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Abstract The refinement order on partitions corresponds
to the operation of merging blocks in a partition, which is
relevant to image segmentation and filtering methods. Its
mathematical extension to partial partitions, that we call
standard order, involves several operations, not only merg-
ing, but also creating new blocks or inflating existing ones,
which are equally relevant to image segmentation and filter-
ing techniques. These three operations correspond to three
basic partial orders on partial partitions, the merging, inclu-
sion and inflating orders. There are three possible combina-
tions of these three basic orders, one of them is the standard
order, the other two are the merging-inflating and inclusion-
inflating orders. We study these orders in detail, giving in
particular their minimal and maximal elements, covering re-
lations and height functions. We interpret hierarchies of par-
titions and partial partitions in terms of an adjunction be-
tween (partial) partitions (possibly with connected blocks)
and scalars. This gives a lattice-theoretical interpretation of
edge saliency, hence a typology for the edges in partial parti-
tions. The use of hierarchies in image filtering, in particular
with component trees, is also discussed. Finally, we briefly
mention further orders on partial partitions that can be useful
for image segmentation.
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1 Introduction

This paper discusses partial order relations on partitions (or
partial partitions) that can be relevant to the process of image
segmentation or filtering. It elaborates on the first part of
[26].

Let E be a set. A partition of E is a family of non-void
mutually disjoint subsets of E, called blocks [17], whose
union is E. We write Π(E) for the set of all partitions of E.
A partial partition of E is a partition of any subset of E, it
consists also of non-void mutually disjoint blocks, but their
union is not necessarily equal to E. We write Π∗(E) for the
set of all partial partitions of E. Given π ∈Π∗(E), the union
of all blocks of π is called the support of π and written
supp(π); thus π is a partition of supp(π); the complement
E \ supp(π) of the support is the background of π .

The set Π(E) is partially ordered by refinement: for
π1,π2 ∈ Π(E), we say that π1 is finer than π2, or that π2

is coarser than π1, and write π1 ≤ π2 (or π2 ≥ π1), if and
only if every block of π1 is included in a block of π2, equiv-
alently, every block of π2 is a union of blocks of π1. Then
(Π(E),≤) is a complete lattice, whose least (finest) and
greatest (coarsest) elements are the identity partition (whose
blocks are all singletons in E) and the universal partition
(with E as single block) [17].

The set Π(E) and its order ≤ are both relevant to im-
age segmentation. We consider images as functions E→ T ,
where T is the set of image values, and the goal of segmen-
tation is to build from such a function F :E→ T a segmen-
tation defined as a partition π of E, such that F is in some
sense “homogeneous” on each block of π . Now Soille [37]
summarizes conventional requirements of image segmenta-
tion as follows:
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1. The segmentation method relies on a criterion that de-
termines, for every function F and every subset A of E,
whether F is homogeneous on A or not.

2. Given a function F , its segmentation is a partition of E

into connected blocks on which F is homogeneous; these
blocks are called segmentation classes.

3. Merging two or more adjacent segmentation classes, F is
not homogeneous on the resulting set; in other words F

cannot be homogeneous on a connected union of two or
more segmentation classes.

Here Soille considers the connectivity of sets arising from an
adjacency graph, but more generally we can assume that the
so-called connected sets constitute a connection C on P(E)

[21, 27, 30]. For any function F : E → T , let CF be the
family of all A ∈ C (i.e., A is a connected subset of E) such
that F is homogeneous on A according to the criterion of
item 1. By item 2, the segmentation of F is a partition πF of
E whose blocks belong to CF . Now let π ′ > πF be a strictly
coarser partition; then the larger blocks of π ′ are obtained
by merging segmentation classes of πF ; either the merged
classes are not adjacent, and the resulting block of π ′ will
not be connected, or these merged classes are adjacent, but
then by item 3, F will not be homogeneous on the resulting
block of π ′. In any case, a larger block of π ′ does not belong
to CF . Therefore πF must be a maximal element, for the
refinement ordering, of the family Π(E,CF ) of all partitions
whose blocks belong to CF .

Here we see the relevance to image segmentation of the
refinement order in terms of the operation involved in the
coarsening of a partition: merging blocks. We can also con-
sider the opposite operation, involved in the refinement of
a partition: splitting blocks. These two operations are well-
understood and have been used for a long time, for instance
in the split-and-merge approaches to image segmentation
[19].

The refinement order on partitions intervenes also in con-
nected filtering. The flat zones of a function F : E→ T are
the maximal connected subsets of E on which F has con-
stant value; they constitute a partition of E, let us write it
πflat(F ). Now a connected filter ψ transforms F into a func-
tion ψ(F) where each flat zone is a union of flat zones of F ,
in other words, the partition of flat zones of ψ(F) is coarser
than the one of flat zones of F : πflat(F )≤ πflat(ψ(F )).

The refinement order on Π(E) extends naturally to the
set Π∗(E) of all partial partitions of E: for π1,π2 ∈Π∗(E),
we write π1 ≤ π2 (or π2 ≥ π1), if and only if every block
of π1 is included in a block of π2. Following [26], we call
this partial order the standard order. Then (Π∗(E),≤) is a
complete lattice, whose least and greatest elements are the
empty partial partition (having no block) and the universal
partition (with E as single block).

In [22] we pointed out the interest of considering partial
partitions for the study of image segmentation. Let us give
here several reasons:

– Some image segmentation algorithms produce segmenta-
tion classes separated by boundaries made of pixels; this
happens with some versions of the watershed algorithm,
but it arises also by necessity in some connective segmen-
tation methods [27, 32], such as the smooth and jump con-
nections, where seeds (or points) are agglomerated on the
basis of overlapping or contact, and distinct regions must
be non-adjacent in order to prevent their merger. Here the
regions (segmentation classes) constitute a partial parti-
tion of the space E, and the boundaries form the back-
ground (complement of the support) of that partial parti-
tion.

– It is interesting to combine region-based segmentation
(like watershed or connective segmentation) with edge
detection [15]. Indeed, in region-based segmentation
methods, the only edges that are preserved are those that
separate distinct regions, in particular, edges that are not
closed will usually disappear; one might want to preserve
unclosed edges, so that they could be closed with some
post-processing; furthermore, there is no guarantee that
the regions will always be separated along the most salient
edges. Thus one can constrain the segmentation by pro-
viding not only initial markers for the regions, but also
markers for the edges that will remain outside the final
regions constituting the segmentation.

– Morphological segmentation usually works in a bottom-
up way, by growing mutually disjoint regions from mark-
ers (as in the watershed), or by constructing successively
the segmentation classes (in a compound segmentation
paradigm, see [27, 31]). This means constructing a se-
quence of partial partitions that is growing for the stan-
dard order.

– From a top-down point of view, a segmentation algorithm
associates to every function F : E → T and every sub-
set A of E a partition (or partial partition) πF (A) of A

[27, 32]. This leads to the block splitting operator on
Π∗(E) that applies πF to each block of a partial parti-
tion: Π∗(E)→Π∗(E) : ξ �→⋃

A∈ξ πF (A). This opera-
tor is anti-extensive for the standard order, and we showed
in [24, 25] that for three image segmentation methodolo-
gies (connective segmentation and its compound and con-
strained variants) this operator is idempotent and has spe-
cific algebraic properties related to order.

Compared to the refinement order on Π(E), the stan-
dard order on Π∗(E) shares many algebraic properties [22–
25]. However it is conceptually more complex. Let π1,π2 ∈
Π∗(E) such that π1 ≤ π2; thus every block of π1 is included
in a block of π2. But contrarily to the case of the refinement
order on Π(E), a block of π2 will not necessarily be a union
of blocks of π1. When it is not itself a block of π1, it can be
obtained by one of the following operations: (a) creating a
new block; (b) inflating a block of π1; (c) merging several
blocks of π1; (d) merging and inflating several blocks of π1.
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Fig. 1 In each partial partition, the distinct blocks are identified by
their hatching or grey-level. We have π1 on the left, and π2 on the
right, with π1 ≤ π2. We show the 4 ways in which a block of π2 not
itself in π1 can be obtained from blocks of π1

See Fig. 1. Therefore it is not appropriate to call this order on
Π∗(E) refinement, as we did in [22]; hence the new name
standard order [26].

We saw above that the operation of merging blocks is
relevant to image segmentation. Now the two other opera-
tions, inflating and creating blocks, are also relevant, since
they are involved respectively in region growing (such as
watershed) and in compound segmentation (where the seg-
mentation classes are built successively with varying crite-
ria [27, 31]). This suggests that the standard order is in fact a
combination of three basic orders, associated to the three ba-
sic operations of merging, inflating and creating blocks. We
will indeed define three primary partial order relations on
Π∗(E), the merging, inclusion and inflating orders, written
	, ⊆ and �; all three are included in the standard order ≤.
Next we will describe two secondary partial order relations
obtained by combining two of the three primary orders, the
merging-inflating and inclusion-inflating orders, written 	�
and ⊆�; on the other hand combining merging with inclu-
sion, one generates the standard order.

There are other meaningful partial order relations on
Π∗(E) that are not included in the standard order. Serra
[33, 34] defined on Π∗(E) the building order � by a kind
of logical inversion of the standard order: π1 � π2 if and
only if every block of π2 contains at least one block of π1

(it may also contain or intersect other blocks of π1). To be
more precise, Serra studied in fact the partial order on P(E)

induced by the building order on the partial partition of con-
nected components of a set: for X,Y ∈ P(E), X � Y if and
only if every connected component of Y contains a con-
nected component of X. (NB. He also used the symbol �
instead of �.) Now � is a partial order relation, and it is
generally unrelated to the standard order ≤, except when
the partial partitions have the same support: if π1 ≤ π2 and
supp(π1)= supp(π2), then π1 � π2; in particular for parti-
tions, the building order � contains the refinement order ≤.
However the building order does not constitute a lattice, and
it is not easy to define operators with given order-theoretic
properties (for instance, isotony).

This new order relation was motivated by the problem,
encountered with many image segmentation algorithms, of

Fig. 2 (a) The graph of a one-dimensional grey-level edge; be-
low we show (top bar) its segmentation into connected classes with
bounded slope (light grey rectangles for non-singleton classes, ver-
tically hatched ones for groups of singleton classes); note the large
number of small classes on the edge; eliminating them (middle bar),
the final segmentation (bottom bar) consists of the influence zones of
the two large classes. (b) From left to right: a disk B; a subset of the
plane is segmented into two connected zones open by B , while the re-
maining points form singletons; the desired segmentation is obtained
by the influence zones of the two connected open zones

“small parasitic” segmentation classes appearing along con-
tours and transitions, where the region homogeneity crite-
rion fails. Serra proposes to eliminate them and take as final
partition the watershed or influence zones (in a Voronoi dia-
gram) of the remaining segmentation classes corresponding
to significant objects. See Fig. 2. Now both operations of
first removing “parasitic” blocks and next inflating the re-
maining blocks, are extensive for the building order. More
precisely, starting from a partial partition π0:

1. Remove “small parasitic” blocks from π0 (through some
“parasitism” and size criterion); the resulting partial par-
tition π1 satisfies π0 ≥ π1 but π0 � π1.

2. Inflate the blocks of π1 (for example by a Voronoi dia-
gram, or through a homogeneity criterion), without cre-
ating any new block; the merging of blocks, although not
excluded in theory, is not used in practice; the resulting
partial partition π2 satisfies both π1 ≤ π2 and π1 � π2.

Then the partial partition π2, having fewer but bigger blocks
than π0, is “better”, a quality that is certified by the order
π0 � π2.

Note that the example of Fig. 2(a) can be adapted to give
an edge enhancement method, by considering flat zones in-
stead of segmentation classes: “small parasitic” flat zones
along the edge are removed, then the remaining large flat
zones are extended to cover the removed small ones.

Let us remark that the criteria are vital: if we had re-
moved “big non-parasitic” blocks and then inflated the re-
maining “small parasitic” ones, the result would be catas-
trophic, while the two operations would still be extensive
for the building order.

Taking a critical look at Serra’s argument, we first note
that the construction of π2 from π0 involves two restricted
operations (first removing blocks, next inflating blocks),
guided by two distinct criteria (first size and “parasitism”,
next homogeneity or distance to the marker); in fact these
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two operations correspond to two restricted orders, the in-
verse inclusion and the inflating orders: π0 ⊇ π1 � π2. Next,
although we have a growing sequence for the building or-
der, π0 � π1 � π2, intuitively π1 cannot be considered as a
“good” result, since it has a smaller support than π0; this is
corroborated by the standard order that gives π0 ≥ π1 ≤ π2.
In all practical examples, the block growth of step 2 must be
repeated until the blocks removed in step 1 are fully covered,
in other words supp(π2)= sup(π0) (in fact, Serra considers
that π0 and π2 are partitions of E).

Thus in our opinion, the building order on Π∗(E) is too
general to be meaningful. We can consider that since the two
operations of first removing then inflating blocks use distinct
criteria, they constitute two distinct stages in segmentation,
hence they must correspond to two distinct order relations,
namely the inverse inclusion and inflating orders. Another
possibility is to consider the succession of the two opera-
tions as a compound operation that is successful only if the
support of the initial partial partition is fully recovered. We
call this compound operation apportioning: some blocks in
a partial partition may be split, and their parts are merged
with some remaining blocks; this includes the possibility of
a block being merged with another without being split. This
introduces a new partial order relation on Π∗(E), which ex-
tends the merging order. We call it the apportioning order;
it was briefly suggested in Serra’s work [33, 34], but was not
pursued further. We will study it in a future paper.

We have seen that several partial order relations on
Π∗(E) can be defined by purely mathematical relations on
blocks, but they become really meaningful when they corre-
spond to certain types of operations on partial partitions that
are effectively used in segmentation (or filtering), and these
operations are generally guided by specific criteria.

The purpose of this paper is the detailed study, with a
view on image segmentation and filtering, of these orders
on partial partitions: the three basic ones (merging, inclu-
sion and inflating orders) and their combinations (merging-
inflating, inclusion-inflating and standard orders). In partic-
ular, we consider least and greatest elements, the covering
relation, the length of intervals and the height of elements.
Indeed, since an order on partial partitions corresponds to a
type of operation in the construction of a segmentation, the
height of a partial partition will correspond to its complexity
in terms of elementary operations necessary to obtain it.

An important notion in morphological image segmenta-
tion is that of a hierarchy, that is, a growing sequence of
segmentation partitions, starting and ending with the least
and greatest partitions [12, 13]; a related concept is that of
edge saliency [16], namely, specifying for each edge portion
its evolution through the levels of the hierarchy. They have
been studied for Π(E) with the refinement order. Following
the framework of [23], where the hierarchy corresponds to

an erosion from scalars to partitions, with the adjoint dila-
tion measuring the diameter of blocks according to an ultra-
metric, we extend this analysis to partial partitions with the
standard order. Also the notion of an edge between blocks
implicitly assumes the connectedness of these blocks, and
indeed one makes such an assumption in segmentation; thus
we will work in the lattice of (partial) partitions with blocks
belonging to a given (partial) connection. In the case of a
connectivity based on an adjacency graph, we need to con-
sider the saliency not only of the edge separating a pair of
adjacent points, but also of each individual point. We also
briefly discuss the relation to saliency of the basic opera-
tions of merging, creating or inflating blocks involved in the
orders that we have studied. Finally, hierarchies of partial
partitions with connected blocks intervene in connected fil-
tering through the structure of the max-tree and min-tree [28,
29] (also called component tree [14]), so we consider the rel-
evance of our new orders to this filtering approach.

This paper being very long, we have left out a topic dis-
cussed in [26]: the numerical evaluation of segmentation
partitions by some function (called energy in [7, 10, 35, 36]
and valuation in [26]), which has to be minimized or maxi-
mized. An example of such function is the order-theoretical
height, which we determine for the orders introduced in this
paper. This topic will be dealt with in a future paper.

There are also many more orders on Π∗(E), such as the
apportioning order briefly mentioned above, then its combi-
nations with the inflating and the inclusion orders, but also
orders obtained by combining one of the three basic orders
with the inverse of another one. This will be discussed in yet
another paper.

1.1 Paper Organization

Section 2 recalls basic facts concerning the refinement or-
der on partitions and the standard order on partial parti-
tions, the structure of the corresponding complete lattices,
as well as their relations with connections and partial con-
nections. It also describes some basic relations between par-
tial partitions defined in terms of block inclusion. Section 3
studies the three basic orders (merging, inclusion and in-
flating) and their combinations (standard, merging-inflating
and inclusion-inflating). Section 4 analyses hierarchies and
saliency, with a view on image segmentation and filtering.
Finally Sect. 5 concludes, summarizing our results, dis-
cussing their relevance and putting them into perspective.
Appendix discusses the compatibility of all these partial or-
der relations with local knowledge.

2 Mathematical Preliminaries

We give here our notation and recall some known mathemat-
ical facts. We will also introduce some new general results
about partial partitions.
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In mathematical formulas, we will write “&” for the log-
ical “and”. Given a set A, we will write: P(A) for the set of
parts of A; given any subset B of A, P(A/B) for the set of
parts of A containing B , P(A/B)= {X | B ⊆ X ⊆ A}; |A|
for the cardinal of A. Given two subsets A and B of a set E,
we say that A and B overlap, and write A � B , if A∩B �= ∅.

2.1 Relations and Orders

Each binary relation R is identified with the set of ordered
pairs (a, b) such that a R b, so if we say that the relation
S is included in the relation R, or that R contains S, this
means that a S b implies a R b; similarly, the intersection
(resp., union) of two relations R and S is the relation Q

such that a Q b iff a R b and (resp., or) a S b. This applies
in particular to partial order relations.

Our terminology on orders and lattices follows [3, 4, 6].
We will consider several distinct order relations; for their
notation we follow a common rule: we use some symbol for
the strict order “strictly less than” (e.g., �), the underlined
symbol for the corresponding wide order “less than or equal
to” (e.g.,�), then the mirror symbol for the inverse strict or-
der “strictly greater than” (e.g., �) and the underlined mirror
symbol for the inverse wide order “greater than or equal to”
(e.g.,�). The only exception is for the building order on par-
tial partitions, where we use � for “less than or equal to” and
� for “greater than or equal to”, without any specific symbol
for “strictly less than” and “strictly greater than”; indeed, we
consider this order as a mathematical relation which is not
really a “meaningful order”.

Given a partial order relation ≤ on a set P , we call iso-
lated any x ∈ P that is incomparable to any other element
of P : ∀y ∈ P , neither y < x nor x < y holds (equivalently,
x is both maximal and minimal). For x, y ∈ P we say that
y covers x (or x is covered by y) if x < y but there is no
z ∈ P such that x < z < y; this relation is usually written
x ≺ y or y � x; when we analyse the covering relation for
distinct orders, we can distinguish them by using various su-

perscripts like
r≺. Given x, y ∈ P with x ≤ y, the length of

the interval [x, y] = {z ∈ P | x ≤ z≤ y} is the supremum of
all integers n with x = z0 < · · ·< zn = y; when this length
is finite (for instance when P is finite), it is the greatest such
n, and the sequence takes the form x = z0 ≺ · · · ≺ zn = y,
we call it a covering chain between x and y. When P has
a least element 0, the height of x ∈ P is the length of the
interval [0, x]. When P has no least element, but for every
x ∈ P there exists a minimal element m such that m≤ x, we
call the height of x w.r.t. m the length of the interval [m,x].

The poset P is graded if there is a map g : P → Z
such that for any x, y ∈ P , x < y ⇒ g(x) < g(y) and
x ≺ y ⇒ g(y)= g(x)+1 [3]; more specifically, we say that
P is graded by g. We have then x ≺ y ⇔ [x ≤ y & g(y)=
g(x)+1]. (NB. In [6] this consequence is given as the defini-
tion, which is unsufficient, because it does not guarantee the

finite length of intervals.) In a graded poset P , every interval
has finite length, and P satisfies the Jordan-Dedekind chain
condition, namely that all covering chains between x and
y (for x < y) have the same length, which is g(y)− g(x).
Furthermore, if P has a least element 0, then the height h

satisfies h(x)= g(x)− g(0) for all x ∈ P , thus P is graded
by h.

