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Abstract Recent advances in �1 optimization for imaging
problems provide promising tools to solve the fundamental
high-dimensional data classification in machine learning. In
this paper, we extend the main result of Szlam and Bresson
(Proceedings of the 27th International Conference on Ma-
chine Learning, pp. 1039–1046, 2010), which introduced an
exact �1 relaxation of the Cheeger ratio cut problem for un-
supervised data classification. The proposed extension deals
with the multi-class transductive learning problem, which
consists in learning several classes with a set of labels for
each class. Learning several classes (i.e. more than two
classes) simultaneously is generally a challenging problem,
but the proposed method builds on strong results introduced
in imaging to overcome the multi-class issue. Besides, the
proposed multi-class transductive learning algorithms also
benefit from recent fast �1 solvers, specifically designed for
the total variation norm, which plays a central role in our ap-
proach. Finally, experiments demonstrate that the proposed
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�1 relaxation algorithms are more accurate and robust than
standard �2 relaxation methods s.a. spectral clustering, par-
ticularly when considering a very small number of labels for
each class to be classified. For instance, the mean error of
classification for the benchmark MNIST dataset of 60,000
data in R

784 using the proposed �1 relaxation of the multi-
class Cheeger cut is 2.4 % when only one label is considered
for each class, while the error of classification for the �2 re-
laxation method of spectral clustering is 24.7 %.
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1 Introduction

Partitioning data into sensible groups is a fundamental prob-
lem in machine learning and science in general. One of the
most popular approaches is to find the best (balanced) cut of
a graph representing data, such as the normalized cut of Shi
and Malik [24] or the Cheeger ratio cut [9]. However, solv-
ing balanced/ratio cut problems is NP-hard, which has lead
people to compute approximate solutions. The most well-
known approach to approximate the solution of a ratio cut
is the spectral clustering method, which is based on a �2

relaxation of the original ratio cut. This �2 relaxation re-
duces to solving a generalized system of eigenvectors for the
graph Laplacian, then selects the 2nd smallest eigenvector
and finally partitions into two groups by thresholding (this
requires testing multiple thresholds). Different normaliza-
tions of the graph Laplacian lead to different spectral clus-
tering methods. These methods often provide good solutions
but can fail on somewhat benign problems; for example see
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the two-moons example in Fig. 1. In this case, the relax-
ation leading to the spectral clustering methods is too weak.
A stronger relaxation was introduced by Bühler and Hein in
[7]. They described the p-spectral clustering method, which
considers the �p relaxation of the Cheeger ratio cut, instead
of the �2 relaxation. They showed that the relaxed solution
of the p-spectral clustering problem tends asymptotically to
the solution of the Cheeger cut problem when p → 1. In
[10, 26] (also see [25]), it was proved that the relaxation
for p = 1 is actually exact, i.e. the solution of the �1 relax-
ation problem provides an exact solution of the Cheeger cut
problem. Unfortunately, there is no algorithm that guaran-
tees to find global minimizers of the �1 relaxation problem
(we recall that the problem is NP-hard). However, the exper-
iments in [7, 26] showed that good results can be obtained
with these stronger relaxations; the works [3, 15, 16] have
further strengthened the case for �1 relaxation methods and
related ideas, and have charted a new and promising research
direction for improving spectral clustering methods.

In this work, we propose to extend [26]. In particular, we
are interested in extending to the challenging multi-class ra-
tio cut problem, and adding label information to obtain a
transductive problem. Standard approaches for the unsuper-
vised learning problem usually proceed by recursive two-
class clustering. In this paper, we will use results recently in-
troduced in imaging science to solve the multi-class learning
problem. The papers [1, 6, 8, 19, 20, 28] have proposed tight
approximations of the solution of the multi-phase image seg-
mentation problem based on �1 relaxation techniques. The
main contribution of this paper is to develop efficient multi-
class algorithms for the transductive learning problem. We
will introduce two multi-class algorithms based on the �1

relaxation of the Cheeger cut and the piecewise constant
Mumford/Shah or Potts models [22, 23]. Experiments show
that these new multi-class transductive learning algorithms
improve the classification results compared to spectral clus-
tering algorithms, particularly in the case of a very few num-
bers of labels.

2 Unsupervised Data Classification with �1 Relaxation
of the Cheeger Cut

2.1 The Model

In this section, we recall the main result of [26] and pro-
posed a modified and improved version of the algorithm in-
troduced there. Let G = (V ,E) be a graph where V is the
set of nodes and E is the set of edges weighted by a func-
tion Wij , ∀(ij) ∈ E. A classical method for clustering is to
consider the Cheeger minimization problem [9]:

min
Ω⊂V

Cut(Ω,Ωc)

min(|Ω|, |Ωc|) (1)

which partitions the set V of points into two sets Ω and Ωc

(the complementary set of Ω in V ). The cut is defined as
Cut(Ω,Ωc) := ∑

i∈Ω,j∈Ωc wij and |.| provides the number
of points in a given set. The Cheeger problem is NP-hard.
However, it was shown in [10], and by the authors of this
paper using a different argument in [26], that there exists an
exact continuous relaxation of (1) as follows. Let us consider
the minimization problem w.r.t. a function u : V → [0,1]:

min
u∈[0,1]

‖Du‖1

‖u − m(u)‖1
(2)

where ‖Du‖1 := ∑
ij wij |ui − uj | is the graph-based total

variation of the function u, m(u) is the median of u, and
‖u − m(u)‖1 = ∑

i |ui − m(u)|. If a global minimizer u�

of (2) can be computed, then it can be shown that this min-
imizer would be the indicator of a set Ω� (i.e. u� = 1Ω� )
corresponding to a solution of the NP-hard problem (1). But
there is no algorithm that guarantees to compute global min-
imizers of (2) as the problem is non-convex. However, ex-
periments show that the proposed minimization algorithm
in [26], which we will review below, produces good approx-
imations of the solution.

