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Abstract Orthogonal rotation invariant moments (ORIMs)
are among the best region based shape descriptors. Being or-
thogonal and complete, they possess minimum information
redundancy. The magnitude of moments is invariant to rota-
tion and reflection and with some geometric transformation,
they can be made translation and scale invariant. Apart from
these characteristics, they are robust to image noise. These
characteristics of ORIMs make them suitable for many pat-
tern recognition and image processing applications. Despite
these characteristics, the ORIMs suffer from many digitiza-
tion errors, thus they are incapable of representing subtle de-
tails in image, especially at high orders of moments. Among
the various errors, the image discretization error, geomet-
ric and numerical integration errors are the most prominent
ones. This paper investigates the contribution and effects of
these errors on the characteristics of ORIMs and performs a
comparative analysis of these errors on the accurate compu-
tation of the three major ORIMs: Zernike moments (ZMs),
Pseudo Zernike moments (PZMs) and orthogonal Fourier-
Mellin moments (OFMMs). Detailed experimental analysis
reveals some interesting results on the performance of these
moments.
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1 Introduction

A set of moments computed from a digital image provides
information about different types of geometrical features of
the image. Feature extraction through moment functions is
primarily concerned with extracting numerical features of
images. The moment descriptors are simple to use and can
be designed to provide fast, efficient and versatile systems to
calculate numerical features for many applications. An ap-
propriate selection of a feature extraction method enhances
the accuracy of the pattern recognition process. Geomet-
ric moments (GMs) are one of the oldest moment based
shape descriptors, which are used to generate a set of in-
variants that have been used in many pattern recognition
applications [6]. The main drawback of GMs is that their
basis functions are not orthogonal, therefore, their informa-
tion redundancy is very high. On the other hand, orthogo-
nal moments characterize independent features of the image
and thus have minimum information redundancy in a set,
meaning thereby that each moment describes distinct infor-
mation of an image. A major advantage of orthogonal mo-
ments is their high discriminative power in pattern recog-
nition applications, due to their robustness to image noise
and their capability to reconstruct the image they describe
with minimum reconstruction error. Some of the orthogo-
nal moments are rotation invariant, while others are not.
For example, Legendre moments [30] are not rotation in-
variant. Among the prominent orthogonal rotation invariant
moments (ORIMs) include Zernike moments (ZMs) [30],
pseudo Zernike moments (PZMs) [31], orthogonal Fourier
Mellin moments (OFMMs) [18], radial harmonic Fourier
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moments (RHFMs) [17], and Chebyshev Fourier moments
(CHFMs) [14]. The rotation, scale and flipping invariance
properties of ORIMs make them widely used in many im-
age processing applications such as pattern recognition, im-
age coding and image reconstruction. A set of orthogonal
ZMs was introduced by Teague [30] to image analysis that
are less sensitive to noise with superior image representa-
tion capability. They are widely used in pattern recognition
applications [1], image reconstruction [13], image segmen-
tation [4], edge detection [3], watermarking [35], face recog-
nition [5], content based image retrieval [20], palmprint ver-
ification [12], etc. Pseudo Zernike moments are introduced
by Bhatia and Wolf [2], which possess properties similar
to ZMs. Teh and Chin [31] observed that PZMs are more
robust to noise. However, they are more computation in-
tensive. OFMMs were introduced by Sheng and Shen [18],
which have better performance than ZMs and PZMs in terms
of noise sensitivity for small images. OFMMs provide more
number of moments compared to ZMs and PZMs for the
same maximum moment order. This is due to the fact that
the repetition parameter q in the definition of Zernike and
pseudo Zernike polynomials is not independent, it is con-
strained by the condition |q| ≤ p. However, in OFMMs, or-
der and repetition are independent and for the same max-
imum order pmax, OFMMs have more low-order moments
than PZMs and ZMs. Therefore, OFMMs are less sensitive
to image noise than ZMs. Other radial moments such as
RHFMs [17] and CHFMs [14], are less popular due to their
low image reconstruction capability as compared to ZMs,
PZMs, and OFMMs [19].

Despite several important characteristics of moments
which are useful for image description, they suffer from var-
ious errors and numerical instability for high order of mo-
ments, which affect their accuracy. The prevalent errors have
such a negative impact on the image analysis and recon-
struction that when the order of moments reaches a critical
value, the resulting reconstruction error becomes intolera-
ble. A most commonly used approach for the computation
of ZMs assumes the image function to be discrete and the
continuous unit disk is approximated by the square pixels
whose centers lie inside the unit disk. In addition, the dou-
ble integration for ZMs computation is approximated by the
zeroth order summation. These assumptions lead to various
errors. Liao and Pawlak [9, 10] and the Pawlak [13] have
analyzed these errors extensively. They observe two major
errors—geometric error and numerical error. The geometric
error is caused by mapping a rectangular or square image
geometrically inside a unit disk. This mapping process al-
lows only those pixels to take part in moment computation
whose centers lie inside the unit disk, while discarding other
pixels. As a consequence of this, the total pixel area used for
the moment computation is not equal to the area of the unit
disk. This discrepancy in the area arises because some pix-
els, whose centers fall inside the unit disk, are not covered