Since we will consider compound orders on partial parti-
tions, with compound covering relations, we need to intro-
duce compound grading functions:

Proposition 1 In a poset (P,≤), let the covering relation

≺ be the disjoint union of t relations
1≺, . . . ,

t≺. Consider
n maps g1, . . . , gt : P → Z, and let g =∑t

i=1 gi . Suppose
that:

1. For all x, y ∈ P and i = 1, . . . , t we have

x
i≺ y =⇒

{
gi(y)= gi(x)+ 1,

gj (y)= gj (x) for j �= i.

Then the following two statements are equivalent:

2. Every interval in P has finite length.
3. For all x, y ∈ P ,

x < y =⇒
{
∀i = 1, . . . , t, gi(y)≥ gi(x),

∃i ∈ {1, . . . , t}, gi(y) > gi(x).

When these conditions are met, we obtain the following:

4. For all x, y ∈ P and i = 1, . . . , t we have

x
i≺ y ⇐⇒ x ≤ y &

{
gi(y)= gi(x)+ 1,

gj (y)= gj (x) for j �= i.

5. In a covering chain z0 ≺ · · · ≺ zn in P , among the n cov-
erings z�−1 ≺ z� (�= 1, . . . , n), there are gi(zn)−gi(z0)

occurrences of z�−1
i≺ z� for i = 1, . . . , t .

6. P is graded by g.

Proof When x ≺ y, we have x
i≺ y for some i, then item 1

gives gi(y)= gi(x)+ 1 and gj (y)= gj (x) for j �= i, hence
g(y)= g(x)+ 1. Now for x < y, item 3 gives g(y) > g(x).
Thus items 1 and 3 together imply that P is graded by g,
that is, item 6.

Next, item 6 implies item 2. Let x < y; we show by in-
duction on g(y) − g(x) that the interval [x, y] has length
at most g(y) − g(x). If x ≺ y, then the interval [x, y]
has length 1 ≤ g(y) − g(x). Otherwise, for any z ∈ P

such that x < z < y, we have g(x) < g(z) < g(y), and as
g(z) − g(x), g(y) − g(z) < g(y) − g(x), by induction hy-
pothesis the intervals [x, z] and [z, y] have lengths at most
g(z)−g(x) and g(y)−g(z), so any chain containing z must
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have length at most g(z)−g(x)+g(y)−g(z); therefore the
interval [x, y] has length at most g(y)− g(x).

Also, items 1 and 6 together imply item 4. The forward
implication=⇒ in item 4 follows directly from item 1. Con-
sider the reverse implication ⇐=. Let i ∈ {1, . . . , t} and
x, y ∈ P such that x ≤ y, gi(y) = gi(x) + 1 and gj (y) =
gj (x) for j �= i; thus g(y) = g(x) + 1. Then x �= y, that
is, x < y. If x ⊀ y, then x < z < y for some z ∈ P , and
item 6 gives g(x) < g(z) < g(y), which contradicts g(y)=
g(x)+ 1. Thus x ≺ y; if x

j≺ y for j �= i, then gi(y)= gi(x)

by item 1, a contradiction. Therefore x
i≺ y.

Now item 1 implies item 5. Let i ∈ {1, . . . , t}. In a cover-

ing chain z0 ≺ · · · ≺ zn, for � = 1, . . . , n, when z�−1
i≺ z�

we get gi(z�) − gi(z�−1) = 1, while when z�−1
j≺ z� for

j �= i we get gi(z�)−gi(z�−1)= 0; hence gi(zn)−gi(z0)=∑n
�=1[gi(z�)− gi(z�−1)] counts the number of occurrences

of z�−1
i≺ z�.

Finally, items 2 and 5 together imply item 3. Let x < y.
By item 2 there is a covering chain x = z0 ≺ · · · ≺ zn = y.
By item 5, for i = 1, . . . , t , gi(y)− gi(x) counts the number

of occurrences of z�−1
i≺ z� in that chain, hence this number

must always be ≥ 0, and it is > 0 for at least one i, because
n > 0.

We have shown that 1 & 3 ⇒ 6, 6 ⇒ 2, 1 & 6 ⇒ 4,
1 ⇒ 5 and 2 & 5 ⇒ 3. This completes the proof that
1 & 2 ⇔ 1 & 3 ⇒ 4 & 5 & 6. �

Note that item 3 can also be written: for all x, y ∈ P ,

x < y =⇒
{
∀i = 1, . . . , t, gi(y)≥ gi(x)

& g(y) > g(x).
(1)

When the above properties are satisfied, we will say that

P is graded by (g1, . . . , gt ) for (
1≺, . . . ,

t≺). For n = 1,
we obtain the classical notion of grading: items 1 and 3
mean that P is graded by g = g1, and item 6 is redun-
dant; now item 4 is the above-mentioned variant definition
x ≺ y ⇔ [x ≤ y & g(y) = g(x) + 1] from [3], which is
equivalent only if we assume item 2; finally item 5 is the
Jordan-Dedekind chain condition.

A quasi-order is a reflexive and transitive binary rela-
tion. Note that a non-empty intersection of quasi-orders is a
quasi-order, and that the intersection of an order and a quasi-
order is an order.

The set of all partial order relations on a set P is closed
under non-void intersection. However, it does not constitute
a lattice, because the supremum of partial order relations is
not necessarily defined; for instance, there is no partial or-
der containing both an order ≤ and its inverse ≥, because
antisymmetry would fail. Nevertheless, given a fixed partial
order ≤ on P , the set O(≤) of all partial order relations on

P that are included in ≤ is a complete lattice (since it is
closed under intersection and has a greatest element).

2.2 Partial Partitions and the Standard Order

Our notation follows [22, 23]. A partial partition of E is con-
stituted of mutually disjoint non-void subsets of E called
blocks. We write Π(E) for the set of all partitions of E,
and Π∗(E) for the set of all partial partitions of E. Thus
Π∗(E) = ⋃

A∈P(E) Π(A). Write Ø for the empty partial
partition (with no block); in fact, Π(∅)=Π∗(∅)= {Ø}. Set
1∅ = 0∅ = Ø, while for any A ∈ P(E) \ {∅}, let 1A = {A}
(the partition of A into a single block) and 0A = {{p} | p ∈
A} (the partition of A into its singletons); following [17],
we say that 0A is the identity partition of A, and 1A is the
universal partition of A. For π ∈Π∗(E), the support of π ,
written supp(π), is the union of its blocks: supp(π)=⋃π ;
the complement E \ supp(π) of the support is the back-
ground of π . For π ∈Π∗(E), a transversal of π is a subset
of E made by choosing one point in each block of π , in
other words a set A ⊆ supp(π) such that |A ∩ B| = 1 for
any B ∈ π ; a crossing of π is set A ⊆ supp(π) such that
A∩B �= ∅ for any B ∈ π ; it necessarily contains a transver-
sal.

The refinement order on Π(E) and the standard order
on Π∗(E) are given by the same definition: for π1,π2 ∈
Π∗(E),

π1 ≤ π2 (also written π2 ≥ π1)

⇐⇒ ∀B ∈ π1, ∃C ∈ π2, B ⊆ C.

Then both (Π(E),≤) and (Π∗(E),≤) are complete lattices.
Their least and greatest elements are 0E and 1E for Π(E),
but Ø and 1E for Π∗(E). The reader is referred to [22] for
the description of the supremum and infimum operations in
these lattices; they are written

∨
and

∧
(or ∨ and ∧ for

their binary counterparts). Note that the non-void supremum
and infimum operations in Π(E) are exactly the same as in
Π∗(E), and similarly, for A ⊆ E, the non-void supremum
and infimum operations in Π(A) and in Π∗(A) are again
the same as in Π∗(E).

Given π1,π2 ∈Π∗(E), let us write π1
m≺ π2 and say that

π2 m-covers π1, if π2 is obtained by merging two blocks of
π1:

π1
m≺ π2 ⇐⇒ |π1| ≥ 2, ∃C1,C2 ∈ π1, C1 �= C2,

π2 =
(
π1 \ {C1,C2}

)∪ {C1 ∪C2}. (2)

Now let us write π1
s≺ π2 and say that π2 s-covers π1, if π2

is obtained by adding a singleton block to π1:

π1
s≺ π2 ⇐⇒ supp(π1)⊂E, ∃p ∈E \ supp(π1),

π2 = π1 ∪
{{p}}. (3)
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Then
m≺ is the covering relation on partitions, and more gen-

erally on partial partitions having a common support. On the
other hand, the covering relation on partial partitions is the

union ≺= m≺ ∪ s≺ [23], in other words, π1 ≺ π2 if and only

if π1
m≺ π2 or π1

s≺ π2.
Assume now that E is finite. For any π ∈ Π∗(E), we

define hm(π), the m-height of π , and hs(π), the s-height of
π , as follows:

hm(π)= ∣∣supp(π)
∣
∣− |π |, hs(π)= ∣∣supp(π)

∣
∣. (4)

Since every block has at least one point, |supp(π)| ≥ |π |,
thus hm and hs are both non-negative integers. Now the
height of π [23] is their sum:

h(π)= hm(π)+ hs(π)= 2
∣
∣supp(π)

∣
∣− |π |. (5)

We can now determine the grading and height in Π∗(E)

and in Π(A) (for A ⊆ E). Note that the height in Π∗(E)

and in Π(A) was already given in [23]:

Theorem 2 Let E be finite. Then Π∗(E) is graded by

(hm,hs) for (
m≺,

s≺), that is, for any π1,π2 ∈ Π∗(E) we
have:

π1 < π2 =⇒
⎡

⎣
hm(π1)≤ hm(π2) &
hs(π1)≤ hs(π2) &
h(π1) < h(π2)

⎤

⎦ ,

π1
m≺ π2 =⇒

[
hs(π2)= hs(π1) &
hm(π2)= hm(π1)+ 1

]

,

π1
s≺ π2 =⇒

[
hm(π2)= hm(π1) &
hs(π2)= hs(π1)+ 1

]

.

In particular, (Π∗(E),≤) is graded by h = hm + hs . Also
hm(Ø)= hs(Ø)= 0, and for π ∈Π∗(E), the height of π in
Π∗(E) is h(π).

For any A ⊆ E, (Π(A),≤) is graded by hm. Also
hm(0A) = 0, and for π ∈ Π(A), the height of π in Π(A)

is hm(π).

Proof For π1 ≤ π2, we have supp(π1) ⊆ supp(π2), thus
hs(π1)= |supp(π1)| ≤ |supp(π2)| = hs(π2). Given a block
C ∈ π2 containing exactly k blocks B1, . . . ,Bk ∈ π1, ei-
ther k = 0 and

∑k
i=1(|Bi | − 1) = 0 ≤ |C| − 1, or k ≥

1 and
∑k

i=1(|Bi | − 1) = |⋃k
i=1 Bi | − k ≤ |C| − 1 (be-

cause C contains the disjoint union of B1, . . . ,Bk). Hence
∑

B∈π1∩P(C)(|B|−1)≤ |C|−1 anyway (here π1∩P(C) is
the set of blocks of π1 included in C). Since π1 ≤ π2, every
block of π1 is included in a unique block of π2, so we get

hm(π1)=
∣
∣supp(π1)

∣
∣− |π1| =

∑

B∈π1

(|B| − 1
)

=
∑

C∈π2

∑

B∈π1∩P(C)

(|B| − 1
)≤

∑

C∈π2

(|C| − 1
)

= ∣∣supp(π2)
∣
∣− |π2| = hm(π2).

Hence hm and hs are growing functions: π1 < π2 ⇒
hm(π1) ≤ hm(π2) & hs(π1) ≤ hs(π2). Given π1 ≤ π2,
as h = hm + hs , we have h(π2) = h(π1) if and only if
hm(π2) = hm(π1) and hs(π2) = hs(π1); then |supp(π2)| =
|supp(π1)| and |π2| = |π1|; as supp(π1) ⊆ supp(π2), we
deduce that supp(π1) = supp(π2). So every block of π2 is
a union of blocks of π1, and as |π2| = |π1|, two blocks of
π1 may not be merged in π2, hence π2 = π1. Therefore
π1 < π2 ⇒ h(π1) < h(π2).

If π1
m≺ π2, then (2) gives |supp(π2)| = |supp(π1)|

and |π2| = |π1| − 1, hence hm(π2) = hm(π1) + 1 and

hs(π2) = hs(π1). If π1
s≺ π2, then (3) gives |supp(π2)| =

|supp(π1)|+1 and |π2| = |π1|+1, hence hm(π2)= hm(π1)

and hs(π2)= hs(π1)+ 1.

We have thus shown that relatively to (
m≺,

s≺), the pair
(hm,hs) satisfies the conditions in Proposition 1, namely
item 1 and the alternate form (1) of item 3, hence Π∗(E)

is graded by (hm,hs) for (
m≺,

s≺). By item 6 of the Proposi-
tion, Π∗(E) is graded by h= hm + hs .

Obviously hm(Ø) = hs(Ø) = 0. Since Ø is the least el-
ement of Π∗(E), the height of any π ∈ Π∗(E) is h(π) −
h(Ø)= h(π).

Finally, let A ⊆ E. For π1,π2 ∈ Π(A), hs(π1) =
|supp(π1)| = |supp(π2)| = hs(π2). From the above we de-

duce that π1 < π2 =⇒ hm(π1) < hm(π2) and π1
m≺ π2 =⇒

hm(π2) = hm(π1) + 1, which means that (Π(A),≤) is
graded by hm. Obviously hm(0A) = 0. Since 0A is the
least element of Π(A), the height of any π ∈ Π(A) is
hm(π)− hm(0A)= hm(π). �

By item 4 of Proposition 1, for any π1,π2 ∈Π∗(E),

– π1 ≺ π2 iff π1 ≤ π2 and h(π2)= h(π1)+ 1.

– π1
m≺ π2 iff π1 ≤ π2, hm(π2)= hm(π1)+ 1 and hs(π2)=

hs(π1).

– π1
s≺ π2 iff π1 ≤ π2, hs(π2)= hs(π1)+ 1 and hm(π2)=

hm(π1).

Given π,π ′ ∈ Π∗(E) such that π ≤ π ′, by item 2 of that
Proposition, there is a covering chain between π and π ′. By
item 5, in such a covering chain π = π0 ≺ · · · ≺ πn = π ′,
among the n coverings πi ≺ πi+1 (i = 0, . . . , n− 1), there

are hm(π ′) − hm(π) m-coverings πi
m≺ πi+1 and hs(π

′) −
hs(π) s-coverings πi

s≺ πi+1, in particular n = h(π ′) −
h(π).

2.3 Connections and Partial Connections

For any family C ⊆P(E), let Π(E,C)=Π(E)∩P(C \{∅})
and Π∗(E,C)=Π∗(E)∩P(C \{∅}), be the families respec-
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tively of partitions and of partial partitions, whose blocks
belong to C (in fact, to C \ {∅}).

Let A ∈ P(E) and B ⊆ P(A). Then we say [22] that A

is chained by B if
∨

B∈B 1B = 1A (in particular, we must
have

⋃
B = A); equivalently, for any p,q ∈ A, there are

B0, . . . ,Bn ∈ B (n≥ 0) such that p ∈ B0, q ∈ Bn and Bt−1∩
Bt �= ∅ for all t = 1, . . . , n; we may assume that the elements
of B are non-empty, because A will be chained by B \ {∅}
anyway. Note in particular that the empty set is chained by
the empty family of its subsets.

Let S(E) be the set of all singletons {x}, x ∈E. A partial
connection on P(E) is a family C ⊆ P(E) such that ∅ ∈ C
and ∀B ⊆ C,

⋂
B �= ∅ ⇒ ⋃

B ∈ C (for B = ∅, we have
indeed

⋂
B = E �= ∅ and

⋃
B = ∅ ∈ C). A connection on

P(E) is a partial connection C such that S(E)⊂ C; in fact,
for any C ⊆ P(E), C is a partial connection if and only if
C ∪ S(E) is a connection. Given a partial connection C, for
any A ∈ P(E), let us write PCC(A) for the partial partition
of connected components of A according to C [22].

Given a family B of subsets of E, the least partial con-
nection (resp., connection) containing B is called the partial
connection (resp., connection) generated by B and it is writ-
ten Con∗(B) (resp., Con(B)). Then Con∗(B) is the set of all
X ∈ P(E) that are chained by P(X) ∩ B, while Con(B) =
Con∗(B) ∪ S(E). Note that Con∗(B) = Con∗(B \ {∅}) and
that for the empty family we get Con∗(∅)= {∅}.

Serra [32] showed that for C ⊆ P(E) with ∅ ∈ C, C is a
connection if and only if Π(E,C) is closed under the supre-
mum operation of Π(E) (in particular Π(E,C) comprises
the empty supremum of Π(E), that is, the least element 0E).
Then we showed [22] that C is a partial connection if and
only if Π∗(E,C) is closed under the supremum operation of
Π∗(E) (obviously, Π∗(E,C) comprises the empty supre-
mum of Π∗(E), that is, the least element Ø). We generalize
these two results as follows:

Proposition 3 Let B ⊆ P(E). Then:

1. The subset of Π∗(E) closed under the supremum oper-
ation generated by the partial partitions 1B , B ∈ B, is
Π∗(E,Con∗(B)).

2. The subset of Π(E) closed under the supremum opera-
tion generated by the partitions 1B ∨ 0E = 1B ∪ 0E\B ,
B ∈ B, is Π(E,Con(B)).

Proof We can assume that the elements of B are non-empty,
because Con∗(B) = Con∗(B \ {∅}) and Con(B) = Con(B \
{∅}). We can also assume that B is non-void, because the
result holds trivially for B = ∅: we get then Con∗(∅) = {∅}
and Con(∅) = {∅} ∪ S(E), hence Π∗(E,Con∗(∅)) = {Ø}
and Π(E,Con(∅)) = {0E}, and both are indeed generated
by the empty supremum in their respective lattices Π∗(E)

and Π(E).

1. Let X be the subset of Π∗(E) closed under supre-
mum generated by all 1B , B ∈ B. For any B ∈ B, B ∈
Con∗(B), so 1B ∈ Π∗(E,Con∗(B)); since Con∗(B) is a
partial connection, Π∗(E,Con∗(B)) is closed under supre-
mum, hence X ⊆ Π∗(E,Con∗(B)). Conversely, let π ∈
Π∗(E,Con∗(B)); for any A ∈ π , A ∈ Con∗(B), so A is
chained by P(A) ∩ B, that is, 1A =∨B∈P(A)∩B 1B ; we get
thus

π =
∨

A∈π

1A =
∨

A∈π

∨

B∈P(A)∩B
1B,

so π is a supremum of some 1B , B ∈ B, hence π ∈ X .
Therefore X =Π∗(E,Con∗(B)).

