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Abstract In this paper we study a variational problem in
the space of functions of bounded Hessian. Our model
constitutes a straightforward higher-order extension of the
well known ROF functional (total variation minimisation)
to which we add a non-smooth second order regulariser. It
combines convex functions of the total variation and the
total variation of the first derivatives. In what follows, we
prove existence and uniqueness of minimisers of the com-
bined model and present the numerical solution of the cor-
responding discretised problem by employing the split Breg-
man method. The paper is furnished with applications of our
model to image denoising, deblurring as well as image in-
painting. The obtained numerical results are compared with
results obtained from total generalised variation (TGV), infi-
mal convolution and Euler’s elastica, three other state of the
art higher-order models. The numerical discussion confirms
that the proposed higher-order model competes with models
of its kind in avoiding the creation of undesirable artifacts
and blocky-like structures in the reconstructed images—a
known disadvantage of the ROF model—while being sim-
ple and efficiently numerically solvable.
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1 Introduction

We consider the following general framework of a com-
bined first and second order non-smooth regularisation pro-
cedure. For a given datum u0 ∈ Ls(Ω), Ω ⊂ R

2, s = 1,2,
we compute a regularised reconstruction u as a minimiser
of a combined first and second order functional H(u). More
precisely, we are interested in solving

min
u

{
H(u) = 1

s

∫
Ω

|u0 − T u|sdx + α

∫
Ω

f (∇u)dx

+ β

∫
Ω

g
(∇2u

)
dx

}
, (1.1)

for s ∈ {1,2}, non-negative regularisation parameters α,β ,
convex functions f : R

2 → R
+, g : R

4 → R
+ with at most

linear growth at infinity, and a suitable linear operator T , see
Sect. 3 for details. The appropriate space for this minimisa-
tion is the space of functions of bounded Hessian BH(Ω)

which consists of all functions u ∈ W 1,1(Ω) such that ∇u is
a function of bounded variation. The idea of this combina-
tion of first and second order dynamics is to regularise with
a fairly large weight α in the first order term—preserving the
jumps as good as possible—and using a not too large weight
β for the second order term such that artifacts (staircasing)
created by the first order regulariser are eliminated without
introducing any serious blur in the reconstructed image. We
will show that for image denoising, deblurring as well as in-
painting the model (1.1) offers solutions whose quality (ac-
cessed by an image quality measure) is not far off from the
ones produced by some of the currently best higher-order
reconstruction methods in the field, e.g., the recently pro-
posed total generalised variation (TGV) model [14]. More-
over, the computational effort needed for its numerical solu-
tion is not much more than the one needed for solving the
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standard ROF model [61]. For comparison the numerical so-
lution for TGV regularisation is in general about ten times
slower than this, see Table 1 at the end of the paper.

In this paper we prove existence and uniqueness of (1.1)
for the classical setting of the problem in the space W 2,1(Ω)

by means of relaxation. The generality of this result in-
cludes both the classical variational formulation in W 2,1,
e.g. for the Huber regularised version of the total varia-
tion, as well as the non-smooth norm minimisation setting
in BH(Ω), which constitutes the relaxed version of (1.1).
In the numerical part of the paper a discretised version of
(1.1) is minimised by means of an operator splitting tech-
nique for the cases f (x) = |x| and g(x) = |x|, and its ap-
plication to image denoising, deblurring and inpainting is
discussed.

The rest of the introduction is structured as follows. In
Sect. 1.1 we phrase the general inverse problem for image
reconstruction, which leads us to non-smooth norm min-
imisation, e.g. total variation minimisation, and eventually
to the introduction of higher-order regularisers within this
class. This section is followed by a presentation of state of
the art higher-order methods in imaging in Sect. 1.2 and
a discussion of some models from this group which are
closely related to (1.1) in Sect. 1.3.

1.1 Context

A general inverse problem in imaging reads as follows. Ob-
serving or measuring data u0 ∈ H in a suitable Hilbert space
of real functions defined on a domain Ω , we seek for the
original or reconstructed image u that fulfils the model

u0 = T u + n, (1.2)

where T is a linear operator in H, i.e., T ∈ L(H), and
n = n(u0) denotes a possible noise component which—
depending on the noise statistics—might depend on the
data u0. The operator T is the forward operator of this prob-
lem. Examples are blurring operators (in which case T u de-
notes the convolution of u with a blurring kernel), T = F
the Fourier transform or T = Pn a projection operator onto
a subspace of H (i.e., only a few samples of u are given).

To reconstruct u one has to invert the operator T . This is
not always possible since in many applications a problem
can be ill-posed and further complicated by interferences
like noise. In this case a common procedure in inverse prob-
lems is to add a-priori information to the model, which in
general is given by a certain regularity assumption on the
image u. Hence, instead of solving (1.2) one computes u as
a minimiser of

J (u) = Φ(u0, T u) + αψ(u),

defined in a suitable Banach space Hψ . Here, ψ models the
regularity assumption on u with a certain regularity param-

eter α > 0 and is called the regulariser of the problem, and
Φ is a distance function in H that enforces (1.2). The latter
depends on the statistics of the data u0, which can be either
estimated or are known from the physics behind the acqui-
sition of u0. For u0 corrupted by normally distributed addi-
tive noise, this distance function is the squared L2 norm of
u0 −T u. For the choice of the regulariser ψ , squared Hilbert
space norms have a long tradition in inverse problems. The
most prominent example is H 1 regularisation

min
u∈H 1

{
1

2
‖u0 − T u‖2

L2(Ω)
+ α‖∇u‖2

L2(Ω)

}
, (1.3)

see also [68, 75]. For T = Id, the gradient flow of the cor-
responding Euler-Lagrange equation of (1.3) reads ut =
α�u − u + u0. The result of such a regularisation technique
is a linearly, i.e., isotropically, smoothed image u, for which
the smoothing strength does not depend on u0. Hence, while
eliminating the disruptive noise in the given data u0 also
prominent structures like edges in the reconstructed image
are blurred. This observation gave way to a new class of non-
smooth norm regularisers, which aim to eliminate noise and
smooth the image in homogeneous areas, while preserving
the relevant structures such as object boundaries and edges.
More precisely, instead of (1.3) one considers the following
functional over the space W 1,1(Ω):

J (u) = 1

2
‖u0 − T u‖2

L2(Ω)
+

∫
Ω

f (∇u)dx, (1.4)

where f is a function from R
2 to R

+ with at most linear
growth, see [70]. As stated in (1.4) the minimisation of J
over W 1,1(Ω) is not well-posed in general. For this reason
relaxation procedures are applied, which embed the optimi-
sation for J into the optimisation for its lower semicontinu-
ous envelope within the larger space of functions of bounded
variation, see Sect. 2. The most famous example in image
processing is f (x) = |x|, which for T = Id results in the
so-called ROF model [61]. In this case the relaxed formu-
lation of (1.4) is the total variation denoising model, where
‖∇u‖L1(Ω) is replaced by the total variation |Du|(Ω) and
J is minimised over the space of functions of bounded vari-
ation. Other examples for f are regularised versions of the
total variation like f (x) = √

x2 + ε2 for a positive ε � 1
[1, 41], the Huber-regulariser and alike [22, 28, 47, 54]. The
consideration of such regularised versions of |∇u| is some-
times of advantage in applications where perfect edges are
traded against a certain smoothness in homogeneous parts
of the image, [58]. Moreover such regularisations become
necessary for the numerical solution of (1.4) by means of
time-stepping [70] or multigrid-methods [43, 69, 71] for in-
stance.

As these and many more contributions in the image pro-
cessing community have proven, this new non-smooth reg-
ularisation procedure indeed results in a nonlinear smooth-
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Fig. 1 Illustration of the staircasing effect in one space dimension

Fig. 2 Total variation image denoising and the staircasing effect: (left) noisy image, (middle) denoised image, (right) detail of the bottom right
hand corner of the denoised image to visualise the staircasing effect (the creation of blocky-like patterns due to the total variation regulariser)

ing of the image, smoothing more in homogeneous areas of
the image domain and preserving characteristic structures
such as edges. In particular, the total variation regulariser is
tuned towards the preservation of edges and performs very
well if the reconstructed image is piecewise constant. The
drawback of such a regularisation procedure becomes ap-
parent as soon as one considers images or signals (in 1D)
which do not only consist of flat regions and jumps, but also
possess slanted regions, i.e., piecewise linear parts. The ar-
tifact introduced by total variation regularisation in this case
is called staircasing. Roughly this means that the total vari-
ation regularisation of a noisy linear function u0 in one di-
mension is a staircase u, whose L2 norm is close to u0, see
Fig. 1. In two dimensions this effect results in blocky-like
images, see Fig. 2. In one dimension this effect has been
rigorously studied in [31].

One way to reduce this staircasing effect is in fact to
“round off” the total variation term by using regularised
versions defined by functions f as indicated above, e.g.,
Huber regularisation [58]. However, such a procedure can
only reduce these artifacts to a certain extent. For instance,
the Huber-type regularisation will eliminate the staircas-
ing effect only in areas with small gradient. Another way
of improving total variation minimisation is the introduc-
tion of higher-order derivatives in the regulariser as in
(1.1). Especially in recent years, higher-order versions of

non-smooth image enhancing methods have been consid-
ered.

1.2 Related Work

Already in the pioneering paper of Chambolle and Lions
[22] the authors propose a higher-order method by means of
an inf-convolution of two convex regularisers. Here, a noisy
image is decomposed into three parts u0 = u1 + u2 + n by
solving

min
(u1,u2)

{
1

2
‖u0 − u1 − u2‖2

L2(Ω)
+ α

∫
Ω

|∇u1|dx

+ β

∫
Ω

|∇2u2|dx

}
, (1.5)

where ∇2u2 is the distributional Hessian of u2. Then, u1 is
the piecewise constant part of u0, u2 the piecewise smooth
part and n the noise (or texture). Along these lines a mod-
ified infimal-convolution approach has been recently pro-
posed in the discrete setting in [65, 66]. Another attempt
to combine first and second order regularisation originates
from Chan, Marquina, and Mulet [26], who consider total
variation minimisation together with weighted versions of
the Laplacian. More precisely, they consider a regularising
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term of the form

α

∫
Ω

|∇u|dx + β

∫
Ω

f (|∇u|)(�u)2dx,

where f must be a function with certain growth conditions
at infinity in order to allow jumps. The well-posedness of
the latter in one space dimension has been rigorously anal-
ysed by Dal Maso, Fonseca, Leoni and Morini [31] via the
method of relaxation.

The idea of bounded Hessian regularisers was also con-
sidered by Lysaker et al. [52, 53], Chan et al. [27], Scherzer
et al. [48, 62], Lai at al. [50] and Bergounioux and Piffet [8].
In these works the considered model has the general form

min
u

{
1

2
‖u0 − u‖2

L2(Ω)
+ α|∇2u|(Ω)

}
.

In Lefkimmiatis et al. [51], the spectral norm of the Hessian
matrix is considered. Further, in [60] minimisers of func-
tionals which are regularised by the total variation of the
(l − 1)st derivative, i.e.,

|D∇ l−1u|(Ω),

are studied. Another interesting higher-order total variation
model is proposed by Bredies et al. [14]. The considered
regulariser is called total generalised variation (TGV) and is
of the form

TGVk
α(u)

= sup

{∫
Ω

udivk ξdx : ξ ∈ Ck
c

(
Ω,Symk

(
R

d
))

,

‖divl ξ‖∞ ≤ αl, l = 0, . . . , k − 1

}
, (1.6)

where Symk(Rd) denotes the space of symmetric tensors of
order k with arguments in R

d , and αl are fixed positive pa-
rameters. Its formulation for the solution of general inverse
problems was given in [13, 16].