Recent advances in �1 optimization offer powerful tools
to design a fast and accurate algorithm to solve the mini-
mization problem (2). First, observe that minimizing (2) is
equivalent to:

min
u∈[0,1]

‖Du‖1

‖u‖1
s.t. m(u) = 0 (3)

Indeed, the energy is not changed if a constant is added to u.
So it is possible to restrict the minimization problem to func-
tions u with zero median. Then, the ratio minimization prob-
lem (3) can be solved using the method of Dinkelbach [11]
(also used in imaging problems s.a. [17, 18]) which intro-
duces the minimax problem:

min
u∈[0,1] max

λ∈R
‖Du‖1 − λ‖u‖1 s.t. m(u) = 0 (4)

Then, we consider a standard two-step iterative algorithm:

(i) Fix λ, compute the solution of the constrained mini-
mization problem:

un+1 = argmin
u∈[0,1]

‖Du‖1 − λn‖u‖1 s.t. m(u) = 0 (5)

(ii) Fix u, compute the solution of the maximization prob-
lem:

λn+1 = argmax
λ∈R

‖Dun+1‖1 − λ‖un+1‖1 (6)

For the minimization problem (5), observe that the con-
straint zero median is not linear, but it can be replaced by
the approximate linear constraint

∑
i ui ≤ |V |/2. Indeed,
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suppose that ui ∈ {0,1} then the median of u is zero if∑
i ui ≤ ∑

i (1−ui) which yields to
∑

i ui ≤ |V |/2. We will
consider the notation 1.u := ∑

i ui in the rest of the paper.
In order to deal efficiently with the non-differentiability

of the �1 norm in (6), a splitting approach associated with
an augmented Lagrangian method and the Alternating Di-
rection Method of Multipliers [13] can be used along the
same lines as [4, 14]. Hence, we consider the constrained
minimization problem:

min
u,v∈[0,1],d ‖d‖1 − λ‖v‖1

s.t. d = Du, v = u, 1.v ≤ |V |/2
(7)

whose linear constraints can be enforced with an augmented
Lagrangian method as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(un+1, vn+1, dn+1)

= argminu,v∈[0,1],d ‖d‖1 − λ‖v‖1

+ αd.(d − Du) + rd
2 |d − Du|2

+ αv.(v − u) + rv
2 (v − u)2 + αm.(1.v − |V |/2)

αn+1
d = αn

d + rd .(dn+1 − Dun+1)

αn+1
v = αn

v + rv.(v
n+1 − un+1)

αn+1
m = max(0, αn

m + rm.(1.vn+1 − |V |/2))

(8)

Three sub-minimizations need to be solved. The minimiza-
tion problem w.r.t. u:

min
u

rd

2

∣
∣
∣
∣Du −

(

d + αd

rd

)∣
∣
∣
∣

2

+ rv

2

(

u −
(

v + αv

rv

))2

whose solution u� is given by a Poisson problem:

(
rv + rdDT D

)
u = rdDT

(

d + αd

rd

)

+ rv

(

v + αv

rv

)

(9)

The solution of (9) can be estimated by a few steps of con-
jugate gradient descent as D is extremely sparse. The mini-
mization problem w.r.t. v:

min
v∈[0,1]−λ‖v‖1 + rv

2

(

v −
(

u − αv

rv

))2

+ αm.(1.v − |V |/2)

has an analytical solution given by unshrinkage [26] and
truncated into [0,1]:

v� = Π[0,1]
(

fv + λ

rv

fv

|fv|
)

,

with fv := u − αv

rv
− αm

rv
(10)

To avoid the constant trivial solution, we also apply the
“renormalization” step: v� ← v�−min(v�)

max(v�)−min(v�)
. The mini-

mization problem w.r.t. d :

min
d

‖d‖1 + rd

2

∣
∣
∣
∣d −

(

Du − αd

rd

)∣
∣
∣
∣

2

has also an analytical solution given by shrinkage [12]:

d� = max

(

|fd | − 1

rd
,0

)
fd

|fd | ,

with fd := Du − αd

rd
(11)

For the maximization problem (6), the solution is as follows:

λn+1 = ‖Dun+1‖1

‖un+1‖1
(12)

We will consider a steepest gradient descent method instead
of (12) to get a smoother evolution of λn+1:

λn+1 = λn − δλ.

(

λn − ‖Dun+1‖1

‖un+1‖1

)

(13)

To summarize the algorithm introduced in this section, we
write down the pseudo-code Algorithm 1.