entirely inside the unit disk, and on the other hand, some
parts of the unit disk are not covered by pixels whose centers
lie outside the unit disk. The numerical error is defined as the
difference between the moments computed from a continu-
ous image function over a continuous disk and the moments
computed from the discrete image function over the unit disk
approximated by square pixel grids whose centers lie within
the unit disk. In this paper, we analyze the numerical error in
two parts- error due to discrete nature of the image function
referred to as image discretization error and the numerical
integration error which is caused due to the zeroth order ap-
proximation of the double integration. The geometric error
is a predominant source of error for small images and the
numerical integration error is considerably high for high or-
der of moments. Apart from these errors, the ORIMs com-
putation also suffers from numerical instability. The major
cause of numerical instability is due to the high order facto-
rial terms present in radial polynomials of kernel functions
of ORIMs. Surprisingly, many recursive algorithms, primar-
ily developed for the fast computation of ORIMs, also en-
hance the numerical stability for high order of moments to
some extent. We have observed in our analysis [22, 24] that
not only the factorial terms of large integers but the geo-
metric and numerical integration errors also cause numeri-
cal instability in ORIMs calculation. The image discretiza-
tion error can be reduced by resorting to various interpo-
lation methods to represent the discrete image function in
continuous form [7, 8]. There are many algorithms in the lit-
erature to reduce geometric error and numerical integration
error. Liao and Pawlak [10], and Singh and Upneja [22, 24]
have analyzed these errors in detail and some approaches for
the removal of numerical integration error using numerical
integration method have been proposed. Another approach
for the elimination of these errors for ZMs has been pro-
posed by Xin et al. [36] where ZMs are calculated in polar
coordinates. Their approach, however, requires conversion
of square image domain into circular domain, resulting in
the circular grid, consequently, the pixel values at new lo-
cations, that is at the center of each circular grid, are re-
quired to be interpolated. This process creates new errors
due to interpolation although its order is less than the ge-
ometric error. Singh and Walia [26] propose an improved
configuration of pixel arrangements in polar space thereby
enhancing the speed of computation. Lin et al. [11] propose
an entirely different approach for improving image recon-
struction and orthogonality of ZMs by using numerical op-
timization technique. In their method, ZMs computed from
any conventional direct method are used as initial values in
the optimization process. The method is, however, computa-
tion intensive. Wee and Paramseran [33] propose an alterna-
tive mapping technique in which the complete image is con-
tained inside the unit disk. Therefore, all pixels are involved
in the computation of radial moments. Numerical integra-
tion error is removed by using the relationship of GMs and
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ZMs after calculating GMs accurately for the ensembles of
the square grids. However, this enhances the domain of cal-
culation. In addition, this kind of computational framework
creates boundary problem as the Zernike function is orthog-
onal on the circle. However, in some applications such as
in image retrieval, template matching and image denoising,
the computation framework using outer circle provides bet-
ter results compared to the inscribed circle. Nonetheless, it
is applicable for ZMs only because there is a direct rela-
tionship of GMs to ZMs and the other ORIMs do not pos-
sess this property [23]. The effect of the above errors is so
severe that Xin et al. [34] discard certain discretized mo-
ments for image watermarking which do not yield accurate
results for a constant function using zeroth order approxi-
mation of ZMs computation. It is worth noting that for a
constant function all moments except for the zeroth order
moment should be equal to zero [33]. They observe that the
ZMs with repetitions q = 4l, l ∈ Z, are inconsistent with the
theoretical results. All moments except for q = 4l become
zero for constant function because of symmetry property of
ZMs and the moments with repetitions q = 4l, do not turn
out to be so because of the errors involved in ZMs calcula-
tion using zeroth order approximation. Recently, the authors
have applied Gaussian numerical integration techniques for
the accurate computation of ZMs and OFMMs [22, 24]. It is
shown that the moments with repetitions q = 4l are calcu-
lated more accurately as compared to zeroth order approxi-
mation. The enhanced accuracy of these moments also re-
sults in its improved invariance and image reconstruction
and the moments obtained using Gaussian numerical inte-
gration are very close to the theoretical results. An accu-
rate computation framework for the computation of ZMs
through GMs has been developed by Singh et al. [29].

In this paper, we reinvestigate the various characteristics
of the three prominent ORIMs moments: ZMs, PZMs and
OFMMs, and analyze the above errors in view of the re-
cent research works on their accuracy and numerical sta-
bility. Firstly, the characteristics of their radial part of ker-
nel functions are analyzed and its behavior on image recon-
struction error is studied. A procedure for the reduction in
image discretization error using the cubic convolution [7] is
proposed. Next, a comparative error analysis of recently de-
veloped accurate computation on ORIMs is performed. The
performance analysis is evaluated on image reconstruction
and invariance to rotation and scale.

The rest of the paper is organized as follows. Section 2
describes an overview of the three ORIMs: ZMs, PZMs
and OFMMs, followed by the analysis of their radial ker-
nel functions in Sect. 3. The two major errors, the geomet-
ric error and numerical integration error, are analyzed in
Sect. 4. In this section, the sources of numerical instability
in the computation of high order ORIMs are also analyzed.
A computational framework for the accurate computation of

ORIMs is proposed in Sect. 5. The detailed experimental re-
sults on the comparative performance of ZMs, PZMs and
OFMMs are presented in Sect. 6. Conclusions are made in
Sect. 7.

2 The Orthogonal Rotation Invariant Moments
(ORIMs)

The ORIMs of order p and repetition q of a continuous sig-
nal f (x, y) over a unit disk are defined by

Apq = p + 1

π

∫∫
x2+y2≤1

f (x, y)V ∗
pq(x, y)dxdy, (1)

where p is a non-negative integer and q is an integer
(negative or positive) and V ∗

pq(x, y) is the complex conju-
gate of the moment basis function Vpq(x, y). The function
Vpq(x, y) has the following invariant form [2]

Vpq(x, y) = Rpq(r)ejqθ , (2)

where r = √
x2 + y2, θ = tan−1(y/x), j = √−1 and

Rpq(r) is the radial polynomial. The basis functions
Vpq(x, y) are orthogonal to each other, i.e.,
∫∫

x2+y2≤1
Vnm(x, y)V ∗

pq(x, y)dxdy = π

n + 1
δnpδmq, (3)

where δnp is the Kronecker delta, i.e., δnp = 1, if n = p and
zero otherwise.

Owing to the property of orthogonality and completeness
of the basis functions, the image function f (x, y) can be
represented as

f (x, y) =
∑
p

∑
q

ApqVpq(x, y). (4)

The three ORIMs, i.e., the ZMs, PZMs, and OFMMs differ
in the definition of the radial functions Rpq(r) and the con-
straints imposed on p and q . Therefore, we represent these
polynomials with the notation RZ

pq(r),RP
pq(r), and RO

pq(r),
respectively, and present their forms for each of them.

• Zernike polynomials (ZPs): The ZPs are defined by

RZ
pq(r) =

(p−|q|)/2∑
s=0

(−1)s(p − s)!rp−2s

s!(p+|q|
2 − s)!(p−|q|

2 − s)! (5)

with the constraints |q| ≤ p and p − |q| = even.
• Pseudo Zernike polynomials (PZPs): The PZPs are de-

fined by

RP
pq(r) =

p−|q|∑
s=0

(−1)s(2p + 1 − s)!rp−s

s!(p + |q| + 1 − s)!(p − |q| − s)! , (6)

with |q| ≤ p.
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Fig. 1 (a) An 8 × 8 pixel grid,
(b) continuous inscribed circular
disk with square and arc-grids,
(c) inscribed circular disk
approximated by square grids,
and (d) outer circular disk
containing complete square
image grid

• Orthogonal Fourier-Mellin polynomials (OFMPs): The
OFMPs are defined by

RO
pq(r) = RO

p (r) =
p∑

s=0

(−1)p+s(p + s + 1)!rs

s!(s + 1)!(p − s)! (7)

Since OFMPs are independent of q , there is no restriction
on q in Eq. (1) while computing OFMMs, unlike ZMs and
PZMs. In fact, the PZPs become OFMPs when q = 0 is
substituted in PZPs.