2. Let Y be the subset of Π(E) closed under supre-
mum generated by all 1B ∨ 0E = 1B ∪ 0E\B , B ∈ B. For
any B ∈ B, B ∈ Con(B), and for p ∈ E \ B , {p} ∈ Con(B),
so 1B ∪ 0E\B ∈Π(E,Con(B)); since Con(B) is a connec-
tion, Π(E,Con(B)) is closed under supremum, hence Y ⊆
Π(E,Con(B)). Conversely, let π ∈ Π(E,Con(B)); let π1

be the set of singleton blocks of π , and let π2 = π \π1 be the
set of non-singleton blocks of π ; for any A ∈ π1, 1A∨ 0E =
0E ; for any A ∈ π2, A ∈ Con∗(B), so 1A =∨B∈P(A)∩B 1B

(cf. item 1), hence 1A∨0E =∨B∈P(A)∩B(1B ∨0E); we get
thus

π = π ∨ 0E =
∨

A∈π

(1A ∨ 0E)

=
( ∨

A∈π1

0E

)
∨
( ∨

A∈π2

∨

B∈P(A)∩B
(1B ∨ 0E)

)
,

so either π2 is empty and π = 0E , or π is a supremum of
some 1B ∨ 0E , B ∈ B; hence π ∈ Y in any case. Therefore
Y =Π(E,Con(B)). �

For example, if E is endowed with an adjacency graph
and C is the connection consisting of all connected subsets
of E according to that graph, then C = Con(B) for the set
B of pairs of adjacent points of E, so Π(E,C) is generated
by suprema of 1P ∨ 0E , where P is a pair of adjacent points
of E. Also C = Con∗(B ∪ S(E)), where S(E) is the set of
singletons of E, so Π∗(E,C) is generated by suprema of 1P ,
where P is a singleton or a pair of adjacent points of E. A
particular case is when any two distinct points are adjacent
in that graph, so C = P(E), Π(E,C)=Π(E), Π∗(E,C)=
Π∗(E) and B is the family of all pairs of points of E; thus
every partition is a supremum of 1P ∨ 0E , where P is a pair
of points of E, and every partial partition is a supremum of
1P , where P is a singleton or a pair of points of E.

2.4 Other Relations on Partial Partitions

The standard order and its logical couterpoint given by the
building order suggest several possible binary relations be-
tween partial partitions, based on the inclusion of blocks; we
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also consider those relating the supports of the partial parti-
tions.

Each such binary relation will get a name; we will define
it by the conditions that two partial partitions π1,π2 must
satisfy in order for the ordered pair (π1,π2) to belong to
that relation.

Let us start with supports. The following three relations
are quasi-orders:

1. Support inclusion: supp(π1)⊆ supp(π2).
2. Support containment: supp(π1)⊇ supp(π2).
3. Support equality: supp(π1)= supp(π2).

Next, we consider relations between two partial partitions
based on the inclusion of blocks. The standard order relation
π1 ≤ π2, namely that every block of π1 is included in one
block of π2, can be expressed as π1 ⊆⋃B∈π2

P(B).
Note that by the disjointness of the blocks of a partial

partition, the following relation is universally satisfied: Ev-
ery block of π1 is included in at most one block of π2:

∀B ∈ π1,∀C,C′ ∈ π2,
[
B ⊆ C & B ⊆ C′

] =⇒ C = C′. (6)

We define the inclusion function of π1 in π2 as the set
incπ1,π2 of all (B,C) ∈ π1 × π2 such that B ⊆ C. Then (6)
means that incπ1,π2 is a partially defined function from π1 to
π2. We have incπ1,π2 ◦ incπ0,π1 ⊆ incπ0,π2 , which means that
for B ∈ π0 such that incπ0,π1(B) and incπ1,π2(incπ0,π1(B))

are defined, then incπ0,π2(B) is defined and we have

incπ1,π2

(
incπ0,π1(B)

)= incπ0,π2(B),

but there can exist C ∈ π0 such that incπ0,π2(C) is defined,
but incπ0,π1(C) or incπ1,π2(incπ0,π1(C)) is not defined. Now
π1 ≤ π2 means that the function incπ1,π2 is totally defined,
in other words it is a map π1 → π2. For π0 ≤ π1 ≤ π2, we
have the equality incπ1,π2 ◦ incπ0,π1 = incπ0,π2 .

The building order relation

π1 � π2 (also written π2 � π1)

⇐⇒ ∀C ∈ π2, ∃B ∈ π1, B ⊆ C,

namely that every block of π2 contains (at least) one block of
π1, can be expressed as π2 ⊆⋃B∈π1

P(E/B); it also means
that the partially defined function incπ1,π2 is surjective. This
relation satisfies the following:

∀π1,π2 ∈Π∗(E), ∀A ∈P(E),

π1 � π2 =⇒ π1 ∩P(A)� π2 ∩P(A). (7)

Note that � contains ⊇: when π1 ⊇ π2, every block of π2

contains itself and is a block of π1, hence π1 � π2. Also

∀π0,π1,π2 ∈Π∗(E),

[
π0 ≤ π1 ≤ π2 & π0 � π2

] =⇒ π1 � π2. (8)

Indeed, if incπ1,π2 and incπ0,π1 are maps and incπ1,π2 ◦
incπ0,π1 = incπ0,π2 is surjective, then the map incπ1,π2 must
be surjective. Serra [33, 34] showed the first and last sen-
tences of the following:

Proposition 4 The building order � is a partial order rela-
tion on Π∗(E). Furthermore,

∀π1,π2 ∈Π∗(E),

π1 ≤ π2 =⇒ π1 � π2 \P
(
E \ supp(π1)

)
, (9)

and π2 \ P(E \ supp(π1)) � π2 ∩ P(supp(π1)). In partic-
ular, the restriction of the building order to partitions of
a fixed set contains the refinement order: given π1,π2 ∈
Π∗(E) such that supp(π1) = supp(π2) and π1 ≤ π2, then
π1 � π2.

Proof Here π2 \P(E \ supp(π1)) is the set of blocks of π2

that overlap supp(π1), while π2 ∩ P(supp(π1)) is the set
of blocks of π2 that are included in supp(π1); since blocks
are non-void, π2 \ P(E \ supp(π1)) ⊇ π2 ∩ P(supp(π1)),
so π2 \P(E \ supp(π1)) � π2∩P(supp(π1)). We show (9).
Let C ∈ π2 \P(E \supp(π1)); then C � supp(π1), so it must
overlap a block B ∈ π1, but as π1 ≤ π2, there is a block
C′ ∈ π2 such that B ⊆ C′; since ∅ ⊂ C ∩ B ⊆ C ∩ C′, the
blocks C and C′ overlap, hence we have C = C′, so B ⊆ C:
every block of π2 \P(E \ supp(π1)) contains a block of π1.

When supp(π1)= supp(π2), we get

π2 \P
(
E \ supp(π1)

)= π2 ∩P
(
supp(π1)

)= π2,

and in this case (9) gives π1 ≤ π2 ⇒ π1 � π2, so indeed
(9) generalizes Serra’s statement. �

The remark (6) suggests the following relation:

– singularity: every block of π2 contains at most one block
of π1,

π1 	 π2 (also written π2 
 π1) ⇐⇒
⎧
⎪⎪⎩
∀B,B ′ ∈ π1,∀C ∈ π2,[
B ⊆ C & B ′ ⊆ C

] =⇒ B = B ′
⎫
⎪⎪⎭ . (10)

It means that the partially defined function incπ1,π2 is injec-
tive. Note that when B ⊆ C for B ∈ π1 and C ∈ π2, we have
B = B ∩C �= ∅, so B ∈ π1 ∧ π2, hence

∀π1,π2 ∈Π∗(E), π1 ∧ π2 	 π2 =⇒ π1 	 π2. (11)

We have the following:

∀π1,π2,π3,π4 ∈Π∗(E),
[
π1 	 π2 & π3 ⊆ π1 & π4 ⊆ π2

] =⇒ π3 	 π4. (12)
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Fig. 3 Illustration of Property 5

The counterpart of (8) is

∀π0,π1,π2 ∈Π∗(E),
[
π1 ≤ π2 & π0 	 π2

] =⇒ π0 	 π1. (13)

Indeed, let B,B ′ ∈ π0 and C ∈ π1 such that B,B ′ ⊆ C;
since π1 ≤ π2, there is D ∈ π2 such that C ⊆ D, but as
B,B ′ ⊆D and π0 	 π2, we must have B = B ′.

Singularity itself, as well as its intersection with the
building order, is not transitive:

Property 5 When |E| ≥ 5, the intersection of the build-
ing order, the singularity and the support equality relations,
is not transitive; in other words, there exist π0,π1,π2 ∈
Π∗(E) such that π0 � π1 � π2, supp(π0) = supp(π1) =
supp(π2) and π0 	 π1 	 π2, but π0 �	 π2.

Indeed, see Fig. 3, we partition E into 5 mutually disjoint
non-void sets J,K,L,M,N , and take

π2 = {J ∪K,L∪M ∪N},
π1 = {J,K ∪L,M ∪N},
π0 = {J,K,L∪M,N}.
Then every block of π2 contains exactly one block of π1,
every block of π1 contains exactly one block of π0, but every
block of π2 is the union of two blocks of π0.

However we have the following:

Proposition 6 The intersection of the standard order and of
the singularity relation, i.e., the set of ordered pairs (π1,π2)

such that π1 ≤ π2 and π1 	 π2, is a partial order relation
on Π∗(E).

Proof Obviously singularity is reflexive; hence its intersec-
tion with the standard order will also be reflexive, and that
intersection will inherit the antisymmetry of that order. Let
us show that this intersection is transitive. Take π0,π1,π2 ∈
Π∗(E) such that π0 ≤ π1 ≤ π2 and π0 	 π1 	 π2; then
the transitivity of the order ≤ gives π0 ≤ π2, thus we have
only to show that π0 	 π2. Since π0 ≤ π1 ≤ π2 and π0 	
π1 	 π2, both incπ0,π1 and incπ1,π2 are injective maps, thus
the map incπ1,π2 ◦ incπ0,π1 = incπ0,π2 is injective, that is,
π0 	 π2. �

In [33], Serra defined the partial order relation on P(E)

consisting of all ordered pairs (X,Y ) ∈ P(E)2 such that

X ⊆ Y and PCC(X) 	 PCC(Y ) (for a given partial connec-
tion C on P(E)). Since X ⊆ Y ⇒ PCC(X)≤ PCC(Y ), the
property of being a partial order follows from Proposition 6.

Besides the standard and building orders, we have ob-
tained a new partial order relation on Π∗(E) defined in
Proposition 6; it is in fact the inclusion-inflating order ⊆�
that we will study in Sect. 3.2.

3 The Basic Orders and Their Direct Combinations

In Sect. 3.1, we will study our basic orders: the merging,
inclusion and inflating orders, all three included in the stan-
dard order. They are linked by a triangular relation. Then
Sect. 3.2 will consider combinations of these basic orders,
generated by the composition of two of them; these combi-
nations are direct, in the sense that none of the basic orders
is inverted w.r.t. the other. We get then the merging-inflating
and inclusion-inflating orders, again included in the standard
order; the standard order will also be obtained as a combi-
nation of merging and inclusion. We will rely heavily on the
results of Sects. 2.2 and 2.4.

3.1 The Merging, Inclusion and Inflating Triangle

Before introducing our basic orders, we define the cor-
responding covering relations and heights. For π1,π2 ∈
Π∗(E), let us write π1

c≺ π2 and say that π2 c-covers π1,
if π2 is obtained by adding a block to π1:

π1
c≺ π2 ⇐⇒ supp(π1)⊂E, ∃B ⊆E \ supp(π1),

B �= ∅, π2 = π1 ∪ {B}. (14)

Next, let us write π1
i≺ π2 and say that π2 i-covers π1, if π2

is obtained by inflating one block of π1, to which one point
is added:

π1
i≺ π2 ⇐⇒

⎡

⎣
supp(π1)⊂E, π1 �=Ø,

∃p ∈E \ supp(π1), ∃B ∈ π1,

π2 =
(
π1 \ {B}

)∪ {B ∪ {p}}

⎤

⎦ . (15)

When E is finite, for any π ∈Π∗(E), we define hc(π),
the c-height of π , as its size:

hc(π)= hs(π)− hm(π)= |π |. (16)

Thus, see (4), hm(π)= hs(π)−hc(π) and hs(π)= hm(π)+
hc(π).

The first basic order is the merging order 	 (we called it
pure refinement order in [26]). It is defined as the intersec-
tion of the standard order and of the support equality rela-
tion:

∀π1,π2 ∈Π∗(E),
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π1 	 π2 ⇐⇒
[
π1 ≤ π2 & supp(π1)= supp(π2)

]
. (17)

Here every block of π1 is included in a block of π2, and
every block of π2 is a union of blocks of π1: indeed, for any
C ∈ π2 and p ∈ C, as p ∈ supp(π1), there is some B ∈ π1

such that p ∈ B , and B ⊆ C′ for some C′ ∈ π2, thus p ∈
C ∩C′, so C = C′ and p ∈ B ⊆ C. We say then that π1 is a
splitting of π2, or that π2 is a merging of π1.

Theorem 7 Merging 	 is a partial order relation on
Π∗(E); it is included in the standard order: π1 	 π2 ⇒
π1 ≤ π2. Further,

∀π0,π1,π2 ∈Π∗(E),
[
π0 ≤ π1 ≤ π2 & π0 	 π2

] =⇒ π0 	 π1 	 π2. (18)

The poset (Π∗(E),	) is the disjoint union of the complete
lattices (Π(A),≤) for all A ∈ P(E), where for distinct
A,A′ ∈ P(E), elements of Π(A) and Π(A′) are mutually
incomparable. The maximal and minimal elements are all
1A and 0A respectively, for A ∈ P(E); every π ∈ Π∗(E)

majorates a unique minimal element, namely 0supp(π). The

covering relation is
m≺.

Let E be finite. Then (Π∗(E),	) is graded by hm, that
is, for any π1,π2 ∈Π∗(E) we have

π1 � π2 =⇒ hm(π1) < hm(π2),

π1
m≺ π2 =⇒ hm(π2)= hm(π1)+ 1.

For π ∈Π∗(E), the height of π w.r.t. 0supp(π) is hm(π).

Proof Being the intersection of the partial order ≤ and of
the quasi-order given by support equality, merging 	 is a
partial order relation included in ≤.

If π0 ≤ π1 ≤ π2, then supp(π0)⊆ supp(π1)⊆ supp(π2),
and if π0 	 π2, then supp(π0)= supp(π2), from which we
deduce that supp(π0) = supp(π1) = supp(π2), hence π0 	
π1 	 π2. Therefore (18) holds.

Obviously Π∗(E) is the disjoint union of the Π(A)

for all A ∈ P(E), and π1 	 π2 means that there is some
A ∈ P(E) with π1,π2 ∈Π(A) and π1 ≤ π2 (for the refine-
ment order), so the two sentences following (18) are valid.
Similarly the covering relation is the one for the refinement

order, that is
m≺.

When E is finite, the grading by hm, and the latter being
the height, follow from Theorem 2. �

In the Introduction, we already argued that the refinement
order on partitions is relevant to image segmentation and
connected filtering. For partial partitions, the merging order
is involved in split-and-merge operations in segmentation.

Our second basic order is inclusion: for π1,π2 ∈Π∗(E),
π1 ⊆ π2 simply means that each block of π1 is a block of π2;

in other words, the inclusion function incπ1,π2 is the identity
map on π1:

∀B ∈ π1, incπ1,π2(B)= B.

Theorem 8 Inclusion ⊆ is a partial order relation on
Π∗(E); it is included in the standard order: π1 ⊆ π2 ⇒
π1 ≤ π2. Further,

∀π0,π1,π2 ∈Π∗(E),
[
π0 ≤ π1 ≤ π2 & π0 ⊆ π2

] =⇒ π0 ⊆ π1. (19)

In the poset (Π∗(E),⊆), every non-void family {πi | i ∈ I }
(I �= ∅) has an infimum, given by the intersection

⋂
i∈I πi ;

it has a supremum if and only if all distinct blocks in the
union

⋃
i∈I πi are pairwise disjoint, and then this union is

the supremum. The least element is Ø, the maximal elements
are all partitions of E. For any π ∈Π∗(E), P(π)⊆Π∗(E),
it is the set of minorants of π and it is closed under non-void

infima and suprema. The covering relation is
c≺.

Let E be finite. Then (Π∗(E),⊆) is graded by hc , that is,
for any π1,π2 ∈Π∗(E) we have

π1 ⊂ π2 =⇒ hc(π1) < hc(π2),

π1
c≺ π2 =⇒ hc(π2)= hc(π1)+ 1.

The height of any π ∈Π∗(E) is hc(π).

Proof The first sentence is obvious. If π0 ≤ π1 ≤ π2 and
π0 ⊆ π2, then for any B ∈ π0, there are C ∈ π1 and D ∈ π2

with B ⊆ C ⊆D, and B ∈ π2; as B,D ∈ π2 with B ⊆D, we
get B =D, and as B ⊆ C ⊆D = B , B = C, hence B ∈ π1;
therefore π0 ⊆ π1. Thus (19) holds.

Given a non-void family {πi | i ∈ I } (I �= ∅) of partial
partitions,

⋂
i∈I πi is a partial partition, it is thus their infi-

mum for the inclusion order. If in
⋃

i∈I πi we have B ∈ πi

and C ∈ πj with B � C, then no partial partition can have
both B and C as blocks, hence it cannot contain both πi and
πj : the family has no supremum. On the other hand if all
blocks of

⋃
i∈I πi are pairwise disjoint, then

⋃
i∈I πi is a

partial partition, hence it is the supremum for the inclusion
order.

For any π ∈Π∗(E), we always have Ø⊆ π , so Ø is the
least element. If π /∈Π(E), then π ⊂ π ∪{E \π}, but if π ∈
Π(E), we cannot have π ⊂ π ′, so the maximal elements are
partitions. Obviously P(π), ordered by inclusion, is a subset
of Π∗(E), closed under non-void infima and suprema.

When E is finite, as hc(π)= |π |, cf. (16), the statements
about the grading and the height are straightforward. �

It should be noted that for π1 ⊆ π2, as π2 is obtained by
adding to π1 new blocks outside its support, |supp(π2)| −
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|supp(π1)| = |supp(π2 \ π1)| and |π2| − |π1| = |π2 \ π1|.
Thus:

∀π1,π2 ∈Π∗(E),

π1 ⊆ π2 =⇒
⎡

⎣
hc(π2)− hc(π1)= hc(π2 \ π1),

hs(π2)− hs(π1)= hs(π2 \ π1),

hm(π2)− hm(π1)= hm(π2 \ π1).

⎤

⎦

Comparing (19) with (18), when π0 ⊆ π1 ≤ π2 and π0 ⊆
π2, we cannot deduce that π1 ⊆ π2; take for example π0 =
{A}, π1 = {A,B} and π2 = {A,C}, where ∅ ⊂ A, ∅ ⊂ B ⊂
C and A∩C = ∅.

As we saw in the Introduction, the inclusion order is in-
volved in the elimination of “parasitic” segmentation classes
[33, 34], but also in the compound segmentation paradigm
[27, 31], where we add to the blocks of a first segmentation
those of a second segmentation of the residue. In the lattice
P(E), an anti-extensive operator ψ is connected if and only
if for any X ∈ P(E), the partial partition of all connected
components of ψ(X) is a subset of the one of all connected
components of X: PCC(ψ(X))⊆ PCC(X).

The third basic order is the inflating order �, defined as
the intersection of the standard and building orders and of
the singularity relation:

∀π1,π2 ∈Π∗(E),

π1 � π2 ⇐⇒
[
π1 ≤ π2 & π1 � π2 & π1 	 π2

]
. (20)

In other words, every block of π1 is included in a unique
block of π2 and every block of π2 contains a unique block
of π1, the inclusion function incπ1,π2 is a bijection between
π1 and π2. We say then that π1 is a deflation of π2, or that
π2 is an inflation of π1.

Theorem 9 Inflating � is a partial order relation on
Π∗(E); it is included in the standard order: π1 � π2 ⇒
π1 ≤ π2. Further,

∀π0,π1,π2 ∈Π∗(E),
[
π0 � π1 ≤ π2 & π0 � π2

] =⇒ π1 � π2,
[
π0 ≤ π1 � π2 & π0 � π2

] =⇒ π0 � π1. (21)

Ø is isolated. In Π∗(E) \ {Ø}, the minimal elements are all
0A for A ∈ P(E) \ {∅}, while the maximal elements are all
partitions of E. Given π ∈ Π∗(E), the minimal elements
majorated by π are the 0A for all transversals A of π (for

π =Ø, A= ∅ and 0A =Ø). The covering relation is
i≺.

