth as a map on Diffq(M) and the geodesic
equation has unique local solutions on Diffq(M).

If the metric is strong enough, it is possible to show the
long-time existence of solutions.

Theorem 7.5 If the Green’s function K of the operator L

inducing the metric is a C1-function, then for any vector-
valued distribution m0, whose components are finite signed
measures, equation (19) with ϕ(0, x)= x can be solved for
all time and the solution is a map
(
t �→ ϕ(t, ·)) ∈ C1(

R,C1(
R

d,Rd
))

.

This result is implicit in the work [129], an explicit proof
can be found in [105]. See also [138].
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Remark 7.6 This method of proving well-posedness is not
universally applicable as not all geodesic sprays are smooth.
For example the spray induced by the right-invariant L2-
metric on Diff(S1) is not smooth. More precisely in [34] it
is shown that the exponential map is not a C1-map from a
neighborhood of TId Diffq(S1) to Diffq(S1) for any q ≥ 2.
Nevertheless the geodesic equation, which is Burgers’ equa-
tion in this case, has solutions t �→ u(t) for small time with

u ∈ C0((−ε, ε),Hq
(
S1))∩C1((−ε, ε),Hq−1(S1)),

when u0 ∈Hq(S1); see [66]. A similar statement holds for
the KdV-equation, which is the geodesic equation on the
Virasoro-Bott group with respect to the right-invariant L2-
metric; see [37].

7.4 Geodesic Distance

It was shown in [93] that the geodesic distance on the group
Diffc(M) vanishes for the L2-metric and is positive for the
H 1-metric. This naturally raises the question, what happens
for the Hs -metric with 0 < s < 1. For M = S1 a complete
answer is provided in [13], whereas for more general mani-
folds N a partial answer was given in the articles [8, 13].

Theorem 7.7 [8, 13, Theorem 3.1] The geodesic distance
on Diffc(M) induced by the Sobolev-type metric of order s

vanishes

– for s < 1
2 ,

– for s = 1
2 , when M = S1 ×C with C compact.

The geodesic distance is positive

– for s ≥ 1,
– for s > 1

2 , when dim(M)= 1.

Remark 7.8 By taking C = {point} to be the zero dimen-
sional manifold, the above theorem provides a complete an-
swer for M = S1: the geodesic distance vanishes if and only
if s ≤ 1

2 .

Remark 7.9 The H 1/2-metric on Diff(S1) is the only
known example, where the geodesic spray is smooth on
the Sobolev-completions Diffq(S1) for all q ≥ 5

2 and the
geodesic distance vanishes at the same time.

It is shown in [46] that for q > 5
2 the exponential map is

a local diffeomorphism exp : U ⊆ Hq(R) → Diffq(S1). In
particular we have the inequality

LenH 1/2
(ϕ)≥ ∥∥exp−1(ϕ(1)

)∥∥
H 1/2

for all paths ϕ : [0,1] → exp(B
q
ε (0)) with ϕ(0) = Id. In

other words we have a lower bound on the length for all
paths, that remain Hq -close to Id. This does not however

imply anything about the geodesic distance, since a path can
have small H 1/2-length or equivalently remain H 1/2-close
to Id, but leave the Hq -neighborhood.

Open Question For a Sobolev metric of order s the behav-
ior of the geodesic distance on Diffc(M) remains open for

– 1
2 < s < 1 and dim(N)≥ 2.

– s = 1
2 and N �= S1 ×M , with M compact.

Extrapolating from the known cases, we conjecture the
following result: The geodesic distance induced by the
Sobolev-type metric of order s on Diffc(N) vanishes for
s ≤ 1

2 and is non-degenerate for s > 1
2 .

A main ingredient for the vanishing result is the following
property of the geodesic distance on Diffc(N):

Lemma 7.10 Let s ≥ 0. If the geodesic distance on Diffc(N)

for a right-invariant Sobolev Hs -metric vanishes for one
pair ϕ,ψ ∈ Diffc(N) with ϕ �= ψ , then the geodesic dis-
tance already vanishes identically on all of Diffc(N).

This lemma follows from the fact that the set

A= {ϕ : distH
s

(Id, ϕ)= 0
}

is a normal subgroup of Diffc(N) for all s ≥ 0 and because
Diffc(N) is a simple group. Thus, if A contains any element
apart from Id it has to be the whole group.

Remark 7.11 We can also consider the geodesic distance
on the Virasoro-Bott group, which is the one-dimensional
central extension of Diff(S1). There the geodesic distance
vanishes for s = 0, i.e., for the L2-metric. For s > 1

2 the
geodesic distance cannot vanish identically. Whether it is
point-separating is not known.

Open Question For a Sobolev metric of order s the behav-
ior of the geodesic distance on the Virasoro-Bott group re-
mains open for 0 < s < 1.

One way to define geodesics is to fix two diffeomor-
phisms ϕ0, ϕ1 and to consider the set

B = {ϕ(t) : ϕ(0)= ϕ0, ϕ(1)= ϕ1
}

of all paths joining them. Geodesics then correspond to criti-
cal points of the energy or equivalently the length functional
restricted to the set B . Vanishing of the geodesic distance
implies that these functionals have no global minima. The
following theorem shows that for the L2-metric there are no
local minima either.

Theorem 7.12 [22, Theorem 3.1] Let ϕ(t, x) with t ∈ [0, T ]
be a path in Diffc(R). Let U be a neighborhood of ϕ in the
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space C∞
c ([0, T ] ×R). Then there exists a path ψ ∈U with

the same endpoints as ϕ and

E(ψ) < E(ϕ),

where E(.) is the energy w.r.t. the right-invariant L2-metric.

In the article [22] the result is proven for DiffS(R), but
essentially the same proof works also for Diffc(R).

7.5 Completeness

As a corollary of Theorem 7.5 we obtain the result that
the diffeomorphism group equipped with a metric of high
enough order is geodesically complete:

Theorem 7.13 Let (M,g) be a compact Riemannian man-
ifold and let Gs be the Sobolev metric of order s. For
s ≥ dim(M)+3

2 the space (Diff(M),Gs) is geodesically com-
plete.

This result is based on the observation, that for s ≥
dim(M)+3

2 the kernel of the operator inducing the metric Gs

is a C1-function.

7.6 Curvature

Denote by γ (·, ·) the inner product on the Lie algebra g of
any Lie group G and let u,v ∈ g be orthonormal vectors.
Then the sectional curvature of the plane P(u, v) in G with
respect to the right-invariant metric induced by γ is given
by

k
(
P(u, v)

) = 1

4

∥∥adT
v u+ adT

u v
∥∥2

γ
− γ

(
adT

v u, adT
u v
)

− 3

4
‖ adu v‖2

γ +
1

2
γ
(
adu v, adT

v u− adT
u v
)
,

where adT is the transpose of ad with respect to the given
inner product γ inducing the right invariant metric.

For general Sobolev metrics there are no results on cur-
vature available, but for the family of a-b-c-metrics (17) on
the d-dimensional torus T

d , it was shown in [71] that the
curvature assumes both signs.

Theorem 7.14 [71, Theorem 7.1] If d ≥ 2 and at least two
of the parameters a, b, c are non-zero, then the sectional
curvature of the a-b-c-metric on Diff(Td) assumes both
signs.

In dimension one we have the same behavior for the fam-
ily of a-b metrics.

Theorem 7.15 [71, Sect. 6] If d = 1 and both parameters
a, b are non-zero, then the sectional curvature of the a-b-
metric on Diff(S1) assumes both signs.