2.1 ORIMs for Digital Images

The ORIMs defined by Eq. (1) pertain to continuous sig-
nals f (x, y). In digital image processing, the image func-
tion f (i, k) is discrete and defined in rectangular arrange-
ments of pixels with i representing rows and k representing
columns. Let the image be a square image with N rows and
N columns. In order to compute ORIMs, a transformation
is performed which converts the square domain of N × N

pixels into a unit disk. The following mapping is the most
common approach to realize the objective.

xi = 2i + 1 − N

D
,

yk = 2k + 1 − N

D
, i, k = 0,1, . . . ,N − 1

(8)

with

D =
{

N
√

2, for outer disk

N, for inscribed disk
(9)

The above mapping is shown in Fig. 1, where Fig. 1(a) is
an 8×8 pixel grid, the shaded part in Fig. 1(b) represents the
continuous unit disk, and its approximated form obeying the
condition x2

i + y2
k ≤ 1 is shown in Fig. 1(c). The outer unit

disk enclosing the complete image is shown in Fig. 1(d).

Therefore, the ORIMs are defined for a discrete image
function f (xi, yk) as follows

Âpq = p + 1

π

N−1∑
i=0

N−1∑
k=0

x2
i +y2

k ≤1

f (xi, yk)

∫∫
(i,k)

V ∗
pq(x, y)dxdy

(10)

The double integration in the r.h.s. of Eq. (10) does not have
an analytical solution. Therefore, the following form of the
ORIMs computation is normally observed in the literature,
which is the zeroth order approximation of the double inte-
gration.

Ãpq = p + 1

π

N−1∑
i=0

N−1∑
k=0

x2
i +y2

k ≤1

f (xi, yk)V
∗
pq(xi, yk)�

2 (11)

with � = 2
D

.

The discrete reconstructed image f̂ (x, y) and the rela-
tive reconstruction error ε are given by Eqs. (12) and (13),
respectively.

f̂ (i, k) =
∑
p

∑
q

ÂpqVpq(xi, yk),

i, k = 0,1,2, . . . ,N − 1, (12)

ε =
∑N−1

i=0
∑N−1

k=0 (f (xi, yk) − f̂ (xi, yk))
2

∑N−1
i=0

∑N−1
k=0 f 2(xi, yk)

(13)

3 Characteristics of Radial Polynomials

The forms of the three ORIMs are the same except for their
definition in the radial polynomials. Therefore, their image
representation characteristics are expected to differ due to
the difference in the behavior of their radial polynomials.
Thus, it is important to analyze the behavior of radial poly-
nomials within the unit disk as a function of radius r . The
angular function e−jqθ is the same for all ORIMs and its ab-
solute value |e−jqθ | = 1. Therefore, the trend of Rpq(r) for
the three ORIMs needs to be analyzed in details.
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Fig. 2 Rpq(r) of ZMs for various orders p and repetitions q

The ZPs have a very useful characteristic that its magni-
tude does not exceed one, i.e.,

∣∣RZ
pq(r)

∣∣ ≤ 1, r ∈ [0,1] (14)

This relationship is obtained after performing exhaustive nu-
merical experiments by computing RZ

pq(r) for various val-
ues of r ∈ [0,1], and p and q , although a theoretical proof
would strengthen the experimental observation.

On the other hand, the PZPs and OFMPs are increasing
functions of p and their values at r = 0 are

RP
p,0(0) = RO

p (0) = (−1)p(p + 1) (15)

Therefore, as r → 0, RP
p,0(r) and RO

p (r) become un-
bounded. This trend of PZPs and OFMPs is likely to create
numerical instability in high order moments. The trends of
ZPs, PZPs, and OFMPs are displayed for a few polynomi-
als in Figs. 2, 3 and 4, respectively. A polynomial of degree
p possessing alternating positive and negative coefficients
has p real zeros. Thus, the ORIMs polynomial of degree p

has p real roots. In case of ZPs there will be p/2 repeating
real roots. Thus as p becomes larger, the polynomials will
oscillate rapidly around the r-axis. Thus higher order poly-
nomials are likely to make the ORIMs numerically unstable.
Later, in Sect. 6, we shall show the effects of the trends of
the kernel function on image reconstruction in the vicinity
of r = 0.

It is seen from these figures that the magnitude of ZPs is
always less than or equal to 1.0, while the PZPs and OFMPs
assume magnitudes greater than 1.0 in the neighborhood of
r = 0. Only those polynomials for PZPs become unbounded
for which q = 0. The OFMPs have also a similar trend in
the vicinity of r = 0. In fact, the OFMPs are a special case
of PZPs in which the former is derived by substituting q = 0

Fig. 3 Rpq(r) of PZMs for various orders p and repetitions q

Fig. 4 Rpq(r)of OFMMs for various orders p

in the latter. Therefore, all OFMPs will become unbounded
in the vicinity of r = 0, as seen from Fig. 4. Thus, this be-
havior of OFMPs will have profound effect on image re-
construction in the vicinity of the center of the unit disk.
Another important characteristics of the ORIMs polynomi-
als is the rapid change in their values in the neighborhood
of r = 1.0. Although the rapid change is not perceptible in
these figures because all polynomials are bound by 1, i.e.,
|RZ

pq(1.0)| = |RP
pq(1.0)| = |RO

pq(1.0)| = 1.0, and the scales
used in these figures do not reveal this trend. Therefore, we
plot the rate of change in Rpq(r) in Figs. 5, 6 and 7, w.r.t.

r for ZPs, PZPs, and OFMPs, defined in terms of
dRZ

pq(r)

dr
,

dRP
pq(r)

dr
, and

dRO
p (r)

dr
, respectively. It is clear from these fig-

ures that the rate of change of Zernike radial polynomial is
much more in the neighborhood r = 1.0 compared to the
other locations of r . The PZPs and OFMPs change more
rapidly both in the neighborhood r = 0.0 and r = 1.0, as
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Fig. 5 Rate of change of RZ
pq(r)w.r.t. r , i.e.,

dRZ
pq (r)

dr
, of ZMs for vari-

ous orders p and repetitions q

Fig. 6 Rate of change of RP
pq(r)w.r.t. r , i.e.,

dRP
pq (r)

dr
, of PZMs for

various orders p and repetitions q

shown clearly in Figs. 6 and 7. Therefore, in the case of
ZMs, the reconstructed images are likely to deteriorate along
the boundary of the unit disk for high order of moments. On
the other hand, the reconstructed images obtained by PZMs
and OFMMs are likely to deteriorate both in the neighbor-
hood of r = 0.0 and r = 1.0. This will further be analyzed
in Sect. 6.

4 Errors in ORIMs Computation and Numerical
Stability

Apart from the image discretization error, the ORIMs suffer
from two types of error: geometric error and numerical in-
tegration error. Moreover, the high order moments become
numerically unstable. The geometric error is caused when a
square pixel grid image is mapped into a unit disk and the

Fig. 7 Rate of change of RO
p (r)w.r.t. r , i.e.,

dRO
p (r)

dr
, of OFMMs for

various orders p

mapping does not turn out to be geometrically exact. The
geometric error affects low resolution images more severely
than the high resolution images. The numerical integration
error occurs when the double integration of the kernel func-
tion given in Eq. (10) is approximated by the zeroth order
approximation. The effect of numerical integration error is
more pronounced at high orders of moments. The numerical
instability arises when the factorials of large integers are in-
volved in the computation of the coefficients of radial poly-
nomials. This is also caused when the moment order is high
because the kernel function changes more rapidly and the
zeroth order approximation of the double integration cannot
represent this change adequately. We analyze these errors in
details.

