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Abstract In this paper, we present and analyze a new set
of low-rank recovery algorithms for linear inverse prob-
lems within the class of hard thresholding methods. We pro-
vide strategies on how to set up these algorithms via ba-
sic ingredients for different configurations to achieve com-
plexity vs. accuracy tradeoffs. Moreover, we study acceler-
ation schemes via memory-based techniques and random-
ized, ε-approximate matrix projections to decrease the com-
putational costs in the recovery process. For most of the
configurations, we present theoretical analysis that guaran-
tees convergence under mild problem conditions. Simula-
tion results demonstrate notable performance improvements
as compared to state-of-the-art algorithms both in terms of
reconstruction accuracy and computational complexity.

Keywords Affine rank minimization · Hard thresholding ·
ε-approximation schemes · Randomized algorithms

1 Introduction

In this work, we consider the general affine rank minimiza-
tion (ARM) problem, described as follows:

THE ARM PROBLEM: Assume X∗ ∈ R
m×n is a rank-k ma-

trix of interest (k � min{m,n}) and let A : R
m×n → R

p

be a known linear operator. Given a set of observations as
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y = AX∗ + ε ∈ R
p , we desire to recover X∗ from y in a

scalable and robust manner.

The challenge in this problem is to recover the true low-
rank matrix in subsampled settings where p � m ·n. In such
cases, we typically exploit the prior information that X∗ is
low-rank and thus, we are interested in finding a matrix X

of rank at most k that minimizes the data error f (X) :=
‖y − AX‖2

2 as follows:

minimize
X∈Rm×n

f (X)

subject to rank(X) ≤ k.

(1)

The ARM problem appears in many applications; low di-
mensional embedding [1], matrix completion [2], image
compression [3], function learning [4, 5] just to name a few.
We present below important ARM problem cases, as char-
acterized by the nature of the linear operator A.

General linear maps: In many ARM problem cases,
A or A∗ has a dense range, satisfying specific incoherence
or restricted isometry properties (discussed later in the pa-
per); here, A∗ is the adjoint operator of A. In Quantum To-
mography, [6] studies the Pauli operator, a compressive lin-
ear map A that consists of the Kronecker product of 2 × 2
matrices and obeys restricted isometry properties, defined
later in the paper. Furthermore, recent developments indi-
cate connections of ridge function learning [4, 7] and phase
retrieval [8] with the ARM problem where A is a Bernoulli
and a Fourier operator, respectively.

Matrix Completion (MC): Let Ω be the set of ordered
pairs that represent the coordinates of the observable entries
in X∗. Then, the set of observations satisfy y = AΩX∗ + ε

where AΩ defines a linear mask over the observable entries
Ω . To solve the MC problem, a potential criterion is given
by (1) [2]. As a motivating example, consider the famous
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Netflix problem [9], a recommender system problem where
users’ movie preferences are inferred by a limited subset of
entries in a database.

Principal Component Analysis: In Principal Com-
ponent Analysis (PCA), we are interested in identifying
a low rank subspace that best explains the data in the
Euclidean sense from the observations y = AX∗ where
A : R

m×n → R
p is an identity linear map that stacks the

columns of the matrix X∗ into a single column vector with
p = m · n. We observe that the PCA problem falls under
the ARM criterion in (1). While (1) is generally NP-hard
to solve optimally, PCA can be solved in polynomial time
using the truncated Singular Value Decomposition (SVD)
of A∗y. As an extension to the PCA setting, [10] consid-
ers the Robust PCA problem where y is further corrupted
by gross sparse noise. We extend the framework proposed
in this paper for the RPCA case and its generalizations
in [11].

For the rest of the paper, we consider only the low rank
estimation case in (1). As running test cases to support our
claims, we consider the MC setting as well as the general
ARM setting where A is constituted by permuted subsam-
pled noiselets [12].