Properties of higher-order regularisers in the discrete set-
ting in terms of diffusion filters are further studied in [34].
Therein, the authors consider the Euler-Lagrange equations
corresponding to minimisers of functionals of the general
type

J (u) =
∫

Ω

(u0 − u)2dx + α

∫
Ω

f

( ∑
|β|=p

|Dβu|2
)

dx, (1.7)

for different non-quadratic penaliser functions f . Moreover,
Bertozzi and Greer [10] have rigorously studied the fourth-
order evolution equation which arises as a gradient flow of∫

G(�u), where G is a nondecreasing function of quadratic
growth in a neighbourhood of 0 and at most linear growth

at infinity. Solutions of this model are called low curvature
image simplifiers and are given by

ut = −α�
(
arctan(�u)

) + (u0 − u),

when G(s) = s arctan(s) − 1/2 log(s2 + 1).
Higher-order inpainting methods in general perform

much better than first order methods—like total variation
inpainting—because of the additional directional informa-
tion used for the interpolation process. Euler’s elastica is a
popular higher-order variational method [25, 67]. There, the
regularising term reads:

∫
Ω

(
α + β

(
∇ · ∇u

|∇u|
)2)

|∇u|dx,

i.e., is a combination of the total variation and the curvature
of the level lines of u (a nonlinear second order regularis-
ing term). Other examples of higher-order inpainting are the
Cahn-Hilliard inpainting [9], TV-H−1 inpainting [17, 63]
and Hessian-based surface restoration [50].

1.3 Relation of our Model to TGV, Infimal Convolution
Regularisation, Higher-Order Diffusion Filters and
Euler’s Elastica

In this section we want to analyse the connection of our
combined first and second order approach (1.1) with infimal
convolution (1.5) [22, 65, 66], the total generalised varia-
tion regulariser of order two (1.6) [14] and with higher-order
diffusion filters [34]. Moreover, in the case of inpainting,
we discuss the connection of our model to Euler’s elastica
[25, 67].

In the case of inf-convolution (1.5) the regularised image
u = u1 + u2 consists of a function u1 ∈ BV(Ω) and a func-
tion u2 ∈ BH(Ω) which are balanced against each other by
positive parameters α,β . Differently, a minimiser u of (1.1)
is in BH(Ω) as a whole and as such is more regular than
the infimal convolution minimiser which is a function in
BV(Ω). Hence, infimal convolution reproduces edges in an
image as perfect jumps while in our combined first and sec-
ond order total variation approach edges are lines where the
image function has a large but finite gradient everywhere.
We believe that our approach (1.1) can be made equivalent
to infimal convolution if combined with the correct choice
of adaptive regularisation, e.g. [35, 42]. More precisely, we
replace the two constant parameters α and β by spatially
varying functions α(x),β(x) and minimise for u

1

2

∫
Ω

(u0 − u)2dx +
∫

Ω

α(x)|∇u|dx +
∫

Ω

β(x)|∇2u|dx.

Then, we can choose α and β according to (1.5), i.e., α = 0
where u = u2, β = 0 where u = u1, and α/β correctly bal-
ancing u1 and u2 in the rest of Ω . However, let us emphasise
once more that this is not our intention here.
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The relation of (1.1) to the regularisation approach with
total generalised variation [14] of order 2 can be understood
through its equivalence with the modified infimal convolu-
tion approach [66] in the discrete setting. The total gener-
alised variation of order 2 is defined for a positive multi-
index α = (α0, α1) as

TGV2
α(u)

= sup

{∫
Ω

udiv2 vdx : v ∈ C2
c

(
Ω,Sym2(

R
d
))

,

‖divl v‖∞ ≤ αl, l = 0,1

}
,

where Sym2(Rd) is the space of symmetric tensors of or-
der 2 with arguments in R

d . An alternative definition of
TGV2

α was proven in [16]

TGV2
α(u) = min

w∈BD(Ω)
α1|Du − w|(Ω) + α0|E w|(Ω)

where BD(Ω) is the space of functions of bounded deforma-
tion, E w is the distributional symmetrised gradient of w and
| · |(Ω) denotes the total variation measure evaluated on Ω .

The relation to higher-order diffusion filters as anal-
ysed in [34] becomes apparent when considering the Euler-
Lagrange equation of (1.1) in the case T = Id and f , g

having the form f (x) = h(|x|), g(x) = h(|x|), where h is
convex and has at most linear growth. Namely, with appro-
priate boundary conditions we obtain the following Euler-
Lagrange equation

u − u0 = α div

(
h′(|∇u|) ∇u

|∇u|
)

− β div2
(

h′(|∇2u|) ∇2u

|∇2u|
)

. (1.8)

This simplifies for the case h(x) = √|x|2 + ε2 to a regu-
larised first-second order total variation reaction-diffusion
equation that reads

u − u0 = α div

( ∇u√|∇u|2 + ε2

)

− β div2
( ∇2u√|∇2u|2 + ε2

)
.

The consideration of the corresponding evolution equations
for (1.8) in the presence of different choices of penalising
functions h promises to give rise to additional properties
of this regularisation technique and is a matter of future re-
search.

As far as inpainting is concerned, we examine here the
connection of our method to Euler’s elastica. Depending on

how each of the terms in the Euler’s elastica regulariser are
weighted, the interpolation process is performed differently.
If a larger weight is put on the total variation the interpola-
tion results into an image with sharp edges, which however
can get disconnected if the scale of the gap is larger than the
scale of the object whose edges should be propagated into it.
This behaviour is a validation of the so-called “good contin-
uation principle” defined by the Gestaltist school [49] and
not desirable in image inpainting. Putting a larger weight
on the curvature term however resolves this issue and gives
satisfying results with respect to the continuation principle.
The right combination (balance) of these two terms seems
to result into a good tradeoff between “sharpness” and “con-
tinuation” of edges. However, one disadvantage of the Eu-
ler’s elastica inpainting model for analytic and numerical
issues is that it is a non-convex minimisation problem. In
particular, numerical algorithms are in general not guaran-
teed to converge to a global minimiser, only local minimisa-
tion can be achieved. The minimisation of functional (1.1)
can be seen as a convex simplification of the Euler’s elastica
idea, where we have replaced the non-convex curvature by
the convex total variation of the first derivative of u.

For more discussion and comparison of higher-order reg-
ularisers we recommend Chaps. 4.1.5–4.1.7 and 6.4 in [5].

Outline of the Paper In Sect. 2 we give a brief intro-
duction to Radon measures, convex functions of measures
and functions of bounded variation. In Sect. 3 we intro-
duce the variational problem (1.1) and the space BH(Ω)

that this functional is naturally defined in. We define two
topologies on BH(Ω) and we identify the lower semicon-
tinuous envelope of (1.1) with respect to these topologies.
Finally, we prove the well-posedness—existence, unique-
ness, stability—of the minimisation of the relaxed functional
using standard techniques from calculus of variations and
Bregman distances. Section 4 deals with two special ver-
sions of (1.1), the anisotropic version and the case with
the L1 norm in the fidelity term. In Sect. 5 we introduce
the corresponding discretised problem and we propose the
split Bregman method for its numerical implementation in
the case f (x) = |x|, g(x) = |x|. In Sects. 6, 7 and 8 we
present some numerical examples of our method in image
denoising, deblurring and inpainting respectively. Finally, in
Sect. 9 we discuss how our approach compares with other
higher-order methods like infimal convolution (denoising,
deblurring), total generalised variation (denoising, deblur-
ring) and Euler’s elastica (inpainting).

2 Preliminaries

In this section, we introduce some basic notions that we are
going to use. A reader familiar with Radon measures, BV
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functions and relaxed functionals can quickly go through
Sects. 2.1, 2.3 and 2.4 respectively. Section 2.2 familiarises
the reader with convex functions of measures, a perhaps less
known subject.

Remarks on Standard Notation As usual, we denote with
Ln the Lebesgue measure. Different notions are denoted by
| · |: When it is applied on vectors or matrices it denotes the
Euclidean norm (vector) or the Frobenius norm (matrices).
When it is applied on measures it denotes the total variation
measure while when it is applied on Borel subsets of R

n it
denotes the Lebesgue measure of that subset. Finally, | · |1
denotes the 
1 norm in R

n and (·, ·) denotes the standard
Euclidean inner product.

2.1 Finite Radon Measures

All our notation and definitions are consistent with [4]. From
now on, Ω denotes an open set in R

n. We define the space
[M(Ω)]m to be the space of R

m-valued finite Radon mea-
sures. The total variation measure of μ ∈ [M(Ω)]m is de-
noted by |μ|. We say that a sequence (μk)k∈N in [M(Ω)]m
converges weakly∗ to a measure μ ∈ [M(Ω)]m and we
write μk ⇀ μ if limk→∞

∫
Ω

udμk = ∫
Ω

udμ for all u ∈
C0(Ω), the completion of Cc(Ω) endowed with the supre-
mum norm. Thus (μk)k∈N converges weakly∗ to μ if it
converges weakly∗ component-wise. We will often consider
the Lebesgue decomposition of a R

m-valued finite Radon
measure μ with respect to a σ -finite positive Borel mea-
sure ν:

μ = μa + μs =
(

μ

ν

)
ν + μs,

where μa is the absolutely continuous part of μ with respect
to ν, μs is the singular part and (μ/ν) denotes the density
function of μ with respect to ν (Radon-Nikodým deriva-
tive). Again this is nothing else than the usual Lebesgue
decomposition regarded component-wise. Recall also that
any μ ∈ [M(Ω)]m is absolutely continuous with respect to
its total variation measure |μ| and thus we obtain the polar
decomposition of μ

μ =
(

μ

|μ|
)

|μ|, with

∣∣∣∣ μ

|μ|
∣∣∣∣ = 1, |μ| a.e..

2.2 Convex Functions of Measures

Let g be a continuous function from R
m to R which is posi-

tively homogeneous of degree 1, i.e., for every x ∈ R
m

g(tx) = tg(x), ∀t ≥ 0.

Given a measure μ ∈ [M(Ω)]m, we define the R-valued
measure g(μ) as follows:

g(μ) := g

(
μ

|μ|
)

|μ|.

It can be proved that if g is a convex function then g(·) is a
convex function in [M(Ω)]m and if ν is any positive mea-
sure such that μ is absolutely continuous with respect to ν

then

g(μ) = g

(
μ

ν

)
ν.

We refer the reader to Proposition A.1 in the Appendix for
a proof of the above statement. Suppose now that g is not
necessarily positively homogeneous but it is a continuous
function from R

m → R which is convex and has at most
linear growth at infinity, i.e., there exists a positive constant
K such that

|g(x)| ≤ K(1 + |x|), ∀x ∈ R
m.

In that case the recession function g∞ of g is well defined
everywhere, where

g∞(x) := lim
t→∞

g(tx)

t
, ∀x ∈ R

m.

It can be proved that g∞ is a convex function and positively
homogeneous of degree 1. Given a measure μ ∈ [M(Ω)]m
we consider the Lebesgue decomposition with respect to
Lebesgue measure Ln, μ = (μ/Ln)Ln + μs and we define
the R-valued measure g(μ) as follows:

g(μ) = g

(
μ

Ln

)
Ln + g∞

(
μs

)

= g

(
μ

Ln

)
Ln + g∞

(
μs

|μs |
)

|μs |. (2.1)

We refer the reader to Theorem A.2 in the Appendix for a
result regarding lower semicontinuity of convex functions of
measures with respect to the weak∗ convergence.

2.3 The Space [BV(Ω)]m

We recall that a function u ∈ L1(Ω) is said to be a function
of bounded variation or else u ∈ BV(Ω) if its distributional
derivative can be represented by a R

n-valued finite Radon
measure, which is denoted by Du. This means that
∫

Ω

u∂iφdx = −
∫

Ω

φdDiu, ∀φ ∈ C1
c (Ω), i = 1, . . . , n.

for some R
n-valued finite Radon measure Du = (D1u, . . . ,

Dnu). The absolutely continuous part of Du with respect
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to Lebesgue measure Ln is denoted by ∇u. It is imme-
diate that W 1,1(Ω) ⊆ BV(Ω) since if u ∈ W 1,1(Ω) then
Du = ∇uLn. Consistently, we say that a function u =
(u1, . . . , um) ∈ [L1(Ω)]m belongs to [BV(Ω)]m if
∫

Ω

ua∂iφdx = −
∫

Ω

φdDiu
a, i = 1, . . . , n,

a = 1, . . . ,m.