4.1 Geometric Error

The geometric error arises when a rectangular or square im-
age pixel grid is mapped into a unit disk. The mapping is
performed using Eq. (8). It is clear from Eq. (8) that only
those pixels take part in the ORIMs computation whose cen-
ters (xi, yk) fall inside the unit disk. Those pixels which do
not satisfy the condition are left out in the process of mo-
ment computation. The circumference of the unit disk is,
therefore, approximated in a zig-zag pattern as shown in
Fig. 1(c), contrary to the analog unit disk of Fig. 1(b). For
any p,q ≥ 0 The nature of geometric error has been ana-
lyzed by Pawlak [13] whose upper bound is given by

∣∣Eg
pq

∣∣ ≤ f min

[{(
p + 1

π

)∣∣G(N)
∣∣
} 1

2

,
∣∣G(N)

∣∣
]

where

(16)

f = maxx,y f (x, y) and G(N) = 4
N2

∑∑
x2
i +y2

k ≤1 1 − π .
Clearly as N → ∞,G(N) → 0. The term |G(N)| repre-
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Fig. 8 Effect of image size on the geometric error G(N)

sents the absolute error between the area of the analog unit
disk and the area of the discrete unit disk which is approx-
imated after applying the condition x2

i + y2
k ≤ 1. The order

of |G(N)| is O(N−285/208) [13]. The value of |G(N)| can
be simulated as a function of image size N , as shown in
Fig. 8. For a perfect mapping |G(N)| must be zero. How-
ever, the actual value of G(N) oscillates around zero mean-
ing thereby that the area of the discrete unit disk becomes
greater or less than the area of the unit disk, π . As the size of
image increases, the magnitude of G(N) keeps on decreas-
ing, which shows that the geometric error is more prominent
for small images. Thus it is clear that the geometric error can
be reduced if the image resolution is increased. However,
for a given digital image the image resolution is fixed. Thus
for those applications where small images are used, such as
optical character recognition and template matching, the ge-
ometric error plays a critical role in ORIMs calculation.

4.2 Numerical Integration Error

The numerical integration error is caused due to zeroth or-
der approximation of the double integration. The zeroth or-
der approximation given by Eq. (11) cannot represent ad-
equately the value of double integration given in Eq. (10)
for high values of p and q . The inaccuracy arises because
of the fact that the magnitude of V ∗

pq(x, y) changes rapidly
about zero because of the large number of zeros of the kernel
function. Thus, a more accurate approximation, such as the
higher order numerical integration, is needed for the com-
putation of ORIMs. Liao and Pawlak [10] suggested an ap-
proach based on numerical integration to reduce numerical
integration error. Their approach, however, uses a smaller

unit disk with radius r =
√

1 − 1
N

− 0.0001. The reduced
radius was taken to ensure that the sampling points used in
the numerical integration do not cross the boundary of the
unit disk to avoid the radial kernel functions from becom-
ing unbounded. This approach causes the increase in the

geometric error because the area of the disk with reduced
radius is further affected by taking reduced radius. Thus,
they concluded that the geometric error and numerical in-
tegration error cannot be reduced simultaneously. Recently,
Singh and Upneja [21, 22, 24] have proposed a technique
through which geometric error and numerical integration er-
ror can be reduced simultaneously. A more general form of
numerical integration error, referred to numerical error by
Liao and Pawlak [10] and Pawlak [13], is defined by

En
pq = p + 1

π

[
N−1∑
i=0

x2
i +y2

k ≤1

N−1∑
k=0

(∫∫
(i,k)

f (xi, yk)V
∗
pq(x, y)dxdy

−
∫∫

x2+y2≤1
f (x, y)V ∗

pq(x, y)dxdy

)]
(17)

In view of Eq. (1) and Eq. (3), we can rewrite Eq. (17) as

En
pq = Âpq − Apq (18)

The moments Âpq are approximations of Apq in which it is
assumed that the image function f (xi, yk) and the domain
of integration both are discrete. The double integration in
Âpq is computed for each pixel (i, k) for which x2

i +y2
k ≤ 1.

However, even using these assumptions, the double integra-
tion involved in Âpq cannot be found analytically. There-
fore, in the existing approaches a zeroth order approxima-
tion is considered which is given by Eq. (11). The exact mo-
ments Apq are even far difficult to compute because their
computation assumes a continuous image functions f (x, y)

and the integration
∫∫

x2+y2≤1 f (x, y)V ∗
pq(x, y)dxdy is re-

quired to be evaluated over the entire unit disk. An approach
to approximate the value of Apq is given as follows. The
discrete image function f (xi, yk) is converted into a con-
tinuous function using an interpolation method. A bicubic
interpolation method, as used in this paper for analyzing im-
age discretization error, is a good trade-off between a low
interpolation error and computation complexity [7]. Next,
the integration

∫∫
f (x, y)V ∗

pq(x, y)dxdy is evaluated using
a numerical integration approach. As we observe in our anal-
ysis later in Sect. 5.1 that the image discretization error plays
an insignificant role, we assume that

f (x, y) ∼= f (xi, yk),

(x, y) ∈
[
xi − �x

2
, xi + �x

2

]
×

[
yk − �y

2
, yk + �y

2

]

Under these assumptions, the numerical error represented
by Eq. (17), reduces to the difference between the zeroth or-
der approximation and a higher order numerical integration,
which we call numerical integration error Ea

pq . Therefore,
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the numerical integration error Ea
pq is given by

Ea
pq = p + 1

π

(
N−1∑
i=0

x2
i +y2

k ≤1

N−1∑
k=0

f (xi, yk)

∣∣∣∣V ∗
pq(xi, yk)�

2

−
∫∫

(i,k)

V ∗
pq(xi, yk)dxdy

∣∣∣∣
)

(19)

The integration
∫∫

(i,k)
V ∗

pq(xi, yk)dxdy is evaluated using
Gaussian numerical integration method which is explained
in detail in Sect. 5.2. The kernel functions V ∗

pq(x, y) are
different for the different ORIMs. Therefore, the magnitude
and trend of Ea

pq will be different. We compute Ea
pq for the

three ORIMs in Sect. 6.2 after proposing a computational
framework for the accurate computation of ORIMs.