1.1 Two Camps of Recovery Algorithms

Convex relaxations: In [13], the authors study the nuclear
norm ‖X‖∗ := ∑rank(X)

i=1 σi as a convex surrogate of rank(X)

operator so that we can leverage convex optimization ap-
proaches, such as interior-point methods—here, σi denotes
the i-th singular value of X. Under basic incoherence prop-
erties of the sensing linear mapping A, [13] provides prov-
able guarantees for unique low rank matrix recovery using
the nuclear norm.

Once (1) is relaxed to a convex problem, decades of
knowledge on convex analysis and optimization can be
leveraged. Interior point methods find a solution with
fixed precision in polynomial time but their complexity
might be prohibitive even for moderate-sized problems
[14, 15]. More suitable for large-scale data analysis, first-
order methods constitute low-complexity alternatives but
most of them introduce complexity vs. accuracy trade-
offs [16–19].

Non-convex approaches: In contrast to the convex re-
laxation approaches, iterative greedy algorithms maintain
the nonconvex nature of (1). Unfortunately, solving (1) opti-
mally is in general NP-hard [20]. Due to this computational
intractability, the algorithms in this class greedily refine a
rank-k solution using only “local” information available at
the current iteration [21–23].

1.2 Contributions

In this work, we study a special class of iterative greedy al-
gorithms known as hard thresholding methods. Similar re-

sults have been derived for the vector case [24]. Note that
the transition from sparse vector approximation to ARM is
non-trivial; while s-sparse signals “live” in the union of fi-
nite number of subspaces, the set of rank-k matrices expands
to infinitely many subspaces. Thus, the selection rules do not
generalize in a straightforward way.

Our contributions are the following:
Ingredients of hard thresholding methods: We analyze

the behaviour and performance of hard thresholding meth-
ods from a global perspective. Five building blocks are stud-
ied: (i) step size selection μi , (ii) gradient or least-squares
updates over restricted low-rank subspaces (e.g., adaptive
block coordinate descent), (iii) memory exploitation, (iv) ac-
tive low-rank subspace tracking and, (v) low-rank matrix ap-
proximations (described next). We highlight the impact of
these key pieces on the convergence rate and signal recon-
struction performance and provide optimal and/or efficient
strategies on how to set up these ingredients under different
problem conditions.

Low-rank matrix approximations in hard threshold-
ing methods: In [25], the authors show that the solution ef-
ficiency can be significantly improved by ε-approximation
algorithms. Based on similar ideas, we analyze the impact of
ε-approximate low rank-revealing schemes in the proposed
algorithms with well-characterized time and space complex-
ities. Moreover, we provide extensive analysis to prove con-
vergence using ε-approximate low-rank projections.

Hard thresholding-based framework with improved
convergence conditions: We study hard thresholding vari-
ants that provide salient computational tradeoffs for the
class of greedy methods on low-rank matrix recovery. These
methods, as they iterate, exploit the non-convex scaffold of
low rank subspaces on which the approximation problem
resides. Using simple analysis tools, we derive improved
conditions that guarantee convergence, compared to state-
of-the-art approaches.

The organization of the paper is as follows. In Sect. 2, we
set up the notation and provide some definitions and prop-
erties, essential for the rest of the paper. In Sect. 3, we de-
scribe the basic algorithmic frameworks in a nutshell, while
in Sect. 4 we provide important “ingredients” for the class
of hard-thresholding methods; detailed convergence analy-
sis proofs are provided in Sect. 5. The complexity analysis of
the proposed algorithms is provided in Sect. 6. We study two
acceleration schemes in Sects. 7 and 8, based on memory
utilization and ε-approximate low-rank projections, respec-
tively. We further improve convergence speed by exploiting
randomized low rank projections in Sect. 9, based on power
iteration-based subspace finder tools [26]. We provide em-
pirical support for our claims through experimental results
on synthetic and real data in Sect. 10. Finally, we conclude
with future work directions in Sect. 11.
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2 Elementary Definitions and Properties

We reserve lower-case and bold lower-case letters for scalar
and vector variable representation, respectively. Bold upper-
case letters denote matrices while bold calligraphic upper-
case letters represent linear operators. We use calligraphic
upper-case letters for set representations. We use X(i) to
represent the matrix estimate at the i-th iteration.