In that case Du is an m × n matrix-valued measure. A func-
tion u belongs to [BV(Ω)]m if and only if its variation in Ω ,
V (u,Ω) is finite, where,

V (u,Ω) = sup

{
m∑

a=1

∫
Ω

ua divφadx : φ ∈ [
C1

c (Ω)
]mn

,

‖φ‖∞ ≤ 1

}
.

Moreover if u ∈ [BV(Ω)]m then |Du|(Ω) = V (u,Ω) and
if u ∈ [W 1,1(Ω)]m, then |Du|(Ω) = ∫

Ω
|∇u|dx, where

|∇u| = (
∑m

a=1
∑n

i=1(∂iu
a)2)1/2. The space [BV(Ω)]m en-

dowed with the norm ‖u‖BV(Ω) := ∫
Ω

|u|dx + |Du|(Ω) is
a Banach space. It can be shown that if Du = 0, then u is
equal to a constant a.e. in any connected component of Ω .

Suppose that (uk)k∈N, u belong to [BV(Ω)]m. We
say that the sequence (uk)k∈N converges to u weakly∗ in
[BV(Ω)]m if it converges to u in [L1(Ω)]m and the se-
quence of measures (Duk)k∈N converges weakly∗ to the
measure Du. It is known that (uk)k∈N converges to u

weakly∗ in [BV(Ω)]m if and only if (uk)k∈N is bounded in
[BV(Ω)]m and converges to u in [L1(Ω)]m. The usefulness
of the introduction of the weak∗ convergence is revealed in
the following compactness result: Suppose that the sequence
(uk)k∈N is bounded in [BV(Ω)]m, where Ω is a bounded
open set of R

n with Lipschitz boundary. Then there exists
a subsequence (uk


)
∈N and a function u ∈ [BV(Ω)]m such
that (uk


)
∈N converges to u weakly∗ in [BV(Ω)]m.
We say that the sequence (uk)k∈N converges to u strictly

in [BV(Ω)]m if it converges to u in [L1(Ω)]m and
(|Duk|(Ω))k∈N converges to |Du|(Ω). It is immediate that
strict convergence implies weak∗ convergence.

Suppose that Ω is bounded with Lipschitz boundary. De-
fine 1∗ = n/(n − 1) when n > 1 and 1∗ = ∞ when n = 1.
Then BV(Ω) ⊆ L1∗

(Ω) with continuous embedding. More-
over if Ω is connected then the following inequality holds
(Poincaré-Wirtinger):

‖u − uΩ‖L1∗
(Ω) ≤ C|Du|(Ω), ∀u ∈ BV(Ω),

where the constant C depends only on Ω and uΩ denotes
the mean value of u in Ω :

uΩ := 1

|Ω|
∫

Ω

udx.

We refer the reader to [4] for a detailed description of the
above as well as for an introduction to weak continuity and
differentiability notions in BV(Ω) and the decomposition of
the distributional derivative of a function u ∈ BV(Ω).

2.4 Relaxed Functionals

Suppose that X is a set endowed with some topology τ and
let F : X → R∪{+∞}. The relaxed functional or otherwise
called the lower semicontinuous envelope of F with respect
to the topology τ is a functional F : X → R∪{+∞} defined
as follows for every x ∈ X:

F(x) = sup
{
G(x) : G : X → R ∪ {+∞},
τ lower semicontinuous,G(y) ≤ F(y),

∀y ∈ X
}
.

It is easy to check that F is the greatest τ lower semicontin-
uous functional which is smaller or equal than F . It can be
also checked that

F(x) = sup
U∈N (x)

inf
y∈U

F(y),

where N (x) denotes the open neighbourhoods of x. More-
over, if X is a first countable topological space, then F(x) is
characterised by the two following properties:

(i) For every sequence (xk)k∈N converging to x, we have

F(x) ≤ lim inf
k→∞ F(xk).

(ii) There exists a sequence (xk)k∈N converging to x such
that

F(x) ≥ lim sup
k→∞

F(xk).

An interesting property of the relaxed functional is that if it
has a minimum point then the value of F at that point will
be equal with the infimum of F , i.e.,

min
x∈X

F(x) = inf
x∈X

F(x).

For more information on relaxed functionals see [12] and
[30].

3 The Variational Formulation

In the current section we specify our definition of the func-
tional (1.1) that we want to minimise. We start by defining
the minimisation problem in the space W 2,1(Ω) as this is the
space in which our analysis subsumes various choices for
the regularisers f and g. As this space is not reflexive, and
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thus existence of minimisers cannot be guaranteed, we ex-
tend the definition to a larger space. We introduce this larger
space BH(Ω) as the subspace of all u ∈ W 1,1(Ω) such that
∇u ∈ [BV(Ω)]m. We define the weak∗ and the strict topol-
ogy of BH(Ω) and we identify the lower semicontinuous en-
velope (relaxed functional) of the extended functional with
respect to these topologies. We prove existence of minimis-
ers of the relaxed functional, uniqueness under some as-
sumptions as well as stability.

In the following Ω denotes as usual a bounded, con-
nected, open subset of R

2 with Lipschitz boundary, T de-
notes a bounded linear operator from L2(Ω) to L2(Ω),
u0 ∈ L2(Ω) and α, β are non-negative constants. Further we
suppose that f : R

2 → R
+, g : R

4 → R
+ are convex func-

tions with at most linear growth at infinity, i.e., there exist
positive constants K1 and K2 such that

f (x) ≤ K1(1 + |x|), ∀x ∈ R
2, (3.1)

g(x) ≤ K2(1 + |x|), ∀x ∈ R
4. (3.2)

Moreover, we assume that both f and g are minimised in 0
and they satisfy a coercivity condition:

f (x) ≥ K3|x|, ∀x ∈ R
2, (3.3)

g(x) ≥ K4|x|, ∀x ∈ R
4, (3.4)

where K3 and K4 are strictly positive. We want to minimise
the following functional:

H(u) = 1

2

∫
Ω

(u0 − T u)2dx + α

∫
Ω

f (∇u)dx

+ β

∫
Ω

g
(∇2u

)
dx. (3.5)

The natural space for the functional H to be defined in, is
W 2,1(Ω). Since this space is not reflexive a solution of the
minimisation problem by the direct method of calculus of
variations does not work. Rather, existence of a minimiser of
(3.5) can be shown via relaxation that is: We extend the func-
tional H into a larger space which has some useful compact-
ness properties with respect to some topology and we iden-
tify the relaxed functional with respect to the same topology.
This space is BH(Ω).

3.1 The Space BH(Ω)

The space BH(Ω) (often denoted with BV2(Ω)) is the space
of functions of bounded Hessian. It was introduced by De-
mengel in [32] and consists of all functions u ∈ W 1,1(Ω)

whose distributional Hessian can be represented by an
R

2 × R
2-valued finite Radon measure. In other words:

BH(Ω) = {
u ∈ W 1,1(Ω) : ∇u ∈ [

BV(Ω)
]2}

.

We set D2u := D(∇u). Again it is immediate that W 2,1(Ω)

⊆ BH(Ω). BH(Ω) is a Banach space equipped with the
norm ‖u‖BH(Ω) = ‖u‖BV(Ω) + |D2u|(Ω). If Ω has a Lip-
schitz boundary and it is connected then it can be shown
that there exist positive constants C1 and C2 such that

∫
Ω

|∇u|dx ≤ C1|D2u|(Ω) + C2

∫
Ω

|u|dx, ∀u ∈ BH(Ω).

(3.6)

Moreover, the embedding from BH(Ω) into W 1,1(Ω) is
compact, see [32]. We denote the approximate differential
of ∇u with ∇2u, see [4] for a definition.

Analogously with BV(Ω) we define the following no-
tions of convergence in BH(Ω):

Definition 3.1 (Weak∗ Convergence in BH(Ω)) Let (uk)k∈N,
u belong to BH(Ω). We say that (uk)k∈N converges to u

weakly∗ in BH(Ω) if

uk → u, in L1(Ω)

and

∇uk ⇀ ∇u weakly∗ in
[
BV(Ω)

]2
, as k → ∞,

or in other words

‖uk − u‖L1(Ω) → 0,

‖∇uk − ∇u‖[L1(Ω)]2 → 0,

∫
Ω

φdD2uk →
∫

Ω

φdD2u, ∀φ ∈ C0(Ω).

It is not hard to check that a basis for that topology con-
sists of the following sets:

U(v,F, ε) =
{
u ∈ BH(Ω) : ‖v − u‖L1(Ω)

+ ‖∇v − ∇u‖[L1(Ω)]2

+
∣∣∣∣
∫

Ω

φidD2v −
∫

Ω

φidD2u

∣∣∣∣ < ε, i ∈ F

}
,

where v ∈ BH(Ω), F is finite, ε > 0 and φi ∈ C0(Ω). This
topology is also metrizable, hence first countable. We do not
imply here that BH(Ω) is the dual space of a Banach space
but we name this convergence weak∗ to show the correspon-
dence with the weak∗ convergence in BV(Ω). We have also
the corresponding compactness result:

Theorem 3.2 (Compactness in BH(Ω)) Suppose that the
sequence (uk)k∈N is bounded in BH(Ω). Then there exists a
subsequence (uk


)
∈N and a function u ∈ BH(Ω) such that
(uk


)
∈N converges to u weakly∗ in BH(Ω).
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Proof From the compact embedding of BH(Ω) into
W 1,1(Ω) and the fact that the sequence (∇uk)k∈N is
bounded in [BV(Ω)]2 we have that there exists a subse-
quence (uk


)
∈N, a function u ∈ W 1,1(Ω) and a function
v ∈ [BV(Ω)]2 such that (uk


)
∈N converges to u in W 1,1(Ω)

and (∇uk

)
∈N converges to v weakly∗ in [BV(Ω)]2, as 


goes to infinity. Then, ∇u = v, u ∈ BH(Ω) and (uk

)
∈N

converges to u weakly∗ in BH(Ω). �

Definition 3.3 (Strict Convergence in BH) Let (uk)k∈N and
u belong to BH(Ω). We say that (uk)k∈N converges to u

strictly in BH(Ω) if

uk → u, in L1(Ω)

and

|D2uk|(Ω) → |D2u|(Ω), as k → ∞.

It is easily checked that the function

d(u, v) =
∫

Ω

|u − v|dx + ∣∣|D2u|(Ω) − |D2v|(Ω)
∣∣,

is a metric and induces the strict convergence in BH(Ω).
The following Lemma can be used to compare these two
topologies.

Lemma 3.4 Suppose that (uk)k∈N, u∗ belong to BH(Ω)

and (uk)k∈N converges to u∗ strictly in BH(Ω). Then

‖uk − u∗‖W 1,1(Ω) → 0, as k → ∞.

Proof We recall from (3.6) that there exist positive constants
C1 and C2 such that∫

Ω

|∇u|dx ≤ C1|D2u|(Ω) + C2

∫
Ω

|u|dx, ∀u ∈ BH(Ω).

Since the sequence (uk)k∈N is strictly convergent in BH(Ω),
the sequences (‖uk‖L1(Ω))k∈N and (|D2uk|(Ω))k∈N are
bounded. Hence, there exists a positive constant C such that
∫

Ω

|∇uk|dx < C, ∀k ∈ N,

which implies that the sequence (uk)k∈N is bounded in
BH(Ω). From the compact embedding of BH(Ω) into
W 1,1(Ω) we get that there exists a subsequence (uk


)
∈N

and a function v ∈ W 1,1(Ω) such that (uk

)
∈N converges

to v in W 1,1(Ω). In particular (uk

)
∈N converges to v in

L1(Ω) so v = u∗ and thus (uk

)
∈N converges to u∗ in

W 1,1(Ω). Since every subsequence of (uk)k∈N is bounded
in BH(Ω) we can repeat the same argument and deduce
that for every subsequence of (uk)k∈N there exists a fur-
ther subsequence which converges to u∗ in W 1,1(Ω). This
proves that the initial sequence (uk)k∈N converges to u∗ in
W 1,1(Ω). �

Corollary 3.5 Strict convergence implies weak∗ conver-
gence in BH(Ω).