4.3 Numerical Instability

The numerical instability of high order ORIMs is another
concern for the researchers. The numerical instability is re-
flected through high magnitudes of the moments and distor-
tions in the image reconstruction for high order moments. It
is attributed to the finite precision arithmetic used in the digi-
tal computers as the large numbers cannot be represented ac-
curately. The ORIMs computation involves factorial of large
numbers and high powers of r . Therefore, these two quanti-
ties are believed to cause numerical instability. It is observed
that ZMs, PZMs and OFMMs become numerical unstable
for p > 45, 21 and 15, respectively, when double precision
arithmetic is used. They become numerically unstable at a
much lower moment order when single precision arithmetic
is used. Singh and Walia [25, 27], and Singh et al. [28] show
that the numerical instability is caused mainly by high or-
der factorial terms. They prove this fact by conducting nu-
merical experiments on PZPs computation by using the di-
rect equation for the computation of the radial polynomi-
als, Rpq(r), and by using recursive expressions. The recur-
sive equations do not involve the computation of the facto-
rial terms. It was observed that the ORIMs computed by re-
cursive equations are much more stable even upto moment
order p = 400 for a 256 × 256 pixels image. They further
observe that the high powers of r , i.e., rp do not affect the
numerical stability as the term rp also appears in the recur-
sive equations. Thus, the high order factorial terms are the
major cause of numerical instability. In a recent study by
Singh and Upneja [22, 24] it is observed that the numerical
integration error at high orders of moments also causes nu-
merical instability. They perform two sets of experiments.
Both sets use the recursive equations thus avoiding the nu-
merical instability due to factorial terms. The first set uses
zeroth order approximation of the double integration of the
kernel function in the ORIMs calculation while the second

set uses Gaussian numerical integration of several orders. It
is observed that the reconstruction error keeps on decreas-
ing in the second set for moment orders much larger than
the moment orders at which the first set exhibits distortion
in the reconstructed images.

The reason for numerical instability due to numerical
integration error is explained as follows. At high order of
moment p, the function, Rpq(r) oscillates more frequently
about r-axis, because Rpq(r) has (p − q)/2 zeros for ZPs
and p zeros for PZPs and OFMPs, in the interval [0,1]. For
a given discrete image of the size N × N pixels, the zeroth
order approximation computes the values of Rpq(r) only at
the center of each pixel. When a high order moment is com-
puted using zeroth order approximation the rapid change in
the kernel function Rpq(r) is not correctly represented by a
single value at the center of the pixel area

[
xi − �x

2
, xi + �x

2

]
×

[
yk − �y

2
, yk + �y

2

]
,

leading to high inaccuracy in moments. A numerical inte-
gration technique computes the kernel function at many lo-
cations of pixel area, thus providing accurate estimation of
double integration. This leads to numerical stability in mo-
ment computation at high order.

5 Computational Framework for the Accurate
Computation of ORIMs

As discussed in Sect. 3, the ORIMs computation suffers
from four errors; image discretization error, geometric error,
numerical integration error and numerical instability. We re-
duce these errors as follows.

5.1 Reduction in Image Discretization Error

The image function f (x, y) is a discrete signal defined
on an N × N image grid with the values f (i, k), i, k =
0,1,2, . . . ,N − 1. The discrete signal is converted into a
continuous signal using some interpolation methods. The
bilinear interpolation and cubic convolution [7, 8] are the
two most frequently used methods. The cubic convolution
is one of the best methods in terms of interpolation accu-
racy and computation complexity [7]. It has much superior
performance than bilinear interpolation although bilinear in-
terpolation is simple to use. It has been proved by Reichen-
bach and Geng [16] that other advanced methods provide
marginal improvement in interpolation accuracy at the cost
of high time complexity. Let g(x, y) be the continuous sig-
nal obtained from the discrete 2-D signal f (i, k) after apply-
ing cubic interpolation. The value of the continuous signal
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at a point (x, y) ∈ [i, i + 1] × [k, k + 1] is obtained as

g(x, y) =
3∑

l=0

3∑
m=0

almxlym (20)

where alm are the coefficients of the cubic convolution
which depend on f (i, k). A complete procedure of cubic
convolution is given in [7]. The major steps of the cubic con-
volution incorporating the requirements of the present anal-
ysis are given in the Appendix.

5.2 Reduction in Geometric Error and Numerical
Integration Error

The geometric error and numerical integration error can be
reduced simultaneously by employing numerical integration
techniques. A numerical integration technique uses more
than one sampling point over a pixel area thereby providing
two advantages. This approach not only reduces the numer-
ical integration error but also provides a better approxima-
tion of the circular boundary of the unit disk which results
in the reduction of geometric error. More sampling points
in a pixel area provide a better approximation of the rapid
change in the kernel functions at high order of moments.
This leads to better numerical stability of moments. There
are many standard techniques for numerical integration but
the Gaussian numerical integration method is preferred over
other methods because it outperforms other methods [15].
We can now convert Eq. (1) into the following form for in-
corporating the image interpolation using cubic convolution
and approximating the double integration using an n × n

point Gaussian integration method.

Âpq = (p + 1)

πN2

×
N−1∑
i=0

N−1∑
k=0

n−1∑
l=0

n−1∑
m=0

wlwmg(xil, ykm)V ∗
pq(xil, ykm),

x2
il + y2

km ≤ 1 (21)

where

xil = 2i + tl + 1 − N

N
, ykm = 2k + tm + 1 − N

N
(22)

The quantities wu and tu, u = 0,1, . . . , n − 1, are
weights and sampling points of an n × n point Gaussian
numerical integration method. These values can be ob-
tained in any standard numerical analysis book [15]. Typ-
ically, for n = 5, w0 = 0.2369268851, w1 = 0.4786286705,
w2 = 0.5688888889, w3 = w1, and w4 = w0, and t0 =
−0.9061798459, t1 = −0.5384693101, t2 = 0.0, t3 = −t1,
and t4 = −t0. The constraint x2

il + y2
km ≤ 1 is an improve-

ment over the constraint x2
i + y2

k ≤ 1 used for the zeroth

order approximation. The zeroth order approximation is a
special case of n × n point Gaussian integration method
which is obtained from Eq. (21) by taking n = 1, t0 = 0.0,
w0 = 2.0, g(xi0, yk0) = f (i, k).

Further, the constraint used in Eq. (21) is written in its
expanded form

x2
il + y2

km =
(

2i + tl + 1 − N

N

)2

+
(

2k + tm + 1 − N

N

)2

≤ 1 (23)

which is a generalization of the constraint x2
i + y2

k ≤ 1.
This condition allows all those sampling points to take part
in the numerical integration which lie within the unit disk.
Therefore, a better approximation of the circular boundary
is achieved which otherwise results in a coarser approxima-
tion. This results in the reduction in the geometrical error. In
Sect. 6, we provide experimental results showing the reduc-
tion in geometric error with respect to the different order of
numerical integration n for various image sizes.

5.3 Accurate Computation of ZMs through GMs

Among the three ORIMs, the ZMs can be computed accu-
rately by computing GMs exactly and then invoking the rela-
tionship between GMs and ZMs to derive the latter. No such
relationship exists for PZMs and OFMMs [23]. The GMs
of order (p + q) are computed exactly using the following
equation.