There are two special cases, where the sign of the cur-
vature is constant. The first is the L2-metric (b = 0) in one
dimension.

Theorem 7.16 [93, Sect. 5.4] If d = 1 and b = 0 then the
sectional curvature of the plane spanned by two orthonor-
mal vector fields u,v ∈X(S1) for the a-b metric on Diff(S1)

is given by

k
(
P(u, v)

)=
∫

S1

(
uv′ − vu′

)2 dx.

In particular the sectional curvature is non-negative.

This does not generalize to higher dimensions. Denote by
T

d the flat d-dimensional torus.

Theorem 7.17 [71, Proposition 7.2] If d ≥ 2 and b= c= 0
then the sectional curvature of the a-b-c metric on Diff(Td)

assumes both signs.

The sectional curvature of the L2-metric has been calcu-
lated for an arbitrary Riemannian manifold N . The expres-
sion for sectional curvature is the sum of a non-negative term
and a term whose sign is indefinite. Although we conjecture
that the statement of Theorem 7.17 extends to arbitrary man-
ifolds N , this has not been proven yet.

The second special case is the homogeneous Ḣ 1-metric
with a = c= 0 for d ≥ 2 and a = 0 for d = 1. The metric is
degenerate on Diff(M), but it induces the Fisher-Rao metric
on the space Diff(M)/Diffμ(M) of densities. Remarkably
the induced metric has constant sectional curvature.

Theorem 7.18 [71, Corollary 3.2] Let (M,g) be a compact
Riemannian manifold. Then the homogeneous Ḣ 1-metric

〈u,v〉Ḣ 1 =
∫

M

div(u)div(v)vol(g)

on Diff(M)/Diffμ(M) has constant positive sectional cur-
vature

k
(
P(u, v)

)= 1

Vol(M)
.

This result is based on the observation, that the Ḣ 1 met-
ric on Diff(M)/Diffμ(M) is isometric to a sphere in the
Hilbert space L2(M,vol(g)). For M = S1 this result has
been proven already in [80]. Recently it has been shown that
the Ḣ 1-metric on a certain extension of Diffc(R) is a flat
space in the sense of Riemannian geometry; see [9].

8 Metrics on Shape Space Induced by Diff(Rd)

In this section we will consider Riemannian metrics on
Be(M,Rd), the space of embedded type M submani-
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folds that are induced by the left action of Diff(Rd). Let
Diff(Rd) stand for one of the groups Diffc(Rd), DiffS(Rd)

or DiffH∞(Rd) described in Sect. 7. We also relax the as-
sumption on the dimension of M and only require
dim(M) < d . The action is given by

Diff
(
R

d
)×Be

(
M,Rd

) � (ϕ,Q) �→ ϕ(Q) ∈ Be

(
M,Rd

)
.

This action is in general not transitive—consider for exam-
ple a knotted and an unknotted circle in R

3—but its orbits
are open subsets of Be(M,Rd). Since the groups Diffc(Rd),
DiffS(Rd) and DiffH∞(Rd) connected and M is compact,
the orbits are the connected components of Be(M,Rd). For
Q ∈ Be(M,Rd) the isotropy group

Diff
(
R

d
)
Q
= {ϕ : ϕ(Q)=Q

}
,

consists of all diffeomorphisms that map Q to itself. Thus
each orbit Orb(Q)= Diff(Rd).Q can be identified with the
quotient

Be

(
M,Rd

)⊇Orb(Q)∼=Diff
(
R

d
)
/Diff

(
R

d
)
Q

.

Let us take a step backwards and remember that another way
to represent Be(M,Rd) was as the quotient

Be

(
M,Rd

)∼= Emb
(
M,Rd

)
/Diff(M).

The diffeomorphism group Diff(Rd) also acts on the space
Emb(M,Rd) of embeddings, that is parametrized submani-
folds with the action

Diff
(
R

d
)× Emb

(
M,Rd

) � (ϕ, q) �→ ϕ ◦ q ∈ Emb
(
M,Rd

)
.

This action is generally not transitive either, but has open
orbits as before. For fixed q ∈ Emb(M,Rd), the isotropy
group

Diff
(
R

d
)
q
= {ϕ : ϕ|q(M) ≡ Id},

consists of all diffeomorphisms that fix the image q(M)

pointwise. Note the subtle difference between the two
groups Diff(Rd)q and Diff(Rd)Q, when Q = q(M). The
former consists of diffeomorphisms that fix q(M) point-
wise, while elements of the latter only fix q(M) as a set.
As before we can identify each orbit Orb(q) = Diff(Rd).q

with the set

Emb
(
M,Rd

)⊇Orb(q)∼=Diff
(
R

d
)
/Diff

(
R

d
)
q
.

The isotropy groups are subgroups of each other

Diff
(
R

d
)
q

� Diff
(
R

d
)
Q
≤Diff

(
R

d
)
,

with Diff(Rd)q being a normal subgroup of Diff(Rd)Q.
Their quotient can be identified with

Diff
(
R

d
)
Q

/Diff
(
R

d
)
q
∼=Diff(M).

Now we have the two-step process,

Diff
(
R

d
)→ Diff

(
R

d
)
/Diff

(
R

d
)
q
∼=Orb(q)⊆ Emb

(
M,Rd

)

→ Emb
(
M,Rd

)
/Diff(M)∼= Be

(
M,Rd

)
.

In particular the open subset Orb(Q) of Be(M,Rd) can be
represented as any of the quotients

Orb(Q) ∼= Orb(q)/Diff(M)

∼= Diff(Rd)/Diff(Rd)q

Diff(Rd)Q/Diff(Rd)q

∼= Diff
(
R

d
)
/Diff

(
R

d
)
Q

.

Let a right-invariant Riemannian metric GDiff be given
on Diff(Rd). Then we can attempt to define a metric on
Emb(M,Rd) in the following way: fix q0 ∈ Emb(M,Rd)

and let q = ϕ ◦ q0 be an element in the orbit of q0. Define
the (semi-)norm of a tangent vector h ∈ Tq Emb(M,Rd) by

GEmb
q (h,h)= inf

Xϕ◦q0=h
GDiff

ϕ (Xϕ,Xϕ),

with Xϕ ∈ Tϕ Diff(Rd). If we define πq0 to be the projection

πq0 :Diff
(
R

d
)→ Emb

(
M,Rd

)
, πq0(ϕ)= ϕ ◦ q0,

then

h=Xϕ ◦ q0 = Tϕπq0 .Xϕ,

and the equation defining GEmb is the relation between two
metrics that are connected by a Riemannian submersion. Be-
cause GDiff is right-invariant and the group action is associa-
tive we can rewrite the defining equation as

GEmb
q (h,h)= inf

X◦q=h
GDiff

Id (X,X),

with X ∈ TId Diff(Rd). Thus we see that GEmb does not de-
pend on the choice of q0.

One has to prove in each example, that GEmb is smooth
and a metric, i.e., that it is non-degenerate. We will see for
landmark matching in Sect. 9, that even though the metric
GDiff on Diff(Rd) is smooth, the induced metric on the land-
mark space Ln(Rd) has only finitely many derivatives.

While πq0 is a Riemannian submersion this is an exam-
ple, where the horizontal bundle exists only in a suitable
Sobolev-completion; see Sect. 2.2. In Sect. 8.2 we will take
care of this by defining the metric via a reproducing kernel
Hilbert space H.

