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Abstract Existing clustering-based methods for segmenta-
tion and fiber tracking of diffusion tensor magnetic reso-
nance images (DT-MRI) are based on a formulation of a
similarity measure between diffusion tensors, or measures
that combine translational and diffusion tensor distances in
some ad hoc way. In this paper we propose to use the Fisher
information-based geodesic distance on the space of multi-
variate normal distributions as an intrinsic distance metric.
An efficient and numerically robust shooting method is de-
veloped for computing the minimum geodesic distance be-
tween two normal distributions, together with an efficient
graph-clustering algorithm for segmentation. Extensive ex-
perimental results involving both synthetic data and real DT-
MRI images demonstrate that in many cases our method
leads to more accurate and intuitively plausible segmenta-
tion results vis-à-vis existing methods.

Keywords Magnetic resonance imaging · Diffusion
tensor · Image segmentation · Fiber Tracking · Multivariate
normal distribution · Riemannian geometry

1 Introduction

Since the work of Basser et al. [4], the segmentation of dif-
fusion tensor magnetic resonance images (DT-MRI) has typ-
ically been cast as a clustering problem involving a similar-
ity measure between diffusion tensors. The diffusion tensors
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characterize the spatial motion of water molecules; since
water diffuses more rapidly in directions aligned with the
internal tissue structure, by statistically characterizing the
directions in which the water molecules diffuse, one can ex-
tract information about the underlying anatomical structure.

Once a reference frame and coordinates have been cho-
sen, a diffusion tensor admits a representation as a sym-
metric positive-definite matrix—throughout we denote by
P(n) the space of n × n symmetric positive-definite matri-
ces. A similarity measure for diffusion tensors then corre-
sponds to a choice of distance metric on P(n). The literature
on P(n) distance metrics is extensive—see, e.g., [2, 9, 16,
17, 20, 23, 24]—and various distance metrics on P(n) have
been used in the context of DT-MRI analysis: the Frobe-
nius norm is used in [6] for DTI regularization and match-
ing; the angular difference between principal eigenvectors is
used in [27] for thalamic segmentation; the Riemannian dis-
tance based on the Fisher information metric is used in [13]
for segmentation; the Log-Euclidean distance is used as an
approximated version of the Riemannian distance in [3]; and
the Kullback–Leibler divergence and its symmetrized ver-
sion are used in [25] for segmentation. Despite some limita-
tions of this approach, e.g., at voxels where many neuronal
fibers cross, segmenting DT-MRI images based on a choice
of distance metric on P(n) has proven quite effective in in-
vestigating tissue microstructure.

On the other hand it is easy to come up with situations
in which using just a distance metric on P(n) can lead to
nonintuitive results. In Fig. 1(i), for example, the shape of
the ellipsoid at (b) would suggest that a water molecule at
(b) is much more likely to diffuse toward (c) rather than (a).
A metric on P(n), however, would indicate that the ellip-
soids at (a) and (c) are both equidistant from the ellipsoid
at (b). Similarly, for Fig. 1(ii), one would expect that a wa-
ter molecule at (b) is more likely to diffuse toward (a) rather
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Fig. 1 (i) The ellipsoids represent covariances at different voxel locations; (ii) The ellipsoids at each voxel are now rotated ninety degrees

than (c). Here again a metric on P(n) would be unable to
differentiate between these two cases. A reasonable distance
metric should, for the left example, yield d(a, b) > d(b, c),
while for the right example it should yield d(a, b) < d(b, c).

A simple remedy to this situation is to take into account
not only the shape of the diffusion tensor, but also its spatial
voxel location (typically R

2 or R
3 in our case) when cal-

culating distances. This often entails a choice of weighting
factor between Euclidean space and the space of diffusion
tensors. Wiegell et al. [26] propose as a distance metric a
linear combination of the Mahalanobis voxel distance and
the Frobenius tensor distance with certain weight. Specif-
ically, if xa , xb denote the spatial location of two voxels,
and Da , Db denote their corresponding diffusion tensors,
then the distance d(a, b) between the diffusion tensors cen-
tered at xa and xb is evaluated as

d(a, b) = ‖xa − xb‖W + ‖Da − Db‖, (1)

where ‖ · ‖W is a vector norm taken with respect to some
symmetric positive-definite matrix W (in [26] W is taken
to be the spatial covariance associated with the voxels in
the cluster containing xb), and the norm on diffusion ten-
sors is the usual Frobenius matrix norm. In Wiegell et al’s
approach, the distance between two diffusion tensors of the
same shape and orientation, located at voxels that are close
to each other, will by construction be small. In [1], Abou-
Moustafa and Ferrie propose two distance measures on mul-
tivariate normal distributions that are similar to those in [26]
in terms of combining spatial and covariance distances:

dJR(a, b) = (
(μa − μb)

T
(
Σ−1

1 + Σ−1
2

)
(μa − μb)

) 1
2

+ dR(Σ1,Σ2), (2)

dBR(a, b) =
(

(μa − μb)
T

(
1

2
Σ1 + 1

2
Σ2

)−1

(μa − μb)

) 1
2

+ dR(Σ1,Σ2). (3)

The first metric dJR(·, ·) combines the mean component of
the J-divergence with the P(n) Riemannian distance, while
dBR(·, ·) combines the mean part of Bhattacharyya distance
with the P(n) Riemannian distance. While these metrics
produce distances that agree with our intuition about the sce-
narios shown in Fig. 1, it is important to note that (2) and (3)
are only pseudo-metrics; they fail to satisfy the triangle in-
equality, which has important consequences for, e.g., metric-
based classification.

Another way to avoid the potential discrepancy described
in Fig. 1 is via the method proposed in O’Donnell et al. [18].
Here the diffusion tensor at x, denoted Dx , defines an in-
verse Riemannian metric at x; the distance between (xa,Da)

and (xb,Db) is then measured to be the length of the short-
est path in Euclidean space connecting xa and xb , with in-
finitesimal arclengths now measured according to ds2 =
dxT D−1

x dx. While this approach properly distinguishes be-
tween the two cases of Fig. 1, a smooth and continuous ten-
sor field is required, and the choice of approximation and in-
terpolation method will clearly have an influence on the final
outcome. The metric of [18] also does not explicitly capture
variations exclusively in the P(n) component along the Eu-
clidean base curve, although this can be rectified straightfor-
wardly with the addition of an appropriate P(n) metric term
as detailed in Sect. 3.4.

A more natural and rigorous setting in which to formu-
late distance metrics like that of (1) is to identify each mea-
sured diffusion tensor with a normal distribution—its mean
is given by the spatial location of the voxel, and its covari-
ance by the P(n) representation of the diffusion tensor. This
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is, in fact, precisely the geometric setting in which Lenglet et
al. [13] formulate their DT-MRI segmentation algorithm, al-
though for some reason they choose to ignore the mean and
consider only the covariance in their distance calculations.