Gpq =
N−1∑
i=0

N−1∑
k=0

∫ xi+ �x
2

xi− �x
2

∫ yk+ �y
2

yk− �y
2

f (xi, yk)x
pyqdxdy (24)

The mapping, given by Eq. (8) with D = N
√

2, i.e., the
outer unit disk is used. Therefore, the condition x2

i + y2
k ≤ 1

is not required as it is automatically satisfied.
The discrete image function f (i, k) is converted to a con-

tinuous function g(x, y) using cubic convolution which is
given by Eq. (20). Therefore, the exact GMs are derived by
Eq. (25).

Gpq =
N−1∑
i=0

N−1∑
k=0

∫ xi+ �x
2

xi− �x
2

∫ yk+ �y
2

yk− �y
2

×
3∑

l=0

3∑
m=0

almxp+lyq+mdxdy, x2
i + y2

k ≤ 1 (25)
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Equation (24) is simplified to

Gpq =
N−1∑
i=0

N−1∑
k=0

3∑
l=0

3∑
m=0

alm

(p + l + 1)(q + m + 1)

× [
xp+l+1]xi+ �x

2

xi− �x
2

[
yq+m+1]yk+ �y

2

yk− �y
2

, x2
i + y2

k ≤ 1

(26)

The ZMs are derived from GMs using the following rela-
tionship

Apq = p + 1

π

p∑
k=|q|

p−k=even

s∑
m=0

|q|∑
n=0

wn

×
(

s

m

)(|q|
n

)
Gk−2m−n,2m+n (27)

where Bp|q|k is given in [29] and

w =
{

−j, q > 0

+j, q ≤ 0
(28)

with

s = 1

2

(
k − |q|), and j = √−1.

Since all pixels of the image take part in moment compu-
tation, the geometric error is eliminated. Numerical integra-
tion error is removed as a consequence of performing exact
integration of GMs. Therefore, the computed ZMs are accu-
rate.

6 Experimental Analysis

The performance of the proposed computational framework
to reduce image discretization error, geometric error and nu-
merical integration error in the ORIMs computation is ana-
lyzed on twelve standard gray scale images of 256 × 256
pixels normally used in image processing [22]. A compar-
ative performance analysis is made on the three ORIMs:
ZMs, PZMs, and OFMMs. The computational framework
is implemented in Microsoft’s Visual C++ 6.0 in Win-
dows environment on a PC with 3.0 GHz CPU and 2 GB
RAM. The experimental analysis covers the following is-
sues.

1. Test of accuracy on orthogonality of kernel functions
2. Image discretization error
3. Reduction in geometric error and numerical integration

error
4. Image reconstruction, reconstruction error and effect of

mode of image mapping

Fig. 9 Mean absolute orthogonality error E w.r.t. the maximum order
of moment pmax for zeroth order approximation and accurate method
for a 64 × 64 pixels domain (inner unit disk)

5. Rotation invariance
6. Scale invariance.

We refer to the 5 × 5 numerical integration method as the
accurate method for the computation of ORIMs. The ze-
roth order approximation and the accurate computation of
ORIMs use recursive methods for the computation of ker-
nel functions because they provide numerical stability to
high order moment [27, 28, 32]. The GMs are, however,
computed using non-recursive method. Therefore, ZMs ob-
tained from GMs will numerically be unstable for lower
pmax which will be mentioned at appropriate places. It is
also to be noted that wherever the value of pmax is spec-
ified, the value of |q| for ZMs and PZMs is bound by p.
Being independent of p, for OFMMs q ranges from −qmax

to qmax where in this paper the value of qmax is taken
to be the same as that of pmax for conducting experi-
ments.

6.1 Test of Accuracy on Orthogonality of Kernel Functions

The accurate computation of ORIMs is tested for the orthog-
onality of the kernel functions, which is given by Eq. (3). We
define the mean absolute error E which measures the devi-
ation in the orthogonality of kernel function from its correct
value.

E = 1

N2

∑
p

∑
q

∑
m

∑
n

∣∣∣∣δnpδmq

− n + 1

π

∫∫
x2+y2≤1

Vnm(x, y)V ∗
pq(x, y)dxdy

∣∣∣∣ (29)

The integration on the r.h.s. of Eq. (29) is computed us-
ing zeroth order approximation and accurate computation of
ORIMs kernels. The inscribed unit disk is considered for
mapping N × N pixel grid. The mean absolute orthogonal-
ity error E is plotted in Fig. 9 as a function of p and q for a
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Fig. 10 Average reconstruction error ε vs. maximum order of moment pmax for (a) 32 × 32, (b) 64 × 64, and (c) 256 × 256 pixels images (outer
unit disk)

square domain of 64×64 pixels. It is observed that the value
of E is very small for Zernike kernels even for the zeroth or-
der approximation showing the orthogonality condition to
be much better than the kernel functions of the two other
ORIMs. The magnitude of E increases rapidly with the in-
crease in p and q showing the highly unstable behavior of
the kernel functions of PZMs and OFMMs. The accurate
computation of ORIMs reduces the value of E significantly,
especially for higher moment orders pmax. The reduction is
much more significant for OFMMs, followed by PZMs and
the least for ZMs.

6.2 Image Discretization Error

The role of image discretization error is investigated on ZMs
for three image sizes: 32 × 32, 64 × 64 and 256 × 256. Cu-
bic convolution is performed for converting a discrete image
into a continuous form which results in a cubic polynomial
in x and y of degree 3 in each variable as shown in Eq. (20).
The exact GMs are used to derive ZMs using Eq. (26). The

average reconstruction error ε computed for 12 images is
shown in Figs. 10(a), 10(b) and 10(c) for the three image
sizes. It is observed from these figures that there is no re-
duction in ε after removing the image discretization error. In
fact, the ZMs become unstable at a lower value of pmax as
compared to the ZMs computed using discrete function. As
the image size increases, the instability starts at lower pmax.
We conducted experiments for rotation and scale invariance
analysis and observed similar trends for these characteris-
tics also. The experiments were repeated for several image
sizes, both lower than 32 × 32 and larger than 256 × 256, no
change in the trend of the results is observed. The PZMs and
OFMMs cannot be computed through GMs, therefore, 5 × 5
numerical integration is used for their accurate computation
with and without cubic convolution of the image function.
Like ZMs, no improvement in image reconstruction, and ro-
tation and scale invariance was observed due to the removal
of image discretization error. The above experiments were
also repeated for inscribed unit disk using 5 × 5 numeri-
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Fig. 11 Magnitude of geometric error G(N) for different order of nu-
merical integration n

cal integration. As before, no significant improvement was
observed in the accuracy of ORIMs due to the removal of
image discretization error. It is, therefore, concluded that the
discretization error plays negligible role in the accurate com-
putation of the three ORIMs.