Assuming that this construction yields a Riemannian
metric on the space Emb(M,Rd), then this metric is in-
variant under reparametrizations, because the left-action by
Diff(Rd) commutes with the right-action by Diff(M):
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GEmb
q◦ϕ (h ◦ ϕ,h ◦ ϕ) = inf

X◦q◦ϕ=h◦ϕ GDiff
Id (X,X)

= inf
X◦q=h

GDiff
Id (X,X)=GEmb

q (h,h).

The metric GEmb then projects to a Riemannian metric on
Be(M,Rd) as explained in Sect. 2.2.

8.1 Pattern Theory

This section is closely related to ideas in Grenander’s pattern
theory [54, 55, 104]. The principle underlying pattern theory
is to explain changes of shape by a deformation group act-
ing on the shape. In our case shapes are elements of either
Emb(M,Rd) or Be(M,Rd) and the deformation group is
the group Diff(Rd).

There is a lot of flexibility in the choice of the group
and the space it acts upon. If M is a finite set of n points,
then Emb(M,Rd)⊆ (Rd)n is the set of landmarks. We have
inclusion instead of equality because landmarks have to be
distinct points. We will return to this space in Sect. 9.

An important example is when the shape space is the
space of volumetric grey-scale images modeled as functions
in C∞(Rd ,R) and the deformation group is Diff(Rd). The
action is given by

Diff
(
R

d
)×C∞(

R
d,R

) � (ϕ, I ) �→ I ◦ ϕ−1 ∈ C∞(
R

d ,R
)
.

This action is far from being transitive. Thus it is not possi-
ble to rigorously define a Riemannian metric on C∞(Rd ,R)

that is induced by Diff(Rd). Nevertheless the idea of im-
ages being deformed by diffeomorphisms led to the image
registration method known as LDDMM [16, 97, 98, 128].
It is being applied in computational anatomy with images
being MRI and CT scans to study the connections between
anatomical shape and physiological function. See [23] for an
overview of image registration within the LDDMM frame-
work.

8.2 Defining Metrics on Diff(Rd)

Following the presentation in [88] we assume that the in-
ner product on Xc(R

d) is given in the following way: let
(H, 〈·, ·〉H) be a Hilbert space of vector fields, such that the
canonical inclusions in the following diagram

Xc

(
R

d
)
↪→H ↪→ Ck

b

(
R

d,Rd
)

are bounded linear mappings for some k ≥ 0. We shall
also assume that the Lie algebra Xc(R

d) of Diff(Rd) is
dense in H. Here Ck

b(Rd ,Rd) is the space of all glob-
ally bounded Ck-vector fields with the norm ‖X‖k,∞ =∑

0≤j≤k ‖DjX‖∞.
Given these assumptions, the space H is a reproducing

kernel Hilbert space, i.e., for all x, a ∈ R
d the directional

point-evaluation eva
x :H→R defined as eva

x(u)= 〈u(x), a〉
is a continuous linear functional on H. See [2] or [112] for
a detailed treatment. The relation
〈
u,K(., x)a

〉
H = 〈u(x), a

〉

defines a matrix-valued function K : Rd × R
d → R

d×d ,
called the kernel of H. It satisfies the two properties

– K ∈ Ck
b(Rd ×R

d,Rd×d) and
– K(y,x)=K(x,y)T .

Associated to H we have the canonical isomorphism
L : H → H∗. Note that the kernel satisfies K(y,x)a =
L−1(eva

x)(y); this relation is even more general: the space
Mk(Rd ,Rd) of vector-valued distributions, whose compo-
nents are k-th derivatives of finite signed measures is a sub-
space of the dual space Ck

b(Rd ,Rd)∗ and the operator

K :Mk
(
R

d,Rd
)→ Ck

b

(
R

d ,Rd
)
, m �→

∫

Rd

K(., x)m(x)

coincides with L−1. This is represented in the diagram

Xc(R
d )∗ H∗ Mk(Rd )

K

⊆
Ck

b(Rd ,Rd )∗

Xc(R
d ) H

L

Ck
b(Rd ,Rd )

Here Xc(R
d)∗ denotes the space of vector-valued distribu-

tions dual to X(Rd), depending on the decay conditions cho-
sen. The inner product on Xc(R

d) is the restriction of the
inner product on H,

〈X,Y 〉H =
∫

Rd

〈LX,Y 〉dx,

where the expression on the right hand side is a suggestive
way to denote the pairing 〈LX,Y 〉X∗

c×Xc
between a distri-

bution and a vector field.

Example 8.1 Let H=Hk(Rd ,Rd) be the Sobolev space of
order k > d

2 with the inner product

〈X,Y 〉Hk =
∫

Rd

〈
(Id−�)kX,Y

〉
dx.

Then by the Sobolev embedding theorem we have

Hk
(
R

d,Rd
)
↪→Cl

b

(
R

d,Rd
)

for l < k − d

2
.

In this example L :Hk(Rd ,Rd)→H−k(Rd,Rd) is the op-
erator L = (Id−�)k and the kernel K is the Green’s func-
tion of L,

K(x,y)= (2π)
− d

2
21−k

(k − 1)! |x − y|k− d
2 J

k− d
2

(|x − y|)Id.
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Jα(x) is the modified Bessel function of order α. Around
x = 0 the Bessel function behaves like Jα(|x|) ∼ |x|α and
so

|x−y|k− d
2 J

k− d
2

(|x−y|)∼ |x−y|2k−d around x−y = 0.

Thus K ∈ C2k−d−1
b (Rd ×R

d ,Rd×d); this will be relevant in
the case of landmarks.

In the above example L was a scalar differential operator;
it acted on each component of the vector field equally and
was a multiple of the identity matrix. This is not always the
case. For example the operator associated to the family of
a-b-c-metrics is in general not scalar and the corresponding
kernel is a dense (not sparse) matrix.

In Sect. 7 the metric on Diff(Rd) was introduced by
choosing a differential operator. Given an operator with ap-
propriate properties, it is possible to reconstruct the space
H. The reason for emphasizing the space H and the re-
producing kernel is twofold: Firstly, the induced metrics on
Emb(M,Rd) and the space of landmarks have a simpler rep-
resentation in terms of the kernel. Secondly, in the literature
on LDDMM (e.g., in [138]) the starting point is the space H
of vector fields and by presenting both approaches we show
their similarities.

8.3 The Metric on Emb(M,Rd)

Let GH be a right-invariant metric on Diff(Rd). The induced
metric on Emb(M,Rd) is defined via

GH
q (h,h)= inf

X◦q=h
〈X,X〉H.

To compute a more explicit expression for GH
q , we decom-

pose H into

Hvert
q = {X :X|q ≡ 0}, Hhor

q = (Hvert
q

)⊥
.

Then the induced metric is

GH
q (h,h)= 〈Xhor,Xhor〉

H,

with X ∈ Xc(R
d) any vector field such that X ◦ q = h.

The horizontal projection does not depend on the choice
of the lift, i.e., if X,Y ∈ Xc(R

d) coincide along q , then
Xhor = Y hor. We identify Hhor

q with the GH-completion of
the tangent space Tq Emb(M,Rd). There are maps

Tq Emb(M,Rd)→Hhor
q ,

h �→Xhor,

Hhor
q → Ck

b(M,Rd),

X �→X ◦ q.

The composition of these two maps is the canonical em-
bedding Tq Emb(M,Rd) ↪→ Ck

b(M,Rd). The space Hhor
q is

again a reproducing kernel Hilbert space with the kernel
given by

Kq :M ×M →R
d×d, Kq(x, y)=K

(
q(x), q(y)

)
.