Algorithm 1 Unsupervised learning with �1 relaxation of
the Cheeger cut

un=0 given by random initialization
while outer loop not converged do

α
q=0
d ,α

q=0
v , α

q=0
m ← 0

while inner loop not converged do
un+1,q+1 given by (9)
vn+1,q+1 given by (10)
dn+1,q+1 given by (11)
α

q+1
v given by (8)

α
q+1
d given by (8)

α
q+1
m given by (8)

end while
λn+1 given by (13)

end while

2.2 Experiments

In this section, we demonstrate results using the unsuper-
vised classification Algorithm 1. For each experience, we
build the weight matrix using the self-tuning construction
of [29]. We use ten nearest neighbors, and the tenth neigh-
bor determines the local scale. The universal scaling pa-
rameter is set to 1. For Algorithm 1, we set rd = 10, rv =
100, rm = 6K/N , where N is the number of data points
and K is the number of classes, and δλ = 0.4. Figure 1
presents the well-known two-moon dataset [7]. Each moon
has 1,000 data points in R

100. This example shows that
the solution of the �1 relaxation is tighter than the solu-
tion of the �2 relaxation (see caption for more details). In
Table 1, we compare quantitatively our algorithm with the
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Table 1 Unsupervised learning result for the two-moon dataset. Col-
umn (a) reports the minimum energy value (1) considered among 100
random initializations and the error is the percentage of misclassified
data of the minimum energy. Column (b) reports the average energy

value (1) and the misclassification error for 100 random initializations.
Note that the same random initialization was used for Algorithms 1
and [15]

(a) Best energy (error) (b) Mean energy (error)

Algorithm 1 0.4688 (1.25 %) 0.4693 (1.53 %)

Hein and Bühler [15] 0.4688 (1.25 %) 0.4700 (1.61 %)

Spectral clustering [24] 0.4705 (1.75 %) 0.4705 (1.75 %)

Fig. 1 Unsupervised classification of the two-moon dataset. Each
moon has 1,000 data points in R

100. Figure (b) is the result given by
the spectral clustering method of Shi and Malik [24]. It fails to pro-
duce the correct result as the �2 relaxation is too weak. Figure (d) is
the result of the �1 relaxation algorithm and figure (c) is the random
initialization. The proposed algorithm succeeds to compute the correct
result. This also shows that the solution of the �1 relaxation is tighter
than the solution of the �2 relaxation (Note: it is a color figure)

spectral clustering method of Shi and Malik [24] and the re-
lated method of Hein and Bühler in [15], which is available
at http://www.ml.uni-saarland.de/code/ one SpectralCluster-
ing/oneSpectralClustering.html ([16] is not yet available for
comparison). Our method and [15] outperform the spectral
clustering method.

In Fig. 2, we apply the standard recursive two-class par-
titioning approach to deal with more than two classes. Fig-
ure 2(b) shows the result by spectral clustering and Fig. 2(c)
presents the result with our algorithm (see caption for more
details).

On the right hand side of Fig. 3, we display a pro-
jection of the MNIST benchmark dataset, available at
http://yann.lecun.com/exdb/mnist/, to 3 dimensions via PCA.
This data set consists of 70,000 28 × 28 images of handwrit-
ten digits, 0 through 9, usually broken into a 60000 point

Fig. 2 Unsupervised classification for the four-moon dataset. The
standard recursive two-class partitioning approach is applied. Figure
(b) shows the result by spectral clustering [24] and figure (c) presents
the result with Algorithm 1. Although our algorithm produces a bet-
ter result than spectral clustering, it still fails to compute the solution.
When more than two classes are considered then the quality of the re-
sults given by the recursive algorithm actually strongly depends on the
choice of the initialization. In fact, for most initializations, the stan-
dard recursive two-class partitioning approach will not be able to give
the solution (Note: it is a color figure)

training set and a 10000 point test set; thus the data is pre-
sented as 70000 points in R

784). The data was preprocessed
by projecting onto 50 principal components. Table 2 com-

http://www.ml.uni-saarland.de/code/
http://yann.lecun.com/exdb/mnist/
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Table 2 Unsupervised learning result for the MNIST dataset. Column
(a) reports the minimum energy value (1) considered among 10 ran-
dom initializations and the error is the percentage of misclassified data

of the minimum energy. Column (b) reports the average energy value
(1) and the misclassification error for 10 random initializations. Note
that the same random initialization was used for Algorithms 1 and [15]

(a) Best energy (error) (b) Mean energy (error)

Algorithm 1 0.6014 (11.6829 %) 0.6020 (11.6986 %)

Hein and Bühler [15] 0.6014 (11.6829 %) 0.6023 (11.7014 %)

Spectral clustering [24] 0.8546 (29.8833 %) 0.8546 (29.8833 %)

Fig. 3 Projection into a 3D space (via PCA) of the MNIST benchmark
dataset. This data set consists of 60,000 28 × 28 images and 10,000
training images (each image is a data point in R

784) of handwritten
digits, 0 through 9 (Note: it is a color figure)

pares quantitatively our algorithm with the spectral cluster-
ing method of Shi and Malik [24] and the related method of
Hein and Bühler in [15]. Our method and [15] outperform
the spectral clustering method.

3 Transductive Data Classification with �1 Relaxation
of the Multi-class Cheeger Cut

In this section, we extend the unsupervised two-phase
Cheeger learning algorithm of Sect. 2 to a transductive
multi-class Cheeger learning algorithm. The most natural
extension of (1) to K classes is as follows:

min
Ω1,...,ΩK

K∑

k=1

Cut(Ωk,Ω
c
k )

min(|Ωk|, |Ωc
k |)

s.t.
K⋃

k=1

Ωk = V and Ωi ∩ Ωj = ∅ ∀i �= j

The previous minimization problem is equivalent to the fol-
lowing problem:

min
{uk}Kk=1∈{0,1}

K∑

k=1

‖Duk‖1

‖uk − m(uk)‖1

s.t.
K∑

k=1

uk(i) = 1 ∀i ∈ V

(14)

The set of minimization used in the above minimization
problem is not convex because binary functions do not make
a convex set. Thus we consider the following relaxation:

min
{uk}Kk=1∈[0,1]

K∑

k=1

‖Duk‖1

‖uk − m(uk)‖1

s.t.
K∑

k=1

uk(i) = 1 ∀i ∈ V

(15)

In Sect. 2, we recall that the continuous �1 relaxation of the
two-phase Cheeger minimization problem is exact, mean-
ing that the (continuous) solution of (2) provides a (dis-
crete) solution of the original Cheeger problem (1). We do
not know if the �1 relaxation is still exact when multiple
classes are considered, i.e. if the (continuous) solution of
(15) provides a (discrete) solution of the original multi-class
Cheeger problem (14). For the multi-class Cheeger-based
learning problem considered in this paper, experiments show
that the solutions {uk}Kk=1 are close to binary functions, but
there is no theoretical guarantee of this observation.