As is well-known, the space of n-dimensional normal
distributions, which we denote N (n), has the structure of
a Riemannian manifold, with the Fisher information metric
serving as a natural choice of Riemannian metric. The Rie-
mannian geometry of N (n) has been investigated in [5, 8,
10, 14, 22] where, among other things, the differential equa-
tions for minimal geodesics are derived. Finding the min-
imal geodesic (and thus the distance) between two normal
distributions involves solving these equations with the two
given endpoint conditions. This leads to a nonlinear two-
point boundary value problem, which with very few excep-
tions must be solved numerically, typically via shooting or
relaxation type methods. Analytic characterizations of the
minimal geodesic are available in the one-dimensional case,
but in the general n-dimensional case very little can be said.

In this paper we propose a method for DT-MRI segmen-
tation that takes into account the natural Riemannian geom-
etry of N (n) as induced from the Fisher information met-
ric. As a primary contribution, we develop a fast and nu-
merically stable shooting algorithm that calculates geodesic
distances between any two given normal distributions. The
method is coordinate-invariant in the sense that the endpoint
fitting errors are translated to the initial point in a way that
respects the intrinsic geometry of N (n) (specifically, we
use parallel transport with respect to the Fisher information
Riemannian metric). As a secondary contribution, we con-
struct a graph structure of the DT-MRI image, and develop a
graph-based clustering algorithm that considerably reduces
the computational complexity vis-à-vis more conventional
methods like spectral clustering.

Experimental results are generated for a wide range of
both synthetic and actual DT-MRI data, with experiments
ranging from DTI segmentation to fiber tractography. Al-
though the lack of ground truth information for actual DT-
MRI images makes it difficult to draw strong and definitive
conclusions, applying various quantitative criteria to mea-
sure segmentation performance, we find that performance is
in many cases improved by using the N (n) metric over the
P(n) metric or the ad hoc metric of [26]. Both visual in-
spection and qualitative assessment of the results also bears
out our finding in a number of cases. Extensive numerical
experiments with our shooting algorithm also suggest that
N (n) is (at least in the cases n = 2 and n = 3) geodesi-
cally complete (that is, given any two points in N (n) a min-
imal geodesic between them exists), and that our shooting
method always converges to a unique minimal geodesic (as
of yet the question of existence and uniqueness of minimal
geodesics on N (n) does not appear to have been formally
addressed in the literature).

The paper is organized as follows. In Sect. 2 we re-
view the Riemannian structure of the manifold of multivari-
ate normal distributions, and explicitly derive the equations
for parallel transport. In Sect. 3 we describe the numerical
shooting algorithm for determining the minimal geodesics
on N (n). In Sect. 4 we describe our graph model for DTI
and the corresponding graph-based clustering algorithm.
Results of experiments with synthetic and real DT-MRI data
are described in Sect. 5.

2 Riemannian Geometry of Multivariate Normal
Distributions

In this section we review the Riemannian structure of the
space of multivariate normal distributions; we refer the
reader to, e.g., [13, 22] for further details and references.
The manifold N (n), is formally defined as follows:

N (n) = {
Nn(μ,Σ) | μ ∈R

n, Σ ∈P(n)
}
. (4)

Here Nn(μ,Σ) denotes a normal distribution in R
n with

mean μ ∈ R
n and covariance Σ ∈ P(n), with P(n) de-

noting the space of real symmetric n × n positive-definite
matrices. N (n) is a differentiable manifold of dimension
n + 1

2n(n + 1). A natural choice of local coordinate chart
for N (n) is given by

Ψ
(
Nn(μ,Σ)

) = (
(μi)i=1,...,n, (σij )i≤j

)
, (5)

where the local coordinates are μ = (μ1, . . . ,μn)
T , Σ =

(σij )i,j=1,...,n.
N (n) can be turned into a Riemannian manifold by using

the Fisher information as Riemannian metric. In terms of the
above local coordinates, at a point (μ,Σ) the Riemannian
metric g(·, ·) assumes the form

g(ei, ej ) = eT
i Σ−1ej (6)

g(ei,Ekl) = 0 (7)

g(Eij ,Ekl) = 1

2
tr
(
Σ−1EijΣ

−1Ekl

)
, (8)

where {e1, . . . , en} denote the standard basis vectors in R
n

(that is, the i-th element of ei is 1, and the remaining ele-
ments are zero), and

Eij =
{

1(i,i), i = j,

1(i,j) + 1(j,i), i �= j,
(9)

where 1(i,j) represents the n × n matrix whose (i, j) entry
is 1, and all other entries are zero.

Using above metric, we can define the inner product
on N (n) space. The inner product of two tangent vec-
tor V = (Vμ,VΣ) and W = (Wμ,WΣ) defined at a point
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P = (μ,Σ) on N (n) is given by

〈V,W 〉P = V T
μ Σ−1Wμ + 1

2
tr
(
Σ−1VΣΣ−1WΣ

)
. (10)

For a general Riemannian manifold with local coordi-
nates x ∈ R

n and Riemannian metric gij (x), the distance
between two points on the manifold can be defined as the
length of the shortest (twice-differentiable) path connecting
the two points. The shortest path is known as the minimal
geodesic, and must satisfy the Euler–Lagrange equations:

d2xk(t)

dt2
+

n∑

i,j=1

Γ k
ij

dxi(t)

dt

dxj (t)

dt
= 0,

∀k = 1, . . . , n. (11)

Here the Γ k
ij denote Christoffel symbols of the second kind,

and are defined as

Γ k
ij =

m∑

s=1

1

2
gks

(
∂gsi

∂xj

− ∂gij

∂xs

+ ∂gjs

∂xi

)
, (12)

with gks denoting the (k, s) entry of the inverse of (gij ). Any
solution to the above equations is a geodesic; the minimal
geodesic is the geodesic with the shortest path, and requires
the solution to a two-point boundary value problem.

On N (n) the geodesic equations are given explicitly by

d2μ

dt2
=

(
dΣ

dt

)
Σ−1

(
dμ

dt

)
(13)

d2Σ

dt2
=

(
dΣ

dt

)
Σ−1

(
dΣ

dt

)
−

(
dμ

dt

)(
dμ

dt

)T

. (14)

It is worthwhile mentioning some special cases where an-
alytical formulas are possible. As mentioned earlier, when
n = 1 the minimal geodesics can be characterized analyti-
cally. Also, in the event that μ0 = μ1, Jensen (see [13] for a
more detailed discussion) has derived the following formula
for the length of the minimal geodesic:

dist(Σ0,Σ1) =
√√√√1

2

n∑

i=1

log2(λi), (15)

where the λi , i = 1, . . . , n denote the eigenvalues of the ma-
trix Σ

−1/2
0 Σ1Σ

−1/2
0 (the square roots are taken to be sym-

metric positive-definite).
Henceforth we adopt the exp(·) and log(·) notation to de-

note time evolution along geodesics:

B = expA(V ) (16)

V = logA(B). (17)

Here expA(V ) denotes the solution of the geodesic equa-
tions (13) and (14), while logA(B) denotes the initial tangent

Fig. 2 Validation of using parallel transport instead of Jacobi field

vector at A corresponding to the minimal geodesic between
A and B .