Let E be finite. Then (Π∗(E),�) is graded by hm, that
is, for any π1,π2 ∈Π∗(E) we have

π1 � π2 =⇒ hm(π1) < hm(π2),

π1
i≺ π2 =⇒ hm(π2)= hm(π1)+ 1.

For π ∈ Π∗(E) and a transversal A of π , the height of π

w.r.t. 0A is hm(π).

Proof By Propositions 4 and 6, � and ≤ ∩	 are partial
orders, and � is the intersection of the two, hence it is a
partial order relation included in ≤.

If π0 ≤ π1 ≤ π2, then the maps incπ0,π1 : π0 → π1,
incπ1,π2 : π1 → π2 and incπ0,π2 : π0 → π2 are totally de-
fined and satisfy incπ1,π2 ◦ incπ0,π1 = incπ0,π2 . Here πi � πj

(i < j ) means that incπi ,πj
is a bijection; thus if any two of

incπ0,π1 , incπ1,π2 and incπ1,π2 are bijections, then by com-
position the third one will be a bijection, so we get (21).

For π �=Ø, we have no bijection between π and Ø, thus
neither Ø � π nor π � Ø: Ø is isolated. In Π∗(E) \ {Ø},
a partial partition π is minimal if and only if one cannot
decrease any of its blocks, in other words all its blocks are
singletons, while π is maximal if one cannot increase any
of its blocks, in other words supp(π)= E. For π ∈Π∗(E)

and A ∈P(E), we have 0A � π if and only if every point of
A belongs to a block of π and every block of π contains a
unique point of A, in other words A is a transversal of π .

If π0 � π1 � π2, then π2 is obtained from π0 either by
increasing several distinct blocks, or by increasing twice a
single block, then that block increases by at least two points.
Conversely if π0 � π2 and π2 is obtained from π0 by in-
creasing several distinct blocks, then π1 resulting from the
increase of only one of these blocks satisfies π0 � π1 � π2;
similarly, if π2 is obtained by adding to a block of π0 at
least two points, then π1 resulting from adding to that block
only one of these points satisfies π0 � π1 � π2. Therefore

the covering relation is
i≺, where one block is increased by

exactly one point.
Let E be finite. For π1 � π2, we have π1 ≤ π2, so

hm(π1) ≤ hm(π2) by Theorem 2. By the bijection incπ1,π2

we get |π2| = |π1|. If hm(π2) = hm(π1), then by (4) we
get hs(π2) = hs(π1), so π1 = π2 by Theorem 2. Hence

π1 � π2 ⇒ hm(π1) < hm(π2). If π1
i≺ π2, then π1 � π2,

|π2| = |π1| and |supp(π2)| = |supp(π1)|+ 1, thus by (4) we
get hm(π2)= |supp(π2)| − |π2| = |supp(π1)| − |π1| + 1=
hm(π1) + 1. Therefore (Π∗(E),�) is graded by hm. Let
A be a transversal of π ∈ Π∗(E); as hm(0A) = 0 by The-
orem 2, the height of π w.r.t. 0A is hm(π) − hm(0A) =
hm(π). �

Comparing (21) with (18), when π0 ≤ π1 ≤ π2 and π0 �
π2, we cannot deduce that π0 � π1 or π1 � π2; take for ex-
ample π0 = {A}, π1 = {A,B} and π2 = {A ∪ B} for two
disjoint non-void A and B . We will in fact obtain (30).

In the Introduction we saw that the inflating order is in-
volved in region growing methods for segmentation, such as
the watershed, or the growth of regions from seeds, guided
by a homogeneity condition, see for instance [1]. The fact
that Ø is isolated reflects the fact that in region growing,
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Fig. 4 Left: the foreground and background are in black and light grey
respectively; alternatively, the light grey connected components are the
basins, and the black region is the divide. Middle: a homotopic reduc-
tion of the black foreground. Right: the connected basins grow, and the
divide is reduced; compared with the homotopic reduction, we have
also removed the black segment, whose points are adjacent to a single
basin

we need at least one marker for growing a region. Also in
Serra’s method [33, 34], in the second step, eliminated “par-
asitic” segmentation classes are covered by inflating the re-
maining classes.

For homotopic reduction (or thinning) of binary images
in E = Z2, we consider two connections F and B for the
foreground and background respectively (for instance, the
ones arising from the 8- and 4-adjacencies). The topological
condition is that the inclusion relation between connected
components of the figure after and before reduction, and be-
tween those of the complement before and after reduction,
are bijections [20]. In other words, given a figure F0 ∈P(E)

and its reduction F1, we must have
{

PCF (F1)� PCF (F0) &

PCB(E \ F0) � PCB(E \ F1).
(22)

See Fig. 4, left and middle.
In the watershed construction, we have connected basins,

and the complement of their union is the divide; the divide
is reduced, but its topology must not be preserved; only the
connectivity of basins must be preserved. So if D0 and D1

are the initial and reduced divides, the condition is

PCB(E \D0) � PCB(E \D1). (23)

NB. Since D1 ⊆ D0, we have PCF (D1) ≤ PCF (D0) any-
way. A possible method is to perform a homotopic reduc-
tion of the divide until it reduces to a skeleton without any
topologically simple point, and then to remove from it all
points adjacent to a single basin. See Fig. 4. This approach
has recently been formalized in the framework of simplicial
complexes [5].

In the Introduction, we mentioned that several connective
segmentation methods produce a partial partition of con-
nected regions, and the boundaries separating them consti-
tute the background; for some of these methods (such as the
smooth connection [27, 32]), the boundaries are often thick.

Fig. 5 Illustration of Proposition 10 (top) and of its proof (bottom)

Thus one can apply to the segmentation background a ho-
motopic thinning (22), or reduce it as a watershed divide
(23); in both cases all segmentation classes are inflated, cf.
the light grey zones in Fig. 4.

Let us now give the triangular relation linking these three
orders. It means that each one can be obtained by combining
the other two in some order:

Proposition 10 For any π1,π2 ∈Π∗(E),

1. If π1 � π2, then there exists π ∈Π∗(E) such that π1 ⊆
π 	 π2.

2. If π1 	 π2, then there exists π ∈Π∗(E) such that π1 ⊇
π � π2.

3. If π1 �=Ø and π1 ⊆ π2, then there exists π ∈Π∗(E) such
that π1 � π � π2.

See Fig. 5, top row.

Proof Our argument is illustrated in Fig. 5, bottom row. In
both items 1 and 2, if π1 = Ø, then π2 = Ø and we take
π =Ø; we can thus assume that π1 �=Ø, and then π2 �=Ø.

1. Let π1 � π2. For any B ∈ π1, let f (B)= incπ1,π2(B)\
B; thus π2 = {B ∪ f (B) | B ∈ π1}. Take π = π1 ∪ {f (B) |
B ∈ π1, f (B) �= ∅}, we have π1 ⊆ π 	 π2.

2. Let π1 	 π2. For any C ∈ π2, choose one B ∈ π1 such
that B ⊆ C, and set f (C)= B (in other words, incπ1,π2 ◦ f

is the identity on π2). Take π = {f (C) | C ∈ π2}, we have
π1 ⊇ π � π2.

3. Let π1 ⊆ π2. For any C ∈ π2, choose f (C) ∈ π1 with
the condition that when C ∈ π1, f (C)= C (in other words,
f ◦ incπ1,π2 is the identity on π1). For B ∈ π1, let g(B) =
⋃

f−1(B), the union of all C ∈ π2 such that f (C)= B; as
f (B) = B , B ⊆ g(B). Take π = {g(B) | B ∈ π1}, we have
π1 � π � π2. �
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Fig. 6 Illustration of Theorem 11: from π1 ≤ π2 we get π1 ⊆ π 	 π2

3.2 Direct Combinations

We will now consider orders generated by the composition
of any two basic orders. We obtain two new partial order
relations, the merging-inflating	� and inclusion-inflating⊆�
orders, while the standard order is generated by the merging
and inclusion orders. We finally describe the lattice of order
relations on Π∗(E) generated by the three basic orders 	,
⊆ and �. NB. The combination of one basic order with the
inverse of another one will be considered in another paper.

Theorem 11 The standard order is generated by inclu-
sion followed by merging: for any π1,π2 ∈ Π∗(E), π1 ≤
π2 ⇐⇒ ∃π ∈Π∗(E), π1 ⊆ π 	 π2.

Proof If π1 ⊆ π 	 π2, then π1 ≤ π ≤ π2, hence π1 ≤ π2.
Suppose now that π1 ≤ π2; let π ′ = {B \ supp(π1) | B ∈
π2, B � supp(π1)} and π = π1 ∪ π ′. Then π1 ⊆ π by con-
struction; now every block of π1 ∪ π ′ is included in a block
of π2, so π ≤ π2, and supp(π)= supp(π2), hence π 	 π2.
See Fig. 6. �

Note that in particular inflating is generated by inclusion
followed by merging, cf. item 1 of Proposition 10.

Let us now consider the two other combinations, of in-
flating with either merging or inclusion. First, the merging-
inflating order 	� (called refinement-inflating order in [26]).
It is defined as the intersection of the standard and building
orders:

∀π1,π2 ∈Π∗(E),

π1 	� π2 ⇐⇒
[
π1 ≤ π2 & π1 � π2

]
. (24)

In other words, every block of π1 is included in a unique
block of π2 and every block of π2 contains at least one
block of π1, the inclusion function incπ1,π2 is a surjective
map from π1 to π2.

Theorem 12 Merging-inflating 	� is a partial order rela-
tion on Π∗(E); it is included in the standard order and
it contains the merging and inflating orders: π1 	� π2 ⇒
π1 ≤ π2, π1 	 π2 ⇒ π1 	� π2 and π1 � π2 ⇒ π1 	� π2.
It is generated by composing merging and inflating in any
order: for any π1,π2 ∈Π∗(E),

π1 	� π2 ⇐⇒
(∃π3 ∈Π∗(E), π1 	 π3 � π2

)

⇐⇒ (∃π4 ∈Π∗(E), π1 � π4 	 π2
)
.

Further,

∀π0,π1,π2 ∈Π∗(E),
[
π0 ≤ π1 ≤ π2 & π0 	� π2

] =⇒ π1 	� π2 (25)

and
[
π0 	� π1 ≤ π2 & π0 � π2

] =⇒ π0 � π1 � π2. (26)

Ø is isolated. In Π∗(E)\{Ø}, the greatest element is 1E and
the minimal elements are all 0A for A ∈ P(E) \ {∅}. Given
π ∈ Π∗(E), the minimal elements majorated by π are the
0A for all crossings A of π (for π =Ø, A= ∅ and 0A =Ø).

The covering relation is
mi≺=m≺∪ i≺.

Let E be finite. Then Π∗(E) is graded by (−hc,hs) for

(
m≺,

i≺), that is, for any π1,π2 ∈Π∗(E) we have

π1 �� π2 =⇒
⎡

⎣
hs(π1)≤ hs(π2) &
hc(π1)≥ hc(π2) &
hm(π1) < hm(π2)

⎤

⎦ ,

π1
m≺ π2 =⇒

[
hs(π2)= hs(π1) &
hc(π2)= hc(π1)− 1

]

,

π1
i≺ π2 =⇒

[
hc(π2)= hc(π1) &
hs(π2)= hs(π1)+ 1

]

.

In particular, (Π∗(E),	�) is graded by hm = hs − hc. For
π ∈Π∗(E) and a crossing A of π , the height of π w.r.t. 0A

is hm(π).

Proof Since 	� is the intersection of the standard and the
building orders, both being order relations (see Proposi-
tion 4), it is a partial order relation included in ≤. By Propo-
sition 4 and (17), both the building and the standard orders
contain 	, and comparing (20) with (24), 	� contains �.

If π1 	 π3 � π2, then π1 	� π3 	� π2, and if π1 � π4 	
π2, then π1 	� π4 	� π2, thus π1 	� π2 in both cases. Sup-
pose now that π1 	� π2. We will construct π3,π4 ∈Π∗(E)

such that π1 	 π3 � π2 and π1 � π4 	 π2; this is illustrated
in Fig. 7.

Since π1 � π2, every block C of π2 contains a block of
π1, so C ∩ supp(π1) �= ∅. Let

π3 = π2 ∧ 1supp(π1) =
{
C ∩ supp(π1) | C ∈ π2

};
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Fig. 7 Illustration of Theorem 12: from π1 	� π2 (top) we get
π1 	 π3 � π2 (middle) and π1 � π4 	 π2 (bottom)

as supp(π1) ⊆ supp(π2), we have supp(π3) = supp(π1),
and as π1 ≤ π2, we get π1 ≤ π3, hence π1 	 π3 by (17).
Now π3 ≤ π2 and for any C ∈ π2, C ∩ supp(π1) is the
unique block of π3 included in C; hence incπ3,π2 is a bi-
jection, so π3 � π2. Therefore π1 	 π3 � π2.

For any C ∈ π2, choose one B ∈ π1 such that B ⊆ C, and
set f (C) = B (in other words, incπ1,π2 ◦ f is the identity
on π2). Let πa = {f (C) | C ∈ π2} ⊆ π1 and π0 = π1 \ πa .
For any C ∈ π2, C∩ supp(πa)= f (C), because every block
of πa distinct from f (C) must be f (C′) for another C′ ∈
π2, so f (C′) ∩ C ⊆ C′ ∩ C = ∅; let g(C) = C \ supp(π0);
then g(C) = (C ∩ supp(πa)) ∪ (C \ supp(π1)) = f (C) ∪
(C \supp(π1)), so f (C)⊆ g(C)⊆ C. Let πb = {g(C) | C ∈
π2}; since f (C) ⊆ g(C) and f (C) is the unique block of
πa included in C, hence in g(C), incπa,πb

is the bijection
f (C) �→ g(C) for all C ∈ π2, so πa � πb . Now supp(πb)∩
supp(π0) = ∅, so π4 = π0 ∪ πb is a partial partition. Then
π1 = π0 ∪πa � π0 ∪πb = π4, since incπ1,π4 is the bijection
given by f (C) �→ g(C) for C ∈ π2 and B �→ B for B ∈ π0.
As π0 ⊆ π1 ≤ π2, and g(C)⊆ C for C ∈ π2, we have π4 =
π0 ∪ πb ≤ π2; now

supp(πb)=
⋃

C∈π2

g(C)=
⋃

C∈π2

(
C \ supp(π0)

)

= supp(π2) \ supp(π0),

so supp(π4)= supp(π0) ∪ supp(πb)= supp(π2), and since
π4 ≤ π2, (17) gives π4 	 π2. Therefore π1 � π4 	 π2.

Now (25) follows from (8) and (24). If π0 	� π1 ≤ π2

and π0 � π2, then incπ0,π1 is a surjection, incπ1,π2 is a map,
incπ0,π2 = incπ1,π2 ◦ incπ0,π1 and incπ0,π2 is a bijection; but
then the surjection incπ0,π1 must also be injective, hence it is
a bijection, so π0 � π1, and by (21) we deduce that π1 � π2.
Therefore (26) holds.

For π �= Ø, we have no surjection π → Ø or Ø → π ,
thus neither Ø 	� π nor π 	� Ø: Ø is isolated. In Π∗(E) \
{Ø}, a partial partition π is minimal if and only if one
cannot decrease or split any of its blocks, in other words
all its blocks are singletons. On the other hand, for π ∈
Π∗(E) \ {Ø}, we have π 	� 1E , so 1E is the greatest ele-
ment of Π∗(E) \ {Ø}. For π ∈ Π∗(E) and A ∈ P(E), we
have 0A 	� π if and only if every point of A belongs to a
block of π and every block of π contains at least one point
of A, in other words A is a crossing of π .

Let π1
m≺ π2; thus π1 ≺ π2. If π1 �� π �� π2, then π1 <

π < π2, which contradicts the fact that ≺ is the covering

relation for ≤. Hence π2 covers π1 for 	�. Now let π1
i≺ π2;

thus π1 � π2. If π1 �� π �� π2, then (26) gives π1 � π � π2,

which contradicts the fact that
i≺ is the covering relation for

�, see Theorem 9. Hence π2 covers π1 for 	�. Conversely,
let π2 cover π1. We obtain π1 	 π3 � π2 as above; the three
cases π1 � π3 � π2, π1 = π3 � π � π2 and π1 � π � π3 =
π2 contradict the covering of π1 by π2, so there remain only

the cases where π2 covers π1 for 	 or for �, that is, π1
m≺

π2 or π1
i≺ π2 (Theorems 7 and 9). Therefore the covering

relation is
m≺∪ i≺.

Let E be finite. For π1 	� π2, we have π1 ≤ π2, so The-
orem 2 gives hs(π1)≤ hs(π2), while the surjection incπ1,π2

gives |π1| ≥ |π2|, that is, hc(π1)≥ hc(π2); thus

hm(π2)− hm(π1)

= (hs(π2)− hs(π1)
)+ (hc(π1)− hc(π2)

)≥ 0,

with both terms hs(π2) − hs(π1) and hc(π1) − hc(π2) be-
ing ≥ 0. If hm(π2) = hm(π1), then hs(π2) = hs(π1), and
as π1 ≤ π2, Theorem 2 gives π1 = π2. Hence π1 �� π2 ⇒
hm(π1) < hm(π2), with hs(π1) ≤ hs(π2) and hc(π1) ≥
hc(π2). Now π1

m≺ π2 gives hs(π2)= hs(π1) and hc(π2)=
hc(π1) − 1 by Theorem 2, while π1

i≺ π2 gives hs(π2) =
hs(π1)+ 1 and hc(π2) = hc(π1) by Theorem 9. Therefore

Π∗(E) is graded by (−hc,hs) for (
m≺,

i≺), see Proposition 1.
By item 6 of that Proposition, (Π∗(E),	�) is graded by
hm = hs − hc .

For a crossing A of π , hm(0A)= 0 by Theorem 2, so the
height of π w.r.t. 0A is hm(π)− hm(0A)= hm(π). �

By item 5 of Proposition 1, in a covering chain π0
mi≺

· · · mi≺ πn, among the n coverings πi
mi≺ πi+1 (i = 0, . . . , n−

1), there are hc(π0) − hc(πn) m-coverings πi
m≺ πi+1 and

hs(πn)− hs(π0) i-coverings πi
i≺ πi+1.

Comparing (25) with similar identities (18), (19), (21),
when π0 ≤ π1 	� π2 and π0 	� π2, we cannot deduce that
π0 	� π1; take for example π0 = {A}, π1 = {A,B} and π2 =
{A∪B} for two disjoint non-void A and B .
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The merging-inflating order intervenes in segmentation
algorithms where one starts regions with markers, then one
can both grow regions and merge them, see for example
[12]. Also we saw above that an anti-extensive connected
operator ψ on P(E) will remove some connected compo-
nents of a set, i.e., PCC(ψ(X)) ⊆ PCC(X). Now assuming
that the connection C arises from a graph and that E is con-
nected, a connected component C of the set X is adjacent to
a connected component D of the complement E \X; thus if
ψ removes C from X, it will not become a connected com-
ponent of the complement E \ψ(X), because C ∪D will be
connected. Hence the connected components of the comple-
ment will be inflated and merged, but none will be created,
so PCC(E \ψ(X))� PCC(E \X).