As the transductive learning problem is considered here
then a (small) set lk of labels is given for each class Ωk (i.e.
lk ⊂ Ωk , see Fig. 4) and the following minimization problem
is thus considered:

min
Ω1,...,ΩK

K∑

k=1

Cut(Ωk,Ω
c
k )

min(|Ωk|, |Ωc
k |)

s.t.
K⋃

k=1

Ωk = V and Ωi ∩ Ωj = ∅ ∀i �= j

and given {lk}Kk=1

(16)
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Fig. 4 Illustration of the multi-class transductive problem. Given a set
of labeled data points {lk}Kk=1 (the colored points), the objective is to
find the data classes {Ωk}Kk=1 that minimize the Cheeger energy (16)

which is equivalent to:

min
{uk}Kk=1∈{0,1}

K∑

k=1

‖Duk‖1

‖uk − m(uk)‖1

s.t.
K∑

k=1

uk(i) = 1 ∀i ∈ V and

uk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

and which is relaxed to:

min
{uk}Kk=1∈[0,1]

K∑

k=1

‖Duk‖1

‖uk − m(uk)‖1

s.t.
K∑

k=1

uk(i) = 1 ∀i ∈ V and

uk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

We now extend the two-phase algorithm designed in
Sect. 2 to the multi-phase case:

min
{uk}Kk=1∈[0,1]

max
{λk}Kk=1∈R

K∑

k=1

‖Duk‖1 − λk‖uk‖1

s.t. m(uk) = 0,

K∑

k=1

uk(i) = 1 ∀i ∈ V, and

uk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

The median constraint is relaxed to 1.uk ≤ |V |/K . We again
consider a standard two-step iterative algorithm:

(i) Fix λk , compute the solution for the K minimization
problems:

un+1
k = argmin

uk∈[0,1]
‖Duk‖1 − λn

k‖uk‖1

s.t. m(uk) = 0,

K∑

k=1

uk(i) = 1 ∀i ∈ V, and

uk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

(ii) Fix uk , compute the solution of the K maximization
problems:

λn+1
k = argmax

λ∈R

∥
∥Dun+1

k

∥
∥

1 − λ
∥
∥un+1

k

∥
∥

1 (17)

The minimization problems (17) are solved as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(un+1
k , vn+1

k , dn+1
k )

= argminuk,vk∈[0,1],dk
‖dk‖1

− λ‖vk‖1 + αdk.(dk − Duk) + rd
2 |dk − Duk|2

+ αvk.(vk − uk) + rv
2 (vk − uk)

2

+ αmk.(1.vk − |V |/K)

s.t.
∑K

k=1 vk = 1 and

vk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

αd
n+1
k = αn

d + rd .
(
dn+1
k − Dun+1

k

)

αv
n+1
k = αn

v + rv.
(
vn+1
k − un+1

k

)

αm
n+1
k = max

(
0, αm

n
k + rm.

(
1.vn+1

k − |V |/K))

(18)

The solution of the minimization problems w.r.t. uk, vk, dk

is the same as the solution given in the previous sec-
tion. Finally, the projection onto the convex simplex set∑K

k=1 vk = 1 is given by [21, 28]. Observe that the final so-
lution {u�

k}Kk=1 of (17) is not guaranteed to be binary. Hence,
a conversion step is required to make {u�

k}Kk=1 binary. The
most natural conversion is as follows:

û�
k(i) =

{
1 if k = arg maxp∈{1,...,K} u�

p(i)

0 otherwise
∀i ∈ V (19)

where {û�
k}Kk=1 are binary functions satisfying

∑K
k=1 û�

k = 1.
To summarize the algorithm introduced in this section,

we write down the pseudo-code Algorithm 2. Eventually,
Fig. 5 presents a simple illustration of the proposed multi-
class Cheeger transductive model.

4 Transductive Data Classification with �1 Relaxation
of the Multi-class Mumford-Shah-Potts Model

In this section, we develop an alternative to the multi-class
Cheeger transductive classification algorithm introduced in
the previous section. A successful multi-phase segmenta-
tion algorithm in imaging is the multiphase piecewise con-
stant Mumford-Shah method [22] (continuous setting) or the
Potts method [23] (discrete setting). These methods are well
suited to solve the image segmentation problem and the idea
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Algorithm 2 Transductive learning with �1 relaxation of the
multi-class Cheeger cut

un=0
k given by a few steps of heat diffusion of the indicator

functions of labels
while outer loop not converged do

αd
q=0
k , αv

q=0
k , αm

q=0
k ← 0

while inner loop not converged do
u

n+1,q+1
k given by (9)

v
n+1,q+1
k given by (10) + simplex projection

[21, 28] + labels given by (18)
d

n+1,q+1
k given by (11)