We close this section with a discussion of parallel trans-
port and Jacobi field on N (n). On a general Riemannian
manifold the Christoffel symbols of the second kind Γ k

ij

define a covariant derivative on the manifold, which in
turn provides a means of transporting tangent vectors along
curves on the manifold, in such a way that the tangent vec-
tors remain parallel with respect to the covariant derivative.
For our purposes, parallel transport offers a means of trans-
porting tangent vectors from one end of a minimal geodesic
to the other; this will prove useful in developing our geo-
metric shooting method algorithm for determining minimal
geodesics on N (n).

Given a smooth vector field V on N (n) (i.e., a smooth
mapping V from N (n) to its tangent bundle of the form
(μ,Σ) 	→ (Vμ,VΣ)), suppose we wish to transport this vec-
tor field along some curve on N (n). The transported vector
field must then satisfy the following pair of differential equa-
tions:

dVμ

dt
= 1

2

(
dΣ

dt

)
Σ−1Vμ + 1

2
VΣΣ−1

(
dμ

dt

)
(18)

dVΣ

dt
= 1

2

{(
dΣ

dt

)
Σ−1VΣ + VΣΣ−1

(
dΣ

dt

)}

− 1

2

{(
dμ

dt

)
V T

μ + Vμ

(
dμ

dt

)T }
. (19)

The Jacobi field is a vector field defined along a geodesic
γ that describes the difference between the geodesic and in-
finitesimal variations of the geodesic. Specifically, the Ja-
cobi field is defined to be

J (t) = ∂γτ (t)

∂τ

∣∣∣∣
τ=0

, (20)

where τ denotes the variation of geodesic and γ0 = γ . It is
known that J then satisfies the following Jacobi equation:

D2

dt2
J (t) + R

(
J (t), γ̇ (t)

)
γ̇ (t) = 0, (21)

where R denotes Riemannian curvature tensor.
For example, given a geodesic curve γ between P0 and

P1 with initial tangent vector V , suppose V is perturbed to
V + W for some infinitesimal tangent vector W . The varia-
tion of the final point P1 can then be derived via the Jacobi
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field, as the solution of (21) with J (0) = 0 and J̇ (0) = W .
In terms of the exponential map, this relation can also be
written

J (t) = d

dτ
expP0

(
t (V + τW)

)
∣∣∣∣
τ=0

. (22)

3 Algorithm for Minimal Geodesics

3.1 Algorithm Description

To motivate our numerical procedure for finding minimal
geodesics on N (n), consider the following scalar two-point
boundary value problem: given the second-order differen-
tial equation ẍ(t) = f (t, x(t), ẋ(t)) with boundary condi-
tions x(t0) = x0 and x(t1) = x1, we seek the initial slope
ẋ(t0) = a such that the solution satisfies the boundary con-
ditions. Assuming a solution exists, the shooting method is
essentially a numerical root-finding procedure for solving
the equation

g(a) = x(t1;a) − x1 = 0, (23)

where x(t1;a) denotes the trajectory at t = t1 for the
given initial slope ẋ(t0) = a. Note that obtaining x(t1;a)

requires numerical integration of the original differential
equations. If the basic Newton–Raphson method is in-
voked, then intuitively each iteration in the shooting method
amounts to adding g(a), the error at the final time t1, to
the initial slope a, and obtaining x(t1) for the new slope
a + g(a)/(t1 − t0). This procedure is repeated until the error
converges to some prescribed ε. In actual implementations
the method requires information about the derivatives of g

with respect to a, which in turn involves repeated integra-
tions of the differential equation for different initial values
of a.

Since in our case the differential equations locally evolve
on the manifold R

n × P(n), many of the previous vector
space notions need to be suitably generalized. The numeri-
cal integration clearly needs to take into account the geome-
try of the underlying space, to ensure that the solution does
not deviate from the manifold. More crucially, the question
of how to update the initial slope a by “adding” the error
g(a) needs to be addressed. The most natural way is to find
the initial value of the Jacobi field J̇ (0) such that the error
matches J (1) (here J (0) = 0), and to add J̇ (0) to the initial
slope.

Using the Jacobi field, however, presents a number of
practical difficulties. Although the Riemannian curvature
tensor on N (n) is known, the Jacobi equation (21) has no
known closed-form solution; solution via numerical integra-
tion is also computationally difficult. Finding J̇ (0) to reach
the desired J (1) presents another two-point boundary value

Table 1 Comparison between Jacobi field and parallel transport in
N (n)

‖v0‖P0 max(dist(P1,P3)/dist(P1,P2)) max (∠P2P1P3)

1 0.1373 4.3607

2 0.6589 16.325

3 1.9356 31.6088

4 4.6633 48.1440

5 9.3629 62.9973

7 35.1561 77.6493

Fig. 3 Appropriate update step
size

problem that needs to be solved within the main shooting
method procedure.

Our solution is to use parallel transport to approximate
the Jacobi field. This approximation is valid in cases where
the curvature is sufficiently close to zero and the geodesic
length is reasonably short, as we now verify through nu-
merical experiments. Referring to Fig. 2, we first define
two random tangent vectors V0 and W0 at P0, and deter-
mine the geodesic curve from P0 to P1 with initial tan-
gent vector V0. We then calculate W1 at P1 by parallel
transporting W0 along the geodesic. Denote by P2 the end-
point of the geodesic from P1 with initial tangent vec-
tor W1, and by P3 the endpoint of the geodesic from P0

with initial tangent vector V0 + W0. If W0 is sufficiently
small and parallel transport is a reasonable approximation
to the Jacobi field, then dist(P2,P3) should be much smaller
than dist(P1,P2). For our experiments, we set the mean
and covariance of P0 to zero and the identity, respectively
(since our distance metric on N (n) is invariant with respect
to affine transformations, i.e., dist((μ1,Σ1), (μ2,Σ2)) =
dist((Aμ1 + b,AΣ1A

T ), (Aμ2 + b,AΣ2A
T )) for all A ∈

GL(n) and b ∈ R
n, there is no loss of generality in the zero

mean and identity covariance assumption).
Table 1 shows the worst case results for 1000 trials. When

the distance is greater than 2, parallel transport does not ap-
proximate the Jacobi field very well. However, we still find
that ∠P2P1P3 is smaller than 90 degrees. Using the above
result in our shooting method, we parallel transport the end-
point error to the initial point, and determine an appropriate
update size by projecting the error on the numerically ob-
tained Jacobi field.