3.2 Relaxation of the Second Order Functional

We now extend the functional H in (3.5) to BH(Ω) in the
following way:

Hex(u) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

∫
Ω

(u0 − T u)2dx + α
∫
Ω

f (∇u)dx

+ β
∫
Ω

g(∇2u)dx if u ∈ W 2,1(Ω),

+∞ if f ∈ BH(Ω) \ W 2,1(Ω).

(3.7)

As we have discussed above, the weak∗ topology in BH(Ω)

provides a good compactness property which is inherited
from the weak∗ topology in [BV(Ω)]n. However, the func-
tional Hex is not sequentially lower semicontinuous with re-
spect to the strict topology in BH(Ω) and hence it is nei-
ther with respect to the weak∗ topology in BH(Ω). Indeed,
we can find a function u ∈ BH(Ω) \ W 2,1(Ω), see [32]
for such an example. Hence, from the definition of Hex we
have Hex(u) = ∞. However, according to Theorem A.3 we
can find a sequence (uk)k∈N in W 2,1(Ω) which converges
strictly to u. It follows that the sequences (‖uk‖L1(Ω))k∈N,
(|D2uk|(Ω))k∈N as well as (‖∇uk‖L1(Ω))k∈N are bounded.
Moreover the sequence (uk)k∈N is bounded in L2(Ω). Since
T is a bounded linear operator and from the fact that f and
g have at most linear growth at infinity we deduce that the
sequence (Hex(uk))k∈N is bounded as well. Hence we get

Hex(u) > lim inf
k→∞ Hex(uk),

which proves that Hex is not lower semicontinuous with re-
spect to the strict topology in BH(Ω). Thus, we have to
identify its lower semicontinuous envelope with respect to
the strict convergence. We define the following functional in
BH(Ω) :

Hex(u) := 1

2

∫
Ω

(u0 − T u)2dx + α

∫
Ω

f (∇u)dx

+ β g
(
D2u

)
(Ω)

= 1

2

∫
Ω

(u0 − T u)2dx + α

∫
Ω

f (∇u)dx

+ β

∫
Ω

g
(∇2u

)
dx

+ β

∫
Ω

g∞
(

Ds∇u

|Ds∇u|
)

d|Ds∇u|,

where ∇2u, the approximate differential of ∇u, is also
the density of D2u with respect to the Lebesgue measure,
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see [4]. It is immediate to see that if u ∈ W 2,1(Ω) then
Hex(u) = Hex(u). Thus is general, Hex is smaller than Hex .

Theorem 3.6 The functional Hex is lower semicontinuous
with respect to the strict topology in BH(Ω).

Proof It is not hard to check that since f is convex and
has at most linear growth then it is Lipschitz, say with con-
stant L > 0. Let u and (uk)k∈N be functions in BH(Ω) and
let (uk)k∈N converge to u strictly in BH(Ω) and thus also
weakly∗ in BH(Ω). We have to show that

Hex(u) ≤ lim inf
k→∞ Hex(un).

From the definition of the weak∗ convergence in BH(Ω)

we have that (uk)k∈N converges to u in W 1,1(Ω). From the
Sobolev inequality, see [40],

‖v‖L2(Ω) ≤ C‖v‖W 1,1(Ω), ∀v ∈ W 1,1(Ω),

we have that (uk)k∈N converges to u in L2(Ω). Since
T : L2(Ω) → L2(Ω) is continuous then the map u �→
1
2

∫
Ω

(u0 − T u)2dx is continuous and hence we have that

1

2

∫
Ω

(u0 − T uk)
2dx → 1

2

∫
Ω

(u0 − T u)2dx, as k → ∞.

(3.8)

Moreover since ‖∇uk − ∇u‖[L1(Ω)]2 converges to 0 as
k → ∞, we have from the Lipschitz property
∣∣∣∣
∫

Ω

f (∇uk)dx −
∫

Ω

f (∇u)dx

∣∣∣∣
≤

∫
Ω

∣∣f (∇uk) − f (∇u)
∣∣dx ≤ L

∫
Ω

|∇uk − ∇u|dx → 0,

as k → ∞,

i.e., we have∫
Ω

f (∇uk)dx →
∫

Ω

f (∇u)dx, as k → ∞. (3.9)

Finally we have that D2uk → D2u weakly∗. We can apply
Theorem A.2 for μk = μ = L2, ν = D2u, νk = D2uk and
get that

g
(
D2u

)
(Ω) ≤ lim inf

k→∞ g
(
D2uk

)
(Ω). (3.10)

From (3.8), (3.9) and (3.10) we get that

Hex(u) ≤ lim inf
k→∞ Hex(uk). �

Theorem 3.7 The functional Hex is the lower semicontinu-
ous envelope of Hex with respect to the strict convergence in
BH(Ω).

Proof Suppose that (uk)k∈N converges to u strictly in
BH(Ω). From the lower semicontinuity of Hex we have that
Hex(u) ≤ lim infk→∞ Hex(uk) and since Hex ≤ Hex we get
that Hex(u) ≤ lim infk→∞ Hex(uk). For the other direction
Theorem A.3 tells us that given u ∈ BH(Ω) there exist a
sequence (uk)k∈N ⊆ C∞(Ω) ∩ W 2,1(Ω) such that (uk)k∈N

converges to u strictly in BH(Ω) and

g
(
D2uk

)
(Ω) → g

(
D2u

)
(Ω). (3.11)

We have also that (uk)k∈N converges to u in W 1,1(Ω) which
implies that

1

2

∫
Ω

(u0 − T uk)
2dx + α

∫
Ω

f (∇uk)dx

→ 1

2

∫
Ω

(u0 − T u)2dx + α

∫
Ω

f (∇u)dx, as k → ∞,

(3.12)

as the proof of Theorem 3.6 shows. From (3.11) and (3.12)
we get that

Hex(u) = lim
k→∞Hex(uk). �

Observe that Hex is also the lower semicontinuous en-
velope of Hex with respect to the weak∗ convergence in
BH(Ω).

Let us note here that in fact the relaxation result of Theo-
rem 3.7 follows from a more general relaxation result in [3].
There, the authors solely assume g to be quasi-convex. How-
ever, since we consider convex functions the proof we give
in this paper is simpler and more accessible to the non-
specialist reader.

The proof of the following minimisation theorem follows
the proof of the corresponding theorem in [70] for the ana-
logue first order functional. Here we denote with XΩ the
characteristic function of Ω , i.e., XΩ(x) = 1, for all x ∈ Ω

and 0 otherwise.

Theorem 3.8 Assuming T (XΩ) �= 0, α > 0, β > 0 then the
minimisation problem

inf
u∈BH(Ω)

Hex(u), (3.13)

has a solution u ∈ BH(Ω).

Proof Let (uk)k∈N be a minimising sequence for (3.13) and
let C > 0 be an upper bound for (Hex(uk))k∈N. We have that

∫
Ω

f (∇uk)dx < C and
1

2

∫
Ω

(u0 − T uk)
2dx < C,

(3.14)



318 J Math Imaging Vis (2014) 48:308–338

for every k ∈ N. From the coercivity assumptions (3.3)–(3.4)
and from (3.14) we have

|Duk|(Ω) =
∫

Ω

|∇uk|dx < C, ∀k ∈ N, (3.15)

for a possibly different constant C. We show that the se-
quence (uk)k∈N is bounded in L2(Ω), following essentially
[70]. By the Poincaré-Wirtinger inequality there exists a
positive constant C1 such that for every k ∈ N

‖uk‖L2(Ω) =
∥∥∥∥uk − XΩ

1

|Ω|
∫

ukdx

+ XΩ

1

|Ω|
∫

ukdx

∥∥∥∥
L2(Ω)

≤ C1|Duk|(Ω) +
∣∣∣∣
∫

Ω

ukdx

∣∣∣∣

≤ C +
∣∣∣∣
∫

Ω

ukdx

∣∣∣∣.
Thus it suffices to bound | ∫

Ω
ukdx| uniformly in k. We have

for every k ∈ N

∥∥∥∥T

(
XΩ

1

|Ω|
∫

ukdx

)∥∥∥∥
L2(Ω)

≤
∥∥∥∥T

(
XΩ

1

|Ω|
∫

ukdx

)
− T uk

∥∥∥∥
L2(Ω)

+ ‖T uk − u0‖L2(Ω) + ‖u0‖L2(Ω)

≤ ‖T ‖
∥∥∥∥uk − XΩ

1

|Ω|
∫

ukdx

∥∥∥∥
L2(Ω)

+ ‖T uk − u0‖L2(Ω)

+ ‖u0‖L2(Ω)

≤ C1‖T ‖|Duk|(Ω) + √
2C + ‖u0‖L2(Ω)

≤ C1‖T ‖C + √
2C + ‖u0‖L2(Ω) := C′.

It follows that
∣∣∣∣
∫

Ω

ukdx

∣∣∣∣‖T (XΩ)‖L2(Ω) ≤ C′|Ω|,

and thus
∣∣∣∣
∫

Ω

ukdx

∣∣∣∣ ≤ C′|Ω|
‖T (XΩ)‖L2(Ω)

,

since T (XΩ) �= 0.
Since the sequence is bounded in L2(Ω) and Ω is

bounded, we have that the sequence is bounded in L1(Ω)

and moreover it is bounded in BH(Ω). From Theorem 3.2
we obtain the existence of a subsequence (uk


)
∈N and
u ∈ BH(Ω) such that (uk


)
∈N converges to u weakly∗ in
BH(Ω). Since the functional Hex is lower semicontinuous
with respect to this convergence we have:

Hex(u) ≤ lim inf
k→∞ Hex(uk)

which implies that

u = min
u∈BH(Ω)

Hex(u). �

Let us note here that in the above proof we needed α > 0,
in order to get an a priori bound in the L1 norm of the gra-
dient (for β = 0 see [70]). However, the proof goes through
if α = 0 and T is injective. If T is not injective and α = 0 it
is not straightforward how to get existence. The proof of the
following theorem also follows the proof of the correspond-
ing theorem for the first order analogue in [70].

Proposition 3.9 If, in addition to T (XΩ) �= 0, T is injective
or if f is strictly convex, then the solution of the minimisa-
tion problem (3.13) is unique.

Proof Using the Proposition A.1 in the Appendix we can
check that the functional Hex is convex. Let u1, u2 be two
minimisers. If T (u1) �= T (u2) then from the strict convexity
of the first term of Hex we have

Hex

(
1

2
u1 + 1

2
u2

)
<

1

2
Hex(u1) + 1

2
Hex(u2)

= inf
u∈BH(Ω)

Hex(u),

which is a contradiction. Hence T (u1) = T (u2) and if T

is injective we have u1 = u2. If T is not injective but f is
strictly convex then we must have ∇u1 = ∇u2 otherwise we
get the same contradiction as before. In that case, since Ω is
connected, there exists a constant c such that u1 = u2 +cXΩ

and since T (XΩ) �= 0, we get c = 0. �

3.3 Stability

To complete the well-posedness picture for (1.1) it remains
to analyse the stability of the method. More precisely, we
want to know which effect deviations in the data u0 have on
a corresponding minimiser of (1.1). Ideally the deviation in
the minimisers for different input data should be bounded by
the deviation in the data. Let R be the regularising functional
in (1.1), i.e.,

R(u) = α

∫
Ω

f (∇u)dx + β

∫
Ω

g
(∇2u

)
dx.
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It has been demonstrated by many authors [7, 18, 19, 59] that
Bregman distances related to the regularisation functional
R are natural error measures for variational regularisation
methods with R convex. In particular Pöschl [59] has de-
rived estimates for variational regularisation methods with
powers of metrics, which apply to the functional we con-
sider here. However, for demonstration issues and to make
constants in the estimates more explicit let us state and prove
the result for a special case of (1.1) here.