Thus we have identified the induced Riemannian metric GH

on Emb(M,Rd) as

GH
q (h,h)= 〈h,h〉Hhor

q
.

In this formula we identified Hhor
q with vector fields on M

with values in R
d .

8.4 Geodesic Distance

If the metric on Diff(Rd) is strong enough, then the induced
Riemannian metric on Emb(M,Rd) has a point-separating
geodesic distance function and we conjecture that the same
is true for Be(M,Rd).

Theorem 8.2 If the norm on H is at least as strong as the
C0

b -norm. i.e., H ↪→ C0
b , then there exists C > 0 such that

for q0, q1 ∈ Emb(M,Rd) we have

‖q0 − q1‖∞ ≤ C distHEmb(q0, q1).

Proof Since H ↪→ C0
b , there exists a constant C > 0, such

that ‖X‖∞ ≤ C‖X‖H holds for all X ∈ H. Given h ∈
Emb(M,Rd) and x ∈M let X ∈ X(Rd) be any vector field
with X ◦ q = h. From

∣∣h(x)
∣∣= ∣∣X(q(x)

)∣∣≤ ‖X‖∞ ≤ C‖X‖H,

we see that ‖h‖∞ ≤ C‖X‖∞ and by taking the infimum over
all X we obtain

‖h‖2∞ ≤ C2GH
q (h,h).

Now for any path q(t) between q0 and q1 we have

q1(x)− q0(x)=
∫ 1

0
∂tq(t, x)dt,

and thus

∣
∣q1(x)− q0(x)

∣
∣ ≤

∫ 1

0

∣
∣∂tq(t, x)

∣
∣dt

≤ C

∫ 1

0

√
GH

q(t)

(
∂tq(t), ∂tq(t)

)
dt

= C LenHEmb(q).

By taking the supremum over x ∈M and the infimum over
all paths we obtain



86 J Math Imaging Vis (2014) 50:60–97

‖q0 − q1‖∞ ≤ C distLEmb(q0, q1)

as required. �

For the geodesic distance on shape space we have a pos-
itive result for the space Be(S

1,R2) of plane curves and the
family H = Hk(Rd) of Sobolev spaces. A lower bound on
distLBe

is given by the Fréchet distance (9).

Theorem 8.3 The geodesic distance on Be(S
1,R2) of the

outer metric induced by H=Hk(Rd) with the operator L=
(1− A�)k for A > 0 and k ≥ 1 is bounded from below by
the Fréchet distance, i.e., for Q0,Q1 ∈ Be(S

1,R2) we have

distL
∞

Be
(Q0,Q1)≤ distH

k

Be
(Q0,Q1).

Proof Take Q0,Q1 ∈ Be(M,Rd) and let Q(t) be a path be-
tween them. Then by [91, Proposition 5.7] we can lift this
path to a horizontal path q(t) on Emb(S1,R2). Then

distL
∞

Be
(Q0,Q1) ≤

∥∥q(0)− q(1)
∥∥∞ = LenEmb(q)

= LenBe(Q),

and by taking the infimum over all paths we obtain the re-
sult. �

In order to generalize this result to Be(M,Rd) one would
need to be able to lift horizontal paths from Be(M,Rd) to
Emb(M,Rd). A careful analysis of the induced metric GH

in the spirit of [91] should provide such a result for a fairly
general Sobolev-type metric.

8.5 Geodesic Equation

The geodesic equation on Emb(M,Rd) is most conveniently
written in Hamiltonian form in terms of the position q(t) and
the momentum p̃(t)= p(t)⊗ volg , where volg = vol(g)=
vol(q∗ḡ). The momentum defines a vector-valued distribu-
tion with support in the image of q(t). The momentum p̃

acts on X ∈X(Rd) by
∫

M

〈
X ◦ q(t), p̃(t)

〉=
∫

M

〈
X
(
q(t, x)

)
,p(t, x)

〉
volg(x).

Let us introduce the notation

K ′
q(t)(x, y)=D1K

(
q(t, x), q(t, y)

)

for the derivative of the kernel with respect to the first vari-
able. The geodesic equation is given by

∂tq(t, x)=X
(
t, q(t, x)

)

∂t

(
p(t)⊗ volg

)
(t, x)

=−
(∫

M

p(t, x)T K ′
q(t)(x, y)p(t, y)volg(y)

)
⊗ volg(x)

X(t, u)=
∫

M

K
(
u,q(t, y)

)
p(t, y)volg(y).

See [91] for a derivation of the geodesic equation for
plane curves and [88] for the related geodesic equation on
Be(M,Rd).

The vector field X is not smooth but only X ∈H. There-
fore it is not possible to horizontally lift geodesics from
Emb(M,Rd) to Diff(Rd). One can however work in a suit-
able Sobolev completion of Diff(Rd). Then right-invariance
of the Riemannian metric on Diff(Rd) implies the conserva-
tion of the momentum:

ϕ(t)∗p̃(t, .) is independent of t .

From here we obtain via p̃(t, .)= ϕ(t)∗p̃(0, .) that ϕ(t) sat-
isfies the following form of the Euler-Poincaré equation on
the diffeomorphism group (EPDiff),

∂tϕ(t, x)=
∫

M

K
(
ϕ(t, x), .

)
ϕ(t)∗p̃(0, .). (20)

See [59] for details on singular solutions of the EPDiff equa-
tions. Theorem 7.5 can be applied to show long-time exis-
tence of solutions of (20).

8.6 Curvature

The representation of Be(M,Rd) as the quotient

Be

(
M,Rd

)=Diff
(
R

d
)
/Diff

(
R

d
)
Q

was used in [88] together with an infinite dimensional ver-
sion of O’Neil’s formula to compute an expression for the
sectional curvature on Be(M,Rd). For details consult [88,
Sect. 5].

9 The Space of Landmarks

By choosing M to be the finite set M = {1, . . . , n} we ob-
tain as Emb(M,Rd) the set of landmarks, i.e., the set of n

distinct, labeled points in R
d . Let us denote this space by

Ln
(
R

d
) := {(q1, . . . , qn

) | qk ∈R
d, qk �= qj , k �= j

}
.

Note that Ln(Rd) is an open subset of Rnd and thus it is the
first example of a finite dimensional shape space in this pa-
per. As a consequence some of the questions discussed for
other shape spaces have a simple answer for the space of
landmarks. The geodesic distance is guaranteed to be point-
separating, the geodesic equation is an ODE and therefore
locally well-posed and due to Hopf-Rinow geodesic com-
pleteness implies metric completeness.



J Math Imaging Vis (2014) 50:60–97 87

Remark 9.1 We regard landmark space as the set of all
labeled collections of n points in R

d , i.e., the landmarks
q = (q1, q2, . . . qn), q̃ = (q2, q1, . . . qn) are regarded as dif-
ferent elements of Ln(Rd). One could also consider the
space of unlabeled landmarks Ln

u(R
d), which would corre-

spond to Be(M,Rd). It is sometimes called also configura-
tion space. Since Diff(M)= Sn is the symmetric group of n

elements, we have Ln
u(R

d) = Ln(Rd)/Sn. The group Sn is
a finite group, therefore the projection Ln(Rd) → Ln

u(R
d)

is a covering map and so for local properties of Riemannian
geometry it is enough to study the space Ln(Rd).