The rank of X is denoted as rank(X) ≤ min{m,n}. The
empirical data error is denoted as f (X) := ‖y −AX‖2

2 with
gradient ∇f (X) := −2A∗(y − AX), where ∗ is the ad-
joint operation over the linear mapping A. The inner prod-
uct between matrices A, B ∈ R

m×n is denoted as 〈A,B〉 =
trace(BT A), where T represents the transpose operation. I
represents an identity matrix with dimensions apparent from
the context.

Let S be a set of orthonormal, rank-1 matrices that span
an arbitrary subspace in R

m×n. We reserve span(S) to de-
note the subspace spanned by S . With slight abuse of nota-
tion, we use:

rank
(
span(S)

) ≡ max
X

{
rank(X) : X ∈ span(S)

}
, (2)

to denote the maximum rank a matrix X ∈ R
m×n can have

such that X lies in the subspace spanned by the set S . Given
a finite set S , |S| denotes the cardinality of S . For any matrix
X, we use R(X) to denote its range.

We define a minimum cardinality set of orthonormal,
rank-1 matrices that span the subspace induced by a set of
rank-1 (and possibly non-orthogonal) matrices S as:

ortho(S) ∈ arg minT
{|T | : T ⊆ U s.t. span(T ) = span(S)

}
,

where U denotes the superset that includes all the sets of or-
thonormal, rank-1 matrices in R

m×n such that 〈T i , T j 〉 =
0, i 
= j , ∀T i , T j ∈ T and, ‖T i‖F = 1, ∀i. In general,
ortho(S) is not unique.

A well-known lemma used in the convergence rate proofs
of this class of greedy hard thresholding algorithms is de-
fined next.

Lemma 1 [27] Let J ⊆ R
m×n be a closed convex set and

f : J → R be a smooth objective function defined over J .
Let X∗ ∈ J be a local minimum of the objective function f

over the set J . Then
〈∇f

(
X∗),X − X∗〉 ≥ 0, ∀X ∈ J . (3)

2.1 Singular Value Decomposition (SVD) and Its
Properties

Definition 1 [SVD] Let X ∈ R
m×n be a rank-l (l <

min{m,n}) matrix. Then, the SVD of X is given by:

X = UΣV T = [
Uα Uβ

]
[
Σ̃ 0
0 0

][
V T

α

V T
β

]

, (4)

where Uα ∈ R
m×l , Uβ ∈ R

m×(m−l), V α ∈ R
n×l , V β ∈

R
n×(n−l) and Σ̃ = diag(σ1, . . . , σl) ∈ R

l×l for σ1, . . . , σl ∈
R+. Here, the columns of U ,V represent the set of left and
right singular vectors, respectively, and σ1, . . . , σl denote the
singular values.

For any matrix X ∈ R
m×n with arbitrary rank(X) ≤

min{m,n}, its best orthogonal projection Pk(X) onto the
set of rank-k (k < rank(X)) matrices Ck := {A ∈ R

m×n :
rank(A) ≤ k} defines the optimization problem:

Pk(X) ∈ arg min
Y∈Ck

‖Y − X‖F . (5)

According to the Eckart-Young theorem [28], the best rank-
k approximation of a matrix X corresponds to its truncated
SVD: if X = UΣV T , then Pk(X) := U kΣkV

T
k where

Σk ∈ R
k×k is a diagonal matrix that contains the first k diag-

onal entries of Σ and U k , V k contain the corresponding left
and right singular vectors, respectively. Moreover, this pro-
jection is not always unique. In the case of multiple identical
singular values, the lexicographic approach is used to break
ties. In any case, ‖Pk(X)−X‖F ≤ ‖W −X‖F for any rank-
k W ∈ R

m×n.