αd
q+1
k given by (18)

αvk given by (18)
αm

q=0
k given by (18)

end while
λn+1

k given by (13)
end while

in this section is to extend them to the transductive learn-
ing problem. Note that the piecewise constant Mumford-
Shah/Potts models have been first implemented with the
level set method [27, 30] and the graph cut method [5].
However, these methods are either too slow, not optimal,
not accurate enough or the memory allocation can be im-
portant. Recent advances in �1 optimization algorithms pro-
vide efficient tool to solve the piecewise constant Mumford-
Shah/Potts models [1, 6, 8, 19, 20, 28]. These recent im-
provements will be used to develop an efficient algorithm
for the transductive Potts model:

min
Ω1,...,ΩK

K∑

k=1

Cut
(
Ωk,Ω

c
k

)

︸ ︷︷ ︸
�Per(Ωk)

s.t.
K⋃

k=1

Ωk = V and Ωi ∩ Ωj = ∅ ∀i �= j

and given {lk}Kk=1

(20)

where Per stands for perimeter. The relationship between cut
and perimeter comes from the coarea formula [25]. In the
continuous setting, we have Per(Ω) = ∫

M⊂Rd |∇f | when
f = 1Ω(x) is the indicator function of a geometric set Ω

defined as f (x) = 1 ∀x ∈ Ω and 0 otherwise. Then, dis-
cretizing the total variation energy leads to

∫
M⊂Rd |∇f | �∑

i,j∈V wi,j |fi − fj | and plugging the indicator function
fi = 1Ω(i) finally gives Per(Ω) � ∑

i,j∈V wi,j |fi − fj | =∑
i∈Ω,j∈Ωc wi,j = Cut(Ω,Ωc). The minimization problem

(20) is equivalent to the following problem:

min
{uk}Kk=1∈{0,1}

K∑

k=1

‖Duk‖1

Fig. 5 Transductive classification of the four-moon dataset. The ob-
jective is to classify the four moons using 3 labels for each moon. Fig-
ure (b) presents the result with the spectral method (�2 relaxation) and
figure (c) shows the result with the �1 relaxation of the multi-class
Cheeger cut (Algorithm 2). The �1 relaxation produces a better classi-
fication result than the �2 relaxation (Note: it is a color figure)

s.t.
K∑

k=1

uk(i) = 1 ∀i ∈ V, and

uk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

The set of minimization used in the above minimization
problem is not convex because binary functions do not make
a convex set. Thus we consider the following relaxation:

min
{uk}Kk=1∈[0,1]

K∑

k=1

‖Duk‖1
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s.t.
K∑

k=1

uk(i) = 1 ∀i ∈ V, and

uk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

The previous minimization problem is solved as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(un+1
k , vn+1

k , dn+1
k )

= argminuk,vk∈[0,1],dk
‖dk‖1

+ αdk.(dk − Duk) + rd
2 |dk − Duk|2

+ αvk.(vk − uk) + rv
2 (vk − uk)

2

s.t.
∑K

k=1 vk = 1 and

vk(i) =
{

1 if i ∈ lp and k = p

0 if i ∈ lp and k �= p

αd
n+1
k = αn

d + rd .
(
dn+1
k − Dun+1

k

)

αv
n+1
k = αn

v + rv.
(
vn+1
k − un+1

k

)

The solution of the minimization problems w.r.t. uk, dk is
the same as the solution given in Sect. 2. The minimization
w.r.t. vk is simply given by:

v�
k = Π[0,1](fvk) with fvk := uk − αvk

rv
(21)

Algorithm 3 Transductive learning with �1 relaxation of
multi-class Mumford-Shah-Potts model

un=0
k given by a few steps of heat diffusion of the indicator

functions of labels
αd

n=0
k , αv

n=0
k , αm

n=0
k ← 0

while outer loop not converged do
un+1

k given by (9)
vn+1
k given by (21) + simplex projection [21, 28] +

labels given by (18)
dn+1
k given by (11)

αd
n+1
k given by (18)

αv
n+1
k given by (18)

end while

and project onto the convex simplex set
∑K

k=1 vk = 1 using
[21, 28]. Observe that the final solution {u�

k}Kk=1 of (17) is not
guaranteed to be binary. Hence, a conversion step is required
to make {u�

k}Kk=1 binary. Like in the previous section, the
binary conversion is as follows:

û�
k(i) =

{
1 if k = arg maxp∈{1,...,K} u�

p(i)

0 otherwise
∀i ∈ V (22)

Table 3 Transductive learning for the four-moon dataset. Column (I)
reports the minimum energy value considered among 10 random tests
and the associated error of misclassified data and computational time.
Column (II) reports the average energy value, the misclassification er-

ror and the computational time for the 10 tests. The energy considered
for the Cheeger model is (16), for the Mumford-Shah-Potts is (20) and
for the spectral method is (23). Finally, nl is the number of (randomly
selected) labeled data for each class

(I) Best energy (error/time) (II) Mean energy (error/time)

Algorithm 2 (Cheeger) 1.981 (35.27 %/52.66 sec) 2.040 (33.53 %/52.54 sec)

Algorithm 3 (Mumford-Shah-Potts) 1046 (24.47 % /7.72 sec) 1418 (28.36 %/5.56 sec)

Spectral clustering [2] 0.000 (38.47 %/3.49 sec) 0.000 (40.96 %/3.67 sec)

(a) nl = 1

Algorithm 2 (Cheeger) 1.530 (0.47 %/55.47 sec) 1.621 (9.41 %/49.86 sec)