The next compound order is the inclusion-inflating order
⊆�, it is the one defined in Proposition 6, namely the inter-
section of the standard order and of the singularity relation:

∀π1,π2 ∈Π∗(E),

π1 ⊆� π2 ⇐⇒
[
π1 ≤ π2 & π1 	 π2

]
. (27)

In other words, every block of π1 is included in a unique
block of π2 and every block of π2 contains at most one
block of π1, the inclusion function incπ1,π2 is an injective
map from π1 to π2. We have an alternate formulation for
this relation:

Proposition 13

∀π1,π2 ∈Π∗(E), π1 ⊆� π2 ⇐⇒ π2 ∧ 1supp(π1) = π1.

Proof If π2 ∧ 1supp(π1) = π1, then π1 ≤ π2 and π2 ∧
1supp(π1) ≤ π1. Consider A ∈ π1 and C ∈ π2 such that
A ⊆ C; then ∅ ⊂ A ⊆ C ∩ supp(π1) and C ∩ supp(π1) ∈
π2 ∧ 1supp(π1); as π2 ∧ 1supp(π1) ≤ π1, there is some B ∈ π1

such that C ∩ supp(π1) ⊆ B , hence A ⊆ B and so A = B:
thus C cannot contain any other block of π1 other than B ,
so π1 	 π2. Therefore π1 ⊆� π2.

If π1 ⊆� π2, then π1 ≤ π2, π1 ≤ 1supp(π1), thus π1 ≤
π2 ∧ 1supp(π1), but also supp(π2 ∧ 1supp(π1)) = supp(π2) ∩
supp(π1) = supp(π1), hence π1 	 π2 ∧ 1supp(π1): every
block of π2 ∧ 1supp(π1) is a union of blocks of π1; given
B1,B2 ∈ π1 and C ∈ π2 ∧ 1supp(π1) with B1,B2 ⊆ C, as
π2 ∧ 1supp(π1) ≤ π2, we have C ⊆D for some D ∈ π2, but
as π1 	 π2 and B1,B2 ⊆ D, we get B1 = B2; thus every
block of π2 ∧ 1supp(π1) is a block of π1, so π2 ∧ 1supp(π1) ⊆
π1; from the double inequality π2 ∧ 1supp(π1) ≤ π1 ≤ π2 ∧
1supp(π1) we derive the equality. �

Theorem 14 Inclusion-inflating ⊆� is a partial order rela-
tion on Π∗(E); it is included in the standard order and it
contains the inclusion and inflating orders: π1 ⊆� π2 ⇒
π1 ≤ π2, π1 ⊆ π2 ⇒ π1 ⊆� π2 and π1 � π2 ⇒ π1 ⊆� π2.

Fig. 8 Illustration of Theorem 14: from π1 ⊆� π2 we get
π1 ⊆ π1 ∪ πa � π2 and π1 � π4 ⊆ π2

It is generated by composing inclusion and inflating in any
order: for any π1,π2 ∈Π∗(E),

π1 ⊆� π2 ⇐⇒
(∃π3 ∈Π∗(E), π1 ⊆ π3 � π2

)

⇐⇒ (∃π4 ∈Π∗(E), π1 � π4 ⊆ π2
)
.

Further,

∀π0,π1,π2 ∈Π∗(E),
[
π0 ≤ π1 ≤ π2 & π0 ⊆� π2

] =⇒ π0 ⊆� π1 (28)

and

[
π0 ≤ π1 ⊆� π2 & π0 � π2

] =⇒ π0 � π1 � π2. (29)

The least element is Ø, the maximal elements are all parti-

tions of E. The covering relation is
si≺= s≺∪ i≺.

Let E be finite. Then Π∗(E) is graded by (hc, hm) for

(
s≺,

i≺), that is, for any π1,π2 ∈Π∗(E) we have

π1 ⊂� π2 =⇒
⎡

⎣
hm(π1)≤ hm(π2) &
hc(π1)≤ hc(π2) &
hs(π1) < hs(π2)

⎤

⎦ ,

π1
s≺ π2 =⇒

[
hm(π2)= hm(π1) &
hc(π2)= hc(π1)+ 1

]

,

π1
i≺ π2 =⇒

[
hc(π2)= hc(π1) &
hm(π2)= hm(π1)+ 1

]

.

In particular, (Π∗(E),⊆�) is graded by hs = hm + hc. The
height of any π ∈Π∗(E) is hs(π).

Proof Proposition 6 showed that ⊆� is a partial order rela-
tion, it is included in the standard order. When π1 ⊆ π2,
two distinct blocks of π1 are distinct blocks of π2, hence
π1 	 π2; also π1 ≤ π2; thus ⊆� contains ⊆. Comparing (20)
with (27), ⊆� contains �.

If π1 ⊆ π3 � π2, then π1 ⊆� π3 ⊆� π2, and if π1 � π4 ⊆
π2, then π1 ⊆� π4 ⊆� π2, thus π1 ⊆� π2 in both cases. Sup-
pose now that π1 ⊆� π2. As π1 	 π2, each block of π2 con-
tains at most one block of π1. Let π4 be the set of blocks of
π2 containing (exactly) one block of π1; as π1 ≤ π2, every
block of π1 is included in (exactly) one block of π4; thus
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π1 � π4, and obviously, π4 ⊆ π2. Let πa = π2 \ π4 be the
set of blocks of π2 containing no block of π1; then supp(πa)

is disjoint from supp(π1), so π1∪πa is a partial partition; as
π1 � π4, π1 ∪ πa � π4 ∪ πa = π2; obviously π1 ⊆ π1 ∪ πa .
Therefore π3 = π1∪πa satisfies π1 ⊆ π3 � π2. This is illus-
trated in Fig. 8. The inflation of π1 into π4 and the creation
of blocks of πa are independent operations.

Now (28) follows from (13) and (27). If π0 ≤ π1 ⊆� π2

and π0 � π2, then incπ0,π1 is a map, incπ1,π2 is an injection,
incπ0,π2 = incπ1,π2 ◦ incπ0,π1 and incπ0,π2 is a bijection; but
then the injection incπ1,π2 must also be surjective, hence it is
a bijection, so π1 � π2, and by (21) we deduce that π0 � π1.
Therefore (29) holds.

For any π ∈Π∗(E), Ø⊆ π , so Ø⊆� π , and Ø is the least
element. If π /∈Π(E), then π ⊂ π ∪ {E \ π}, thus π is not
maximal. Now if π ∈Π(E), π is maximal for the order ⊆
(Theorem 8) and for the order � (Theorem 9), and from the
above this means that π is maximal for ⊆�.

Let π1
s≺ π2; thus π1 ≺ π2. If π1 ⊂� π ⊂� π2, then π1 <

π < π2, which contradicts the fact that ≺ is the covering

relation for ≤. Hence π2 covers π1 for ⊆�. Now let π1
i≺

π2; thus π1 � π2. If π1 ⊂� π ⊂� π2, then (29) gives π1 �
π � π2, which contradicts the fact that

i≺ is the covering
relation for �, see Theorem 9. Hence π2 covers π1 for ⊆�.
Conversely, let π2 cover π1. We obtain π1 ⊆ π3 � π2 as
above; the three cases π1 ⊂ π3 � π2, π1 = π3 � π � π2 and
π1 ⊂ π ⊂ π3 = π2 contradict the covering of π1 by π2, so
there remain only the cases where π2 covers π1 for ⊆ or for

�, that is, π1
c≺ π2 or π1

i≺ π2 (Theorems 8 and 9). Now

π1
c≺ π2 means that π2 = π1 ∪ {B} for B ⊆ E \ supp(π1)

with B �= ∅, see (14); if B is not a singleton (it contains at
least two points), then for p ∈ B we have π1 ⊂ π1 ∪{{p}}�
π1∪{B} = π2, contradicting the covering of π1 by π2; hence

B is a singleton and π1
s≺ π2, see (3). Therefore the covering

relation is
s≺∪ i≺.

Let E be finite. For π1 ⊆� π2, we have π1 ≤ π2, so The-
orem 2 gives hm(π1)≤ hm(π2), while the injection incπ1,π2

gives |π1| ≤ |π2|, that is, hc(π1)≤ hc(π2); thus

hs(π2)− hs(π1)

= (hm(π2)− hm(π1)
)+ (hc(π2)− hc(π1)

)≥ 0,

with both terms hm(π2)− hm(π1) and hc(π2)− hc(π1) be-
ing ≥ 0. If hs(π2) = hs(π1), then hm(π2) = hm(π1), and
as π1 ≤ π2, Theorem 2 gives π1 = π2. Hence π1 ⊂� π2 ⇒
hs(π1) < hs(π2), with hm(π1) ≤ hm(π2) and hc(π1) ≤
hc(π2). Now π1

s≺ π2 gives hm(π2)= hm(π1) and hc(π2)=
hc(π1) + 1 by Theorem 2, while π1

i≺ π2 gives hm(π2) =
hm(π1)+ 1 and hc(π2)= hc(π1) by Theorem 9. Therefore

Π∗(E) is graded by(hc, hm) for (
s≺,

i≺), see Proposition 1.

By item 6 of that Proposition, (Π∗(E),⊆�) is graded by
hs = hm + hc .

Now hs(Ø) = 0 by Theorem 2, and the height of π is
hs(π)− hs(Ø)= hs(π). �

Thus in a covering chain π0
si≺ · · · si≺ πn, among the n

coverings πi
si≺ πi+1 (i = 0, . . . , n− 1), there are hc(πn)−

hc(π0) s-coverings πi
s≺ πi+1 and hm(πn) − hm(π0) i-

coverings πi
i≺ πi+1.

As with (25), comparing (28) with previous similar iden-
tities (18), (19), (21), when π0 ⊆� π1 ≤ π2 and π0 ⊆� π2, we
cannot deduce that π1 ⊆� π2; take for example π0 = {A},
π1 = {A,B,C} and π2 = {A,B ∪C} for three mutually dis-
joint non-void A, B and C. We have also the following:

∀π0,π1,π2 ∈Π∗(E),
[
π0 ≤ π1 ≤ π2 & π0 � π2

] =⇒ π0 ⊆� π1 	� π2. (30)

Indeed, incπ0,π1 and incπ1,π2 are maps, and incπ0,π2 =
incπ1,π2 ◦ incπ0,π1 is a bijection, thus incπ0,π1 will be injec-
tive and incπ1,π2 will be surjective, that is, π0 ⊆� π1 	� π2.

The inclusion-inflating order corresponds to a model of
segmentation by region growing, where markers for new re-
gions can be created before the growth of previously created
region is completed. This is more flexible than the com-
pound segmentation paradigm, where each new region is
created only after the previous ones have been completely
determined.

We have seen that the standard, merging-inflating and
inclusion-inflating orders are generated each by the com-
position of two of the three basic orders. There is also the
identity, or equality relation =. We will show that there are
no other orders to be obtained from the basic orders by any
combination such as intersection or composition. Indeed, as
explained in Sect. 2.1, the set O(≤) of all partial order rela-
tions on Π∗(E) that are included in the standard order, con-
stitutes a complete lattice; its greatest element is the standard
order ≤, its least element is the identity =, and the infimum
operation is the intersection. It is thus possible to consider
the sublattice of O(≤) generated by the three basic orders
	, ⊆ and �.

Theorem 15 In O(≤), the complete lattice of partial order
relations on Π∗(E) included in ≤, the sublattice generated
by the three basic orders (merging, inclusion and inflating)
contains these three orders, the merging-inflating, inclusion-
inflating and standard orders, and the identity. Its Hasse di-
agram is that of Fig. 9.

Proof Let O = {=,	,�,⊆,	�,⊆�,≤} be the set of partial
orders in Fig. 9. In order to avoid confusion with the ele-
ments ⊆ and = of O, we will use the symbols � and ≡
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Fig. 9 Hasse diagram of the lattice of partial orders on Π∗(E) gener-
ated by the three basic orders

for the inclusion and equality between binary relations on
Π∗(E). Write � for the binary supremum operation in O(≤)

(the infimum being the intersection). We first note that the
edges in the diagram of Fig. 9 correspond to inclusion rela-
tions, namely

= �
{	
�
⊆

}
� 	�

}
� ⊆�

}
�≤ .

We know from Theorems 11, 12 and 14 that 	 � ⊆ ≡ ≤,
	 ��≡	� and � � ⊆ ≡ ⊆�. Given two incomparable ele-
ments of O, either they form the pair {	,�} with supremum
	�, or the pair {�,⊆} with supremum ⊆�, or one contains 	
and the other contains ⊆, giving the supremum ≤. Hence O
is closed under �, and this operation follows the diagram of
Fig. 9. Now for the intersection of incomparable elements of
O, we need first to consider three particular cases:

1. 	� ∩ ⊆� ≡ �. This follows immediately from the def-
initions (20), (24), (27): �≡ ≤ ∩� ∩	, 	�≡ ≤ ∩� and
⊆�≡≤∩	.

2. 	 ∩�≡=. Indeed, if π1 	 π2 and π1 � π2, then ev-
ery block of π2 at the same time contains a unique block of
π1 and is a union of blocks of π1; this means that π2 ⊆ π1,
hence π1 = π2.

3. � ∩ ⊆≡=. Indeed, if π1 � π2 and π1 ⊆ π2, then ev-
ery block of π2 contains a block of π1 which is itself a block
of π2, thus they are equal and so π2 ⊆ π1, hence π1 = π2.

Now let R1,R2 be two incomparable elements of O; then
we have 3 cases: (a) {R1,R2} ≡ {	�,⊆�}, so R1 ∩R2 ≡�
by item 1; (b) Ri ≡	 and Rj �⊆� (where {i, j} = {1,2}),
so

R1 ∩R2 �	∩⊆�≡ (	∩	�)∩⊆�
≡	∩(	� ∩⊆�) ≡	∩�≡=

by the inclusion of 	 in 	�, items 1 and 2; (c) Ri ≡⊆ and
Rj �	� (where {i, j} = {1,2}), so

R1 ∩R2 �⊆∩	�≡ (⊆∩⊆�)∩	�
≡⊆∩(⊆� ∩	�) ≡⊆∩�≡=

by the inclusion of⊆ in⊆�, items 1 and 3. Hence O is closed
under ∩, and this operation follows the diagram of Fig. 9. �

We end this section by pointing out some general features
concerning the standard order and the five order relations
that we have introduced. We recall in Table 1 the notation
and definition of each of them, as well as of the relations
introduced in Sect. 2.4. All six orders have a well-defined
covering relation; in the finite case they are graded and have
a height function, see Table 2. This is useful as a measure
of the complexity of a partial partition from a constructive
view: it tells how many elementary operations are necessary
to obtain that partial partition.

The three basic orders (merging, inclusion and inflating)

have simple covering relations, respectively
m≺,

c≺ and
i≺.

The standard, merging-inflating and inclusion-inflating or-
ders are compound orders, built each by combining two ba-
sic orders, and they have compound covering relations; the
latter can be obtained by combining the corresponding cov-

ering relations of the involved basic orders, except that
c≺ is

replaced by
s≺; thus we get ≺= m≺ ∪ s≺ for the standard or-

der (combining merging and inclusion),
mi≺ = m≺ ∪ i≺ for the

merging-inflating order, and
si≺ = s≺ ∪ i≺ for the inclusion-

inflating order. Their grading is also compound, where each
of the two functions counts the number of coverings of each
type, cf. item 5 of Proposition 1.

Let π ∈Π∗(E); we give here, for each order, the number
of elementary coverings (thus of elementary operations) of
each type in a covering chain from a minimal element under
π to π :

– For the merging order	: in every covering chain between

0supp(π) and π , there are hm(π) m-coverings
m≺, i.e., π is

obtained from 0supp(π) by hm(π) block mergings.
– For the inclusion order ⊆: in every covering chain be-

tween Ø and π , there are hc(π) c-coverings
c≺, i.e., π is

obtained from Ø by hc(π) block creations.
– For the inflating order �: given a transversal A of π , in

every covering chain between 0A and π , there are hm(π)

i-coverings
i≺, i.e., π is obtained from 0A by hm(π) in-

flations of a block by one point.
– For the merging-inflating order 	�: given a crossing A of

π , in every covering chain between 0A and π , there are

|A| − hc(π) m-coverings
m≺ and hs(π)− |A| i-coverings

i≺, i.e., π is obtained from 0A by |A|−hc(π) block merg-
ings and hs(π)− |A| inflations of a block by one point;
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Table 1 Binary relations on
Π∗(E), then partial order
relations on Π∗(E). Notation
designates the mathematical
notation; for a partial order, we
omit “order” in the Name; for a
relation R, Definition defines
π1 R π2

Notation Name Definition

support inclusion supp(π1)⊆ supp(π2)

support containment supp(π1)⊇ supp(π2)

support equality supp(π1)= supp(π2)

	 singularity ∀B,B ′ ∈ π1, ∀C ∈ π2:
[
B ⊆ C,B ′ ⊆ C

]⇒ B = B ′

≤ standard ∀B ∈ π1, ∃C ∈ π2: B ⊆ C

� building ∀C ∈ π2, ∃B ∈ π1: B ⊆ C

	 merging π1 ≤ π2, supp(π1)= supp(π2)

⊆ inclusion π1 ⊆ π2

� inflating π1 ≤ π2, π1 � π2, π1 	 π2

	� merging-inflating π1 ≤ π2, π1 � π2

⊆� inclusion-inflating π1 ≤ π2, π1 	 π2

Table 2 Covering relations and heights for the 6 partial order rela-
tions on Π∗(E). Order designates the partial order, and Cover the cor-

responding covering relation; given a covering relation
x≺, Construc-

tion describes how π2 is obtained from π1 for π1
x≺ π2, and Height

designates the height function hx such that hx(π2) = hx(π1) + 1.

Here hm(π) = |supp(π)| − |π |, hs(π) = |supp(π)|, hc(π) = |π | and
h(π) = 2|supp(π)| − |π |. The last column Grading gives the com-
pound grading corresponding to the compound covering relation for
the last 3 orders

Order Cover Construction Height Grading

s≺ one new singleton block is added

	 m≺ two blocks are merged hm

⊆ c≺ one new block is added hc

� i≺ one block is increased by one point hm

	� mi≺ m≺∪ i≺ hm (−hc,hs) for (
m≺,

i≺)

⊆� si≺ s≺∪ i≺ hs (hc,hm) for (
s≺,

i≺)

≤ ≺ m≺∪ s≺ h (hm,hs) for (
m≺,

s≺)

when A is a transversal of π , |A| = hc(π), 0A � π , there

are hm(π) i-coverings
i≺ but no m-covering, i.e., π is ob-

tained from 0A by hm(π) inflations of a block by one
point.

– For the inclusion-inflating order ⊆�: in every covering

chain between Ø and π , there are hc(π) s-coverings
s≺

and hm(π) i-coverings
i≺, i.e., π is obtained from Ø by

hc(π) creations of singleton blocks and hm(π) inflations
of a block by one point.

– For the standard order≤: in every covering chain between

Ø and π , there are hm(π) m-coverings
m≺ and hs(π) s-

coverings
s≺, i.e., π is obtained from Ø by hm(π) block

mergings and hs(π) creations of singleton blocks.

We can thus suggest that partial partitions can be built
bottom-up by combining several types of elementary opera-
tions in a succession, where each elementary operation has a
distinct complexity, in such a way that the global complexity
does not depend on the order of the operations.

In addition to characterizing the covering relation and

the height of each order, we also gave equations (18), (19),

(21), (25), (26), (28), (29), (30). They all deal with the situ-

ation where π0 ≤ π1 ≤ π2 and a stronger order relation be-

tween π0 and π2 induces a stronger order relation between

π0 and π1 or between π1 and π2. Some of them were used in

the determination of the covering relations for the merging-

inflating and inclusion-inflating orders. Also, (19) and (28)

mean respectively that the inclusion and inclusion-inflating

orders are well-composed according to [26] (the standard

order is also well-composed); this property is useful in the

compound segmentation paradigm (see Theorem 2 of [26]).