We consider functional (1.1) for the case s = 2. For what
we are going to do we assume that one of the regularisers
is differentiable. Without loss of generality, we assume that
f (s) is differentiable in s. The analogous analysis can be
done if g(s) is differentiable or even under weaker, conti-
nuity conditions on f and g, see [15]. Let ũ be the original
image and ũ0 the exact datum (without noise), i.e. ũ0 is a
solution of T ũ = ũ0. We assume that the noisy datum u0 de-
viates from the exact datum by ‖ũ0 − u0‖L2 ≤ δ for a small
δ > 0. For the original image ũ we assume that the following
condition, called source condition, holds

There exists a ξ ∈ ∂R(ũ) such that ξ = T ∗q
for a source element q ∈ D

(
T ∗), (SC)

where D(T ∗) denotes the domain of the operator T ∗ and
∂R is the subdifferential of R. Moreover, since f is differ-
entiable and both f and g are convex, the subdifferential of
R can be written as the sum of subdifferentials of the two
regularisers, i.e.,

∂R(u) = α∂

(∫
Ω

f (∇u)dx

)
+ β∂

(∫
Ω

g
(
D2u

))

= −α div
(
f ′(∇u)

) + β∂

(∫
Ω

g
(
D2u

))
,

see [38, Proposition 5.6., p. 26]. We define the symmetric
Bregman distance for the regularising functional R as

D
symm
R (u1, u2) := 〈p1 − p2, u1 − u2〉,
p1 ∈ ∂R(u1), p2 ∈ ∂R(u2).

Theorem 3.10 Let ũ be the original image with source con-
dition (SC) satisfying T ũ = ũ0. Let u0 ∈ L2(Ω) be the noisy
datum with ‖ũ0 − u0‖L2 ≤ δ. Then a minimiser u of (1.1)
fulfils

αD
symm∫
Ω f (∇·)(u, ũ) + βD

symm∫
Ω g(∇2·)(u, ũ) + 1

2
‖T u − ũ0‖2

L2

≤ 2α2‖q∇‖2
L2 + 2β2‖q∇2‖2

L2 + δ2,

where the source element q is decomposed in q = αq∇ +
βq∇2 . Moreover, let u1 and u2 be minimisers of (1.1) with

data u0,1 and u0,2 respectively. Then the following estimate
is true

αD
symm∫
Ω f (∇·)(u1, u2) + βD

symm∫
Ω g(∇2·)(u1, u2)

+ 1

2
‖T (u1 − u2)‖2

L2 ≤ 1

2
‖u0,1 − u0,2‖2

L2 . (3.16)

Proof The optimality condition for (1.1) for s = 2 and dif-
ferentiable f reads

αp∇ + βp∇2 + T ∗(T u − u0) = 0,

p∇ = −div
(
f ′(∇u)

)
, p∇2 ∈ ∂

(∫
Ω

g
(∇2u

))
.

Adding ξ from (SC) and T ∗ũ0 we get

αp∇ + βp∇2 − ξ + T ∗(T u − ũ0) = T ∗((u0 − ũ0) − q
)
.

Then we use that ξ = αξ∇ +βξ∇2 and take the duality prod-
uct with u − ũ, which gives

α〈p∇ − ξ∇ , u − ũ〉 + β〈p∇2 − ξ∇2, u − ũ〉 + ‖T u − ũ0‖2
L2

= 〈
(u0 − ũ0) − q,T u − ũ0

〉
.

By Young’s inequality and the standard inequality 1
2 (a +

b)2 ≤ a2 + b2 for a, b ∈ R, we eventually get

αD
symm∫
Ω f (∇·)(u, ũ) + βD

symm∫
Ω g(∇2·)(u, ũ) + 1

2
‖T u − ũ0‖2

L2

≤ 2α2‖q∇‖2
L2 + 2β2‖q∇2‖2

L2 + ‖u0 − ũ0‖2
L2 .

Similarly, we can derive the stability estimate by subtracting
the optimality conditions for (1.1) in u1 and u2 with datum
u0,1 and u0,2, respectively and applying Young’s inequality
again, we get (3.16). �

Remark 3.11 In the case α = β we obtain the classical form
of Bregman error estimates, that is

D
symm∫
Ω f (∇·)(u, ũ) + D

symm∫
Ω g(∇2·)(u, ũ) + 1

2α
‖T u − ũ0‖2

L2

≤ 2α
(‖q∇‖2

L2 + ‖q∇2‖2
L2

) + 1

α
‖u0 − ũ0‖2

L2 .

4 Special Cases and Extensions

In this section we introduce two more versions of the func-
tional Hex , the anisotropic version and the version where the
L1 norm appears in the fidelity term.



320 J Math Imaging Vis (2014) 48:308–338

4.1 The Anisotropic Version

We introduce the anisotropic version of the functional H in
(3.5). Note that when f (x) = |x|, g(x) = |x| then the re-
laxed functional Hex is given by

1

2

∫
Ω

(u0 − T u)2dx + α

∫
Ω

|∇u|dx + β|D2u|Ω.

Its anisotropic analogue is defined for f (x) = |x|1 and
g(x) = |x|1. In that case, the relaxed functional is given by

F(u) = 1

2

∫
Ω

(u0 − T u)2dx + α

∫
Ω

(|ux | + |uy |)dx

+ β
(|D1ux |(Ω) + |D2ux |(Ω)

+ |D1uy |(Ω) + |D2uy |(Ω)
)
, (4.1)

where Di , i = 1,2 denotes the distributional derivative with
respect to x and y respectively. Since the functional F is
obtained for the above choice of f and g, the following the-
orem holds as a special case of Theorem 3.8:

Theorem 4.1 Assuming T (XΩ) �= 0, the minimisation
problem

inf
u∈BH(Ω)

F (u), (4.2)

has a solution. If T is injective then the solution is unique.

4.2 L1 Fidelity Term

We consider here the case with the L1 norm in the fidelity
term, i.e.,

G(u) =
∫

Ω

|u0 − T u|dx + α

∫
Ω

|∇u|dx + β|D2u|(Ω),

(4.3)

where for simplicity we consider the case f (x) = |x|,
g(x) = |x|. As it has been shown in [55] and also studied
in [24] and [36], the L1 norm in the fidelity term leads to
efficient restorations of images that have been corrupted by
impulse noise.

Theorem 4.2 Assuming T (XΩ) �= 0, the minimisation
problem

inf
u∈BH(Ω)

G(u), (4.4)

has a solution.

Proof The proof is another application of the direct method
of calculus of variation. Similarly with the proof of Theo-
rem 3.8 we show that any minimising sequence is bounded

in L1(Ω). Hence it is bounded in BH(Ω). Thus we can
extract a weakly∗ convergent subsequence in BH(Ω). Triv-
ially, the functional is lower semicontinuous with respect to
that convergence. �

Note that in this case the uniqueness of the minimiser
cannot be guaranteed since the functional G is not strictly
convex anymore, even in the case where T = Id. The ver-
sions with general f and g of Theorem 3.8 can be easily
extended to the cases discussed in Sects. 4.1 and 4.2.

5 The Numerical Implementation

In this section we work with the discretised version of the
functional (3.5) and we discuss its numerical realisation
by the so-called split Bregman technique [46]. We start
by defining the discrete versions of L1 and L2 norms in
Sect. 5.1. In Sect. 5.2 we proceed with an introduction to
the Bregman iteration which is used to solve constrained op-
timisation problems, an idea originated in [56]. In [46] the
Bregman iteration and an operator splitting technique (split
Bregman) is used in order to solve the total variation min-
imisation problem. In the latter paper it was also proved that
the iterates of the Bregman iteration converge to the solu-
tion of the constrained problem assuming that the iterates
satisfy the constraint in a finite number of iterations. Here,
we give a more general convergence result where we do not
use that assumption, see Theorem 5.1. Finally in Sect. 5.3
we describe how our problem is solved with the Bregman
iteration, using the splitting procedure mentioned above.

5.1 The Discretised Setting

In this section we study the discretisation and minimisation
of the functional (3.5). In our numerical examples we con-
sider f (x) = |x|, g(x) = |x| and the data fidelity term is
measured in the L2 norm, i.e.,

Hex(u) = 1

2

∫
Ω

(u0 −T u)2dx+α

∫
Ω

|∇u|dx+β|D2u|(Ω).

(5.1)

In order to discretise (5.1) we specify the corresponding
discrete operators and norms that appear in the continu-
ous functional. We denote the discretised version of (5.1)
with J . In the discrete setting, u is an element of R

n×m and
T is a bounded linear operator from R

n×m to R
n×m. For

f (x) = |x| and g(x) = |x|, the discrete functional J is given
by

J (u) = 1

2
‖u0 − T u‖2

2 + α‖∇u‖1 + β‖∇2u‖1, (5.2)
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where for every u ∈ R
n×m, v = (v1, v2) ∈ (Rn×m)2 and w =

(w1,w2,w3,w4) ∈ (Rn×m)4 we define

‖u‖2 :=
(

n∑
i=1

m∑
j=1

u(i, j)2

)1/2

,

‖v‖2 :=
(

n∑
i=1

m∑
j=1

v1(i, j)2 + v2(i, j)2

)1/2

,

‖w‖2 :=
(

n∑
i=1

m∑
j=1

w1(i, j)2 + w2(i, j)2 + w3(i, j)2

+ w4(i, j)2

)1/2

,

‖v‖1 :=
n∑

i=1

m∑
j=1

(
v1(i, j)2 + v2(i, j)2)1/2

,

‖w‖1 :=
n∑

i=1

m∑
j=1

(
w1(i, j)2 + w2(i, j)2 + w3(i, j)2

+ w4(i, j)2)1/2
.

For the formulation of the discrete gradient and Hessian op-
erators we use periodic boundary conditions and we follow
[76]. We also refer the reader to [57] where the form of the
discrete differential operators is described in detail. We de-
fine ∇ and div consistently with the continuous setting as
adjoint operators and the same is done for the Hessian ∇2

and its adjoint div2.
In particular the first and second order divergence opera-

tors, div and div2, have the properties:

div : (Rn×m
)2 → R

n×m with − div(v) · u = v · ∇u,

∀u ∈ R
n×m, v ∈ (

R
n×m

)2
,

div2 : (Rn×m
)4 → R

n×m with div2 w · u = w · ∇2u,

∀u ∈ R
n×m, w ∈ (

R
n×m

)4
,

where the “·” denotes the Euclidean inner product, if we
consider u, v and w as large vectors formed successively
by the columns of the corresponding matrices.

5.2 Constrained Optimisation and the Bregman Iteration

We now introduce the Bregman and the split Bregman it-
eration as a numerical method for the solution of (5.2). We
would like to recall some basic aspects of the general theory

of Bregman iteration before finishing this discussion with
the convergence result in Theorem 5.1.

Suppose we have to solve the following constrained min-
imisation problem:

min
u∈Rd

E(u) such that Au = b, (5.3)

where the function E is convex and A is a linear map from
R

d to R

. We transform the constrained minimisation prob-

lem (5.3) into an unconstrained one, introducing a parame-
ter λ:

sup
λ

min
u∈Rd

E(u) + λ

2
‖Au − b‖2

2, (5.4)

where in order to satisfy the constraint Au = b we have to
let λ increase to infinity. Instead of doing that we perform
the Bregman iteration as it was proposed in [56] and [77]:

Bregman Iteration

uk+1 = argmin
u∈Rd

E(u) + λ

2
‖Au − bk‖2

2, (5.5)

bk+1 = bk + b − Auk+1. (5.6)

In [56], assuming that (5.5) has a unique solution, the
authors derive the following facts for the iterates uk :

‖Auk − b‖2 ≤ M√
k − 1

, for a fixed M ≥ 0, k ≥ 2,

(5.7)

∞∑
k=1

‖Auk − b‖2
2 < ∞, (5.8)

‖Auk+1 − b‖2
2 ≤ ‖Auk − b‖2

2, k ≥ 1, (5.9)

and

E(uk) < N for a constant N ≥ 0. (5.10)

The following theorem was proved in [46] in the case where
the iterates of Bregman iteration satisfy the constraint in a
finite number of iterations. In other words, it was proved
that if for some iterate uk0 we have Auk0 = b then uk0 is a
solution to the original constrained problem (5.3). In the fol-
lowing theorem we give a more general proof where we do
not use that assumption, something that makes it a genuine
contribution to the convergence theory of Bregman iteration.