6.3 Reduction in Geometric Error and Numerical
Integration Error

The geometric error arises when a square region is mapped
into the circular region. This is a common error that exists in
the computation of all rotational moments of which ORIMs
are a particular case. As explained in Sect. 5, the numerical
integration method reduces not only the numerical integra-
tion error, but also the geometric error. This characteristic
of the numerical integration method is depicted in Fig. 11,
where the measure of the geometric error, G(N), is plotted
as a function of the order of numerical integration n. The
value of G(N) for n = 1, yields the difference between the
area of unit disk π and the area of approximated unit disk as
shown by Fig. 1(c). It is observed in Fig. 11 that the magni-
tude of G(N) decreases rapidly w.r.t. the increasing order of
numerical integration. Further, for larger images, the mag-
nitude of G(N) becomes smaller. Therefore, the results are
shown for three small image resolutions 32 × 32, 48 × 48,
and 64 × 64 pixels.

The upper bound of normalized numerical integration er-
ror Ea

pq given by Eq. (19) which measures the deviations
of ORIMs from their accurate values is shown in Fig. 12
for outer unit disk and for the three image sizes by taking
f (xi, yk) = 1. It is observed from these figures that the value
of Ea

pq is maximum for OFMMs, followed by PZMs and the
smallest for ZMs. The reason of high integration error for
OFMMs and PZMs is obvious because for q = 0, |Rp0(0)|
becomes unbounded as explained in Sect. 3. The radial poly-
nomials of OFMMs are a special case of PZMs obtained by

substituting q = 0. Therefore, all radial OFMPs become un-
bounded in the vicinity of r = 0. Their contribution towards
the integration error becomes much more prominent as com-
pared to PZMs. For a given order p, there are (p+1) number
of PZPs and only one polynomials for which q = 0 becomes
unbounded in the vicinity of r = 0. Therefore, the contribu-
tion of such PZPs towards the numerical integration is sub-
dued. For ZPs, there is no such polynomial which becomes
unbounded. Therefore, the numerical integration error is the
least for the ZMs. It is also seen that the integration error
Ea

pq increases as the order of moment increases. However,
it decreases with the increase of the size of the image.

6.4 Image Reconstruction, Reconstruction Error and Effect
of Mode of Image Mapping

The performance of the accurate computation of the ORIMs
on image reconstruction is shown for 64 × 64 pixel Pirate
image which is given in Fig. 13. The reconstructed images
are shown in Fig. 14 for inscribed unit disk and plotted for
moment orders 10 through 70 with an interval of 10 in pmax,
using zeroth order approximation and accurate computation.
Both methods use recursive computation of radial polyno-
mials [27, 28, 33], thereby providing stability to moments
at high pmax. The reconstructed images for ZMs at high or-
der of moments are far better than the other two ORIMs.
There is distortion in the quality of reconstructed images us-
ing zeroth order approximation for PZMs and OFMMs in
the neighborhood of r = 0.0 and along the boundary of unit
disk, whereas for ZMs the reconstructed images display this
trend only along the boundary. The reason for this distortion
is explained in Sect. 3. The accurate computation not only
improves the quality of the reconstructed images, but also
reduces the degradation along the circular boundary. The
quality of reconstructed images also improves significantly
in the neighborhood of r = 0.0 for PZMs and OFMMs. The
reconstruction error ε is also shown along with the recon-
structed images. The accurate computation of moments ex-
hibits a decreasing trend in ε w.r.t. pmax.

An interesting aspect of the mapping process of the
square image into a unit disk is observed when the outer
unit disk is considered. The entire image is contained in the
unit disk as shown in Fig. 1(d). For this kind of mapping, the
value of r = 1.0 is not obtained for any pixel location and
the maximum value of r = 1 − 1

N
is achieved at the pixels

located at four vertices of the square image. The mapping
process results in a far better quality of reconstructed image
even for the zeroth order approximation. The reconstructed
images are shown in Fig. 15. First, we analyze the quality
of reconstructed images for ZMs using zeroth order approx-
imation and its accurate computation. It is observed that the
reconstruction error is almost the same. Surprisingly, the ze-
roth order approximation provides slightly lower ε than the



J Math Imaging Vis (2014) 49:251–271 263

Fig. 12 Upper bound of normalized numerical integration error Ea
pq with respect to moment order pmax for (a) 32 × 32, (b) 64 × 64, and

(c) 256 × 256 pixels images (outer unit disk)

Fig. 13 A 64 × 64 pixels Pirate
image

accurate method, except for pmax = 10. No degradation in
the image is found along the boundary of the reconstructed
images unlike the mapping when the inscribed unit disk
is used. PZMs and OFMMs are also do not affect the re-
constructed images along the boundary. However, they are
affected in the vicinity of the center of the unit disk. As
a result, the accurate computation of PZMs and OFMMs
provides significant improvement in reconstructed images.
The improvement is due to the fact that the kernel functions
are sampled for higher number of locations which provides

much needed succor to the radial polynomials in the neigh-
borhood of r = 0.0 where the radial polynomials for PZMs
and OFMMs change more rapidly. Therefore, the accurate
computation of PZMs and OFMMs provides significant im-
provement in image reconstruction at higher order of mo-
ments.

The trend of average reconstruction error ε computed for
12 images w.r.t. the maximum moment order pmax for the
three image sizes are plotted in Fig. 16 for inscribed unit
disk. For outer unit disk, its behavior is plotted in Fig. 17.
It is observed from these figures that the effects of geomet-
ric error and numerical integration error are much more sig-
nificant for OFMMs, followed by PZMs and smallest for
ZMs. These errors are much more pronounced in smaller
images as compared to large images. An interesting aspect
of the mapping process involving the outer unit disk is that
there is virtually no difference between the zeroth order ap-
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Fig. 14 Reconstructed Pirate image of 64 × 64 pixels using various ORIMs for different values of pmax (inner unit disk)
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Fig. 15 Reconstructed Pirate image of 64 × 64 pixels using various ORIMs for different values of pmax (outer unit disk)
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Fig. 16 Average reconstruction error ε as a function of order of moments for (a) 32 × 32, (b) 64 × 64, and (c) 256 × 256 pixels images (inner
unit disk)

proximation of ZMs and its accurate computation. It is clear
from Fig. 17 that the reconstruction error for ZMs is approx-
imately the same upto moment orders 50, 100, and 320, for
the image sizes 32 × 32, 64 × 64, and 256 × 256, respec-
tively.