These identities are also useful for showing that the six

orders satisfy Ore’s quadrilateral condition [18], an exten-

sion to posets of the lattice-theoretical property of upper

semi-modularity [3, 6]; this condition implies in particular

the Jordan-Dedekind chain condition satisfied by these or-

ders. This will be discussed in another paper.
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Fig. 10 Here E = {a, b, c, d, e, f }. (a) A hierarchy of 4 partitions; in
each one, the blocks are shown as rectangles. (b) The corresponding
dendrogram. (c) A hierarchy of 4 partial partitions; in each one, the
blocks are shown as grey rectangles, while points outside the support
are shown as hollow circles. (d) The corresponding dendrogram

4 Hierarchies, Connectivity and Saliency

A hierarchy is an increasing sequence of (partial) parti-
tions going from the least to the greatest element of the lat-
tice: π0 ≤ · · · ≤ πn = 1E , where π0 = 0E for partitions but
π0 = Ø for partial partitions. Hierarchies have been used
in image segmentation [10, 35, 36] and filtering [14, 28,
29]. A hierarchy of partitions can be represented by a den-
drogram, see Fig. 10(a) and (b); this representation can be
extended to partial partitions, see Fig. 10(c) and (d), but it
becomes more complicated, as points can enter into the sup-
port at a level above 0.

In [23] we introduced a theory of hierarchies of partitions
or partial partitions. We extend it in Sect. 4.1 by including
the requirement that the blocks of the partial partitions be-
long to a partial connection C; the previous theory of [23]
corresponds then to the case where C = P(E). In Sect. 4.2
we consider the particular case where C is a connection aris-
ing from a graph; then block boundaries are made of edge
elements associated to pairs of adjacent points, and we can
study their saliency, that is, the range of levels where they
are visible; each one of our orders has a peculiar behaviour
in this respect. Finally Sect. 4.3 applies our orders to image
filtering by component trees.

4.1 Connective Maps and Connected Hierarchies

In order to take into account more general models, such as
continuous hierarchies (where the levels are not discrete),
we replace the finite chain {0, . . . , n} by a complete lat-
tice L with least and greatest elements ⊥ and  ; in [23]

we assumed that L is a closed subset of R with ⊥ = 0.
Then a hierarchy is an erosion ε : L → Π(E), where for
t ∈ L, ε(t) = πt , the partition at level t ; it is in fact conve-
nient to consider the adjoint dilation δ :Π(E)→ L. With-
out loss of generality, we can replace Π(E) by Π∗(E) in
this adjunction. Indeed, the inclusion map IN : Π(E) →
Π∗(E) : π �→ π is an erosion, whose adjoint dilation is
the “fill with singletons” map FS :Π∗(E)→Π(E) : π �→
π ∪ 0E\supp(π) = π ∨ 0E [23]. Thus we get the erosion
ε∗ = IN · ε : L → Π∗(E) : t �→ ε(t) with the adjoint di-
lation δ∗ = δ ·FS :Π∗(E)→ L : π �→ δ(π ∨ 0E), in partic-
ular for π ∈Π(E) we have π ∨ 0E = π , so δ∗(π)= δ(π);
thus δ∗ extends δ to partial partitions.

In [23] we called strongly triangular any map θ : E2 →
L such that for any x, y, z ∈ E we have θ(x, x) ≤ θ(x, y),
θ(x, y) = θ(y, x) and x �= y �= z �= x ⇒ θ(x, z) ≤
θ(x, y) ∨ θ(y, z); equivalently, it satisfies the two require-
ments of symmetry and ultratriangular inequality:

∀x, y, z ∈E,

θ(x, y)= θ(y, x) and θ(x, z)≤ θ(x, y)∨ θ(y, z).

(31)

We have then a one-to-one correspondence between dila-
tions Π∗(E)→ L and strongly triangular maps E2 → L:
to a dilation δ∗ corresponds the strongly triangular map θ

given by θ(x, y) = δ∗(1{x,y}), while to a strongly triangu-
lar map θ corresponds the dilation δ∗ given by δ∗(π) =
∨

B∈π

∨
(p,q)∈B2 θ(p, q). The fact that for all t ∈ L we have

ε∗(t) ∈ Π(E), in other words 0E ≤ ε∗(t), is equivalent to
0E ≤ ε∗(⊥), in other words δ∗(0E) = ⊥, which can be ex-
pressed as

∀x ∈E, θ(x, x)=⊥. (32)

Note that δ∗(0E) = ⊥ if and only if δ∗ = δ · FS for a dila-
tion δ : Π(E)→ L, where δ is in fact the restriction of δ∗
to Π(E). The stronger requirement that ε∗(⊥)= 0E means
that both δ∗(0E) = ⊥ and δ∗(π) > ⊥ for π > 0E , in other
words both (32) and the following:

∀x, y ∈E, x �= y =⇒ θ(x, y) >⊥. (33)

On the other hand, the fact that ε∗ is an erosion guarantees
that ε∗( )= 1E . If L⊂ R with ⊥= 0, as assumed in [23],
the three conditions (31), (32), (33) mean that θ is an ultra-
metric distance [11]. We obtain thus, in a general setting, the
equivalence shown in [2, 9] between ultrametrics and hier-
archies of partitions.

In [8], hierarchies were also studied through adjunctions.
However, instead of partitions, the authors considered non-
oriented graphs, in other words reflexive and symmetrical
relations; thus their conditions on θ were weaker: symmetry
θ(x, y)= θ(y, x), θ(x, x)=⊥ (32) and θ(x, y)≥⊥.



222 J Math Imaging Vis (2014) 49:202–233

The approach initiated by [2, 9] and extended in [8] has
been motivated by the problem of classification, where no
topological conditions are imposed on the classes. However
in segmentation [12, 13, 16], the classes are supposed to be
connected. We will thus modify the theory of [23] in order
to take into account this constraint. As we saw in Sect. 2.3,
for a partial connection C, Π∗(E,C) is closed under the
supremum operation of Π∗(E), and when C is a connec-
tion, Π(E,C) is closed under the supremum operation of
Π(E); we can thus analyse dilations Π∗(E,C) → L and
Π(E,C)→ L with the same tools as in [23], notably con-
nective maps. Instead of strongly triangular maps, we will
get pre-connective maps defined on a family generating the
(partial) connection C. The particular case when C = P(E)

will give the theory of [23] and the above result.
From now on, let C be a partial connection and L be a

complete lattice with least and greatest elements ⊥ and  .
Recall that by definition of a partial connection, for B ⊆ C
with

⋂
B �= ∅, we have

⋃
B ∈ C.

Definition 16 A map ψ : C→ L is called connective [23]
if ψ(∅) = ⊥ and for any B ⊆ C,

⋂
B �= ∅ ⇒ ψ(

⋃
B) =∨

C∈B ψ(C). When C is a connection, a connective map ψ :
C→ L is said to be strict if ψ({x})=⊥ for every x ∈E.

Note that for B = ∅,
⋂

B = E �= ∅, so ψ(
⋃

B) =
ψ(∅) = ⊥ = ∨∅ = ∨

C∈B ψ(C), as postulated. A con-
nective map is necessarily isotone (order-preserving) [23]:
∀C,C′ ∈ C, C ⊆ C′ ⇒ ψ(C)≤ψ(C′).

Lemma 17 Let ψ : C → L be connective, let B ∈ P(E)

and A ⊆ C such that B is chained by A. Then ψ(B) =∨
C∈A ψ(C).

Proof Our proof follows an argument used in the proof of
Theorem 13 of [23]. We know [22] that B ∈ C, but this
follows also from the present argument. If A is empty or
A= {∅}, then B = ∅ and indeed ψ(B)=⊥=∨C∈A ψ(C).
We can thus assume that A is non-empty and contains
a non-empty set D; we have

∨
A = B and D ⊆ B . Let

z=∨C∈A ψ(C); then ψ(D)≤ z. Let

B = {X ∈ C |D ⊆X ⊆ B, ψ(X)≤ z
};

then D ∈ B, so
⋂

B = D �= ∅. Let Y =⋃
B; then Y ∈ C,

D ⊆ Y ⊆ B and since ψ is connective,

ψ(Y )=
∨

X∈B
ψ(X)

=
∨{

ψ(X) |D ⊆X ⊆ B, ψ(X)≤ z
}≤ z.

Thus Y ∈ B, so Y is the greatest element of B. If Y ⊂ B ,
as B is chained by A, there must be some C ∈A such that
C overlaps both Y and B \ Y . Now ψ(C) ≤ z and as ψ is

connective, we get ψ(Y ∪ C) = ψ(Y ) ∨ ψ(C) ≤ z, hence
Y ∪C ∈ B, so Y ∪C ⊆ Y , a contradiction. Therefore Y = B

and ψ(B) ≤ z. Every C ∈ A satisfies C ⊆ B; since ψ is
isotone, ψ(C) ≤ ψ(B); thus z ≤ ψ(B). We conclude that
ψ(B)= z=∨C∈A ψ(C). �

Theorem 18 There is a bijection between connective maps
C→ L and dilations Π∗(E,C)→ L, under which

– To a connective map ψ : C→ L corresponds the dilation
δψ :Π∗(E,C)→ L : π �→ δψ(π)=∨B∈π ψ(B).

– To a dilation δ :Π∗(E,C)→ L corresponds the connec-
tive map ψδ : C→ L : C �→ψδ(C)= δ(1C).

When C is a connection, a map δ : Π(E,C)→ L is a di-
lation if and only if it is the restriction to Π(E,C) of a di-
lation Π∗(E,C)→ L corresponding to a strict connective
map C→ L.

Proof Let ψ : C→ L be connective and define δψ :Π∗(E,

C)→ L as above. Let F ⊆ Π∗(E,C). If F is empty, then∨
F = Ø and by definition δψ(Ø) is the empty supremum

⊥. Suppose now F non-empty, and let π =∨F . For any
π ∈F , π ≤ π , thus every block B ∈ π is included in a block
C ∈ π , and as ψ is isotone, ψ(B) ≤ ψ(C); the definition
of δψ gives then δψ(π) ≤ δψ(π). Hence

∨
π∈F δψ(π) ≤

δψ(π). Now every block C ∈ π is obtained by chaining
some blocks of partial partitions in F ; in other words C is
chained by some A⊆⋃F ; by Lemma 17 and the definition
of δψ , we get

ψ(C)=
∨

B∈A
ψ(B)≤

∨

B∈⋃F
ψ(B)

=
∨

π∈F

∨

B∈π

ψ(B)=
∨

π∈F
δψ(π).

Hence δψ(π) =∨C∈π ψ(C) ≤∨π∈F δψ(π). The equality∨
π∈F δψ(π)= δψ(π)= δψ(

∨
F) follows. Therefore δψ is

a dilation. For C ∈ C we have ψδψ (C) = δψ(1C) = ψ(C),
thus ψδψ =ψ .

Conversely, let δ :Π∗(E,C)→ L be a dilation. We have
1∅ =Ø, so ψδ(∅)= δ(1∅)= δ(Ø)=⊥. Let B ⊆ C such that⋂

B �= ∅; we have 1⋃B =
∨

C∈B 1C [22] (for B empty, this
equality remains valid, it reduces to 1∅ =Ø); as δ commutes
with the supremum,

ψδ
(⋃

B
)
= δ

(
1⋃B

)= δ

(∨

C∈B
1C

)

=
∨

C∈B
δ(1C)=

∨

C∈B
ψδ(C).

Therefore ψδ is connective. For π ∈Π∗(E,C) we have

δψδ (π)=
∨

B∈π

ψδ(B)=
∨

B∈π

δ(1B)
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= δ

(∨

B∈π

1B

)

= δ(π),

hence δψδ = δ.
We have thus shown that ψ �→ δψ and δ �→ ψδ are a bi-

jection and its inverse, between connective maps C→ L and
dilations Π∗(E,C)→ L. Again, our proof followed an ar-
gument from the proof of Theorem 13 of [23].

Assume now that C is a connection. The supremum
in Π(E,C) is the one in Π(E), while the supremum in
Π∗(E,C) is the one in Π∗(E). Let δ :Π(E,C)→ L be a di-
lation. The dilation FS :Π∗(E)→Π(E) : π �→ π ∨0E , re-
stricted to Π∗(E,C), becomes a dilation FSC :Π∗(E,C)→
Π(E,C) (since C comprises all singletons, 0E ∈Π(E,C)).
As above, we obtain the dilation δ∗ = δ ·FSC :Π∗(E,C)→
L : π �→ δ(π ∨ 0E), and indeed δ is the restriction of
δ∗ to Π(E,C): for π ∈ Π(E,C), π ∨ 0E = π and so
δ∗(π) = δ(π). Let ψ be the connective map correspond-
ing to δ∗. Since FSC(Ø) = Ø ∨ 0E = 0E = 0E ∨ 0E =
FSC(0E), we have δ∗(Ø)= δ(0E)= δ∗(0E), with δ∗(0E)=
∨

p∈E ψ({p}) and δ∗(Ø) = ⊥. Hence ψ({p}) = ⊥ for all
p ∈E, that is, ψ is strict.

Conversely, let ψ be a strict connective map and con-
sider the corresponding dilation δψ :Π∗(E,C)→ L, which
commutes with the supremum in Π∗(E,C) (for partial
partitions). We must show that its restriction to Π(E,C)

is a dilation Π(E,C) → L, in other words it commutes
with the supremum in Π(E,C) (for partitions). For a non-
empty family F ⊆ Π(E,C), its supremum in Π(E,C)

and in Π∗(E,C) coincide, thus the equality δψ(
∨

F) =
∨

π∈F δψ(π) holds for the same supremum
∨

F in both
Π∗(E,C) and Π(E,C). When F is empty,

∨
F = Ø in

Π∗(E,C) but
∨

F = 0E in Π(E,C), however δψ(0E) =
∨

p∈E ψ({p}) = ⊥ = δψ(Ø), so we get δψ

(∨
F
) = ⊥ =

∨
π∈F δψ(π) for the supremum

∨
F either in Π∗(E,C) or

in Π(E,C). �

Recall that S(E) is the set of singletons of E. In Propo-
sition 18 of [22] we showed that C is a partial connection
if and only if C ∪ S(E) is a connection; in particular, for a
connection C, C \ S(E) will be a partial connection. In [23]
we showed that the dilation FS :Π∗(E)→Π(E) is also an
erosion, whose lower adjoint is the dilation RSIN :Π(E)→
Π∗(E) : π �→ π \ 0E that removes all singleton blocks from
a partition. This will allow us to reverse the above argument
about the restriction of FS to Π∗(E,C).

Proposition 19 Let C be a connection and let C∗ = C \
S(E). Given a connective map ψ : C∗ → L, the map ψ+ :
C→ L defined by

∀X ∈ C, ψ+(X)=
{
⊥ if X ∈ S(E),

ψ(X) if X ∈ C∗,
(34)

is a strict connective map. For π ∈ Π(E,C), we have
δψ+(π)= δψ(π \ 0E)=∨B∈π\0E

ψ(B).

Proof Let RSINC be the restriction to Π(E,C) of the di-
lation RSIN : Π(E) → Π∗(E) : π �→ π \ 0E ; for π ∈
Π(E,C), π \ 0E has no singleton block, so RSINC(π) =
π \ 0E ∈ Π∗(E,C∗); thus RSINC is a map Π(E,C) →
Π∗(E,C∗); since Π(E,C) and Π∗(E,C∗) inherit the supre-
mum operation of Π(E) and Π∗(E) respectively, RSINC
will be a dilation Π(E,C)→Π∗(E,C∗).

We apply Theorem 18: δψ : Π∗(E,C∗) → L is a di-
lation; but RSINC : Π(E,C) → Π∗(E,C∗) is also a dila-
tion; hence δψ ·RSINC :Π(E,C)→ L : π �→ δψ(π \ 0E)=
∨

B∈π\0E
ψ(B) will be a dilation, thus there is a strict con-

nective map ψ1 : C→ L such that δψ · RSINC is the restric-
tion to Π(E,C) of δψ1 :Π∗(E,C)→ L. Let A ∈ C; if A is a
singleton, then ψ1(A)=⊥=ψ+(A); if A is not a singleton,
letting π = FS(1A)= 1A ∪ 0E\A ∈Π(E,C), we get

δψ1(π)=ψ1(A)∨
∨

p∈E\A
ψ1
({p})=ψ1(A)∨⊥=ψ1(A),

while

δψ · RSINC(π)=
∨

B∈π\0E

ψ(B)=ψ(A)=ψ+(A),

hence ψ1(A) = δψ1(π) = δψ · RSINC(π) = ψ+(A). There-
fore ψ+ = ψ1, ψ+ is a strict connective map, and for
π ∈ Π(E,C), δψ+(π) = δψ · RSINC(π) = δψ(π \ 0E) =
∨

B∈π\0E
ψ(B). �

One can also check directly that ψ+ is a strict connec-
tive map, without recourse to the dilation RSINC , using an
argument similar to the one in the proof of Proposition 18 of
[22].

Proposition 19 can also be applied when the connective
map ψ is defined on C rather than C∗; then (34) modifies the
value of the map on singletons.

We will now generalize the strong triangular maps of
[23]. From now on we assume that G is a non-empty family
of non-empty subsets of E. Recall that Con∗(G) is the partial
connection generated by G and Con(G)= Con∗(G) ∪ S(E)

is the connection generated by G.

Definition 20 A map ξ : G→ L is called pre-connective if
for any B ⊆ G and A,B ∈ G such that B is chained by B and
A⊆ B , we have ξ(A)≤∨X∈B ξ(X).

A pre-connective map is necessarily isotone (order-
preserving): ∀A,B ∈ G, A ⊆ B ⇒ ξ(A) ≤ ξ(B); this fol-
lows by taking B = {B}.

For instance, if G is the set of singletons and pairs of
points of E, the map ξ is pre-connective if and only if the
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map θ :E2 → L defined by θ(x, x)= ξ({x}) and θ(x, y)=
ξ({x, y}) for x �= y, is strongly triangular (31). Indeed, sym-
metry is obvious because the pair {x, y} is unordered, while
the ultratriangular inequality is required because {x, z} is
chained by {{x, y}, {y, z}}; these two conditions are suffi-
cient: if B is chained by B and x, y ∈ B (with x, y equal
or different), there is a sequence p0, . . . , pn ∈ B such that
p0 = x, pn = y and {pi,pi+1} ∈ B for i = 0, . . . , n − 1,
then applying inductively the ultratriangular inequality we
get θ(x, y) ≤∨n−1

i=0 θ(pi,pi+1). The following result gen-
eralizes Proposition 33 of [23]:

Proposition 21 Consider a map ξ : G→ L.

1. The map ξ is pre-connective if and only it is the restric-
tion to G of a connective map ψ : Con∗(G)→ L. This
map ψ is then unique, it is the map ψξ given by

∀C ∈ Con∗(G), ψξ (C)=
∨

X∈P(C)∩G
ξ(X). (35)

2. Assume that G ∩S(E)= ∅ (elements of G are not single-
tons). The map ξ is pre-connective if and only it is the re-
striction to G of a strict connective map ψ : Con(G)→ L.
This map ψ is then unique, it is the map ψ+ξ defined ac-

cording to (34), (35), that is, for C ∈ Con∗(G), ψ+ξ (C)=
ψξ(C), and for x ∈E, ψ({x})=⊥.

Proof 1. Let ξ : G → L be the restriction to G of a con-
nective map ψ : Con∗(G) → L. Let B ⊆ G and A,B ∈
G such that B is chained by B and A ⊆ B; then B ∈
Con∗(G), ψ(B)=∨X∈B ψ(X) by Lemma 17, and ψ(A)≤
ψ(B) since ψ is isotone; thus ξ(A) = ψ(A) ≤ ψ(B) =
∨

X∈B ψ(X) = ∨
X∈B ξ(X). Hence ξ is pre-connective.