Theorem 5.1 Suppose that the constrained minimisation
problem (5.3) has a unique solution u∗. Moreover, suppose
that the convex functional E is coercive and (5.5) has a
unique solution for every k. Then the sequence of the iter-
ates (uk)k∈N of Bregman iteration converges to u∗.
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Proof We have that the statements (5.7)–(5.10) hold. More-
over, we have for every k,

bk = b0 +
k∑

ν=1

(b − Auν)

⇒ ‖bk‖2 ≤ ‖b0‖2 +
k∑

ν=1

‖Auν − b‖2.

From (5.10) and the coercivity of E we get that the sequence
(‖uk‖2)k∈N is bounded, say by a constant C > 0. Thus, it
suffices to show that every accumulation point of (uk)k∈N is
equal to u∗. Since Au∗ = b, for every increasing sequence
of naturals (k
)
∈N, we have that

λ

2
‖Au∗ − bk


‖2
2

≤ λ

2

(‖Au∗ − Auk

‖2 + ‖Auk


− bk

‖2

)2

= λ

2
(‖Auk


− b‖2 + ‖Auk

− bk


‖2)
2

≤ λM2

2(k
 − 1)
+ λ‖Auk


− b‖2‖Auk

− bk


‖2

+ λ

2
‖Auk


− bk

‖2

2.

Now because of the fact that

E(uk

)+ λ

2
‖Auk


− bk
−1‖2
2 ≤ E

(
u∗)+ λ

2
‖Au∗ − bk
−1‖2

2,

we get that

E(uk

) ≤ E

(
u∗) + λM2

2(k
 − 1)

+ λ‖Auk

− b‖2‖Auk


− bk
−1‖2

≤ E
(
u∗) + λM2

2(k
 − 1)
+ λ‖Auk


− b‖2‖Auk

‖2

+ λ‖Auk

− b‖2‖bk
−1‖2

≤ E
(
u∗) + λM2

2(k
 − 1)
+ λM‖A‖‖uk


‖2√
k
 − 1

+ λ‖Auk

− b‖2‖bk
−1‖2

≤ E
(
u∗) + λM2

2(k
 − 1)
+ λM‖A‖C√

k
 − 1

+ λ‖Auk

− b‖2

(
‖b0‖2 +

k
∑
ν=1

‖Auν − b‖2

)

≤ E
(
u∗) + λM2

2(k
 − 1)
+ λM‖A‖C√

k
 − 1

+ λM‖b0‖2√
k
 − 1

+ λ‖Auk

− b‖2

k
∑
ν=1

‖Auν − b‖2. (5.11)

Suppose now that (uk

)
∈N converges to some ũ as 
 goes to

infinity. Then taking into account (5.7), ũ also satisfies

‖Aũ − b‖2 = 0. (5.12)

Taking limits in (5.11) and using Kronecker’s lemma, see
Lemma A.4, we have that the limit in the right hand side of
(5.11) is E(u∗). Thus, we have

E(ũ) ≤ E
(
u∗),

and since u∗ is the solution of the constrained minimisa-
tion problem and (5.12) holds, we have ũ = u∗. Since ev-
ery accumulation point of the bounded sequence (uk)k∈N is
equal to u∗, we conclude that the whole sequence converges
to u∗. �

For more information about the use of Bregman iter-
ation in L1 regularised problems we refer the reader to
[46, 56, 77].

5.3 Numerical Solution of Our Minimisation Problem

In this section, we explain how the Bregman iteration (5.5)–
(5.6) together with an operator splitting technique can be
used to implement numerically the minimisation of func-
tional (5.2). The idea originates from [46] where such a pro-
cedure is applied to total variation minimisation and is given
the name split Bregman algorithm. This iterative technique
is equivalent to certain instances of combinations of the aug-
mented Lagrangian method with classical operator splitting
such as Douglas-Rachford, see [64]. We also refer the reader
to the paper of Benning, Brune, Burger and Müller [6], for
applications of Bregman methods to higher-order regulari-
sation models for image reconstruction.

Exemplarily, we present the resulting algorithm for the
minimisation of J in (5.2), i.e., for f (x) = |x|, g(x) = |x|
and L2 data fidelity term. Recall that we want to solve the
following unconstrained minimisation problem:

min
u∈Rn×m

1

2
‖u0 − T u‖2

2 + α‖∇u‖1 + β‖∇2u‖1. (5.13)

The derivation of the split Bregman algorithm for solving
(5.13) starts with the first observation that the above min-
imisation problem is equivalent to the following constrained
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minimisation problem:

min
u∈R

n×m

v∈(Rn×m)2

w∈(Rn×m)4

1

2
‖u0 − T u‖2

2 + α‖v‖1 + β‖w‖1,

such that v = ∇u, w = ∇2u. (5.14)

It is clear that since the gradient and the Hessian are lin-
ear operations, the minimisation problem (5.14) can be re-
formulated into the more general problem:

min
ω∈Rd

E(ω) such that Aω = b, (5.15)

where E : R
d → R

+ is convex, A is a d × d matrix and b is
a vector of length d = 7 nm.

It is easy to see that the iterative scheme of the type (5.5)–
(5.6) that corresponds to the constraint minimisation prob-
lem (5.14) is:

(
uk+1, vk+1,wk+1)

= argmin
u,v,w

1

2
‖u0 − T u‖2

2 + α‖v‖1

+ β‖w‖1 + λ

2
‖bk

1 + ∇u − v‖2
2

+ λ

2
‖bk

2 + ∇2u − w‖2
2, (5.16)

bk+1
1 = bk

1 + ∇uk+1 − vk+1, (5.17)

bk+1
2 = bk

2 + ∇2uk+1 − wk+1. (5.18)

where bk+1
1 = (bk+1

1,1 , bk+1
1,2 ) ∈ (Rn×m)2 and bk+1

2 = (bk+1
2,11,

bk+1
2,22, b

k+1
2,12, b

k+1
2,21) ∈ (Rn×m)4.

Remark 5.2 Notice that at least in the case where T is in-
jective (denoising, deblurring), the minimisation problem
(5.16) has a unique solution. Moreover in that case, the func-
tional E is coercive and the constrained minimisation prob-
lem (5.14) has a unique solution. Thus, Theorem 5.1 holds.

Our next concern is the efficient numerical solution of the
minimisation problem (5.16). We follow [46] and iteratively
minimise with respect to u, v and w alternatingly:

Split Bregman for TV-TV2-L2

uk+1 = argmin
u∈Rn×m

1

2
‖u0 − T u‖2

2 + λ

2
‖bk

1 + ∇u − vk‖2
2

+ λ

2
‖bk

2 + ∇2u − wk‖2
2, (5.19)

vk+1 = argmin
v∈(Rn×m)2

α‖v‖1 + λ

2
‖bk

1 + ∇uk+1 − v‖2
2, (5.20)

wk+1 = argmin
w∈(Rn×m)4

β‖w‖1 + λ

2
‖bk

2 + ∇2uk+1 − w‖2
2,

(5.21)

bk+1
1 = bk

1 + ∇uk+1 − vk+1, (5.22)

bk+1
2 = bk

2 + ∇2uk+1 − wk+1. (5.23)

The above alternating minimisation scheme, make up the
split Bregman iteration that is proposed in [46] to solve
the total variation minimisation problem as well as prob-
lems related to compressed sensing. For convergence prop-
erties of the split Bregman iteration and also other split-
ting techniques we refer the reader to [29, 39, 64]. In
[76] and [77] it is noted that the Bregman iteration co-
incides with the augmented Lagrangian method. Minimis-
ing alternatingly with respect to the variables in the aug-
mented Lagrangian method results to the alternating direc-
tion method of multipliers (ADMM), see [44]. Thus split
Bregman is equivalent to ADMM. In [37] and [44] it is
shown that ADMM is equivalent to the Douglas-Rachford
splitting algorithm and thus convergence is guaranteed. We
refer the reader to [64] for an interesting study in this sub-
ject.

We now discuss how we solve each of the minimisation
problems (5.19)–(5.21). The problem (5.19) is quadratic and
it is solved through its optimality condition. This condition
reads:

T ∗T u − λdiv(∇u) + λdiv2(∇2u
)

= T ∗(u0) + λdiv
((

bk
1 − vk

))

− λdiv2((bk
2 − wk

))
, (5.24)

where T ∗ denotes the adjoint of the discrete operator T .
Since all the operators that appear in (5.24) are linear, this
condition leads to a linear system of equations with nm un-
knowns. In [46], one iteration of the Gauss-Seidel method is
used to approximate the solution of the corresponding opti-
mality condition of (5.24). However, numerical experiments
have shown that in the higher-order case it is preferable and
more robust to solve this problem exactly. Since we impose
periodic boundary conditions for the discrete differential op-
erators, this can be done efficiently using fast Fourier trans-
form, see [57, 76].

The solutions of the minimisation problems (5.20) and
(5.21) can be obtained exactly through a generalised shrink-
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age method as it was done in [46] and [72]. It is a simple
computation to check that if a ∈ R

n then the solution to the
problem

min
x∈Rn

‖x‖2 + λ

2
‖x − a‖2

2, (5.25)

can be obtained through the following formula:

x = S 1
λ
(a) := max

(
‖a‖2 − 1

λ
,0

)
a

‖a‖2
. (5.26)

Each of the objective functionals in (5.20) and (5.21) can be
written as a sum of functionals of the same type in (5.25)
where n = 2,4 respectively. Thus the solution to the prob-
lems (5.20) and (5.21) can be computed as follows:

vk+1(i, j) = (
vk+1

1 (i, j), vk+1
2 (i, j)

)

= S α
λ

(
bk

1(i, j) + ∇uk+1(i, j)
)
, (5.27)

wk+1(i, j) = (
wk+1

1 (i, j),wk+1
2 (i, j),wk+1

3 (i, j),

wk+1
4 (i, j)

)

= S α
λ

(
bk

2(i, j) + ∇2uk+1(i, j)
)
. (5.28)

for i = 1, . . . , n and j = 1, . . . ,m.
Let us note that the algorithm (5.19)–(5.23) can be easily

generalised to colour images, again see [57, 76].
We have performed numerical experiments for image

denoising, deblurring and inpainting using the algorithm
(5.19)–(5.23). In all of our numerical examples the range
of image values is [0,1] (zero for black and one for
white).

Notice that different values of λ can result in different
speeds of convergence. Also, one can consider having two
parameters λ1 and λ2 for the first and the second order term
respectively. We can easily check that the Bregman iteration
converges in this case as well. Even though it is not obvi-
ous a priori how to choose λ1 and λ2 in order to have fast
convergence, this choice only has to be done once and a po-
tential user does not have to worry about them. Empirically
we have found that λ1 and λ2 have to be a few orders of mag-
nitude larger than α and β respectively. We have found that
a good empirical rule is to choose λ1 = 10α and λ2 = 10β

or even λ1 = 100α and λ2 = 100β . In [11] there is an in-
teresting discussion about that matter. See also [57], where
it is shown with numerical experiments for the case of in-
painting, how this choice of λ’s results in different speed
of convergence and different behaviour of the intermediate
iterates.