Algorithm 3 (Mumford-Shah-Potts) 1190 (43.97 % /7.53 sec) 1510 (21.86 %/6.33 sec)

Spectral clustering [2] 0.316 (23.72 %/2.57 sec) 0.703 (12.09 %/3.43 sec)

(b) nl = 3

Algorithm 2 (Cheeger) 1.530 (0.47 %/58.79 sec) 1.532 (0.45 %/55.17 sec)

Algorithm 3 (Mumford-Shah-Potts) 1533 (0.50 %/6.63 sec) 1567 (4.53 %/5.81 sec)

Spectral clustering [2] 0.778 (1.07 %/3.66 sec) 1.197 (2.73 %/3.86 sec)

(c) nl = 6

Algorithm 2 (Cheeger) 1.530 (0.47 %/31.39 sec) 1.530 (0.46 %/45.18 sec)

Algorithm 3 (Mumford-Shah-Potts) 1532 (0.45 % /4.61 sec) 1534 (0.47 %/5.35 sec)

Spectral clustering [2] 1.589 (0.57 %/3.48 sec) 2.378 (0.53 %/3.56 sec)

(d) nl = 10

Algorithm 2 (Cheeger) 1.530 (0.45 %/18.06 sec) 1.537 (0.41 %/16.32 sec)

Algorithm 3 (Mumford-Shah-Potts) 1534 (0.37 % /2.94 sec) 1541 (0.39 %/3.26 sec)

Spectral clustering [2] 8.996 (0.37 %/3.25 sec) 9.349 (0.42 %/3.37 sec)

(e) nl = 100
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Table 4 Transductive learning for the MNIST dataset. Column (I)
reports the minimum energy value considered among 10 random tests
and the associated error of misclassified data and computational time.
Column (II) reports the average energy value, the misclassification er-
ror and the computational time for the 10 tests. The energy considered
for the Cheeger model is (16), for the Mumford-Shah-Potts is (20) and

for the spectral method is (23). Finally, 60,000 unlabeled data points
are considered and nl×10 labeled data points where nl is the number
of (randomly selected) labeled data for each class. Therefore, the total
number of data points for each experiment is 60,000 + nl × 10 data
points

(I) Best energy (error/time) (II) Mean energy (error/time)

Algorithm 2 (Cheeger) 1.370 (2.451 %/51.42 min) 1.371 (2.454 %/56.06 min)

Algorithm 3 (Mumford-Shah-Potts) 7839 (12.198 % /4.91 min) 8371 (11.254 %/5.39 min)

Spectral clustering [2] 0.000 (35.89 %/1.05 min) 0.000 (29.346 %/1.02 min)

(a) nl = 1

Algorithm 2 (Cheeger) 1.370 (2.444 %/48.54 min) 1.370 (2.449 %/46.20 min)

Algorithm 3 (Mumford-Shah-Potts) 8176 (2.311 % /4.69 min) 8191 (2.417 %/4.51 min)

Spectral clustering [2] 1.022 (12.50 %/0.86 min) 1.538 (9.529 %/0.86 min)

(b) nl = 5

Algorithm 2 (Cheeger) 1.371 (2.469 %/48.81 min) 1.373 (2.456 %/50.46 min)

Algorithm 3 (Mumford-Shah-Potts) 8208 (2.529 % /3.19 min) 8235 (2.458 %/3.73 min)

Spectral clustering [2] 1.725 (5.988 %/0.87 min) 2.245 (4.254 %/0.87 min)

(c) nl = 10

Algorithm 2 (Cheeger) 1.370 (2.433 %/51.29 min) 1.372 (2.407 %/45.60 min)

Algorithm 3 (Mumford-Shah-Potts) 8307 (2.271 % /3.10 min) 8335 (2.305 %/2.79 min)

Spectral clustering [2] 5.833 (3.224 %/0.87 min) 6.239 (2.728 %/0.87 min)

(d) nl = 50

Algorithm 2 (Cheeger) 1.369 (2.355 %/52.08 min) 1.375 (2.365 %/44.29 min)

Algorithm 3 (Mumford-Shah-Potts) 8426 (2.177 % /2.52 min) 8454 (2.304 %/2.25 min)

Spectral clustering [2] 8.840 (2.177 %/0.88 min) 9.126 (2.480 %/0.89 min)

(e) nl = 100

where {û�
k}Kk=1 satisfy

∑K
k=1 û�

k = 1.
To summarize the algorithm introduced in this section,

we write down the pseudo-code Algorithm 3.

5 Experiments

In this section, we show classification results using the trans-
ductive algorithms developed in Sects. 3 and 4. We will work
on the four moons and MNIST datasets described above. For
both data sets, we build the weights matrix using the self-
tuning construction of [29]. We use ten nearest neighbors,
and the tenth neighbor determines the local scale. The uni-
versal scaling parameter is set to 1. For Algorithm 1, we set
rd = 10, rv = 100, rm = 6K/N , where N is the number of
data points and K is the number of classes, and δλ = 0.4. For
Algorithm 3, we set rd = 10 and rv = 100. We choose the
labeled points randomly, and fix a number of labeled points
to draw from each class.