For any C ∈ Con∗(G), C is chained by P(C) ∩ G, so
by Lemma 17 again we get ψ(C) =∨

X∈P(C)∩G ψ(X) =
∨

X∈P(C)∩G ξ(X)=ψξ (C). Therefore ψ =ψξ and the map
ψ is unique.

Conversely, let the map ξ : G → L be pre-connective.
Since ∅ /∈ G, by (35) ψξ(∅) gives the empty supremum ⊥.
Now let B ⊆ Con∗(G) such that

⋂
B �= ∅, and set B =⋃B.

Each C ∈ B is chained by P(C) ∩ G, and as
⋂

B �= ∅, B is
chained by

⋃
C∈B(P(C) ∩ G). As ξ is pre-connective, for

Y ∈P(B)∩ G,

ξ(Y )≤
∨{

ξ(X) |X ∈
⋃

C∈B

(
P(C)∩ G

)}

=
∨

C∈B

∨

X∈P(C)∩G
ξ(X)=

∨

C∈B
ψξ (C).

Hence ψξ (B) =∨
Y∈P(B)∩G ξ(Y ) ≤∨C∈B ψξ (C). On the

other hand, for any C ∈ B, as C ⊆ B , P(C) ∩ G ⊆ P(B) ∩
G, hence ψξ(C)=∨X∈P(C)∩G ξ(X)≤∨X∈P(B)∩G ξ(X)=

ψξ (B). We deduce that ψξ (B) =∨
C∈B ψξ (C), and ψξ is

connective.
Finally, for any B ∈ G, B ∈ P(B) ∩ G, so B is chained

by P(B) ∩ G, hence ξ(B) ≤ ∨
X∈P(B)∩G ξ(X) = ψξ (B);

but since ξ is isotone, for any X ∈ P(B) ∩ G we have
ξ(X) ≤ ξ(B), hence ψξ (B) = ∨

X∈P(B)∩G ξ(X) ≤ ξ(B).
We conclude that ψξ (B) = ξ(B), thus ξ is the restriction
of ψξ to G.

2. Assume that elements of G are not singletons. Since
any element of Con∗(G) is obtained by chaining some el-
ements of G, it cannot be a singleton. Thus Con∗(G) ∩
S(E)= ∅, hence Con∗(G)= Con(G) \ S(E).

Let ξ : G→ L be the restriction to G of a strict connec-
tive map ψ : Con(G)→ L. Let ψ ′ be the restriction of ψ to
Con∗(G); then ψ ′ remains connective, and ξ is the restric-
tion of ψ ′ to G. By item 1, ξ is pre-connective and ψ ′ =ψξ .
Since ψ is strict, we have ψ({x})=⊥ for all x ∈E, and we
deduce from (34) that ψ =ψ+ξ .

Conversely, let the map ξ : G → L be pre-connective.
By item 1, ψξ : Con∗(G) → L is connective and ξ is the
restriction of ψξ to G. By Proposition 19, ψ+ξ is strict

connective, and ψξ is the restriction of ψ+ξ to Con∗(G) =
Con(G) \S(E). Therefore ξ is the restriction of ψ+ξ to G. �

Note that in the case of item 2, that is, G ∩ S(E) = ∅,
if we extend the formula in (35) to Con(G), we obtain
ψξ ({x})=⊥ for any x ∈ E, thus ψ+ξ is given by extending
(35) to Con(G).

Combining Theorem 18 and Proposition 21, we get the
dilation

δψξ :Π∗(E,Con∗(G)
)→ L

: π �→
∨

B∈π

∨

X∈P(B)∩G
ξ(X); (36)

furthermore, when G ∩ S(E) = ∅, from Proposition 19 we
get the dilation

δψ+ξ
:Π∗(E,Con(G)

)→ L

: π �→
∨

B∈π\0E

∨

X∈P(B)∩G
ξ(X),

(37)

whose restriction to Π(E,Con(G)) remains a dilation (be-
cause δψ+ξ

(0E)=⊥).

4.2 Graph Connectivity and Edge Saliency

Let us illustrate our theory in the case of graph-theoretical
connectivity. Suppose that E is endowed with an irreflexive
and symmetrical adjacency relation ∼, and let G be the set
of all pairs of distinct adjacent points: G = {{p,q} | p,q ∈
E, p �= q, p ∼ q}; then (E,G) is an undirected graph.
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Let C = Con(G); it is the set of all subsets of E that are
connected according to that graph (in particular singletons
in E are connected). Let G∗ = G ∪ S(E); we have then
Con∗(G∗) = C. Given a map ξ defined on G or G∗, we
will write ξ(p, q) for ξ({p,q}) and ξ(p) for ξ({p}). A map
ξ : G → L is pre-connective if and only if ξ satisfies the
following generalization of the ultratriangular inequality to
cycles in the graph:

∀x0, . . . , xn ∈E (n≥ 2),

{x0, x1}, . . . , {xn−1, xn}, {xn, x0} ∈ G

=⇒ ξ(xn, x0)≤
n−1∨

i=0

ξ(xi, xi+1). (38)

In other words, the maximum value taken by ξ in a cycle
is attained on at least two edges. We call this condition the
ultracyclic inequality. A map ξ : G∗ → L is pre-connective
if and only if ξ satisfies the ultracyclic inequality (38) and
for {x, y} ∈ G we have ξ(x)≤ ξ(x, y).

We first characterize a hierarchy of partitions. Let ξ :
G→ L be pre-connective; we get the strict connective map
ψ+ξ : C→ L; let δ = δψ+ξ

:Π∗(E,C)→ L, cf. (37), and let

ε be the upper adjoint erosion L→Π∗(E,C) providing the
hierarchy; in fact, δ(0E)=⊥, so ε(⊥)≥ 0E and every t ∈ L

gives ε(t) ∈ Π(E,C), we have a hierarchy of partitions.
Note that ε( ) = PCC(E), the partition of all connected
components of E, which is indeed the greatest element of
Π(E,C). For any pair {p,q} ∈ G, ξ(p, q) = ψ+ξ ({p,q}) =
δ(1{p,q}), it is the least t ∈ L such that 1{p,q} ≤ ε(t), that
is, {p,q} is included in a block of ε(t). The condition
ε(⊥) = 0E is satisfied if and only if ⊥ < ξ(p,q) for all
{p,q} ∈ G, cf. (33) above; then p and q belong to two dis-
tinct blocks of ε(t) for ⊥≤ t < ξ(p,q).

Next, we characterize a hierarchy of partial partitions. Let
ξ : G∗ → L be pre-connective; we get the connective map
ψξ : C = Con∗(G∗)→ L; let δ = δψξ : Π∗(E,C)→ L, cf.
(36), and let ε be the upper adjoint erosion L→Π∗(E,C)

providing the hierarchy. Again, ε( ) = PCC(E). For any
{p,q} ∈ G, ξ(p, q) is the least t ∈ L such that {p,q} is in-
cluded in a block of ε(t); for p ∈ E, ξ(p) is the least t ∈ L

such that 1{p} ≤ ε(t), that is, p ∈ supp(ε(t)). The condition
ε(⊥)=Ø is satisfied if and only if ⊥< ξ(p) for all p ∈E.

Now assume that L is a chain. For {p,q} ∈ G, as t ranges
from⊥ to , we encounter 4 possible cases in the following
order:

(a) t < min(ξ(p), ξ(q)): both p and q lie in the background
E \ supp(ε(t)).

(b) min(ξ(p), ξ(q))≤ t < max(ξ(p), ξ(q)): one of p and q

lies in a block of ε(t) and the other in the background
E \ supp(ε(t)).

(c) max(ξ(p), ξ(q)) ≤ t < ξ(p,q): p and q lie in two dis-
tinct blocks of ε(t).

Fig. 11 Left: in 2D (n= 2), two pixels p and q correspond to square
cells; when they are axially adjacent, they are separated by a line edge
element e(p, q). Middle: when the two pixels p and q are diagonally
adjacent, they are separated by a point edge element e(p, q). Right:
in 3D (n= 3), the two 6-adjacent voxels p and q correspond to cubic
cells, separated by the surface edge element e(p, q)

Fig. 12 Typology of the edge element e(p, q) between two adjacent
points p and q: (a) background edge element; (b) outer edge element;
(c) separating edge element; (d) inner edge element

(d) ξ(p, q)≤ t : p and q lie in a same block of ε(t).

The case where C = P(E), Π∗(E,C) = Π∗(E) and
Π(E,C)=Π(E), is obtained when any two distinct points
of E are adjacent, thus G consists in the set of all pairs of
points; here the ultracyclic inequality (38) reduces to the
ultratriangular inequality (31); we obtain then the theory
of [23].

Let us consider the particular case where E is the digital
space Zn with a usual adjacency (4 or 8 in Z2, 6, 18 or 26 in
Z3, etc.); each pair {p,q} ∈ G can be seen as the unoriented
edge element e(p, q) separating the square or cubic cells
corresponding to the adjacent digital points p and q; this is
illustrated in Fig. 11 for n= 2 and 3.

For a hierarchy of partitions, we have a pre-connective
map ξ : G → L and we set the hierarchy erosion ε : L→
Π∗(E,C) as the upper adjoint of the dilation δψ+ξ

given by

(37). Let {p,q} ∈ G. For t < ξ(p,q), p and q belong to
two distinct blocks of ε(t) and the edge element e(p, q)

lies in the boundary separating these two blocks, while for
t ≥ ξ(p, q), p and q belong to the same block of ε(t) and
the edge element e(p, q) does no more belong to the bound-
ary of a block. Assuming that ε(⊥)= 0E , ⊥< ξ(p,q) and
the edge element e(p, q) belongs to a boundary separating
blocks of ε(t) for ⊥≤ t < ξ(p,q). Note that E is here con-
nected, so ε( )= 1E . When L is a finite chain, we can make
an analogy between the hierarchy and the flooding process
in watershed segmentation, so the partition ε(t) gives the
basins at flooding level t , and ξ(p, q) is the level at which
the two basins containing p and q are merged. Thus the pre-
connective map ξ generalizes the edge saliency [16] of a
hierarchy of partitions.

For a hierarchy of partial partitions, we have a pre-
connective map ξ : G∗ → L and we set the hierarchy erosion
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ε : L→ Π∗(E,C) as the upper adjoint of the dilation δψξ

given by (36). Let {p,q} ∈ G. Assuming that L is a chain,
the four cases (a, b, c, d) above translate as follows:

(a) t < min(ξ(p), ξ(q)): the edge element e(p, q) lies be-
tween two points in the background E \ supp(ε(t)), see
Fig. 12(a), we call it a background edge element.

(b) min(ξ(p), ξ(q)) ≤ t < max(ξ(p), ξ(q)): the edge el-
ement e(p, q) belongs to the boundary separating a
block of ε(t) and the background E \ supp(ε(t)), see
Fig. 12(b), we call it a outer edge element.

(c) max(ξ(p), ξ(q))≤ t < ξ(p,q): the edge element e(p, q)

belongs to the boundary separating two distinct blocks
of ε(t), see Fig. 12(c), we call it a separating edge ele-
ment.

(d) ξ(p, q) ≤ t : the edge element e(p, q) lies between two
points in a same block of ε(t), see Fig. 12(d), we call it
an inner edge element.

Only cases (b) and (c) correspond to block boundaries,
with “visible” edge elements; on the other hand, in cases
(a) and (d) edge elements will be “invisible”. Thus when
min(ξ(p), ξ(q)) < ξ(p,q), e(p, q) belongs to the boundary
of a block of ε(t) for min(ξ(p), ξ(q)) ≤ t < ξ(p,q), being
then an outer or separating edge element. On the other hand
when min(ξ(p), ξ(q))= ξ(p, q), e(p, q) will never belong
to a boundary of a block of ε(t), it can be only a background
or inner edge element. Hence in a hierarchy of partial parti-
tions, the saliency of an edge element is given by an interval,
possibly empty, not a number.

The 4 items (a, b, c, d) have decomposed L into 4 succes-
sive intervals through which t passes as it increases from ⊥
to  , some of them can be empty. The succession of these
intervals leads to an ordering on the 4 corresponding types
of edge elements:

background < outer < separating < inner; (39)

as t increases, the edge element type increases. Since some
of the intervals can be empty, some types can be skipped,
for instance, it is possible to pass directly from background
to inner.

We illustrate in Fig. 13 a preconnective map and the cor-
responding hierarchy of partial partitions, with the different
types of edge elements.

Note that in the case of a hierarchy of partitions, we ob-
tain only the types (c) separating and (d) inner; indeed, here
ξ+(p)= ξ+(q)=⊥, so max(ξ+(p), ξ+(q))≤ t anyway.

Let us now discuss the effect on edge type of the ele-
mentary operations of merging, creating or inflating blocks,

corresponding to the covering relations
m≺,

s≺ ,
c≺ and

i≺. We
start from a partial partition π1.

(1◦) Merging two blocks B,C ∈ π1, getting π2 = (π \
{B,C}) ∪ {B ∪ C}, with π1

m≺ π2. Since π2 has its blocks

Fig. 13 E is a 2×3 rectangle in Z2, with horizontal and vertical adja-
cency; L= {0,1,2,3,4}. Top left: points are shown as disks and pairs
of points as elongated diamonds linking them, with values of ξ written
inside. Next: the hierarchy of partial partitions ε(t), t ∈ L. Each point
is shown as a disk surrounded by a square cell; those in the support
have filled disks and grey cells, while those in the background have
hollow disks and white cells. Edge elements are drawn as lines: dotted
lines for background edges, thick lines for outer or separating edges,
and dashed lines for inner edges

in C, the two blocks B and C must be adjacent, so there
are adjacent points p ∈ B and q ∈ C, and the corresponding
edge elements e(p, q) form together the boundary between
B and C. For any such pair {p,q}, the merging of B and C

changes the edge element e(p, q) from separating to inner,
while other edge elements are not modified.

(2◦) Adding a singleton block {p} to π1, getting π2 =
π1 ∪ {{p}}, with π1

s≺ π2. For any point q ∈ E adjacent
to p, we get 2 cases for the evolution of the edge element
e(p, q): (i) q ∈ supp(π1) and e(p, q) changes from outer to
separating; (ii) q ∈ E \ supp(π2) and e(p, q) changes from
background to outer. Other edge elements are not modified.

(3◦) Adding a non-singleton block B to π1, getting π2 =
π1∪{B}, with π1

c≺ π2. Only edge elements with at least one
point in B are changed. Given p ∈ B , for q ∈ E adjacent
to p, we get 3 cases for the evolution of the edge element
e(p, q): (i) q ∈ supp(π1) and e(p, q) changes from outer to
separating; (ii) q ∈ B and e(p, q) changes from background
to inner; (iii) q ∈ E \ supp(π2) and e(p, q) changes from
background to outer.

(4◦) Inflating a block by one point, the point p is added
to block B ∈ π1, so we get π2 = (π1 \ {B}) ∪ {B ∪ {p}},
with π1

i≺ π2. Since B ∪ {p} ∈ C, p must be adjacent to
some q ∈ B . The operation can be decomposed into first
creating the singleton block {p}, then merging it with B .
For any point q ∈ E adjacent to p, we get 3 cases for the
evolution of the edge element e(p, q): (i) q ∈ B and e(p, q)

changes from outer to inner; (ii) q ∈ C for another block
C ∈ π1 and e(p, q) changes from outer to separating; (iii)
q ∈ E \ supp(π2) and e(p, q) changes from background to
outer.

(5◦) Although this does not correspond to a covering re-
lation, we can finally consider inflating a block by more than
one point, a set D is added to block B ∈ π1, so we get
π2 = (π1 \ {B})∪{B ∪D}. Here B ∪D ∈ C, and at least one
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Table 3 Covering relations and corresponding changes of edge ele-
ment types; we write in bold the “visible” types outer and separating,
and in italics the “invisible” types background and inner. The dag †
indicates that the change must happen in at least one edge element in
order to maintain block connectedness

Cover Change Must

m≺ separating −→ inner †
s≺ background −→ outer

outer −→ separating

c≺ background −→ outer

background −→ inner

outer −→ separating

i≺ background −→ outer

outer −→ separating

outer −→ inner †

point in D must be adjacent to one point in B . Only edge
elements with at least one point in D are changed. Given
p ∈D, for q ∈ E adjacent to p, we get 4 cases for the evo-
lution of the edge element e(p, q): (i) q ∈ B and e(p, q)

changes from outer to inner; (ii) q ∈ C for another block
C ∈ π1 and e(p, q) changes from outer to separating; (iii)
q ∈ D and e(p, q) changes from background to inner; (iv)
q ∈ E \ supp(π2) and e(p, q) changes from background to
outer.

We summarize in Table 3 the changes of edge element
types for the 4 first cases, corresponding to the 4 elementary
covering relations. Assuming partial partitions with finite
support, each one of the six orders is the reflexive and tran-
sitive closure of the corresponding covering relation, thus
the changes of edge element types are obtained by compos-
ing those possible for the covering relation. We obtain then
Table 4.

We see then that the 6 orders involve changes of edge
types from “invisible” to “visible”. When π1 increases to π2,
an edge can change from background to outer or separating;
the only order where this never happens is the merging order
	. Conversely, when π2 decreases to π1, an edge can change
from inner to outer or separating; the only order where this
never happens is the inclusion order ⊆. In other words, the
only operations that do not create visible edges are merging
or removing blocks. They are indeed the operations that have
been considered in connected filtering.

4.3 Connected Filtering and Component Trees

In connected filtering, one usually merges flat zones, so that
separating edges between merged flat zones are removed
(in fact, they become invisible inner edges), while other
edges are unchanged. With the component tree [14], an im-
age is represented by a hierarchy of partial partitions, and

Table 4 Order relations and corresponding changes of edge element
types; we write in bold the “visible” types outer and separating, and
in italics the “invisible” types background and inner

Orders Change

	 separating −→ inner

⊆ background −→ outer

background −→ separating

background −→ inner

outer −→ separating

�, ⊆� background −→ outer

background −→ separating

background −→ inner

outer −→ separating

outer −→ inner

	�, ≤ background −→ outer

background −→ separating

background −→ inner

outer −→ separating

outer −→ inner

separating −→ inner

a connected filter operates on the image by removing some
blocks; this removes their boundaries (in fact, these outer or
separating edges become invisible background edges). This
tree comes in two dual forms, the max-tree and min-tree, the
first one has been used for anti-extensive operators, and the
second one for extensive operators.

From now one we assume that L is a finite chain with
least and greatest elements ⊥ and  . We take a fixed par-
tial connection C on P(E) such that E ∈ C. A map ε : L→
Π∗(E,C) is an erosion if and only if ε is isotone (order-
preserving) and ε( )= 1E . For a hierarchy, one should nor-
mally have ε(⊥)=Ø, but this is not crucial; when ε(⊥) >

Ø, we can add to L a new least element⊥ (thus⊥<⊥) and
set ε(⊥)=Ø.

Let us first describe the max-tree. The construction is il-
lustrated in Fig. 14. Consider a function F : E → L. For
each t ∈ L, we define the thresholding above

Xt(F )= {p ∈E | F(p)≥ t
}
.

We can consider the partial partition PCC(Xt (F )) of con-
nected components of Xt(F ). We have X⊥(F ) = E, so
PCC(X⊥(F )) = 1E ; now when t increases, Xt(F ) de-
creases, so PCC(Xt (F )) decreases for the standard order.
Hence the map t �→ PCC(Xt (F )) is an erosion from the
dual lattice (L,≥) to the lattice (Π∗(E,C),≤). We can also
take an inversion N of L, that is a map N : L→ L such that
for t, t ′ ∈ L, t < t ′ ⇒ N(t) > N(t ′) and N(N(t))= t ; then
the map t �→ PCC(XN(t)(F )) is an erosion L→Π∗(E,C).
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A component of F is any connected component of Xt(F )

for any t ∈ L; thus the set of components of F is

Comp(F )=
⋃

t∈L

PCC(Xt(F )
)
.