6 Applications in Denoising

In this section we discuss the application of the TV-TV2

approach (5.2) to image denoising, where the operator T

equals the identity. We have performed experiments to im-
ages that have been corrupted with Gaussian noise, thus the
L2 norm in the fidelity term is the most suitable. We com-
pare our method with infimal convolution [22] solved also
with a split Bregman scheme and the total generalised varia-
tion [14] solved with the primal-dual method of Chambolle
and Pock [23] as it is described in [13]. We present exam-
ples of (5.2) for α = 0, β �= 0 and α �= 0, β = 0. Note that for
β = 0, our model corresponds to the classical Rudin-Osher-
Fatemi (ROF) denoising model, while for α = 0 it corre-
sponds to the pure TV2 restoration [8]. Our basic synthetic
test image is shown in Fig. 3.

Our main assessment for the quality of the reconstruc-
tion is the structural similarity index SSIM [73, 74]. The
reason for that choice is that in contrast to traditional qual-
ity measures like the peak signal-to-noise ratio PSNR, the
SSIM index also assesses the conservation of the structural
information of the reconstructed image. Note that a per-
fect reconstruction has SSIM value equal to 1. A justifica-
tion for the choice of SSIM as a good fidelity measure in-
stead of the traditional PSNR can be seen in Fig. 4. The
second and the third image are denoising results with the
first order method (β = 0, Gaussian noise, Variance = 0.5).
The middle picture is the one with the highest SSIM value
(0.6595) while the SSIM value of the right picture is signifi-
cantly lower (0.4955). This assessment comes into an agree-
ment with the human point of view since, even though this
is subjective, one would consider the middle picture as a
better reconstruction. On the other hand the middle picture
has slightly smaller PSNR value (14.02) than the right one
(14.63), which was the highest PSNR value. Similar results
are obtained for β �= 0.

As a stopping criterium for our algorithm we use a pre-
defined number of iterations. In most examples this number
is 300. We observe that after 80–100 iterations the relative

Fig. 3 Main test image. Resolution: 200 × 300 pixels
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residual of the iterates is of the order of 10−3 or lower (see
also Table 1) and hence no noticeable change in the iterates
is observed after that.

In the following we shall examine whether the introduc-
tion of the higher-order term (β �= 0) in the denoising proce-
dure, produces results of higher quality.

Fig. 4 Justification for the usage of SSIM index. The initial image,
seen on Fig. 3, is contaminated with Gaussian noise of variance 0.5
(left). We provide the best SSIM valued (middle) (SSIM = 0.6595,
PSNR = 14.02) and the best PSNR valued (right) (SSIM = 0.4955,

PSNR = 14.63) reconstructions among reconstructed images with the
first order method (β = 0). The better SSIM assessment of the first
image agrees more with the human perception

Fig. 5 Denoising of a synthetic image that has been corrupted with Gaussian noise of variance 0.005. We chose λ1 = λ2 = 1 for these implemen-
tations
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Fig. 6 Corresponding middle row slices of images in Fig. 5

The noise has been produced with MATLAB’s built in
function imnoise.

Figure 5 depicts one denoising example, where the orig-
inal image is corrupted with Gaussian noise of variance
0.005. For better visualisation, we include the middle row
slices of all the reconstructions in Fig. 6. The highest SSIM
value for TV denoising is achieved for α = 0.12 (SSIM =
0.8979) while the highest one for TV-TV2 is achieved for
α = 0.06, β = 0.03 (SSIM = 0.9081). This is slightly bet-
ter than infimal convolution (SSIM = 0.9053). Note, how-
ever, that this optimal combination of α and β in terms of
SSIM does not always correspond to best visual result. In
general, the latter corresponds to a slightly bigger β than
the one chosen by SSIM, see Fig. 5(h). Still, for proof of
concept, we prefer to stick with an objective quality mea-
sure and SSIM, in our opinion, is the most reliable choice

for that matter. In the image of Fig. 5(h) the staircasing ef-
fect has almost disappeared and the image is still pleasant
to the human eye despite being slightly more blurry. This
slight blur, which is the price that the method pays for the re-
moval of the staircasing effect, can be easily and efficiently
removed in post-processing using simple sharpening filters,
e.g. in GIMP. We did that in Fig. 5(i), also adjusting the con-
trast, achieving a very good result both visually and SSIM-
wise (0.9463).

The highest SSIM value is achieved by TGV (0.9249),
delivering a reconstruction of very good quality. However,
TGV converges slowly to the true solution. In order to check
that, we compute the ground truth solution (denoted by GT)
for the parameters of the TGV problem that correspond to
Fig. 5(d), by taking a large amount of iterations (2000). We
check the GPU time that is needed for the iterates to have a
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relative residual

‖uk − GT‖2

‖GT‖2
≤ 10−3

and we do the same for the TV-TV2 example of Fig. 5(f).
For TGV, it takes 1297 iterations (primal-dual method [23])
and 36.25 seconds while for TV-TV2 it takes 86 split Breg-
man iterations and 4.05 seconds, see Table 1. That makes

our method more suitable for cases where fast but not nec-
essarily optimal results are needed, e.g. video processing.

In order to examine the quality of the reconstructions
that are produced from each method as the number of it-
eration increases we have plotted in Fig. 7 the evolution of
SSIM values. In the horizontal axis, instead of the number
of iterations we put the absolute CPU time calculated by
the product of the number of iterations times the CPU time

Fig. 7 Evolution of the SSIM index with absolute CPU time for the
examples of Fig. 5. For TV denoising the SSIM value peaks after 0.17
seconds (0.9130) and the after it drops sharply when the staircasing
appears, see corresponding comments on [46]. For TV-TV2 the peak
appears after 1.08 seconds (0.9103) and remains essentially constant.

The TGV iteration starts to outperform the methods after 1.89 seconds.
This shows the potential of split Bregman to produce visually satis-
factory results before convergence has occurred, in contrast with the
primal-dual method (Color figure online)

Fig. 8 Plot of the SSIM and PSNR values of the restored image as
functions of α and β . For display convenience all the values under 0.85
(SSIM) and 26 (PSNR) were coloured with dark blue. The dotted cells
corresponds to the highest SSIM (0.9081) and PSNR (32.39) value that

were achieved for α = 0.06, β = 0.03 and α = 0.06, β = 0.005 re-
spectively. Note that the first column in both plots corresponds to TV
denoising, (β = 0). The original image was corrupted with Gaussian
noise of variance 0.005 (Color figure online)
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Fig. 9 Left: Middle row slices of reconstructed images with α = 0.12,
β = 0 (blue colour) and α = 0.12. β = 0.06 (red colour). Slices of
the original image are plotted with black colour. Right: Detail of the

first plot. Even though the higher-order method eliminates the staircas-
ing effect, it also results to further slight loss of contrast (Color figure
online)

per iteration as it is seen in Table 1. We observe that, for
TGV, the SSIM value increases gradually with time, while
for the methods solved with split Bregman the image qual-
ity peaks very quickly and then remains almost constant ex-
cept for TV where the staircasing appears in the later itera-
tions.

Next we check how the SSIM and PSNR values of the
restored images behave as a function of the weighting pa-
rameters α and β . In Fig. 8 we plot the results for α = 0,

0.02,0.04, . . . ,0.3 and β = 0,0.005,0.01, . . . ,0.1. The
plots suggest that both quality measures behave in a contin-
uous way and that they have a global maximum. However,
PSNR tends to rate higher those images that have been pro-
cessed with a small value of β or even with β = 0 which is
not the case for SSIM. An explanation for that is that higher
values of β result to a further loss of contrast, see Fig. 9,
something that is penalised by the PSNR. The SSIM index
penalises the loss of contrast as well but it also penalises the
creation of the staircasing effect. This is another indication
for the suitability of SSIM over PNSR. Note also, that the
contrast can be recovered easily in a post-processing stage
while it is not an easy task to reduce the staircasing effect
using conventional processing tools.

Finally, in Fig. 10 we perform denoising in an natural im-
age which has been corrupted with Gaussian noise also of
variance 0.005. The staircasing of TV denoising (SSIM =
0.8168) is obvious in Figs. 10(c) and (i). The overall best
performance of the TV-TV2 method (SSIM = 0.8319) is
achieved by choosing α = β = 0.017, Fig. 10(d). However,
one can get satisfactory results by choosing α = β = 0.023
(SSIM = 0.8185), eliminating further the staircasing with-
out blurring the image too much, compare for example the
details in the Figs. 10(j) and (k).

7 Applications in Deblurring

In our deblurring implementation T denotes a circular con-
volution with a discrete approximation of a Gaussian kernel

(σ = 2, size: 11 × 11 pixels). The blurred image is also cor-
rupted by additive Gaussian noise of variance 10−4. Let us
note here that the optimality condition (5.24) can be solved
very fast using fast Fourier transforms. Deblurring results
are shown in Fig. 11 and the corresponding middle row
slices in Fig. 12. As in the denoising case the introduction of
the second order term with a small weight β decreases no-
ticeably the staircasing effect, compare Figs. (11)(c) and (f).
Moreover, we can achieve better visual results if we increase
further the value of β without blurring the image signifi-
cantly, Fig. (11)(g). Infimal convolution does not give a sat-
isfactory result here, Fig. 11(e). TGV gives again the best
qualitative result, Fig. (11)(d), but the computation takes
about 10 minutes. Even though the time comparison is not
completely fair here (the implementation described in [13]
does not use FFT) it takes a few thousands iterations for
TGV to deblur the image satisfactorily, in comparison with
a few hundreds for our TV-TV2 method.

In Fig. 13 we discuss the performance of the TV-TV2

method for deblurring a natural image. The best result for
the TV-TV2 method (SSIM = 0.8361) is achieved with α =
0.0005 and β = 0.0001, Fig. 13(d). As in the case of de-
noising, one can increase the value of β slightly, eliminating
further the staircasing effect, Figs. 13(e) and (k). The addi-
tional blur which is a result of the larger β can be controlled
using a sharpening filter, Figs. 13(f) and (l).

8 Applications in Inpainting

Finally, we present examples for the application of our TV-
TV2 approach to image inpainting. There, the goal is to re-
construct an image inside a missing part using information
from the intact part. The missing part is a domain D ⊆ Ω ,
known as the inpainting domain. In this case the operator T

applied to an image u gives

T u = XΩ\Du,

where as before XΩ\D is the characteristic function of
Ω \ D, the intact part of the image domain. Let us note here



J Math Imaging Vis (2014) 48:308–338 329

Fig. 10 Denoising of a natural image that has been corrupted with Gaussian noise of variance 0.005. We chose λ1 = λ2 = 1 for these implemen-
tations

that in cases of a small number of inpainting domains and
a completely noise free and trustable image outside of the
missing part, it is preferable to solve the inpainting problem
only inside the holes, see for example [21]. However, here
we would like to keep the method flexible, such that it in-
cludes the case where there is noise in the known regions as
well.

In order to take advantage of the FFT for the optimality
condition (5.24) a different splitting technique to (5.14) is
required:

min
u∈R

n×m

ũ∈R
n×m

v∈(Rn×m)2

w∈(Rn×m)3

‖XΩ\D(u − u0)‖2
2 + α‖v‖1 + β‖w‖1, (8.1)
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Fig. 11 Deblurring of a blurred (Gaussian kernel of variance σ = 2) and noisy (additive Gaussian noise, variance 10−4) synthetic image. We
chose λ1 = 100α, λ2 = 100β for these implementations

such that u = ũ, v = ∇ũ, w = ∇2ũ. We refer the reader to
[57] for the details.