We compare Algorithm 2 and Algorithm 3 with a spec-
tral transductive learning method from [2], which uses linear
least squares on the eigenvectors of the normalized Lapla-
cian to estimate the classes. That is, given the weight ma-
trix W as before, we set L = I − S−1/2WS−1/2, where S

is the diagonal matrix with the row sums on the diagonal,
that is, Sii = ∑

j Wij . We compute the l + 1 lowest eigen-
value eigenvectors φ0, . . . , φl of L, and form the N × l ma-
trix Φ = [φ1 . . . φl]; note that as usual we have omitted the
density vector φ0. Each row of Φ corresponds to a data
point. Next we form the matrix Φlab by extracting the rows
of Φ corresponding to the labeled data points. Let L denote
the number of classes, and p be the number of labeled data
points. Given the p × L binary label matrix Y , we compute

A = (
ΦT

labΦlab
)−1

ΦT
labY

which minimizes the least square energy:

‖Y − ΦlabA‖2
2 (23)

To compute the class labels of the unlabeled points, we set
R = ΦA, and let

yj = argmax
i

Rji

Tables 3 and 4 compare the proposed �1 relaxations of the
multi-class Cheeger cut (Algorithm 2) and the Mumford-
Shah-Potts (Algorithm 3) with the competitive spectral
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method of [2] (by selecting the number l of eigenvectors
which minimizes the error). We have tested different num-
bers of labels (nl is the number of labeled data for each
class) that are selected randomly. We repeat each experi-
ment 10 times. For each experiment, the labeled points were
chosen randomly and the same labeled points were used
for the multi-class Cheeger cut model, the Mumford-Shah-
Potts model and the spectral method. The �1 relaxations of
the multi-class Cheeger cut and the Mumford-Shah-Potts
outperform the spectral method in all cases, significantly so
when a very small number of points are labeled.

6 Conclusion

The paper introduces new �1 relaxation methods for the
multi-class transductive learning problem. These relaxation
methods are inspired from recent advances in imaging sci-
ence which offer fast, accurate and robust �1 optimization
tools which allow to go beyond standard �2 relaxation meth-
ods, i.e. spectral clustering methods. Experiments demon-
strate that the �1 relaxations of the multi-class Cheeger cut
and the Mumford-Shah-Potts outperform the spectral clus-
tering method, and even more significantly when a very
small number of labels is considered.

Reproducible Research The code is available at http://
www.cs.cityu.edu.hk/~xbresson/codes.html#learningmulti.

Acknowledgement Xavier Bresson is supported by the Hong Kong
RGC under Grant GRF110311.

References

1. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continu-
ous multiphase partitioning problems using a dual approach. Int.
J. Comput. Vis. 92(1), 112–129 (2009)

2. Belkin, M.: Problems of learning on manifolds. PhD thesis, Uni-
versity of Chicago (2003)

3. Bertozzi, A., Flenner, A.: Diffuse interface models on graphs for
classification of high dimensional data. UCLA CAM Report 11-27
(2011)

4. Bioucas-Dias, J.M., Figueiredo, M.A.: A new TwIST: two-step it-
erative shrinkage/thresholding algorithms for image restoration.
IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

5. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE
Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

6. Brown, E.S., Chan, T.F., Bresson, X.: A convex relaxation method
for a class of vector-valued minimization problems with applica-
tions to Mumford-Shah segmentation. UCLA CAM Report 10-43
(2010)

7. Bühler, T., Hein, M.: Spectral clustering based on the graph p-
Laplacian. In: International Conference on Machine Learning, pp.
81–88 (2009)

8. Chambolle, A., Cremers, D., Pock, T.: A convex approach for
computing minimal partitions. Technical Report TR-2008-05,
Dept. of Computer Science, University of Bonn, Bonn (2008)

9. Cheeger, J.: A lower bound for the smallest eigenvalue of the
Laplacian. Problems in Analysis, 195–199 (1970)

10. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Confer-
ence Series in Mathematics, vol. 92 (1997). Published for the Con-
ference Board of the Mathematical Sciences, Washington, DC

11. Dinkelbach, W.: On nonlinear fractional programming. Manag.
Sci. 13, 492–498 (1967)

12. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf.
Theory 41(33), 613–627 (1995)

13. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and
Operator-Splitting Methods in Nonlinear Mechanics. SIAM,
Philadelphia (1989)

14. Goldstein, T., Osher, S.: The split Bregman method for L1-
regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

15. Hein, M., Bühler, T.: An inverse power method for nonlin-
ear eigenproblems with applications in 1-spectral clustering and
sparse PCA. In: Advances in Neural Information Processing Sys-
tems (NIPS), pp. 847–855 (2010)

16. Hein, M., Setzer, S.: Beyond spectral clustering—tight relaxations
of balanced graph cuts. In: Advances in Neural Information Pro-
cessing Systems (NIPS) (2011)

17. Kolev, K., Cremers, D.: Continuous ratio optimization via convex
relaxation with applications to multiview 3D reconstruction. In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2009)

18. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of paramet-
ric maxflow in computer vision. In: International Conference on
Computer Vision, pp. 1–8 (2007)

19. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex
multi-class image labeling by simplex-constrained total variation.
In: International Conference on Scale Space and Variational Meth-
ods in Computer Vision, pp. 150–162 (2009)

20. Lellmann, J., Schnörr, C.: Continuous multiclass labeling ap-
proaches and algorithms. Univ. of Heidelberg, Tech. Rep. (2010)

21. Michelot, C.: A finite algorithm for finding the projection of a
point onto the canonical simplex of rn. J. Optim. Theory Appl.
50(1), 195–200 (1986)

22. Mumford, D., Shah, J.: Optimal approximations of piecewise
smooth functions and associated variational problems. Commun.
Pure Appl. Math. 42, 577–685 (1989)