2.2 Subspace Projections

Given a set of orthonormal, rank-1 matrices S , we denote the
orthogonal projection operator onto the subspace induced by
S as P S 1 which is an idempotent linear transformation; fur-
thermore, we denote the orthogonal projection operator onto
the orthogonal subspace of S as P S ⊥ . We can always de-
compose a matrix X ∈ R

m×n into two matrix components,
as follows:

X := P S X + P S ⊥X, such that 〈P S X, P S ⊥X〉 = 0.

If X ∈ span(S), the best projection of X onto the subspace
induced by S is the matrix X itself. Moreover, ‖PS X‖F ≤
‖X‖F for any S and X.

Definition 2 [Orthogonal projections using SVD] Let X ∈
R

m×n be a matrix with arbitrary rank and SVD decompo-
sition given by (4). Then, S := {uiv

T
i : i = 1, . . . , k} (k ≤

rank(X)) constitutes a set of orthonormal, rank-1 matrices
that spans the best k-rank subspace in R(X) and R(XT );
here, ui and vi denote the i-th left and right singular vectors,
respectively. The orthogonal projection onto this subspace is
given by [2]:

P S X = P U X + XP V − P U XP V , (6)

1The distinction between PS and Pk for k positive integer is apparent
from context.
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where P U = U :,1:kUT:,1:k and P V = V :,1:kV T:,1:k in MATLAB

notation. Moreover, the orthogonal projection onto the S ⊥
is given by:

P S ⊥X = X − P S X. (7)

In the algorithmic descriptions, we use S ← Pk(X) to
denote the set of rank-1, orthonormal matrices as outer prod-
ucts of the k left ui and right vi principal singular vec-
tors of X that span the best rank-k subspace of X; e.g.
S = {uivi , i = 1, . . . , k}. Moreover, X̂ ← Pk(X) denotes
a/the best rank-k projection matrix of X. In some cases, we
use {S, X̂} ← Pk(X) when we compute both. The distic-
tion between these cases is apparent from the context.

2.3 Restricted Isometry Property

Many conditions have been proposed in the literature to es-
tablish solution uniqueness and recovery stability such as
null space property [29], exact recovery condition [30], etc.
For the matrix case, [13] proposed the restricted isometry
property (RIP) for the ARM problem.

Definition 3 [Rank Restricted Isometry Property (R-RIP)
for matrix linear operators [13]] A linear operator A :
R

m×n → R
p satisfies the R-RIP with constant δk(A) ∈

(0,1) if and only if:

(
1 − δk(A)

)‖X‖2
F ≤ ‖AX‖2

2 ≤ (
1 + δk(A)

)‖X‖2
F , (8)

∀X ∈ R
m×n such that rank(X) ≤ k. We write δk to mean

δk(A), unless otherwise stated.

[6] shows that Pauli operators satisfy the rank-RIP in com-
pressive settings while, in function learning, the linear
map A is designed specifically to satisfy the rank-RIP [7].

2.4 Some Useful Bounds Using R-RIP

In this section, we present some lemmas that are useful
in our subsequent developments—these lemmas are conse-
quences of the R-RIP of A.

Lemma 2 [21] Let A : R
m×n → R

p be a linear operator
that satisfies the R-RIP with constant δk . Then, ∀v ∈ R

p , the
following holds true:

∥
∥P S

(
A∗v

)∥
∥

F
≤ √

1 + δk‖v‖2, (9)

where S is a set of orthonormal, rank-1 matrices in R
m×n

such that rank(P S X) ≤ k, ∀X ∈ R
m×n.

Lemma 3 [21] Let A : R
m×n → R

p be a linear operator
that satisfies the R-RIP with constant δk . Then, ∀X ∈ R

m×n,

the following holds true:

(1 − δk)‖P S X‖F ≤ ‖P S A∗AP S X‖F

≤ (1 + δk)‖P S X‖F , (10)

where S is a set of orthonormal, rank-1 matrices in R
m×n

such that rank(P S X) ≤ k, ∀X ∈ R
m×n.