Before we proceed we need to fix an ordering for the co-
ordinates on R

nd . There are two canonical choices and we
will follow the convention of [63]. A landmark q is a vector
q = (q1, . . . , qn)T ∈ Ln(Rd) and each qi has d components
qi = (qi1, . . . , qid)T . We concatenate these vectors as fol-
lows

q = (q11, . . . , q1d, q21, . . . , q2d , . . . , qnd
)T

. (21)

Riemannian metrics on Ln(Rd), that are induced by the
action of the diffeomorphism group, have been studied in
[63, 82, 87] and on the landmark space on the sphere in
[53]. Other metrics on landmark space include Bookstein’s
thin-plate spline distance [19, 20] and Kendall’s similitude
invariant distance [67]. See [98] for an overview comparing
the different approaches.

9.1 A Metric on Ln(Rd) Induced by Diff(Rd)

As in Sect. 8.2 let the metric GH on Diff(Rd) be defined
via a Hilbert space H of vector fields satisfying the condi-
tions given in Sect. 8.2 and let K be the reproducing kernel
of H. As before we will write Diff(Rd) for any of the groups
Diffc(Rd), DiffS(Rd) or DiffH∞(Rd). The metric GH in-
duces a Riemannian metric gH on Ln(Rd) and we can cal-
culate it explicitly; see Theorem 9.3.

For the convenience of the reader we will repeat the def-
inition of the distance function on Ln(Rd) induced by the
metric GH; see Sect. 8 for the more general situation of em-
beddings of an arbitrary manifold M in R

d . Let E be the
energy functional of the metric GH on the diffeomorphism
group, i.e.,

E(v)=
∫ 1

0

∥∥v(t, ·)∥∥2
H dt. (22)

The induced distance function of the action of the diffeo-
morphism group on the landmark space is given by

distH(q, q̃)= inf
v

{√
E(v) : ϕv

(
qi
)= q̃i

}
, (23)

where ϕv is the flow of the time dependent vector field v

and where the infimum is taken over all sufficiently smooth

vector fields v : [0,1] → X(Rd). Given a solution v of the
above minimization problem, the landmark trajectories qi(t)

are then given as the solutions of the ODE

q̇i (t)= v
(
t, qi(t)

)
, i = 1, . . . , n.

We will now define a Riemannian metric on the finite
dimensional space Ln(Rd) directly and we will see that it
is in fact induced by the metric GH on the diffeomorphism
group. For a landmark q we define the matrix

g−1
H (q)=

⎛

⎜
⎝

K(q1, q1) · · · K(q1, qn)
...

. . .
...

K(qn, q1) · · · K(qn, qn)

⎞

⎟
⎠ ∈R

nd×nd,

(24)

where K : Rd × R
d → R

d×d is the kernel of H. That gH
defines a Riemannian metric on Ln(Rd) can be easily shown
using the properties of the kernel K .

The metric gH defines, in the usual way, an energy func-
tional directly on the space of landmark trajectories,

Ẽ
(
q(t)

)=
∫ 1

0
q̇(t)T gH

(
q(t)

)
q̇(t)dt, (25)

and one can also define the induced distance function of g

as

d̃istH(q, q̃)= inf
q(t)

{√
Ẽ
(
q(t)

) : q(0)= q, q(1)= q̃
}
, (26)

where the infimum is taken over all sufficiently smooth paths
in landmark space q : [0,1]→ Ln(Rd).

It is shown in [87, Proposition 2] that the minimization
problems (23) and (26) are equivalent and that the induced
distance functions are equal:

Theorem 9.2 [87, Proposition 2] Let v be a minimizer of
the energy functional (22). Then the trajectory q(t), which
is obtained as the solution of the system of ODE’s

q̇i (t)= v
(
t, qi(t)

)
, i = 1, . . . , n,

minimizes the energy functional (25) and E(v)= Ẽ(q). On
the other hand, if q(t) is a minimizer of the energy functional
(25) define the vector field

v(t, x)=
n∑

i=1

pi(t)K
(
x, qi(t)

)
(27)

with the momenta pi : [0,1]→R
d given implicitly by

q̇i (t)=
n∑

j=1

pj (t)K
(
qi(t), qj (t)

)
. (28)
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Then the vector field v is a minimizer of the energy (22) and
we have Ẽ(q)=E(v).

Thus we have:

Theorem 9.3 If H ↪→ Ck
b , then the induced metric gH on

Ln(Rd) is given by

gH(q)=
⎛

⎜
⎝

K(q1, q1) · · · K(q1, qn)
...

. . .
...

K(qn, q1) · · · K(qn, qn)

⎞

⎟
⎠

−1

∈R
nd×nd,

(29)

where K ∈ Ck(Rd ×R
d,Rd×d) is the kernel of H. We have

gH ∈ Ck(Rnd,Rnd×nd).

We will discuss the solutions of the minimization prob-
lem (25) in Sect. 9.3.

Remark 9.4 Note that in the articles [86, 87] the coordinates
were ordered in a different way. Given q = (q1, . . . , qn) they
flatten it as

q = (q11, . . . , qn1, q12, . . . , qn2, . . . , qnd
)T

.

If the kernel K(x,y) of H is a multiple of the identity ma-
trix, i.e., K(x,y) = k(x, y) Idd×d for a scalar function k,
then the matrix gH(q) is sparse and these coordinates allow
us see the sparsity in an elegant way,

g−1
H (q)=

⎛

⎜⎜⎜
⎝

k(q) 0 · · · 0
0 k(q) · · · 0
...

...
. . .

...

0 · · · 0 k(q)

⎞

⎟⎟⎟
⎠

,

Here k(q) denotes the n× n-matrix (k(qi, qj ))1≤i,j≤n.

9.2 The Geodesic Equation

The geodesic equation can be deduced from the equation in
the general case Emb(M,Rd); see Sect. 8.5.

Theorem 9.5 If H ↪→ C1
b , then the Hamiltonian form of the

geodesic equation of the metric gH on Ln(Rd) is given by

q̇i =
N∑

j=1

K
(
qi, qj

)
pj ,

ṗi =−
N∑

j=1

p�i (∂1K)
(
qi, qj

)
pj

(30)

with pi(t)=K(q(t))−1qi(t) the vector valued momentum.

For scalar kernels this system has been studied in the ar-
ticles [82, 87]; see also the PhD-thesis of Micheli [86]. Two
examples of a two-particle interaction can be seen in Fig. 8.

Remark 9.6 A different possibility to derive the above
geodesic equation is to consider directly the Hamiltonian
function of the finite dimensional Riemannian manifold
(Ln(Rd), gH). Following [64, Eq. (1.6.6)] it is given by

Ham(p, q)= 1

2
pT g(q)−1p =

N∑

i,j=1

pT
i K(qi, qj )pj ,

Then the geodesic equations (30) are just Hamilton’s equa-
tion for Ham:

q̇i = ∂ Ham

∂pi

, ṗi =−∂ Ham

∂qi
.

Remark 9.7 We can regard a geodesic curve of landmarks as
a soliton-like solution of the geodesic equation on Diff(Rd)

where the corresponding momentum is a linear combination
of vector valued delta distributions and travels as such.

9.3 Completeness

As a consequence of the global well-posedness theorem
on the full diffeomorphism group—Theorem 7.5—we can
deduce the long-time existence of geodesics on Landmark
space. To do so we solve the geodesic equation (20) on
the diffeomorphism group for a singular initial momentum
p(0, x) =∑n

j=1 pjδ(x − qj ). Then the landmark trajecto-

ries are given by qi(t)= ϕ(t, qi(0)), where ϕ ∈Diff(Rd) is
the solution of (20).