23. Potts, R.B., Domb, C.: Some generalized order-disorder transfor-
mations. Math. Proc. Camb. Philos. Soc. 48, 106–109 (1952)

24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

25. Strang, G.: Maximal flow through a domain. Math. Program. 26,
123–143 (1983)

26. Szlam, A., Bresson, X.: Total variation and cheeger cuts. In: Pro-
ceedings of the 27th International Conference on Machine Learn-
ing, pp. 1039–1046 (2010)

27. Vese, L.A., Chan, T.F.: A multiphase level set framework for im-
age segmentation using the Mumford and Shah model. Int. J.
Comput. Vis. 50(3), 271–293 (2002)

28. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global
labeling for real-time stereo using multiple plane sweeps. In: Vi-
sion, Modeling, and Visualization, pp. 243–252 (2008)

29. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In:
Advances in Neural Information Processing Systems 17 (NIPS
2004) (2004)

30. Zhao, H.K., Chan, T.F., Merriman, B., Osher, S.: A variational
level set approach to multiphase motion. J. Comput. Phys. 127,
179–195 (1996)

http://www.cs.cityu.edu.hk/~xbresson/codes.html#learningmulti
http://www.cs.cityu.edu.hk/~xbresson/codes.html#learningmulti


J Math Imaging Vis (2014) 49:191–201 201

Xavier Bresson received a B.A. of
Physics from University of Mar-
seille, a M.Sc. in Electrical En-
gineering from Ecole Superieure
d’Electricite (SUPELEC) in Paris
and a M.Sc. in Signal Process-
ing from University of Paris XI.
In 2005, he completed a Ph.D. at
the Swiss Federal Institute of Tech-
nology (EPFL). In 2006–2010, he
joined the Department of Mathe-
matics at University of California,
Los Angeles (UCLA) as a Postdoc-
toral Scholar. In 2010, he joined the
Department of Computer Science at

City University of Hong Kong as an Assistant Professor. His area of
research is computational mathematics applied to machine learning
and imaging science. He has developed efficient and generic algo-
rithms to solve a large span of problems in these research fields. He
has published more than 40 papers in international journals and con-
ferences. On Feb. 2013, he organized the workshop on “Convex Re-
laxation Methods for Geometric Problems in Scientific Computing” at
the Institute for Pure and Applied Mathematics (IPAM) at UCLA. In
Feb. 2014, he will participate to the Program on “Network Science and
Graph Algorithms” at the Institute for Computational and Experimen-
tal Research in Mathematics (ICERM) at Brown University. He is also
organizing the SIAM Conference on Imaging Science in Hong Kong
on May 2014.

Xue-Cheng Tai received the li-
cenciate degree and the Ph.D. de-
gree in applied mathematics from
Jyvaskalya University, Jyvaskalya,
Finland in 1989 and 1991, respec-
tively. After holding several re-
search positions in Europe, he be-
came an Associate Professor in
1994 at the University of Bergen,
Bergen, Norway, and a Professor in
1997. He was also a faculty mem-
ber of Nanyang Technological Uni-
versity of Singapore from 2007 to
2010. He has been a Member of the
“Center for Mathematics for Appli-

cations” in Oslo and a Member of the “Center of Integrated Petroleum
Research” in Bergen. His research interests include numerical PDE
for image processing, multigrid and domain decomposition methods,
iterative methods for linear and nonlinear PDE problems, and parallel
computing. His recent research interests are main on image process-
ing and computer vision. He has guided numerous master’s and Ph.D.
students, and published more than 80 scientific papers. He has been a
reviewer and an editor for a number of international journals.

Tony F. Chan received the B.S. and
M.S. degrees in engineering from
CalTech, Pasadena, CA, and the
Ph.D. degree in computer science
from Stanford University, Stanford,
CA. He was with CalTech (applied
math) as a Research Fellow and
taught computer science at Yale
University, New Haven, CT, before
joining the faculty at the University
of California, Los Angeles (UCLA),
in 1986 as Professor of mathemat-
ics. He served as a Chair of the De-
partment of Mathematics, UCLA,
from 1997–2000, and as Director of

the Institute for Pure and Applied Mathematics (IPAM) from 2000 to
2001. From July 2001 to June 2006, he served as Dean of Physical Sci-
ences, UCLA, and became an Assistant Director, Directorate for Math-
ematics and Physical Sciences at National Science Foundation (2006–
2009). He has been the President at the Hong Kong University of Sci-
ence and Technology since October 2009, holding positions in the
Mathematics and Computer Science Departments. His current research
interests include mathematical image processing, computer vision, and
computer graphics, computational brain mapping, VLSI physical de-
sign optimization, multiscale computational methods, multigrid and
domain decomposition algorithms, iterative methods, Krylov subspace
methods, parallel algorithms, and computational linear algebra.

Arthur Szlam is currently asistant
professor at the City College of New
York. Before that he was a postdoc
at NYU and UCLA, and a graduate
student at Yale university.


	Multi-class Transductive Learning Based on l1 Relaxations of Cheeger Cut and Mumford-Shah-Potts Model
	Abstract
	Introduction
	Unsupervised Data Classiﬁcation with l1 Relaxation of the Cheeger Cut
	The Model
	Experiments

	Transductive Data Classiﬁcation with l1 Relaxation of the Multi-class Cheeger Cut
	Transductive Data Classiﬁcation with l1 Relaxation of the Multi-class Mumford-Shah-Potts Model
	Experiments
	Conclusion
	Reproducible Research

	Acknowledgement
	References