Lemma 4 [22] Let A : R
m×n → R

p be a linear oper-
ator that satisfies the R-RIP with constant δk and S be
a set of orthonormal, rank-1 matrices in R

m×n such that
rank(PS X) ≤ k, ∀X ∈ R

m×n. Then, for μ > 0, A satisfies:

λ
(
μP S A∗AP S

) ∈ [
μ(1 − δk),μ(1 + δk)

]
, (11)

where λ(B) represents the range of eigenvalues of the linear
operator B : R

p → R
m×n. Moreover, ∀X ∈ R

m×n, it follows
that:

∥
∥
(
I − μP S A∗AP S

)
P S X

∥
∥

F

≤ max
{
μ(1 + δk) − 1,1 − μ(1 − δk)

}‖P S X‖F . (12)

Lemma 5 [22] Let A : R
m×n → R

p be a linear operator
that satisfies the R-RIP with constant δk and S1, S2 be two
sets of orthonormal, rank-1 matrices in R

m×n such that

rank(P S1∪S2X) ≤ k, ∀X ∈ R
m×n. (13)

Then, the following inequality holds:

∥
∥P S1A

∗AP S ⊥
1
X

∥
∥

F
≤ δk‖P S ⊥

1
X‖F , ∀X ∈ span(S2).

(14)

3 Algebraic Pursuits in a Nutshell

Explicit descriptions of the proposed algorithms are pro-
vided in Algorithms 1 and 2. Algorithm 1 follows from
the ALgrebraic PursuitS (ALPS) scheme for the vector case
[31]. MATRIX ALPS I provides efficient strategies for adap-
tive step size selection and additional signal estimate up-
dates at each iteration (these motions are explained in detail
in the next subsection). Algorithm 2 (ADMiRA) [21] further
improves the performance of Algorithm 1 by introducing
least squares optimization steps on restricted subspaces—
this technique borrows from a series of vector reconstruc-
tion algorithms such as CoSaMP [32], Subspace Pursuit
(SP) [33] and Hard Thresholding Pursuit (HTP) [34].

In a nutshell, both algorithms simply seek to improve
the subspace selection by iteratively collecting an extended
subspace Si with rank(span(Si )) ≤ 2k and then finding the
rank-k matrix that fits the measurements in this restricted
subspace using least squares or gradient descent motions.
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Algorithm 1 MATRIX ALPS I
Input: y, A, k, Tolerance η, MaxIterations
Initialize: X(0) ← 0, X0 ← {∅}, i ← 0
repeat

1: Di ← Pk(P X ⊥
i

∇f (X(i))) (Best rank-k subspace orthogonal to Xi )
2: Si ← Di ∪ Xi (Active subspace expansion)

3: μi ← arg minμ ‖y − A(X(i) − μ
2 P Si

∇f (X(i)))‖2
2 = ‖PSi

∇f (X(i))‖2
F

‖APSi
∇f (X(i))‖2

2
(Step size selection)

4: V (i) ← X(i) − μi

2 P Si
∇f (X(i)) (Error norm reduction via gradient descent)

5: {Wi , W (i)} ← Pk(V (i)) (Best rank-k subspace selection)

6: ξi ← arg minξ ‖y − A(W (i) − ξ
2 P Wi

∇f (W (i)))‖2
2 = ‖PWi

∇f (W (i))‖2
F

‖APWi
∇f (W (i))‖2

2
(Step size selection)

7: X(i + 1) ← W (i) − ξi

2 P Wi
∇f (W (i)) with Xi+1 ← Pk(X(i + 1)) (De-bias using gradient descent)

i ← i + 1
until ‖X(i) − X(i − 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Algorithm 2 ADMiRA Instance
Input: y, A, k, Tolerance η, MaxIterations
Initialize: X(0) ← 0, X0 ← {∅}, i ← 0
repeat

1: Di ← Pk(P X ⊥
i

∇f (X(i))) (Best rank-k subspace orthogonal to Xi )
2: Si ← Di ∪ Xi (Active subspace expansion)
3: V (i) ← arg minV :V ∈span(Si )

‖y − AV ‖2
2 (Error norm reduction via least-squares optimization)

4: {Xi+1, X(i + 1)} ← Pk(V (i)) (Best rank-k subspace selection)
i ← i + 1

until ‖X(i) − X(i − 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

At each iteration, the Algorithms 1 and 2 perform mo-
tions from the following list:

(1) Best rank-k subspace orthogonal to Xi and active
subspace expansion: We identify the best rank-k subspace
of the current gradient ∇f (X(i)), orthogonal to Xi and then
merge this low-rank subspace with Xi . This motion guar-
antees that, at each iteration, we expand the current rank-k
subspace estimate with k new, rank-1 orthogonal subspaces
to explore.