Note that we consider distinct components of F , in other
words, when C ∈ PCC(Xt (F )) for several values t ∈ L, it
appears only once in Comp(F ). We associate to each com-
ponent C its altitude h(C) [14], which is the highest level t

at which it appears in PCC(Xt (F )), and also the least value
of its points for F :

h(C)=max
{
t ∈ L | C ∈ PCC(Xt(F )

)}

=min
{
F(p) | p ∈ C

}
.

For C,C′ ∈ Comp(F ), C ⊂ C′ ⇒ h(C) > h(C′). For p ∈
E and C ∈ Comp(F ), p ∈ C ⇒ F(p)≥ h(C), and the least
C ∈ Comp(F ) such that p ∈ C is the one with h(C)= F(p).
Thus F can be reconstructed from the set of pairs (C,h(C))

for C ∈ Comp(F ):

∀p ∈E, F(p)=max
{
h(C) | C ∈ Comp(F ), p ∈ C

}
.

Then the max-tree is the directed graph whose vertices are
the components of F and where we draw a directed edge
from C0 to C1 when C0 covers C1 for the inclusion order
on Comp(F ); this graph is indeed a tree whose root is E

and where each directed edge goes from parent to child.
The branches correspond to peaks, and the leaves to regional
maxima.

The min-tree is the dual of the max-tree w.r.t. the order
on L. For t ∈ L, we define the thresholding below

Yt (F )= {p ∈E | F(p)≤ t
}
.

We consider then the partial partition PCC(Yt (F )). We have
Y (F ) = E, so PCC(Y (F )) = 1E ; now when t increases,
Yt (F ) increases, so PCC(Yt (F )) increases for the standard
order. Hence the map t �→ PCC(Yt (F )) is an erosion L→
Π∗(E,C). We take

Comp∗(F )=
⋃

t∈L

PCC(Yt (F )
)
,

and for C ∈ Comp∗(F ) we set

h∗(C)=min
{
t ∈ L | C ∈ PCC(Yt (F )

)}

=max
{
F(p) | p ∈ C

}
.

For C,C′ ∈ Comp∗(F ), C ⊂ C′ ⇒ h∗(C) < h∗(C′). For
p ∈ E and C ∈ Comp∗(F ), p ∈ C ⇒ F(p) ≤ h∗(C), and
the least C ∈ Comp∗(F ) such that p ∈ C is the one with
h∗(C)= F(p). We get

∀p ∈E, F(p)=min
{
h∗(C) | C ∈ Comp∗(F ), p ∈ C

}
.

Fig. 14 Here E is a one-dimensional digital set of 15 points, and the
connection C corresponds to the adjacency relation between consecu-
tive points. We take L = {0,1,2,3,4,5,6}. Top left: the function F .
Top right: we show in grey the sets C × {h(C)} for all C ∈ Comp(F );
when C ∈ PCC(Xt (F )) for t < h(C), the set C × {t} is shown dashed.
Bottom left: when the altitude decreases from  to ⊥, a point p enters
at altitude F(p) the component C such that p ∈ C and h(C)= F(p);
then C gets included in the component C′ of highest altitude that
strictly contains C. We obtain a dendrogram drawn upside down. Bot-
tom right: each component becomes a node of the max-tree, with par-
ent-child directed edges corresponding to the covering relation in the
dendrogram

We construct then the min-tree with Comp∗(F ) as set of
nodes, and directed edges corresponding to the covering
relation for the inclusion order on Comp∗(F ). Here the
branches correspond to troughs, and the leaves to regional
minima.

We can then process a function F by acting on the hi-
erarchy PCC(Xt (F )) or PCC(Yt (F )) (t ∈ L), for example
using a flat operator, i.e., an order-preserving operator on
functions that works by applying a set operator to the thresh-
oldings. For instance, an anti-extensive connected flat opera-
tor ψ on functions satisfies PCC(Xt (ψ(F )))⊆ PCC(Xt (F ))

for all t ∈ L; in terms of the max-tree, this means that some
branches are pruned: some nodes are removed, and then all
their descendants are removed too. Dually an extensive one
satisfies PCC(Yt (ψ(F ))) ⊆ PCC(Yt (F )); here the min-tree
will be pruned.

For homotopic reduction, given the foreground and back-
ground connections F and B, the original function F0 and
the reduced one F1 satisfy the following analogue of (22):

∀t ∈ L,

{
PCF (Xt (F1)) � PCF (Xt (F0)) &

PCB(Yt (F0)) � PCB(Yt (F1)).
(40)

Here the max- and min-tree remain unchanged, except that
a node having a unique child node can be removed; if the
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removed node is not the root, its parent node becomes the
new parent of the child node.

In a topological watershed construction, an initial divide
function D0 is reduced to a smaller one D1 satisfying, cf.
(23),

∀ t ∈ L, PCB(Yt (D0)
)
� PCB(Yt (D1)

)
. (41)

NB. Anyway, PCF (Xt (D1))≤ PCF (Xt (D0)).
Note that a union of several components of a function is

not connected, except if one of these components contains all
others (i.e., it is their common ancestor in the tree), so the
union reduces to that component. Indeed, let X ⊆ Comp(F );
set g =min{h(C) | C ∈X } and let Ĉ ∈X such that h(Ĉ)=
g; in other words Ĉ is the component from X with least
altitude. Then for all C ∈ X , h(C) ≥ g, so C ⊆ Xg(F );
thus

⋃
X ⊆ Xg(F ). Now Ĉ is a connected component of

Xg(F ), which means that it is a maximal connected sub-
set of Xg(F ). Since Ĉ ⊆⋃X ⊆ Xg(F ), this means that if
⋃

X is connected, then we must have
⋃

X = Ĉ, in other
words C ⊆ Ĉ for all C ∈ X . A dual argument holds for
X ⊆ Comp∗(F ).

It follows that the merging order cannot be used in the
framework of the component tree. However the merging-
inflating order can lead to image simplifications where the
separation between clustered peaks (or troughs) is filled, so
that they become merged. For example a flat operator ψ such
that PCC(Xt (ψ(F ))) � PCC(Xt (F )) for all t ∈ L will in-
flate and merge peaks. In terms of the max-tree, this means
that going from the root to the leaves, at several places two
child nodes of the same parent node can be merged, hence
whole branches of the tree can be merged.

Of course, the operator need not be flat, we can work
directly on the component tree, by pruning or merging
branches. This allows to change the altitude of components,
but the order between the altitude of the parent and child
nodes must be preserved, in other words the contrast be-
tween two neighbouring flat zones may increase or decrease,
but not change sign. This allows to impose on the operator
some topological properties in terms of peaks and troughs,
as we did in (40), (41).

5 Discussion, Conclusion and Perspectives

The literature on partitions and partial partitions has consid-
ered only one order, the refinement order on partitions, and
its extension to partial partitions that we call the standard or-
der. The situation evolved when Serra defined the building
order [33, 34] for partitions and partial partitions. Follow-
ing his work, we have introduced 5 new order relations on
partial partitions: the merging, inclusion, inflating, merging-
inflating and inclusion-inflating orders. They are all included

in the standard order. Table 1 summarizes the notation and
definition of each of them.

The identity (equality relation), the standard order and
the 5 new orders constitute a lattice whose Hasse diagram is
illustrated in Fig. 9. It is generated by the inclusion, inflating
and merging orders, which correspond to basic operations
on the blocks of a partial partition: creating a new block,
inflating an existing block, and merging several blocks. The
other orders combine together several basic operations.

If one restricts oneself to partitions of a given set (or par-
tial partitions with a fixed support), then the operations of
creating or inflating a block are no more available, and there
remain only the identity and refinement orders. More pre-
cisely: (a) the standard, merging and merging-inflating or-
ders reduce to the refinement order; (b) the inclusion, inflat-
ing and inclusion-inflating orders reduce to the identity.

The greater number of order relations for partial parti-
tions, in comparison with partitions, indicates the greater
flexibility in the processing of partial partitions. We already
argued in the Introduction that partial partitions are nec-
essary for the modeling of various operations involved in
the construction of image segmentation partitions or in con-
nected filtering.

We have given for each order the covering relation. All
these orders are graded and have a height function, see Ta-
ble 2. This height function is a measure of the complexity
of a partial partition from the point of view of its construc-
tion by an iteration of elementary operations; this complex-
ity does not depend on the order of these elementary opera-
tions.

We have investigated hierarchies of partial partitions with
connected blocks, the edge elements belong to 4 ordered
types, cf. (39), and as the level increases, they change from
one type to a higher type; the saliency of an edge is the in-
terval of levels where it belongs to the two “visible” types
(outer and separating). In the growing of partial partitions,
each elementary operation leads to some specific changes of
edge type, see Table 3; by extension, each order restricts the
growth to a set of possible changes of edge type, see Table 4.
For a hierarchy of partitions, the only change of type is from
separating to inner, and the saliency of the edge indicates the
level where this happens.

Hierarchies of partial partitions intervene in component
trees, for which our orders can be used to describe operators
with topological properties that translate into specific oper-
ations on the tree.

Our theory is relevant to image segmentation for three
reasons. First, the basic operations involved in our orders
(merging two blocks, creating a new block or inflating an
existing block) are used in various segmentation algorithms.
Second, we have taken into account the possible requirement
that the segmentation classes should be connected according
to some partial connection. Third, we were able to charac-
terize hierarchies.
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This paper is a first step in the study of orders on partial
partitions. Further topics will be discussed in future papers.
First, other orders can be defined on Π∗(E). They can be
built from previous ones by composing an order with the
inverse of another, or by intersecting an order with a quasi-
order. Let us briefly describe six new orders that will be stud-
ied in detail; we hinted at some of them in the last paragraph
of [26]. Three orders can be obtained by replacing the merg-
ing of block by apportioning, cf. the Introduction:

1. The apportioning order:

π1 � π2 and supp(π1)= supp(π2).

It contains the merging order.
2. The apportioning-inflating order:

π1 � π2 and supp(π1)⊆ supp(π2).

It contains the merging-inflating and apportioning orders
and is generated by composing apportioning and inflating
in any order.

3. The extended order:

π1 � π2 ∩P
(
supp(π1)

)
and supp(π1)⊆ supp(π2).

It contains the standard and apportioning orders and is
generated by composing inclusion followed by appor-
tioning.

There is a strong analogy between these three orders and
the merging, merging-inflating and standard orders that they
extend: everything that we said in Theorems 7, 12, 11 and 2
can be transposed to these three new orders by just replacing

merging with apportioning, and the m-covering
m≺ with a

new a-covering relation
a≺ associated to apportioning.

The apportioning order can be used to eliminate “small
parasitic” segmentation classes, as explained in the Intro-
duction. The apportioning-inflating order can be used when,
on top of “parasitic” classes, significant regions are sepa-
rated by thick background edges that need to be thinned.

We mentioned that the only operations that do not cre-
ate “visible” edges are merging blocks (in the order 	) or
removing blocks (in the order ⊇). Removing a block can be
seen as merging it with the background, and the latter can be
considered as a special block of a partition if we distinguish
it with a special marker point:

4. Let ℘ /∈E and E∗ =E ∪ {℘}. Then the map

Π∗(E)→Π
(
E∗
) : π �→ π ∪ {E∗ \ supp(π)

}

is a bijection. Its inverse (removing from a partition of
E∗ the block containing ℘) isomorphically transforms
the refinement order on Π(E∗) into the regional order
on Π∗(E), relating π1,π2 ∈Π∗(E) iff every block of π2

is a union of some blocks of π1, in other words, π2 is ob-
tained by merging some blocks of π1 and removing some
other blocks in it. This order is generated by composing
in any order inverse inclusion ⊇ and merging 	, its least
and greatest elements are respectively 1E and 0E , and its

covering relation is
m≺ ∪ c�. When E is finite, the height

of any π ∈Π∗(E) is |E| − hc(π).

Comparing the apportioning and apportioning-inflating
orders, we can invert the inclusion of supports:

5. The partial apportioning order:

π1 � π2 and supp(π1)⊇ supp(π2);
some blocks are removed, and part of their contents can
be erased before they are apportioned to other blocks.
It contains the inverse inclusion ⊇, apportioning and re-
gional orders.

Let us finally mention an order that is defined not in terms
of block inclusion, but of block overlap:

6. The linking order: supp(π1)⊇ supp(π2) and every block
of π1 overlaps at most one block of π2. It contains the
merging 	, inverse inflating , inverse inclusion ⊇ and
regional orders; for nonvoid partial partitions, it is gen-
erated by composing merging 	 followed by inverse in-
flating .

We have seen that the regional order is generated by com-
posing merging 	 and inverse inclusion ⊇ in any order,
while the linking order is generated by composing merging
	 followed by inverse inflating . Now the building order
� is generated by inverse inclusion ⊇ followed by inflating
� (these two operations were indeed used in Serra’s method
for eliminating “parasitic” segmentation classes, cf. the In-
troduction). Thus combining one of the three basic orders
with the inverse of another gives an order.

The above six new orders are graded. On the other hand
the building order is not graded, and this is another reason
for not considering it as “meaningful”.

A second topic to be investigated is the one introduced
in the second part of [26] (Sects. 3, 4 and 5 there). We ex-
plained in the Introduction that the segmentation of a func-
tion F is considered to be a maximal element, for the re-
finement ordering, of the family Π(E,CF ) of all partitions
whose blocks belong to CF , the set all elements of the con-
nection C on which F is homogeneous according to the seg-
mentation criterion. In the case of a partial connection C,
the segmentation will be a maximal element of Π∗(E,CF ).
We can analyse this maximality from the point of view of
other orders, in particular in the case of compound seg-
mentation using two successive criteria. Also, for a fixed
function F , the segmentation induces a set splitting oper-
ator σF : X �→ σF (X) ∈ Π∗(X,C), which induces a block
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splitting operator β(σF ) on Π∗(E) that applies σF to each
block of a partial partition [24, 25]; the maximality of σF (X)

in Π∗(X,C) or Π(X,C) should be related to the properties
of the operator β .

The selection of a maximal partition (relatively to some
order) can be done by maximizing what we call in [26] a
valuation; it is a strictly isotone map f :Π∗(E)→ R+. In-
deed, a partial partition with greatest valuation will be max-
imal. Now, assuming that all intervals have finite height, the
covering relation is useful for verifying that f is a valuation:
we have only to check that whenever π2 covers π1, we get
f (π2) > f (π1). The valuation can take into account some
numerical characteristics, such as the number of blocks,
their sizes, etc. For example the height is a valuation. We
saw at the end of Sect. 3.2 that for the 3 compound orders,
the covering relation is compound, and all covering chains
between two comparable partial partitions comprise a con-

stant number of each type of elementary covering (
m≺,

s≺ or
i≺). Thus we can give to each elementary covering a differ-
ent weight; this amounts to taking other combinations of hc ,
hm and hs . Valuations based on such parameters measure the
fact that the partial partition has big blocks, a small number
of blocks, and a big support; this can indeed be a useful cri-
terion for selecting a partial partition as the segmentation.
This idea is related to the one first introduced by Guigues
[7], then expounded by Serra [10, 35, 36], where instead of
a valuation (based on block numbers and sizes), one con-
siders an energy computed from the variation of grey-levels
inside blocks and across their borders; also Serra aimed at
minimizing the energy, while we maximized the valuation.
Although he gave methods for iteratively selecting a parti-
tion of minimum energy while climbing up a hierarchy, this
energy is not in itself linked to an order relation, as is the
valuation.

Finally, there is some mathematical structure underlying
the fact that the six orders studied in this paper satisfy the
Jordan-Dedekind chain condition, and that the three com-
pound orders (standard, merging-inflating and inclusion-
inflating) satisfy a stronger condition similar to the original
Jordan-Hölder theorem in group theory, namely that all cov-
ering chains between two comparable partial partitions com-
prise a constant number of each type of elementary covering

(
m≺,

s≺ or
i≺). It is related to the lattice-theoretical property

of upper semi-modularity [3, 6] and its translation to posets
as Ore’s quadrilateral condition [18]. This will be the topic
of a purely mathematical paper.

Appendix: Local Knowledge: Truncation
and Restriction

We introduced numerous binary relations on Π∗(E), most
of them being partial order relations, cf. Table 1. We will

now consider how such relations are preserved by the fol-
lowing two operations on partial partitions, for any A ∈
P(E): truncation by A:

π �→ π ∧ 1A = {B ∩A | B ∈ π, B ∩A �= ∅}, (42)

and restriction to A:

π �→ π ∩P(A)= {B ∈ π | B ⊆A}. (43)

These operations are relevant to the problem of local knowl-
edge, what Serra [32] calls class permanency: given a partial
partition π and a restricted window A, viewing π through
A means either truncating all blocks of π , that is, taking
π ∧ 1A, or restricting π to blocks inside A, that is, taking
π ∩P(A); then it becomes interesting to know if these two
operations of truncation and restriction preserve a given or-
der on partial partitions.

We first consider compatibility with truncation. The fol-
lowing relations are preserved by truncation by A:

– The support inclusion, support containment and support
equality relations, since supp(πi ∧ 1A)= supp(πi)∩A.

– The standard order: standard lattice theory gives π1 ≤
π2 ⇒ π1 ∧ 1A ≤ π2 ∧ 1A.

– The merging order, since it is the intersection of the stan-
dard order and the support equality relation.

– The inclusion order: for π1 ⊆ π2, the blocks of π1 ∧ 1A

are all non-void B ∩A for B ∈ π1, so they belong to π2 ∧
1A.

– The inclusion-inflating order, that is, the intersection of
the standard order and of the singularity relation. Indeed,
let π1 ≤ π2 and π1 	 π2. Then π1 ∧ 1A ≤ π2 ∧ 1A. The
blocks of π1∧ 1A (resp., π2∧ 1A) are the non-void B ∩A

for B ∈ π1 (resp., for B ∈ π2). If C ∩ A (C ∈ π2) con-
tains B1 ∩ A and B2 ∩ A (B1,B2 ∈ π1), then B1 and B2

intersect C, and as π1 ≤ π2, B1,B2 ⊆ C, but as π1 	 π2,
we deduce that B1 = B2, so B1 ∩ A = B2 ∩ A. Thus
π1 ∧ 1A 	 π2 ∧ 1A.

The following relations are not preserved by truncation by
A:

– The singularity relation: take π1 = {B,C} and π2 = {A},
where B � A � C but B,C � A, then π1 	 π2 but π1 ∧
1A = {A∩B,A∩C} �	 π2 = π2 ∧ 1A.

– The building order: take B ⊃A⊃ ∅, π1 = 1B\A and π2 =
1B , then π1 � π2 but π1 ∧ 1A =Ø �� 1A = π2 ∧ 1A.

– The inflating order: take the counterexample given for the
building order.

– The merging-inflating order: take the same counterexam-
ple.

We now consider compatibility with restriction. The fol-
lowing relations are preserved by restriction to A:

– The singularity relation: this is a special case of (12).
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– The building order, see (7).
– The inclusion order: standard set theory gives π1 ⊆ π2 ⇒

π1 ∩P(A)⊆ π2 ∩P(A).

The following relations are not preserved by restriction to
A:

– The support inclusion, support containment and support
equality relations; indeed, the support does not tell any-
thing about the existence of blocks included in A.

– The standard order.
– The merging order.
– The inflating order.
– The merging-inflating order.
– The inclusion-inflating order.

In fact, any order included in the standard order, that is
compatible with restriction, must be included in the inclu-
sion order. Indeed, if π1 ≤ π2 but π1 � π2, then there is
B ∈ π1 and C ∈ π2 such that B ⊂ C, so B ∈ π1 ∩P(B) but
π2 ∩ P(B)⊆ π2 \ {C}, and B is not included in a block of
π2 \ {C}, thus π1 ∩P(B) �≤ π2 ∩P(B).
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