In Fig. 3, we assume that P1 is the endpoint of the cur-
rent geodesic, and P2 is the desired endpoint near P1. If we
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Algorithm 1 Shooting method for minimal geodesics on N (n)

Given: Initial point P0 = (μ0,Σ0), final point P1 = (μ1,Σ1).
Output: Minimal geodesic P(t) = (μ(t),Σ(t)), t ∈ [0,1], such that P(1) = (μ1,Σ1).
Initialization: Choose initial velocities V (0) = (μ̇(0), Σ̇(0)) (e.g., zeroes), initial values for ε (10−5), error = 106.
while error ≥ ε do

Numerically integrate the geodesic equations (13), (14) for given initial conditions (μ0,Σ0, μ̇0, Σ̇0) from t = 0 to t = 1.
Denote the solution by (μ(t),Σ(t));
Set W(1) = (Wμ(1),WΣ(1)) = (μ1 − μ(1),Σ1 − Σ(1));

Calculate error = ‖W(1)‖P1 =
√

Wμ(1)T Σ−1
1 Wμ(1) + 1

2 tr((Σ−1
1 WΣ(1))2);

Numerically integrate the parallel transport equations (18) and (19) for given trajectory (μ(t),Σ(t)) and final veloci-
ties W(1), backward in time from t = 1 to t = 0;
Numerically calculate Jacobi field J (1) from (22),

J (1) = expP0
(V (0)+αW(0))−expP0

(V (0))

α
, where α is sufficiently small value and we use ε

‖W(0)‖P0
Determine proper update size s:
s1 = 〈W(1),J (1)〉P (1)

‖J (1)‖2
P (1)

if ‖W(1)‖P(1) > 0.05 then
s = 0.05/‖W(1)‖P(1)s1;

else
s = s1;

end if
V (0) ← V (0) + sW(0);

end while

Fig. 4 An illustration of the shooting method on N (n)

parallel transport the error vector W1 to the initial point and
add this to original initial vector (V0 + W0), then the end-
point of the new geodesic becomes P3. J1 is the Jacobi field
with initial tangent vector V0 and perturbation W0, and in-
dicates the direction from P1 to P3. In our algorithm, we
project W1 onto J1 and determine an appropriate update size

s = 〈J1,W1〉P1
‖J1‖2

P1

. V0 +sW0 is our new initial tangent vector, and

the endpoint of the geodesic approaches P ∗
2 , which is now

closer to P2 than P3.
The above derivation sheds further light on what it means

intuitively to parallel transport the final position error back
to the initial point. We now present our shooting method
algorithm for finding the minimal geodesic between any
two given endpoints in N (n). Given a minimal geodesic on
N (n) connecting the initial point A = (μA,ΣA) with the fi-
nal point B = (μB,ΣB), such that the initial tangent vector
at A is V = (Vμ,VΣ).

Referring to Fig. 4, suppose we seek the geodesic path
between A and B . If our guess for the tangent vector at
A results in a geodesic to C rather than B—in this case
the tangent vector at A is given by logA(C)—then this ini-
tial tangent vector needs to be corrected by taking into ac-
count the error at the endpoint, captured by a tangent vec-
tor at C that corresponds to the minimal geodesic from C

to B , or logC(B). This involves finding yet another minimal
geodesic, this time from C to B . To avoid this complica-
tion we adopt the following iterative procedure to approxi-
mately determine logC(B). First, we determine the straight
line (in Euclidean space) between B and C, and choose a
point B ′ on this line that is close to C. Provided B ′ is suf-
ficiently close to C, then logC(B ′) is closely approximated
by B ′ − C.1 This tangent vector is then parallel transported
to A, and added to logA(C) to form a new tangent vector
at A with proper update size; the corresponding minimal
geodesic should then generate an endpoint that is closer to
B than the previously attained C. The above procedure is re-
peated until the resulting minimal geodesic reaches the de-
sired endpoint B to some desired accuracy. This iterative
procedure for finding the minimal geodesic is summarized
in Algorithm 1.

Using Algorithm 1, we can determine the initial veloc-
ity vectors μ̇(0) and Σ̇(0). The geodesic distance between

1In our experiments, if dist(B ′,C) is less than 0.05, logC(B ′) is well
approximated by B ′ − C. We use this constant value in Algorithm 1.
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(μ(0),Σ(0)) and (μ(1),Σ(1)) is then evaluated from the
formula

distance

=
∫ 1

0

√

μ̇T (t)Σ−1(t)μ̇(t) + 1

2
tr
((

Σ−1(t)Σ̇(t)
)2)

dt.

(24)

Since geodesic curves have constant speed at every point,
the above equation can be simplified to

distance =
√

μ̇T (0)Σ−1(0)μ̇(0) + 1

2
tr
((

Σ−1(0)Σ̇(0)
)2)

.

(25)

We remark that for the numerical evaluation of the
geodesic equation, in principle one can use, e.g., a geometric
integration scheme that ensures that each iterate remains on
the manifold N (n). In practice such integration algorithms
are computationally expensive, and our experience suggests
that ordinary Runge–Kutta integration is sufficient for our
purposes provided the integration time step is not too large.

Our algorithm performs well for geodesic distances up
to 7; in cases where the geodesic distance exceeds 7, we ob-
serve poor convergence and numerical instability. The cal-
culation of the geodesic distance between two very distant
distributions, say

μ0 =
[

0
0

]
, Σ0 =

[
1 0
0 1

]
,

μ1 =
[

10000
0

]
, Σ1 =

[
10 0
0 10

]
,

requires over 45,000 iterations using Algorithm 1. This
problem can be resolved by extending our algorithm as fol-
lows. In order to calculate the geodesic distance between
P0 and P1 on N (n), we first determine intermediate points
{P 1, . . . ,P N } between P0 and P1, such that P 1 = P0, P N =
P1 and

dist
(
P i,P i+1) ≤ 1.

This last condition dist(P i,P i+1) ≤ 1 ensures fast perfor-
mance of Algorithm 1. Next, we update P i = expPi−1

(0.5 ×
logPi−1(Pi+1)) for even i, followed by an update for odd i;
both updates make use of Algorithm 1. Repeating this un-

til
∑N−1

i=1 dist(P i,P i+1) converges, this value becomes the
geodesic distance between P0 and P1. For the above exam-
ple, this distance is evaluated to be 23.4989.

3.2 Examples of Minimal Geodesics

We now consider several examples on N (2). First, suppose
we seek the minimal geodesic connecting the following end-

Fig. 5 A minimal geodesic on N (2)

points:

μ0 =
[

0
0

]
, Σ0 =

[
1 0
0 0.1

]
,

μ1 =
[

1
1

]
, Σ1 =

[
0.1 0
0 1

]
.

(26)

We take the starting initial tangent vector to be the zero vec-
tor, and use the Runge–Kutta fourth-order method to inte-
grate both the geodesic and parallel transport equations, with
an integration stepsize of 0.01. The algorithm requires 77 it-
erations to converge to an endpoint fitting error under 10−5.
The resulting geodesic curve is shown in Fig. 5; the geodesic
distance is evaluated to be 3.1329.