(2a) Error norm reduction via greedy descent with adap-
tive step size selection (Algorithm 1): We decrease the data
error by performing a single gradient descent step. This
scheme is based on a one-shot step size selection procedure
(Step size selection step)—detailed description of this ap-
proach is given in Sect. 4.

(2b) Error norm reduction via least squares optimization
(Algorithm 2): We decrease the data error f (X) on the active
O(k)-low rank subspace. Assuming A is well-conditioned
over low-rank subspaces, the main complexity of this op-
eration is dominated by the solution of a symmetric linear
system of equations.

(3) Best rank-k subspace selection: We project the con-
strained solution onto the set of rank-k matrices Ck := {A ∈

R
m×n : rank(A) ≤ k} to arbitrate the active support set. This

step is calculated in polynomial time complexity as a func-
tion of m × n using SVD or other matrix rank-revealing de-
composition algorithms—further discussions about this step
and its approximations can be found in Sects. 8 and 9.

(4) De-bias using gradient descent (Algorithm 1): We de-
bias the current estimate W (i) by performing an additional
gradient descent step, decreasing the data error. The step size
selection procedure follows the same motions as in (2a).

4 Ingredients for Hard Thresholding Methods

4.1 Step Size Selection

For the sparse vector approximation problem, recent works
on the performance of the IHT algorithm provide strong
convergence rate guarantees in terms of RIP constants [35].
However, as a prerequisite to achieve these strong isometry
constant bounds, the step size is set μi = 1,∀i, given that
the sensing matrix satisfies ‖Φ‖2

2 < 1 where ‖ · ‖2 denotes
the spectral norm [34]; similar analysis can be found in [3]
for the matrix case. From a different perspective, [36] pro-
poses a constant step size μi = 1/(1 + δ2K), ∀i, based on
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a simple but intuitive convergence analysis of the gradient
descent method.

Unfortunately, most of the above problem assumptions
are not naturally met; the authors in [37] provide an intu-
itive example where IHT algorithm behaves differently un-
der various scalings of the sensing matrix; similar coun-
terexamples can be devised for the matrix case. Violating
these assumptions usually leads to unpredictable signal re-
covery performance of the class of hard thresholding meth-
ods. Therefore, more sophisticated step size selection pro-
cedures should be devised to tackle these issues during ac-
tual recovery. On the other hand, the computation of R-RIP
constants has exponential time complexity for the strategy
of [3].

To this end, existing approaches broadly fall into two cat-
egories: constant and adaptive step size selection. In this
work, we present efficient strategies to adaptively select the
step size μi that implies fast convergence rate, for mild R-
RIP assumptions on A. Constant step size strategies easily
follow from [24] and are not listed in this work.

Adaptive step size selection. There is limited work on
the adaptive step size selection for hard thresholding meth-
ods. To the best of our knowledge, apart from [24, 37, 38]
are the only studies that attempt this via line searching for
the vector case. At the time of review process, we become
aware of [39] which implements ideas presented in [37] for
the matrix case.

According to Algorithm 1, let X(i) be the current rank-k
matrix estimate spanned by the set of orthonormal, rank-1
matrices in Xi . Using regular gradient descent motions, the
new rank-k estimate W (i) can be calculated through:

V i = X(i) − μ

2
∇f

(
X(i)

)
,

{
Wi ,W (i)

} ← Pk

(
V (i)

)
.