In Fig. 14 we compare our method with harmonic and
Euler’s elastica inpainting, see [25, 67]. In the case of har-
monic inpainting the regulariser is the square of the L2 norm
of the gradient

∫
Ω

|∇u|2dx. In the case of Euler’s elastica
the regulariser is

∫
Ω

(
α + β

(
∇ · ∇u

|∇u|
)2)

|∇u|dx. (8.2)

The minimisation of the Euler’s elastica energy corresponds
to the minimisation of the length and curvature of the level
lines of the image. Thus, this method is able to connect
large gaps in the inpainting domain, see Fig. 14(d). How-
ever, the term (8.2) is non-convex and thus difficult to be
minimised. In order to implement Euler’s elastica inpaint-
ing we used the augmented Lagrangian method, proposed in

[67]. There, the leading computational cost per iteration is
due to the solution of one linear PDE and a system of lin-
ear PDEs (solved with FFT as well), in comparison to our
approach which consists of one linear PDE only. Hence, in
Table 1, we do not give absolute computational times as that
would not be fair even more so because we did not optimise
the Euler’s elastica algorithm with respect to the involved
parameters. Moreover, it should be emphasised that the so-
lution of TV-TV2 inpainting amounts to solve a convex
problem while Euler’s elastica inpainting is a non-convex
model.

In Fig. 14 we see that, in contrast to harmonic and TV
inpainting, TV2 inpainting is able to connect big gaps with
the price of a blur, which can be controlled using a shock
filter [2], see Fig. 14(g). Notice that one has to choose α

small or even 0, in order to make the TV2 term dominant,
compare Figs. 14(e) and (f).
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Fig. 12 Corresponding middle row slices of images in Fig. 11

We also observe that in the TV2 case, the ability to con-
nect large gaps depends on the size and geometry of the in-
painting domain, see Fig. 15 and also see [57] for more ex-
amples. Deriving sufficient conditions on the size and geom-
etry of the inpainting domain for this connectivity to happen
is a matter of future research.

Finally, in Fig. 16 we compare TV, TV2 and Euler’s elas-
tica, for its application to removing text (of large font) from
a natural image. TV inpainting, Fig. 16(b) gives unsatisfac-
tory results, by producing piecewise constant results inside
the inpainting domain, while the TV2 and Euler’s elastica
results are comparable and seem to be visually closer to the
true solution than the TV inpainted image.

9 Comparison with Other Higher-Order Methods

In the case of denoising and deblurring we compared our
method with TGV, which we consider a state of the art

method in the field of higher-order image reconstruction in
the variational context. Indeed, in both image reconstruc-
tion tasks, TGV gives better qualitative results, in terms of
the SSIM index. However the computational time that was
needed to obtain the TGV result solved with the primal-dual
method is significantly more than the one that is needed
to compute the TV-TV2 method using split Bregman, see
Table 1. We also show that with simple and fast post-
processing techniques we can obtain results comparable
with TGV. For these reasons, we think that the TV-TV2 ap-
proach is in particular interesting for applications in which
the speed of computation matters. Regarding the compari-
son with inf-convolution, our method is slightly faster and
results in better reconstructions in deblurring while in de-
noising the results are comparable. As far as inpainting is
concerned, we compared our method (essentially the pure
TV2 approach) with the Euler’s elastica, a higher-order vari-
ational method which is capable of giving very good results,
by connecting large gaps in the inpainting domain. However,
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Fig. 13 Deblurring of a blurred (Gaussian kernel of variance σ = 2) and noisy (additive Gaussian noise, variance 10−4) natural image. We chose
λ1 = 100α, λ2 = 100β for these implementations

the regulariser there is non convex, something that could
make the minimisation process produce a local minimiser
instead of a global one. In TV2 the regulariser—regarded as
a convex simplification of the Euler’s elastica idea—it has
the ability to connect large gaps and the slight blur that is

produced can be reduced by using a shock filter see for ex-
ample [2, 45] and Fig. 14(g). Moreover as we pointed out in
the previous sections, our approach is computationally less
expensive compared to TGV for image denoising and de-
blurring and Euler elastica for image inpainting.
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Fig. 14 Comparison of different inpainting methods regarding connectivity across large gaps

Fig. 15 Different pure TV2 inpainting results for different inpainting domains of decreasing width. In all computations we set β = 0.001

10 Conclusion

We formulate a second order variational problem in the
space of functions of bounded Hessian in the context of con-
vex functions of measures. We prove existence and unique-
ness of minimisers using a relaxation technique as well as
stability. We propose the use of the split Bregman method

for the numerical solution of the analogue discretised prob-
lem. The application of the split Bregman method to our
model is quite robust and is converging after a few itera-
tions. We perform numerical experiments by denoising im-
ages that have been corrupted by Gaussian noise, deblurring
images that have been convoluted with Gaussian kernels, as
well as in image inpainting.
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Fig. 16 Removing large font text from a natural image. The TV2 result is comparable with the Euler’s elastica one (Color figure online)

In the case of denoising and deblurring, the introduction
of the second order term leads to a significant reduction of
the staircasing effect resulting in piecewise smooth images
rather than piecewise constant images when using the ROF
model. The superiority of an approach that combines first
and second order regularisation rather than first order regu-
larisation only, is confirmed quantitatively by the SSIM in-
dex. In the case of inpainting the higher-order method is able

to connect edges along large gaps, a task that TV-inpainting
is incapable of solving.

In summary, our approach is a simple and convex higher-
order extension of total variation regularisation that im-
proves the latter by reducing the staircasing effect in image
denoising and deblurring, and by more faithfully respecting
the good continuation principle in image inpainting. It can
compete with other higher-order methods of its kind by giv-
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Table 1 Computational times
for the examples of Figs. 5, 11
and 16. For the denoising and
deblurring examples we
computed a ground true solution
(GT) for every method by taking
a large number of iterations and
record the number of iterations
and CPU time it takes for the
relative residual of the iterates
and the ground true solution to
fall below a certain threshold.
For the inpainting, we give the
number of iterations and CPU
time it took to compute the
solutions shown in Fig. 16,
where we chose as a stopping
criterium a small relative
residual of the iterates. The
TGV examples were computed
using σ = τ = 0.25 in the
primal-dual method described in
[13]. The implementation was
done using MATLAB (2011) in
a Macbook 10.7.3, 2.4 GHz
Intel Core 2 Duo and 2 GB of
memory

Denoising (B&W)—Image size: 200 × 300

No. of iterations
for GT

No. of iterations for
‖uk − GT‖2/‖GT‖2 ≤ 10−3

CPU time (secs) Time per iteration
(secs)

TV 2000 136 2.86 0.0210

TV2 2000 107 3.62 0.0338

TV-TV2 2000 86 4.05 0.0471

Inf.-Conv. 2000 58 3.33 0.0574

TGV 2000 1297 36.25 0.0279

Deblurring (B&W)—Image size: 200 × 300

No. of iterations
for GT

No. of iterations for
‖uk − GT‖2/‖GT‖2 ≤ 10−2

CPU time (secs) Time per iteration
(secs)

TV 1000 478 10.72 0.0257

TV2 1000 108 3.64 0.0337

TV-TV2 1000 517 25.47 0.0493

Inf.-Conv. 1000 108 7.47 0.0692

TGV CPU time more than 10 minutes—see relevant comment in Sect. 7 1.22

Inpainting (Colour)—Image size: 375 × 500

No. of iterations for
‖uk − uk−1‖2/‖uk−1‖2 ≤ 8 · 10−3

CPU time (secs) Time per iteration (secs)

TV 88 26.67 0.3031

TV2 103 46.34 0.4499

E.e. CPU time more than 10 minutes—see relevant comment in Sect. 8

ing almost comparable qualitative results while computing
them in a fraction of time.

As fas as future work is concerned, a (not necessar-
ily rigorous) rule for selecting the parameters α and β

would be useful. Investigating the links with inf-convolution
and spatially dependent regularisation on our model is also
of interest. Moreover, the relation between the continuum
and the discretised model could be investigated through
Γ -convergence arguments, see [30] and [12]. Finally the
characterisation of subgradients of this approach and the
analysis of solutions of the corresponding PDE flows for dif-
ferent choices of functions f and g promises to give more in-
sight into the qualitative properties of this regularisation pro-
cedure. The characterisation of subgradients will also give
more insight to properties of exact solutions of the minimi-
sation of (1.1) concerning the avoidance of the staircasing
effect.
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Appendix: Some Useful Theorems

Proposition A.1 Suppose that g : R
m → R is a continuous

function, positively homogeneous of degree 1 and let μ ∈
[M(Ω)]m. Then for every positive measure Radon measure
ν such that μ is absolutely continuous with respect to ν, we
have

g(μ) = g

(
μ

ν

)
ν.

Moreover, if g is a convex function, then g : [M(Ω)]m →
M(Ω) is a convex function as well.

Proof Since μ � ν, we have that |μ| � ν. Using the fact
that g is positively homogeneous and the fact that |μ|/ν is a



336 J Math Imaging Vis (2014) 48:308–338

positive function, we get

g(μ) = g

(
μ

|μ|
)

|μ| = g

(
μ

|μ|
) |μ|

ν
ν = g

(
μ

|μ|
|μ|
ν

)
ν

= g

(
μ

ν

)
ν.

Assuming that g is convex and using the first part of the
proposition we get for 0 ≤ λ ≤ 1, μ, ν ∈ [M(Ω)]m:

g
(
λμ + (1 − λ)ν

)

= g

(
λμ + (1 − λ)ν

|λμ + (1 − λ)ν|
)

|λμ + (1 − λ)ν|

= g

(
λμ + (1 − λ)ν

|μ| + |ν|
)

(|μ| + |ν|)

= g

(
λ

μ

|μ| + |ν| + (1 − λ)
ν

|μ| + |ν|
)

(|μ| + |ν|)

≤ λg

(
μ

|μ| + |ν|
)

(|μ| + |ν|)

+ (1 − λ)g

(
ν

|μ| + |ν|
)

(|μ| + |ν|)

= λg

(
μ

|μ|
)

|μ| + (1 − λ)g

(
ν

|ν|
)

|ν|

= λg(μ) + (1 − λ)g(ν). �

The following theorem which is a special case of a the-
orem that was proved in [20] and can be also found in [4]
establishes the lower semicontinuity of convex functionals
of measures with respect to the weak∗ convergence.

Theorem A.2 (Buttazzo and Freddi [20]) Let Ω be an open
subset of R

n, ν, (νk)k∈N be R
m-valued finite Radon mea-

sures and μ, (μk)k∈N be positive Radon measures in Ω . Let
g : R

m → R be a convex function and suppose that νk → ν

and μk → μ weakly∗ in Ω . Consider the Lebesgue decom-
positions ν = (ν/μ)μ + νs , νk = (νk/μk)μk + νs

k , k ∈ N.
Then
∫

Ω

g

(
ν

μ
(x)

)
dμ(x) +

∫
Ω

g∞
(

νs

|νs | (x)

)
d|νs |(x)

≤ lim inf
k→∞

∫
Ω

g

(
νk

μk

(x)

)
dμk(x)

+
∫

Ω

g∞
(

νs
k

|νs
k |

(x)

)
d|νs

k |(x).

In particular, if μ = μk = Ln for all k ∈ N then according
to the definition (2.1) the above inequality can be written as

follows:

g(ν)(Ω) ≤ lim inf
k→∞ g(νk)(Ω).

The following theorem is a special case of Theorem 2.3 in
[33].

Theorem A.3 (Demengel and Temam [33]) Suppose that
Ω ⊆ R

n is open, with Lipschitz boundary and let g be a
convex function from R

n×n to R with at most linear growth
at infinity. Then for every u ∈ BH(Ω) there exists a sequence
(uk)k∈N ⊆ C∞(Ω) ∩ W 2,1(Ω) such that

‖uk − u‖L1(Ω) → 0, |D2uk|(Ω) → |D2u|(Ω),

g
(
D2uk

)
(Ω) → g

(
D2u

)
(Ω), as k → ∞.

Lemma A.4 (Kronecker’s lemma) Suppose that (an)n∈N

and (bn)n∈N are two sequences of real numbers such that∑∞
n=1 an < ∞ and 0 < b1 ≤ b2 ≤ · · · with bn → ∞. Then

1

bn

n∑
k=1

bkak → 0, as n → ∞.

In particular, if (cn)n∈N is a decreasing positive real se-
quence such that

∑∞
n=1 c2

n < ∞, then

cn

n∑
k=1

ck → 0, as n → ∞.
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