Figure 5 displays the geodesic curve between the two
given distributions. Observe that the geodesic curve be-
tween two normal distributions tends to move in directions
of greatest uncertainty, i.e., along the major principal axes of
the ellipsoid. Figure 6 graphs the error as a function of the
number of iterations. We observe that the error decreases in
a statistically consistent manner, and converges logarithmi-
cally to zero.

Figure 7 displays several more examples of minimal
geodesics on N (2). In examples (i)–(iii) the means follow
straight line trajectories, which from symmetry considera-
tions is not altogether surprising. In examples (iv)–(vi) the
mean trajectories are nonlinear, and the ellipsoids deform in
shape along the direction of the trajectory; this is particularly
visible in (vi).

Before proceeding further, a remark on the existence
and uniqueness of minimal geodesics on N (n) is appro-
priate. We are not aware of any theoretical results con-
firming the existence and uniqueness of minimal geodesics
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on N (n), and for this purpose we perform a set of numeri-
cal experiments to examine existence and uniqueness. First,
for randomly selected pairs of multivariate normal distribu-
tions that are distant from each other, in all cases our algo-

Fig. 6 Endpoint error as a function of number of iterations

rithm was able to calculate a geodesic. To test whether the
geodesic is unique, we first construct a reference geodesic
curve from the geodesic equation, and use our algorithm to
calculate geodesics for various random initial tangent vec-
tors (recall that in Algorithm 1 all initial tangent were zero).
If the geodesic happens to not be unique, then there should
exist two distinct vectors, V1 and V2, that satisfy expP V1 =
expP V2 on N (n). For random initial tangent vectors close
to V1 one would expect our algorithm to produce V1 as the
result (and similarly for V2). In all our experiments we al-
ways obtain the same initial tangent vector. These numerical
experiments lead us to conjecture that, at least for the cases
n = 2 and n = 3, the minimal geodesic exists and is unique
for any arbitrary pair of normal distributions.

3.3 Minimal Geodesics for DT-MRI

In calculating minimal geodesics on N (3) for DT-MRI ap-
plications, the relation between the diffusion time scale and
the choice of Riemannian metric first needs to be exam-
ined in some detail. Recall that the diffusion tensor in DT-
MRI data represents the rate of diffusion of water molecules,

Fig. 7 Further examples of minimal geodesics on N (2)
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while the magnitude of the diffusion tensor elements de-
pends on some diffusion time scale τ . The diffusion of wa-
ter molecules is modelled according to a normal distribution
with mean μ and covariance Σ = 2Dτ (D is diffusion ten-
sor):

ρ(x | τ) = 1
√

(4πτ)3 detD
e

(x−μ)T D−1(x−μ)
4τ . (27)

In the case of the covariance-only geodesic distance on
P(n), the diffusion time scale turns out to be irrelevant
due to the transformation invariance property of the dis-
tance metric, i.e., dist(A,B) = dist(XAXT ,XBXT ) for all
A,B ∈ P(3) and X ∈ GL(3).

On N (n) the diffusion time scale needs to be specified
prior to constructing a distance metric. We observe that
as the diffusion time scale approaches infinity, the N (n)

geodesic distance and the P(n) geodesic distance become
equal. If on the other hand the diffusion time scale ap-
proaches zero, the N (n) geodesic distance approaches infin-
ity. This diffusion time scale can thus be considered a tun-
able parameter that emphasizes the relative weights of the
spatial locations (means) versus the diffusion tensor shapes
(covariances).

For our experiments, we scale the spatial location using
a scale factor c. That is, we assume (cμ,D), where μ de-
notes spatial coordinates (in mm units) and D is diffusion
tensors (in mm2/s units), is a normal distribution in some
DT-MRI image. In the case c = 0, the N (n) metric is equiv-
alent to the P(n) metric. Since there is no single intrinsic
scale factor, we seek scale factors that make the voxel vol-
ume nearly identical to the diffusion tensor volume; with
this criterion we determine the range of the scale factor to
be 0.0026 ∼ 0.083 for our dataset. Using this prior knowl-
edge, we compute the N (3) geodesic distance with a scale
factor in the range of 0.0 ∼ 0.1.

3.4 Comparison with Other Geodesic Concepts in DT-MRI

Several approaches to fiber tractography [11, 18, 21] also
make use of geodesic distances that are related to our N (n)

geodesic distance. Given a diffusion tensor field Dx , where
x ∈ R

3 denotes the spatial location, the geodesic distance
between two data points (xa,Da) and (xb,Db) is defined to
be the length of the shortest curve x(t) in R

3 that minimizes

∫ T

0

(
ẋT D−1

x ẋ
)1/2

dt, (28)

with x(0) = xa and x(T ) = xb , i.e., the inverse diffusion
tensor field is taken to be the underlying Riemannian metric
([18] and [11] calculate geodesic connectivity based on the
Eikonal equations, while the Euler–Lagrange equations are

integrated to obtain the geodesic path in [21]). Comparing
this with our N (n) geodesic distance, i.e.,

∫ T

0

(
ẋT D−1

x ẋ + 1

2
tr
(
D−1

x ḊxD
−1
x Ḋx

))1/2

dt, (29)

observe that (29) contains an additional term 1
2 tr(D−1

x Ḋx

D−1
x Ḋx) corresponding to the metric on P(n). If the first

term ẋT D−1
x ẋ reflects water diffusivity, then the second

term in (29) also takes into consideration the variations in
shape of the diffusion tensors. Whereas geodesics of (28)
are spatial curves in R

3, geodesics of (29) consist of both a
spatial curve in R

3 and a curve in diffusion tensor space.
Moreover, since DT-MRI diffusion tensors are defined at

discrete voxels, to evaluate (28) typically requires some pro-
cedure for smooth interpolation through an ordered set of
diffusion tensors. The choice of interpolation method, par-
ticularly for diffusion tensors that are far apart, introduces an
ad hoc element that can influence the results. Such choices
can be mitigated with our N (n) geodesic distance, which
involves only the choice of a scalar scaling factor c that re-
flects the relative magnitudes of the voxel and diffusion ten-
sor volumes. Choosing a scaling factor that equally balances
these two notions of volume for the given datasets, smooth
diffusion tensor curves satisfying the boundary conditions
are automatically generated. Later in Sect. 5 we provide nu-
merical results that contrast these approaches.