We highlight that the rank-k approximate matrix may not
be unique. It then holds that the subspace spanned by Wi

originates: (i) either from the subspace of Xi , (ii) or from
the best subspace (in terms of the Frobenius norm metric)
of the current gradient ∇f (X(i)), orthogonal to Xi , (iii) or
from the combination of orthonormal, rank-1 matrices lying
on the union of the above two subspaces. The statements
above can be summarized in the following expression:

span(Wi ) ∈ span(Di ∪ Xi ) (15)

for any step size μi and Di ← Pk(P X ⊥
i

∇f (X(i))). Since
rank(span(Wi )) ≤ k, we easily deduce the following key ob-
servation: let Si ← Di ∪ Xi be a set of rank-1, orthonormal
matrices where rank(span(Si )) ≤ 2k. Given Wi is unknown
before the i-th iteration, Si spans the smallest subspace that

contains Wi such that the following equality

Pk

(

X(i) − μi

2
∇f

(
X(i)

)
)

= Pk

(

X(i) − μi

2
P Si

∇f
(
X(i)

)
)

(16)

necessarily holds.2

To compute step-size μi , we use:

μi = arg min
μ

∥
∥
∥
∥y − A

(

X(i) − μ

2
P Si

∇f
(
X(i)

)
)∥

∥
∥
∥

2

2

= ‖P Si
∇f (X(i))‖2

F

‖AP Si
∇f (X(i))‖2

2

, (17)

i.e., μi is the minimizer of the objective function, given the
current gradient ∇f (X(i)). Note that:

1 − δ2k(A) ≤ 1

μi

≤ 1 + δ2k(A), (18)

due to R-RIP—i.e., we select 2k subspaces such that μi sat-
isfies (18). We can derive similar arguments for the addi-
tional step size selection ξi in Step 6 of Algorithm 1.

Adaptive μi scheme results in more restrictive worst-
case isometry constants compared to [3, 34, 41], but faster
convergence and better stability are empirically observed in
general. In [3], the authors present the Singular Value Pro-
jection (SVP) algorithm, an iterative hard thresholding al-
gorithm for the ARM problem. According to [3], both con-
stant and iteration dependent (but user-defined) step sizes
are considered. Adaptive strategies presented in [3] require
the computation of R-RIP constants which has exponential
time complexity. Figures 1(a)–(b) illustrate some character-
istic examples. The performance varies for different prob-
lem configurations. For μ > 1, SVP diverges for various
test cases. We note that, for large fixed matrix dimensions
m,n, adaptive step size selection becomes computationally
expensive compared to constant step size selection strate-
gies, as the rank of X∗ increases.

4.2 Updates on Restricted Subspaces

In Algorithm 1, at each iteration, the new estimate W (i) ←
Pk(V (i)) can be further refined by applying a single or mul-
tiple gradient descent updates with line search restricted on
Wi [34] (Step 7 in Algorithm 1):

X(i + 1) ← W (i) − ξi

2
P Wi

∇f
(
W (i)

)
,

2In the case of multiple identical singular values, any ties are lexico-
graphically dissolved.
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Fig. 1 Median error per iteration for various step size policies and 20
Monte-Carlo repetitions. In brackets, we present the median time con-
sumed for convergence in seconds. (a) m = n = 2048, p = 0.4n2, and
rank k = 70—A is formed by permuted and subsampled noiselets [40].

(b) n = 2048, m = 512, p = 0.4n2, and rank k = 50—we use under-
determined linear map A according to the MC problem (c) n = 2048,
m = 512, p = 0.4n2, and rank k = 40—we use underdetermined linear
map A according to the MC problem

where ξi = ‖PWi
∇f (W (i))‖2

F

‖APWi
∇f (W (i))‖2

2
. In spirit, the gradient step

above is the same as block coordinate descent in convex
optimization where we find the subspaces adaptively. Fig-
ure 1(c) depicts the acceleration achieved by using addi-
tional gradient updates over restricted low-rank subspaces
for a test case.