Theorem 9.8 If H ↪→ C1
b , then the Riemannian manifold

(Ln(Rd), gH) is geodesically complete.

A consequence of this theorem is that two landmarks will
never collide along a geodesic path. For finite dimensional
Riemannian manifolds with a metric that is at least C2 the
theorem of Hopf-Rinow asserts that the notions of geodesic
completeness and metric completeness are equivalent.

Corollary 9.9 If H ↪→ C2
b , then (Ln(Rd),distH) is a com-

plete metric space.

For a C2-metric gH one can use once more the theorem
of Hopf-Rinow to show the well-posedness of the geodesic
boundary value problem.

Corollary 9.10 [87, Proposition 1] If H ↪→ C2
b then for

each pair of landmarks q, q̃ ∈ Ln(Rd) there exists a min-
imizer q(t) ∈ C1([0,1],Ln(Rd)) of the energy functional
(25).
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Fig. 8 Two geodesics in L2(R2). The grid represents the correspond-
ing diffeomorphisms. On the left-hand side both landmarks travel in
the same direction, and the two paths tend to attract each other. On

the right hand side the landmarks travel in opposite directions and the
paths try to avoid each other. Original image published in [87]

In fact the existence of minimizers to the boundary
value problem on landmark space can be proven under even
weaker smoothness conditions on the metric gH, see [63,
Sect. C].

9.4 Curvature

We see from (24) that the expression for the co-metric g−1
H

is much simpler than that for gH. In the article [87] the au-
thors took this observation as a motivation to derive a for-
mula for the sectional curvature in terms of the co-metric,
now called Mario’s formula; see [87, Theorem 3.2]. Using
this formula they were able to calculate the sectional curva-
ture of the landmark space (Ln(Rd), gH); see [87, Theorem
9]. We will not present these formulas in the general case
but only for the special case of two landmarks in R:

Theorem 9.11 [87, Proposition 23] The sectional curvature
on L2(R) depends only on the distance ρ = |q− q̃| between
the two landmarks q, q̃ . For a metric gH, with reproducing
kernel K ∈ C2(R,R), it is given by

k(ρ)= K(0)−K(ρ)

K(0)+K(ρ)
K ′′(ρ)− 2K(0)−K(ρ)

(K(0)+K(ρ))2
K ′(0)2.

For a Gaussian kernel K a plot of the curvature depend-
ing on the distance between the landmarks can be seen in
Fig. 9.

Fig. 9 Sectional curvature of L2(R), gK as a function of the dis-
tance between the landmarks q0, q1. Here K was the Gaussian kernel
K(x)= exp(− x

2 ). Original image published in [87]

10 Universal Teichmüller Space as Shape Space

Here we sketch how Diff(S1)/PSL(2,R) parametrizes the
shape space of simple closed smooth plane curves modulo
translations and scalings and discuss the associated Rieman-
nian metric, called the Weil-Peterson metric. This metric
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has nonpositive curvature, is geodesically complete, and any
two shapes can be connected by a unique minimal geodesic.
There exist soliton-like solutions which are called teichons
which are given by a finite dimensional Hamiltonian sys-
tem. They relate to geodesics of shapes like landmarks do to
geodesics in Diff(Rd); see Sect. 9.7. This theory and the cor-
responding numerical analysis has been developed in [117,
118]. The use of teichons has been developed in [78].

Given a 1-dimensional closed smooth and connected sub-
manifold Γ in R

2 = C inside the Riemann sphere C =
C ∪ {∞}, we consider its interior Γint and its exterior
Γext which contains ∞; these are smooth 2-manifolds with
boundary. Let Dint and Dext denote the unit disk and the
exterior of the unit disk respectively. By the smooth Rie-
mann mapping theorem ([126, p. 323] or [130]) there ex-
ists a biholomorphic mapping Φint : Dint → Γint extending
smoothly to the boundaries, unique up to replacing it by
Φint ◦A for a Möbius transformation

A(z)= az+ b

bz+ a
with

(
a b

b a

)
∈ PSU(1,1)∼= PSL(2,R).

Likewise we have a biholomorphic map between the exte-
riors Φext : Dext → Γext which is unique by the requirement
that Φext(∞) =∞ and Φ ′

ext(∞) > 0. The resulting diffeo-
morphism

Ψ :=Φ−1
ext ◦Φint : S1 → S1,

projects to a unique element of Diff+(S1)/PSL(2,R) (here
S1 is viewed as P 1(R)). It is called the fingerprint of Γ . Any
coset Ψ.PSL(2,R) comes from a shape Γ , and two shapes
give the same coset if they differ by a Möbius transformation
in Aut(C) which fixes ∞ and has positive derivative at ∞;
i.e., by translations and scalings.

One can reconstruct the shape Γ from the fingerprint
Ψ.PSL(2,R) by welding: Construct a Riemann surface by
welding the boundaries of Dint and Dext via the mapping Ψ .
The result is conformally equivalent to the Riemann sphere
and we use a conformal mapping Φ from the welded surface
to the sphere which takes ∞ to ∞ and has positive deriva-
tive at ∞. Then Γ equals Φ−1(S1) up to a translation and a
scaling of C. An efficient numerical procedure for welding
is described in [117, 118].

The quotient T := Diff(S1)/PSL(2,R), also known as
universal Teichmüller space, is naturally a coadjoint orbit
of the Virasoro group (see Sect. 7.2) and as such it car-
ries a natural invariant Kähler structure; see [73]. The cor-
responding Riemann metric can be described as follows.
For u ∈ X(S1) ∼= C∞(S1) we consider the Fourier series
u(θ)=∑n∈Z ane

inθ with an = a−n and the seminorm

‖u‖2
WP =

∑

n∈Z
|n3 − n||an|2.

The kernel of this seminorm consists of vector fields of the
form a1e

−iθ + a0 + a1e
iθ ; i.e., ker(‖ · ‖WP) = sl(2,R). So

this gives an inner product on the tangent space at the base
point of T . This norm can also be defined by the ellip-
tic pseudodifferential operator L = H(∂3

θ + ∂θ ) via ‖u‖ =∫
S1 L(u).udθ , where the periodic Hilbert transform H is

given by convolution with 1
2π

cotan( θ
2 ). The inverse of L is

convolution with the Green’s function

K(θ)=
∑

|n|>1

einθ

n3 − n

= (1− cos θ) log
(
2(1− cos θ)

)+ 3

2
cos θ − 1.

According to Sect. 7.2, ϕ(t) ∈ Diff(S1) projects to a geo-
desic in T if and only if the right logarithmic derivative
u(t)= ∂tϕ(t) ◦ ϕ(t)−1 satisfies

L(ut )=− ad∗u(Lu) or

(Lu)t + u.(Lu)θ + 2uθ .(Lu)= 0

and u(0) has vanishing Fourier coefficients of order−1, 0, 1.
We call m = Lu ∈ (X(S1)/sl(2,R))′ the momentum, with
u = G ∗ m. The Weil-Petersson metric described by L is
a Sobolev metric of order 3/2. The extension to the corre-
sponding Sobolev completions has been worked out by [51].