4 Graph-Based Clustering Algorithm

4.1 Graph Representation

We first begin with an examination of the distance formula
on N (n) when applied to two distant diffusion tensors. Re-
ferring to Fig. 8, it is straightforward enough to determine
the minimal geodesic, and calculate distance, between the

Fig. 8 A simple graph representation on N (n)



326 J Math Imaging Vis (2014) 49:317–334

two points N1 and N2 in N (n). More often than not the co-
variance along the geodesic curves will not coincide with the
actual measured diffusion tensors at the specific voxel loca-
tions. Since a diffusion tensor only provides local informa-
tion about the diffusion properties of water, when evaluating
minimal geodesics between two diffusion tensors it is quite
reasonable to use the information provided by intermediate
diffusion tensors.

In the light of this observation, in our approach we map
a DT-MRI image into an undirected graph: each vertex
corresponds to a diffusion tensor, and each edge—placing
each vertex at the center of a 3 × 3 × 3 cube, its neigh-
bors are the 26 nodes constituting this cube—represents the
distance from the vertex to its adjacent neighbors in three-
dimensional space. The distance between any two nodes in
the graph is defined to be the length of the shortest path on
the graph connecting the two nodes (this notion of distance
on graphs is also called geodesic distance, not to be con-
fused with our earlier notion of geodesic distance between
two normal distributions). Given this graph representation
of DT-MRI data, the weight of each graph edge contains
all the information regarding the mean and covariance. We
make use of this graph representation, and also Dijkstra’s al-
gorithm, for our later DTI clustering and fiber tractography
experiments.

4.2 Algorithm Description

For our clustering algorithm we present an adaptation of the
k-medoids clustering algorithm [12]. Like the k-means algo-
rithm upon which it is based, the k-medoids algorithm par-
titions the dataset into clusters by designating a center point
(the medoid) for each cluster, and clustering the points so
that the sum of the distances of each point from its medoid
is minimized. The objective function in k-medoids cluster-
ing is given by

n∑

i=1

K∑

k=1

I (xi ∈ clusterk)dist(mk, xi), (30)

where x are the data points, mk denotes the medoid of
clusterk , and I (xi ∈ clusterk) is an indicator function speci-
fying whether xi belongs to clusterk .

Our clustering algorithm consists of two phases: (i) as-
signing each point to a cluster, and (ii) updating the medoids
for each cluster. In the assignment step, each cluster is char-
acterized as follows:

S
(t)
i = {

xj‖dist
(
xj ,m

(t)
i

) ≤ dist
(
xj ,m(t)

i∗
)

for all i∗ = 1, . . . , k
}
, (31)

where dist(·, ·) refers to the geodesic distance on the graph.
Intuitively, each vertex is assigned to the cluster correspond-
ing to its nearest medoid. To evaluate graph geodesic dis-
tances we use a modified form of Dijkstra’s algorithm for

Algorithm 2 Cluster assignment step
Given: V (vertex set), E (edge set, Eij is a distance be-
tween adjacent vertices i and j ), initial medoids.
Output: cluster(v), distance(v), parent(v)

for all v ← V do
if v is medoid then

cluster(v) = cluster index of v and distance(v) = 0
and parent(v) = null

else
cluster(v) = null and distance(v) = ∞

end if
end for
Q = the set of all nodes in graph
while Q is not empty do

v ← arg minu∈Q distance(u)

Remove v from Q

for all u ← v’s neighborhood do
if distance(v) + Euv < distance(u) then

distance(u) = distance(v)+Euv and cluster(u) =
cluster(v)

parent(u) = v

Reordering u in Q

end if
end for

end while

finding the shortest paths in the graph, to accommodate mul-
tiple sources without measurably increasing the calculation
costs compared to the usual single source case. Algorithm 2
describes the cluster assignment procedure, following stan-
dard graph-theoretic notation. We also define two additional
functions: cluster(v) indicates the cluster index of vertex v,
distance(v) denotes the length of the shortest path between
vertex v and its medoid, and parent(v) is the previous vertex
of the shortest path.

As is well-known, the performance of Dijkstra’s algo-
rithm depends on the data set Q. Using Fibonacci heap, the
algorithm has complexity O(|E| + |V | log |V |), where |E|
and |V | denote the number of edges and vertices, respec-
tively. The medoid update step can be characterized by

min
v∈clusteri

∑

vj ∈clusteri

dist(v, vj ). (32)

Here we first evaluate the objective function at the initial
medoids and their neighbors. Comparing these values, we
determine a new set of medoids with minimum values, and
repeat this process until the medoids no longer change. Di-
jkstra’s algorithm is also used to evaluate the objective func-
tion; the detailed algorithm is described in Algorithm 3.
Here we define the function obj(v) to denote the sum of the
distance of each vertex in the cluster from v, i.e., the objec-
tive function value given in (32).
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Algorithm 3 Medoid update step for cluster i

Given: Vi (vertex set of cluster i), E (edge set), initial
medoid.
Output: new medoid.
Initialization: obj(v) = ∞ for all v ∈ Vi .
while medoid is not fixed do

W = {Current medoid and its neighborhood}
for all w ∈ W and obj(w) �= ∞ do

for all v ← Vi do
if v = w then

distance(v) = 0
else

distance(v) = ∞
end if

end for
Q = set of all vertices in Vi

while Q is not empty do
v ← arg minu∈Q distance(u)

Remove v from Q

for all u ← v’s neighborhood do
if distance(v) + Euv < distance(u) then

distance(u) = distance(v) + Euv

Reordering u in Q

end if
end for

end while
obj(w) = Σv∈Vi

distance(v)

end for
new medoid = arg minw∈W obj (w)

end while

We remark that in Algorithm 3, greedy search rather than
full search is applied. While greedy search does not guaran-
tee a global minimum, provided the initial medoids are not
chosen unreasonably far from their final selections, the com-
putational performance is far superior to using full search.
This algorithm is of complexity O((|E| + |V | log |V |)gl),
where g is the number of medoid searches performed for
each cluster, and l is the number of iterations. Typically g

will be much smaller than |V | if greedy search is applied;
if we apply full search then g becomes |V |. The number of
iterations is also much smaller compared with k-means clus-
tering, since only data points can be cluster centers. In our
later clustering experiments for whole brain DT-MRI data
with 200 clusters, using the full search method required over
2800 seconds, with a resulting objective function value of
2.834 × 106. On the other hand when greedy search is ap-
plied, only 93 seconds are required, and the final objective
function value is 2.844 × 106. While the clustering perfor-
mance of full search is slightly better than that of greedy
search, using greedy search is on average about thirty times
faster than using full search.

In general, k-means type clustering algorithms (includ-
ing ours) tend to be sensitive to the choice of initial points.
In our later experiments, the objective function values for
a whole brain DT-MRI image using 200 clusters is about
2.842 × 106 ∼ 2.870 × 106 using uniform or random initial
points. However, in the worst initial case (i.e., all the ini-
tial points are stuck together), the objective function value is
4.968 × 106, which is considerably larger than the uniform
or random initial case.