6.5 Rotation Invariance

The effect of accurate computation of ORIMs on rotation
invariance is measured by computing the mean square error
Er of the deviations of magnitudes of moments of rotated
images from their unrotated counterparts. The mean square
error is defined by

Er = 1

L

∑
p

∑
q

(∣∣Aθ
pq

∣∣ − ∣∣AO
pq

∣∣)2 (30)

where L is the total number of moments upto a given order
and repetition, pmax and qmax, and |AO

pq | and |Aθ
pq | are the

magnitudes of the moments of the unrotated and rotated im-
ages, respectively. The trend of average value of Er com-
puted for 12 images as a function of rotation angle θ is
shown in Fig. 18, for three image sizes for inscribed unit
disk. We have taken pmax = 20 for ZMs, pmax = 14 for
PZMs and pmax = qmax = 10 for OFMMs, so that the value
of L is nearly the same for the three ORIMs which turns
out to be L = 121 for ZMs and OFMMs, and L = 120 for
PZMs. It is surprising to observe that the OFMMs provide
the least value of Er , followed by PZMs and it is maximum
for ZMs. The accurate computation of ORIMs reduces the
value of Er significantly, providing much better rotational
invariance characteristics of all ORIMs. It is also observed
that the large images exhibit lower values of Er as compared
to small images.
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Fig. 17 Average reconstruction error ε as a function of order of moments for (a) 32 × 32, (b) 64 × 64, and (c) 256 × 256 pixels images (outer
unit disk)

6.6 Scale Invariance

Scale invariance is another important characteristic of
ORIMs. Since ORIMs are computed in a unit disk after map-
ping a digital image of a given size, it is expected that the
magnitude of moments must be scale invariant. However,
due to various errors and discrete nature of the image func-
tion the scale invariance is affected. Like rotation invariance,
we define mean square error Es for scale invariance as fol-
lows

Es = 1

L

∑
p

∑
q

(∣∣As
pq

∣∣ − |Apq |)2 (31)

where L is the total number of moments for given pmax and
qmax which is taken same as in rotation invariance. Apq and
As

pq represent the moments of an image of standard size and
a scaled image, respectively. We take 64×64 as the standard

size and vary the size from 32 × 32 through 256 × 256 with
an interval of 32 along each direction. The average values
of Es computed for the 12 images are shown in Fig. 19 as a
function of image size for inner unit disk. The trend in scale
invariance for the three ORIMs is similar to the trend for the
rotation invariance. The scale invariance property of ZMs is
more affected by the various errors compared to PZMs and
OFMMs. The accurate computation of ORIMs improves the
scale invariance property significantly. The scale invariance
property of small images is much more affected by errors
than the larger images.

7 Conclusion

Accurate computation of ORIMs is very essential for sev-
eral pattern recognition problems to represent subtle details
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Fig. 18 Effect of rotation on average mean square error Er on ORIMs for (a) 32 × 32, (b) 64 × 64, and (c) 256 × 256 pixels images (inner unit
disk)

Fig. 19 Effect of scale on average mean square error Es on ORIMs

in images. The inaccuracies in the moments arise due to sev-
eral digitization processes. The most prominent errors are
the image discretization error, geometric and numerical in-
tegration error. The influence of these errors is reflected in
poor image reconstruction and invariance properties at high
orders of moments. This results in the numerical instabil-
ity at high order of moment rendering the moments to be
useless where a large number of moments are required. In
this paper, we have analyzed the role of image discretization
error by resorting to cubic convolution to derive a continu-
ous signal. A computational framework based on numerical
integration method is presented which reduces geometric er-
ror and numerical integration error simultaneously. The fol-
lowing conclusions are drawn after performing detail exper-
imental analysis.

(i) Image discretization error plays an insignificant role in
the accuracy of ORIMs computation. Therefore, it can
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be ignored and the image intensity function can be con-
sidered constant over a pixel area.

(ii) Numerical integration error plays crucial role in the ac-
curate computation of moments of high orders. It not
only affects the accuracy, but also makes them numeri-
cal unstable for high orders of moments.

(iii) The numerical integration technique not only reduces
numerical integration error, but it also decreases ge-
ometric error and enhances numerical stability of
ORIMs at high orders of moments. The proposed ac-
curate computation of ORIMs results in much better
reconstructed images and provides significant improve-
ments in invariance properties of ORIMs.

(iv) The radial part of kernel function of ORIMs plays a vi-
tal role in influencing the numerical integration error.
The radial kernel functions of OFMMs and PZMs dis-
tort the reconstructed images in the vicinity of the cen-
ter of the images. ZMs are not affected by such distor-
tion. All three ORIMs provide distorted images along
the outer boundary of the unit disk.

(v) Geometric error does not contribute much towards the
inaccuracies of moments except for small images. The
images with size 48 × 48 or less are affected by geo-
metric error.

(vi) When an outer disk is considered for mapping a square
image, the accuracy of moments are less affected com-
pared to the inscribed unit disk. The ZMs are not at
all affected by any error. The zeroth order approxima-
tion provides as accurate results as to those obtained
by numerical integration method. Consequently, no dis-
tortion on the reconstructed images is observed. The
OFMMs and PZMs are, however, affected in the vicin-
ity of the center of the image and the effect is as promi-
nent as in the case of inscribed unit disk for these two
ORIMs. No distortion is observed along the boundary
of the reconstructed image for these moments also.
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Appendix

A.1 Cubic Interpolation of Image Function

An image consisting of N ×N pixels assumes that the pixel
values f (i, k) are defined at the center of the pixel which
occupies the area

[
xi − �x

2
, yk − �y

2

]
×

[
xi + �x

2
, yk + �y

2

]

and has the center at (xi, yk) as shown in Fig. 1(a). The cubic
interpolation assumes that the discrete data, which is con-
verted into a continuous function, must be defined at the
crossing of the grids which are given the name ‘nodes’ for
further reference. Let the coordinates of nodes be denoted
by (Xi,Yk), which are given by

Xi = 2i − N

N
,

Yk = 2k − N

N
, i, k = 0,1, . . . ,N

(32)

The cubic interpolation method requires the discrete values
of the function at locations (Xi,Yk), for i, k,= 0,1, . . . ,N ,
whereas the pixels are defined at pixel centers (xi, yk), i, k =
0,1, . . . ,N − 1. Thus for an N × N image, there are (N +
1)× (N +1) nodes at which the discrete values are required.
A simple solution to this problem is to define a discrete func-
tion which is obtained by taking the average of pixel val-
ues meeting at a given node. Mathematically, we can obtain
g(i, k) as follows

g(i, k) = 1

S

1∑
u=0

1∑
v=0

f (i − u, k − v),

i, k = 0,1,2, . . . ,N (33)

where

f (l,m) = 0, for l = −1, l = N,m = −1,m = N, and

S =

⎧⎪⎨
⎪⎩

1, for corner nodes

2, for edge nodes

4, for interior nodes

After deriving g(i, k) the value of the image intensity can
be obtained at a point (x, y) ∈ [xi, yk]× [xi+1, yk+1], i, k =
0,1, . . . ,N − 1, as given below

g(x, y) =
3∑

l=0

3∑
m=0

almxlym, (34)

where

amn = 1

4�6

3∑
r=0

3∑
s=0

g(i + r − 1, k + s − 1)url(xi)usm(yk)

(35)

with

� = 2

N

The expressions url(xi) and usm(yk) are given in [7]. The
intensity function g(i, k) is derived for i, k = 0,1, . . . ,N as
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given by Eq. (33). However, Eq. (35) requires values for the
extended grid which are determined by the procedure given
in [7].
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