If we look for the geodesic evolution of a momentum of
the form

m=
N∑

j=1

pjδ(θ − qj ), so that v =
N∑

j=1

pjG(θ − qj )

a finite combination of delta distributions, which lies outside
of the image of L :X(S1)/sl→ (X(S1)/sl)′, we see that the
evolution of the parameters qj ,pj is given by the Hamilto-
nian system

{
ṗk =−pk

∑N
j=1 pjG

′(qk − qj )

q̇k =∑N
j=1 pjG(qk − qj )

These solutions are called Teichons, and they can be used to
approximate smooth geodesics of shapes in a very efficient
way which mimics the evolution of landmarks. The disad-
vantage is, that near concave parts of a shape the teichons
crowd up exponentially. An example of such a geodesic can
be seen in Fig. 10; see [78] and [79] for more details.

11 The Space of Riemannian Metrics

Let M be a compact manifold without boundary and
dim(M) = m. In this part we describe the Riemannian ge-
ometry on Met(M), the manifold of all Riemannian metrics
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Fig. 10 Evolution of an 8-Teichon from the circle to a Donald-Duck-
like shape. Positions of individual 1-Teichons are marked by asterisks.
Original image published in [78]

on M . The L2-metric on Met(M) is given by

GE
g (h, k)=

∫

M

Tr
(
g−1hg−1k

)
vol(g),

with g ∈Met(M) and h, k ∈ Tg Met(M). Each tangent vec-
tor h is a bilinear form h : T M ×M T M → R, that is in-
terpreted as a map T M → T ∗M . This metric has been in-
troduced in [43] and is also known as the Ebin-metric. Its
geodesic equation and curvature have been calculated in [49,
52], and the induced distance function and metric comple-
tion have been studied by Clarke [28–31].

Similar to Riemannian metrics on immersions, Sobolev
metrics of higher order and almost local metrics can be de-
fined using a (pseudo differential) operator field L acting on
the tangent space of Met(M). To be more precise, let

L : T Met(M)→ T Met(M)

be a smooth base-point preserving bundle isomorphism,
such that for every g ∈Met(M) the map

Lg : Tg Met(M)→ Tg Met(M)

is a pseudo differential operator, that is symmetric and pos-
itive with respect to the metric GE . Then we can define the
metric GL by

GL(h, k)=
∫

M

Tr
(
g−1Lg(h)g−1k

)
vol(g).

Let us also assume, that the operator field L is invariant un-
der the action of Diff(M), i.e.,

ϕ∗(Lgh)= Lϕ∗g
(
ϕ∗h

)
.

Then the metric GL induces a Riemannian metric on
Met(M)/Diff0(M) where Diff0(M) denotes the group of
all diffeomorphisms that are homotopic to the identity.
In relativity theory the Lorentzian analog of the space
Met(M)/Diff0(M) is called super space, since it is the true
phase space of Einstein’s equation.

An example for an operator field L is

Lgh= h+ (�g
)l

h, l ≥ 0.

The resulting metric GL, which is a the Sobolev metric of
order l, has been introduced in [15]. Other metrics, that have
been studied include conformal transformations of the L2-
metric [15, 32],

GΦ
g (h, k)=Φ(Volg)

∫

M

Tr
(
g−1hg−1k

)
vol(g)

with Φ ∈ C∞(R>0,R>0) and scalar curvature weighted
metrics [15],

GΦ
g (h, k)=

∫

M

Φ
(
Scalg

)
Tr
(
g−1hg−1k

)
vol(g),

with Φ ∈ C∞(R,R>0).
The main focus of the section will be on the L2-metric.

11.1 Connections to Teichmüller Theory and Information
Geometry

Our main motivation to consider the space of all Riemannian
metrics in this article lies in its possible application to shape
analysis of surfaces as explained in Sect. 1.1; see also [62].

Another motivation for the study of the L2-metric on the
manifold of metrics can be found in its connections to Teich-
müller theory. Let M be a Riemann surface of genus greater
than one. Then the L2-metric, restricted to the space Met1 of
hyperbolic metrics, induces the Weil-Peterson metric on Te-
ichmüller space Met1(M)/Diff0(M). This is described for
example by Fischer and Tromba [48] or Yamada [133, 134].

A surprising connection can be also found with the field
of information geometry, since the L2-metric descends to
the Fisher-Rao metric on the space of volume densities. To
understand this connection we will consider the Riemannian
metric on Diff(M) induced by GE . For a fixed metric g0 ∈
Met(M) we introduce the map:

Pull :Diff(M)→Met(M), ϕ �→ ϕ∗g0.

Now we can define a metric GPull on Diff(M) as the pull-
back of the L2-metric under the map Pull, i.e.,

GPull
ϕ (h, k)=GE(Tϕ Pullh,Tϕ Pull k).

This mapping and the induced metric on Diff(M) for a va-
riety of metrics on Met(M) is studied in [14]. The met-
ric GPull is invariant under the left action by the group
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Diffμ(M) of volume-preserving diffeomorphisms and the
metric induced on the quotient space

Dens(M)∼=Diffμ(M)\Diff(M)

of densities is the Fisher-Rao metric; see [102, Theo-
rem 4.9].

Another possibility, to see the connection to information
geometry was implicitly presented in [33]. There the authors
consider the subspace of Kähler metrics in a fixed Kähler
class—assuming that M admits a Kähler structure. Then the
Ebin metric induces the so-called Calabi geometry on the
space of Kähler metrics. It was then observed in [72] that
this space is, via the Calabi-Yau map, isometric to the space
of volume densities with the Fisher-Rao metric.

11.2 Geodesic Distance

In contrast to the spaces of immersions, submanifolds and
the diffeomorphism group, the L2-metric on Met(M) in-
duces a point-separating geodesic distance function.

Theorem 11.1 [29, Theorem 18] The L2-metric induces a
point-separating geodesic distance function on Met(M).

Remark 11.2 Note that this result also holds for all metrics,
that are stronger than the L2-metric, i.e.,

GE
g (h,h)≤ CGg(h,h),

with a constant C > 0, independent of g. This applies in par-
ticular to almost local metrics, if the function Φ is bounded
from below by Φ ≥ C > 0, as well as to most Sobolev-type
metrics.

Fix a Riemannian metric g̃ on M . For each x ∈ M de-
note by Met(M)x = S2+T ∗

x M the space of symmetric, pos-
itive definite

( 0
2

)
-tensors at x. Then for b, c ∈ Ta Met(M)x

the expression

γx,a(b, c)= Tr
(
a−1ba−1c

)√
det g̃(x)−1a

defines a Riemannian metric on the finite-dimensional man-
ifold Met(M)x . Denote by dx the induced geodesic distance
function and define the following distance on Met(M),

Ω2(g0, g1)=
√∫

M

dx

(
g0(x), g1(x)

)2 vol(g̃).

The following theorem states that computing the geodesic
distance on Met(M) with respect to the L2-distance, is
equivalent to summing point-wise geodesic distances on
Met(M)x .

Theorem 11.3 [32, Theorem 3.8] Geodesic distance in-
duced by the L2 metric and the distance Ω2 coincide, i.e.,
for all g0, g1 ∈Met(M),

distE(g0, g1)=Ω2(g0, g1).

Similar as in the case of the GA-metric and the Sobolev
metrics on the space of immersions the square root of the
volume is again a Lipschitz continuous function.

Theorem 11.4 [29, Lemma 12] Geodesic distance induced
by the L2-metric satisfies the inequality

∣∣
√

Vol(F,g0)−
√

Vol(F,g1)
∣∣≤

√
m

4
distEMet(M)(g0, g1)

for any measurable set F ⊂M . Here Vol(F,g) denotes the
volume of F ⊂M with respect to the metric g.

This implies the Lipschitz continuity of the map

√
Vol : (Met(M),distFMet(M)

)→R≥0.