In k-means clustering, there are several well-known ap-
proaches to initialization that attempt to get near to a global
minimum solution [15]. Despite the similarities between our
clustering algorithm and k-means clustering, these initial-
ization methods cannot be applied to our clustering meth-
ods due to the graph structure. We thus propose “remove”
and “split” methods for improving clustering performance.
In this approach we compare the increasing in the objec-
tive function value from the cluster being removed, with the
decreasing objective function value from the cluster being
split. If the decreasing value is larger than the increasing
value, the remove-and-split procedure is then performed.
Since accurately measuring changes in the objective func-
tion values accurately accrues considerable computational
cost, we use as an approximation the maximum increasing
value and minimum decreasing value of the objective func-
tion. Details of our method are described in Algorithm 4.
Here, closestmedoid(k) represents the minimum distance
between the medoid of clusterk and the medoid of other
clusters, and cnum(v) is the number of child nodes when
the graph is converted to a tree structure using the shortest
path obtained from Algorithm 2. This procedure should be
performed between the assignment and update steps.

Though our remove-and-split method only roughly ad-
justs the objective function value, it shows good perfor-
mance even for the worst initial case. There was little change
in the objective function values for the uniform and random
initial cases. However, using the remove-and-split method
for the worst initial case, the objective function values de-
creased from 4.968 × 106 to 2.892 × 106.

Since our clustering method is not a boundary extraction
method such as in, e.g., [25], in some cases oversegmenta-
tion can result. However, our algorithm evaluates the dis-
tance between diffusion tensors without losing any informa-
tion, and in this regard our clustering method is an appropri-
ate means of comparing segmentation results for different
distance measures.

5 Experimental Results

To test the performance of our segmentation algorithm, we
perform experiments involving both synthetic data and real
MR diffusion tensor images of the human brain.
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Algorithm 4 Remove-and-Split step
Given: V (vertex set), E (edge set), cluster(v), distance(v), depth(v), parent(v).
Output: New medoid.
Initialization: cnum(v) = 0 for all v ∈ V .
for all v ← V do

w ← parent(v)

while w is not null do
cnum(w) = cnum(w) + 1
w ← parent(w)

end while
end for
x = arg min

v
(cnum(v) + 1) × closestmedoid(cluster(v)) such that v is a medoid

y = arg max
v

(cnum(v) + 1) × (distance(v) − distance(parent(v))) such that v is not a medoid

obj_increase = (cnum(x) + 1) × closestmedoid(cluster(x))

obj_decrease = (cnum(y) + 1) × (distance(y) − distance(parent(y)))

if obj_increase < obj_decrease then
Remove x in medoid
Add y in medoid

end if

Fig. 9 The synthetic data used in the experiments

5.1 Clustering Experiments with Synthetic Data

Segmentation experiments with synthetic data have been
performed for both the covariance-only geodesic distance
metric and the geodesic distance on N (2), using our graph-
based clustering algorithm and also more conventional spec-
tral clustering. The synthetic data, shown in Fig. 9, con-
sists of a uniformly spaced 20 × 20 grid of two-dimensional
multivariate normal distributions. We generate three diffu-
sion tensor fields that respectively rotate around the points
(10,−10), (−7,20) and (27,20). As a result, we can expect

to find similar tensors near the points (10,20), (1.5,5) and
(18.5,5).

Figure 10 shows the clustering results for the covariance-
only geodesic distance, using both spectral clustering and
our graph-based k-medoids clustering algorithm. Both clus-
tering algorithms produce similar results, in which diffu-
sion tensors near (10,20), (1.5,5) and (18.5,5) are grouped
into distinct clusters. However, using the N (2) geodesic
distance, diffusion tensors near (10,−10), (−7,20) and
(27,20) are grouped into three distinct clusters in Fig. 11.
In the former case, it is the similarity of the diffusion ten-
sors associated with the water molecules that is the criterion
of choice, whereas in the latter case it is the mobility with
which a water molecule can diffuse into a neighboring voxel
that is the key factor in clustering. Intuitively the case can
be made that the N (2) segmentation results are more in line
with what we would expect.

5.2 Fiber Tractography Experiments with Synthetic Data

We now present results of a geodesic-based fiber trac-
tography using synthetic data. Using the synthetic data
shown in Fig. 12, we compare results obtained using the
N (2) geodesic distance with those obtained using the
Mahalanobis-like distance metric of (28). The distance
in (28) is calculated by integrating the infinitesimal Maha-
lanobis distance with respect to the corresponding diffusion
tensor along curve x. Since the diffusion tensors are pre-
scribed at discrete points, smooth interpolation between the
discrete tensors is typically performed in most integration
schemes. For our purposes the edge weight shall simply be
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Fig. 10 Clustering result for synthetic data using covariance-only geodesic distance

Fig. 11 Clustering result for synthetic data using geodesic distance on N (2)

defined to be the Mahalanobis distance with respect to the
Riemannian average of the diffusion tensors at each node.
After constructing the graph, the Dijkstra algorithm is then
used to find the shortest path between two points. This pro-
cedure is nearly the same as that of Algorithm 3, and the
details are omitted.

The diffusion tensors located at A and B of Fig. 12 are
given by the quadratic form

[
1 0
0 0.2

]
.

Fig. 12 The synthetic data for fiber tractography
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Fig. 13 Convergence of clustering algorithm

The two spherical diffusion tensors on the green path cor-
respond to the identity quadratic form, while the remaining
diffusion tensors on the green and red paths correspond to
appropriately rotated versions of the quadratic form
[

1 0
0 0.2

]
.

Using the distance metric of [18] and [21], the lengths of
both the red and green paths are identically 8.7854. Us-
ing our N (2) geodesic distance in conjunction with the
graph structure and Dijkstra’s algorithm described above,
the length of the red path is 10.8760, while the length of
the green path is 12.8732. For the applications considered
in this paper, a convincing argument can be made that it is
desirable for the red path to have a shorter length than the
green path.

5.3 Experiments with DT-MRI Brain Data

We now present results of our segmentation algorithm ap-
plied to DT-MRI images of the human brain. Our brain
DT-MRI image consists of a 144 × 144 × 85 lattice, of
which 300, 498 points contain valid diffusion tensor data.
Each voxel is of size 1.67 × 1.67 × 1.7 mm3. We first con-
struct three graphs from this dataset: one obtained using the
covariance-only geodesic distance, another obtained using
the R

3 × P(3) distance (i.e. sum of the Euclidean distance
of voxels and the P(3) geodesic distance) and the other ob-
tained using the geodesic distance on N (3). Of the 26 adja-
cent voxels, only those that contain valid data are considered
when making connections. The resulting graph has 3, 755,
762 edges. The scale factor is set to 3 for the R3 ×P(3) dis-
tance and 0.05 for N (3) distance. A total of 3, 755, 762
N (3) geodesic distances are computed. Our algorithm is

programmed in C with four threads running on a 2.2 GHz
quad core CPU; the entire algorithm takes approximately
thirty minutes to complete.

As is well-known, typical brain DT-MRI images contain
voxels filled with water, e.g., the cerebral ventricle area.
Since at such voxels water diffuses uniformly in all direc-
tions, measured geodesic distances within such areas are
typically smaller, and clusters tend to form around such
water-filled voxels. To prevent such undesirable clustering,
we construct a mean diffusivity histogram for the DT-MRI
image, and apply Otsu’s algorithm [19] to eliminate nodes
that have a mean diffusivity over 1.84 × 10−3 mm2/s. The
water-filled regions can therefore be regarded as an outlier
of the dataset.

Seeds for clustering is generated by first indexing the
DTI data according to position, and then to extract a seed
in a manner that is uniform and consistent with this index-
ing. Uniform seeds are set for the initial medoids, and clus-
tering is performed on our graph structure using three dis-
tance metrics. For 100 ∼ 500 clusters, our graph-based k-
medoids clustering algorithm converges in less than 21 it-
erations, with computation times on the order of 40 ∼ 120
seconds. Even for this reasonably large graph, our clustering
algorithm demonstrates good performance. With the num-
ber of clusters set at 200, Fig. 13 plots the objective function
value as a function of the number of iterations; for both the
P(n) and N (n) metrics our clustering algorithm shows sta-
ble convergence behavior even after only 10 iterations.

In order to compare the actual segmentation performance
of our proposed distance measure on N (3) with the covari-
ance only-based geodesic distance and the R

3 × P(3) dis-
tance, we focus on the corpus callosum region. To more
objectively compare the segmentation results, we manually
identify the corpus callosum from the DT-MRI image of
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Fig. 14 Segmentation of corpus
callosum
(number of clusters = 200)

Fig. 14(i). Setting the number of clusters at 200, results
of our clustering algorithm using the covariance only, the
R

3 × P(3) and N (3) geodesic distance metrics are shown
in Figs. 14(ii) ∼ (iv). In these cases several clusters contain
some part of the corpus callosum.

Denoting the set of all diffusion tensors contained in the
corpus callosum region by A, and the set of diffusion tensors
belonging to the i-th cluster by Ci , we propose the following
measure of clustering performance:

ClusteringPerformance = n(A)

n(B)
, (33)

where n(·) denotes the number of elements in the set, and
B = {x ∈ Ci |A ∩ Ci �= ∅,∀i}. This ratio measures the num-
ber of points in A to the total number of points in the im-
age that belong to some cluster; a ratio close to the maximal

value of 1 implies that the entire corpus callosum has been
segmented into distinct clusters, with no points outside the
corpus callosum belonging to any of these clusters.

Varying the number of clusters from 100 to 500, results of
clustering performance using this ratio are shown in Fig. 15.
In the case of using a covariance-only distance metric with
200 clusters, the corpus callosum is included in 42 clusters,
and our performance metric yields 18.74 %; that is, only
18.74 % of the points contained within these 42 clusters lie
inside the corpus callosum. Using the R3 ×P(3) metric, the
corpus callosum is included in 33 clusters and 24.22 % of
the points contained within these 23 clusters lie inside the
corpus callosum. Similar results are obtained as the number
of clusters is varied. Using our N (3) geodesic distance met-
ric, the corpus callosum is included in 28 clusters. Moreover,
28.55 % of the points contained within these 26 clusters lie



332 J Math Imaging Vis (2014) 49:317–334

inside the corpus callosum. Similar results are obtained as
the number of clusters is varied.

Clearly none of the segmentation results are entirely sat-
isfactory. Brain DT-MRI segmentation, however, is a highly
involved, multi-faceted problem that simultaneously draws
upon a collection of methods and techniques, of which
geodesic distances are but one (albeit important) tool. The
experiment results obtained above offer some justification
to our claim that the N (3) distance metric offers several ad-
vantages over using the traditional covariance-only metric.

Fig. 15 Measure of clustering performance

5.4 Geodesic Tractography Experiments with Brain Data

We now perform geodesic-based fiber tractography exper-
iments with the previous brain DT-MRI dataset. Here we
find shortest paths from the spinal cord to points in the brain
white matter using both the N (3) and Mahalanobis met-
rics. For these experiments the DT-MRI images are modi-
fied to emphasize the principal eigenvectors, using the ten-
sor sharpening method introduced in [7] and [21].

From the results shown in Fig. 16, it can be seen that the
results obtained for both metrics are quite similar; there are
only small differences in the white matter fiber tracts. Since
the N (3) distance essentially adds a P(3) distance term to
the integrand of the Mahalanobis distance, our results would
seem to imply that the contributions of the P(3) variations
are quite small overall for this dataset.

6 Conclusion

In this paper we have proposed the idea that, for the seg-
mentation of DT-MRI images, it is better to take into ac-
count both the mean and covariance of the multivariate nor-
mal distribution attached to each spatial voxel. Practical im-
plementations of this approach require, as a basic compu-
tational element, the computation of geodesic distances be-
tween two multivariate normal distributions with different

Fig. 16 Geodesic tractography
of brain DT-MRI



J Math Imaging Vis (2014) 49:317–334 333

means and covariances. We have developed an efficient, nu-
merically robust algorithm for calculating the required min-
imal geodesics. Our algorithm can be viewed as a geometric
generalization of the classical shooting method for solving
two-point boundary value problems. In particular, the notion
of parallel transport (with respect to the Riemannian connec-
tion) plays a fundamental role in transporting velocity errors
at the final point back to the initial point, in a coordinate-
invariant way that respects the geometry of the underlying
manifold of multivariate normal distributions.

As a secondary minor contribution, we also develop a
graph-based clustering algorithm that can be viewed as a ge-
ometric extension of the k-medoids algorithm using greedy
search. Experiments with both synthetic data and real brain
DT-MRI images confirm that, independent of the chosen
clustering algorithm—in our experiments we consider both
our graph-based k-medoids algorithm and the more conven-
tional spectral clustering method—using the general met-
ric on N (n) leads to qualitatively superior segmentation re-
sults than using a covariance-only based distance metric, or
weighted Mahalanobis distance metrics that combine diffu-
sion tensor and spatial voxel distances in an ad hoc way.
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Appendix: Triangle Inequality Counterexample

In [1] it is claimed that the distance metrics (2) and (3) sat-
isfy all the metric axioms including the triangle inequality.
The following simple counterexample shows that this is not
the case. Consider the following three normal distributions
a, b and c on N (1):

μa = 0, σa = 1,

μb = 1, σb = 1,

μc = 2, σc = 0.01.

(34)

The distances calculated using the proposed metrics are
given in Table 2.

Both metrics violate the triangle inequality, i.e.,
dist(a, b) + dist(b, c) � dist(c, a).

Table 2 Distances between a, b and c

Distance metric dist(a, b) dist(b, c) dist(a, c)

dJR(·, ·) 1.4142 13.3062 23.3561

dBR(·, ·) 1 4.66991 6.0834
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