On the other hand we also have the following upper
bound for the geodesic distance.

Theorem 11.5 [31, Proposition 4.1] For the L2-metric the
geodesic distance is bounded from above by

distE(g0, g1)≤ C(m)
(√

Vol(F,g0)+
√

Vol(F,g1)
)
,

where F denotes the support of g1 − g0

F = {x ∈M | g0(x) �= g1(x)
}
,

and C(m) is a constant depending only on the dimension
of M .

The above corollary implies that the set Metμ(M) of all
Riemannian metrics having a total volume less or equal than
μ has a finite diameter with respect to the L2-metric.

11.3 The Geodesic Equation

The Christoffel symbols for the L2-metric were first calcu-
lated in [43, Sect. 4]. Subsequently Freed and Groisser [49]
and Michor and Gil-Medrano [52] computed the geodesic
equation and found explicit solution formulas. The geodesic
equation for higher order Sobolev type metrics and Scalar
curvature metrics can be found in [15] and for volume
weighted metrics in [15, 33].

The geodesic equation for the L2-metric decouples the
time and spatial variables, i.e., instead of being a PDE in
(t, x), it is only an ODE in t .
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Lemma 11.6 [43, Sect. 4] The geodesic equation for the
L2-metric is given by the ordinary differential equation:

gtt = 1

4
Tr
(
g−1gtg

−1gt

)
g + gtg

−1gt − 1

2
Tr
(
g−1gt

)
gt .

There exists an explicit solution formula for this ODE.

Theorem 11.7 The geodesic starting at g0 ∈Met(M) in the
direction of h ∈ Tg0 Met(M) is given by the curve

g(t)= g0e
a(t) Id+b(t)H0 ,

where H0 is the traceless part of H := g−1
0 h, i.e., H0 =H −

Tr(H)
m

Id, and where a(t) and b(t) ∈ C∞(M) are defined by

a(t)= 2

m
log

((
1+ t

4
Tr(H)

)2

+ m

16
Tr
(
H 2

0

)
t2
)

b(t)=

⎧
⎪⎪⎨

⎪⎪⎩

4√
mTr(H 2

0 )
arctan(

√
mTr(H 2

0 )t

4+t Tr(H)
), Tr(H 2

0 ) �= 0

t

1+ t
4 Tr(H)

, Tr(H 2
0 )= 0.

Here arctan is taken to have values in (−π
2 , π

2 ) for the points
of the manifold where Tr(H) ≥ 0, and on a point where
Tr(H) < 0 we define

arctan

(
√

mTr(H 2
0 )t

4+ t Tr(H)

)

=

⎧
⎪⎨

⎪⎩

arctan in [0, π
2 ) for t ∈ [0,− 4

Tr(H)
)

π
2 for t =− 4

Tr(H)

arctan in (π
2 ,π) for t ∈ (− 4

Tr(H)
,∞).

Let Nh := {x ∈ M : H0(x) = 0}, and if Nh �= ∅ let th :=
inf{Tr(H)(x) : x ∈ Nh}. Then the geodesic g(t) is defined
for t ∈ [0,∞) if Nh = ∅ or if th ≥ 0, and it is only defined
for t ∈ [0,− 4

th
) if th < 0.

These formulas have been independently derived by
Freed and Groisser [49] and Michor and Gil-Medrano [52].
A similar result is also available for the metric GΦ with
Φ(Vol)= 1

Vol ; see [33].

Remark 11.8 The geodesic equation for higher order met-
rics will generally not be an ODE anymore and explicit so-
lution formulas do not exist. Nevertheless, it has been shown
that the geodesic equations are (locally) well-posed, assum-
ing certain conditions on the operator field L defining the
metric; see [15]. These conditions are satisfied by the class
of Sobolev type metrics and conformal metrics but not by
the scalar curvature weighted metrics.

11.4 Conserved Quantities

Noether’s theorem associates to any metric on Met(M), that
is invariant under pull-backs by the diffeomorphism group
Diff(M), for each X ∈X(M) the quantity

Gg

(
gt , ζX(g)

)= const.,

which is conserved along each geodesic g(t). Here ζX is the
fundamental vector field of the right action of Diff(M),

ζX(g)= LXg = 2 Sym∇g
(
g(X)

)
,

and Sym∇g(g(X)) is the symmetrization of the bilinear
form (Y,Z) �→ ∇g

Y g(X,Z), i.e.,

Sym∇g
(
g(X)

)
(Y,Z)= 1

2

(∇g
Y g(X,Z)+∇g

Zg(X,Y )
)
.

If Gg(gt , ζX(g)) vanishes for all vector fields X ∈ X(M)

along a geodesic g(t), then g(t) intersects each Diff(M)-
orbit orthogonally.

11.5 Completeness

The L2-metric on Met(M) is incomplete, both metrically
and geodesically. The metric completion of it has been stud-
ied by Clarke in [28, 31, 32]. To describe the completion let
Metf denote the set of measurable sections of the bundle
S2≥0T

∗M of symmetric, positive semi-definite
( 0

2

)
-tensors,

which have finite total volume. Define an equivalence rela-
tion on Metf by identifying g0 ∼ g1, if the following state-
ment holds almost surely:

g0(x) �= g1(x) ⇒ both gi(x) are not positive definite.

In other words, let D = {x : g0(x) �= g1(x)} and Ai = {x :
gi(x) not pos. def.}. Then

g0 ∼ g1 ⇔ D \ (A0 ∩A1) has measure 0.

Note that the map Met(M) ↪→Metf /∼ is injective.

Theorem 11.9 [28, Theorem 5.17] The metric completion
of the space (Met(M),distE) can be naturally identified
with Metf /∼.

In the subsequent article [32] it is shown that the metric
completion is a non-positively curved space in the sense of
Alexandrov.

Theorem 11.10 [32, Theorem 5.6] The metric completion
Met(M) of Met(M) with respect to the distE-metric is a
CAT(0) space, i.e.,

1. there exists a length-minimizing path (geodesic) between
any two points in Met(M) and

2. (Met(M),distE) is a non-positively curved space in the
sense of Alexandrov.
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11.6 Curvature

For the L2-metric, there exists a comparably simple expres-
sion for the curvature tensor.

Theorem 11.11 [52, Proposition 2.6] The Riemannian cur-
vature for the L2-metric on the manifold Met(M) of all Rie-
mannian metrics is given by

g−1Rg(h, k)l

= 1

4

[[H,K],L]

+ m

16

(
Tr(KL)H − Tr(HL)K

)

+ 1

16

(
Tr(H)Tr(L)K − Tr(K)Tr(L)H

)

+ 1

16

(
Tr(K)Tr(HL)− Tr(H)Tr(KL)

)
Id,

where H = g−1h, K = g−1k and L= g−1l.

In the article [49] the authors have determined the sign of
the sectional curvature:

Theorem 11.12 [49, Corollary 1.17] The sectional cur-
vature for the L2-metric on the manifold Met(M) of all
Riemannian metrics is non-positive. For the plane P(h, k)

spanned by orthonormal h, k it is

kMet
g

(
P(h, k)

) =
∫

M

m

16

(
Tr(HK)2 − Tr(H)2 Tr(K)2)

+ 1

4
Tr
(([H,K])2)vol(g),

where H = g−1h and K = g−1k.

In [33] it is proven that this negative curvature carries
over to the metric-completion of (Met(M),GE), as it is a
CAT(0) space; see Lemma 11.10.
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