4.3 Acceleration via Memory-Based Schemes
and Low-Rank Matrix Approximations

Memory-based techniques can be used to improve conver-
gence speed. Furthermore, low-rank matrix approximation
tools overcome the computational overhead of computing
the best low-rank projection by inexactly solving (5). We
keep the discussion on memory utilization for Sect. 7 and
low-rank matrix approximations for Sects. 8 and 9 where
we present new algorithmic frameworks for low-rank ma-
trix recovery.

4.4 Active Low-Rank Subspace Tracking

Per iteration of Algorithms 1 and 2, we perform projection
operations PS X and P S ⊥X where X ∈ R

m×n, as described
by (6) and (7), respectively. Since S is constituted by outer
products of left and right singular vectors as in Definition 2,
P S X (resp. P S ⊥X) projects onto the (resp. complement of
the) best low-rank subspace in R(X) and R(XT ). These op-
erations are highly connected with the adaptive step size
selection and the updates on restricted subspaces. Unfortu-
nately, the time-complexity to compute P S X is dominated
by three matrix-matrix multiplications which decelerates the
convergence of the proposed schemes in high-dimensional
settings. To accelerate the convergence in many test cases, it
turns out that we do not have to use the best projection PS

in practice.3 Rather, employing inexact projections is suf-
ficient to converge to the optimal solution: either (i) P U X

onto the best low-rank subspace in R(X) only (if m � n) or
(ii) XPV onto the best low-rank subspace in R(XT ) only (if
m � n);4 P U and P V are defined in Definition 2 and require
only one matrix-matrix multiplication.

Figure 2 shows the time overhead due to the exact projec-
tion application P S compared to P U for m ≤ n. In Fig. 2(a),
we use subsampled and permuted noiselets for linear map A
and in Figs. 2(b)–(c), we test the MC problem. While in the
case m = n the use of (6)–(7) has a clear advantage over in-
exact projections using only PU , the latter case converges
faster to the desired accuracy 5 × 10−4 when m � n as
shown in Figs. 2(a)–(b). In our derivations, we assume PS
and P S ⊥ as defined in (6) and (7).

5 Convergence Guarantees

In this section, we present the theoretical convergence guar-
antees of Algorithms 1 and 2 as functions of R-RIP con-
stants. To characterize the performance of the proposed al-
gorithms, both in terms of convergence rate and noise re-
silience, we use the following recursive expression:
∥
∥X(i + 1) − X∗∥∥

F
≤ ρ

∥
∥X(i) − X∗∥∥

F
+ γ ‖ε‖2. (19)

In (19), γ denotes the approximation guarantee and provides
insights into algorithm’s reconstruction capabilities when
additive noise is present; ρ < 1 expresses the convergence
rate towards a region around X∗, whose radius is determined

3From a different perspective and for a different problem case, similar
ideas have been used in [18].
4We can move between these two cases by a simple transpose of the
problem.
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Fig. 2 Median error per iteration for MATRIX ALPS I and MATRIX

ALPS II variants over 10 Monte-Carlo repetitions. In brackets, we
present the median time consumed for convergene in seconds. (a) n =

2048, m = 512, p = 0.25n2, and rank k = 40. (b) n = 2000, m = 1000,
p = 0.25n2, and rank k = 50. (c) n = m = 1000, p = 0.25n2, and rank
k = 50

by γ
1−ρ

‖ε‖2. In short, (19) characterizes how the distance to
the true signal X∗ is decreased and how the noise level af-
fects the accuracy of the solution, at each iteration.

5.1 MATRIX ALPS I

An important lemma for our derivations below is given next:

Lemma 6 [Active subspace expansion] Let X(i) be the ma-
trix estimate at the i-th iteration and let Xi be a set of
orthonormal, rank-1 matrices such that Xi ← Pk(X(i)).
Then, at each iteration, the Active Subspace Expansion step
in Algorithms 1 and 2 identifies information in X∗, such
that:
∥
∥P X ∗ P S ⊥

i
X∗∥∥

F
≤ (2δ2k + 2δ3k)

∥
∥X(i) − X∗∥∥

F

+ √
2(1 + δ2k)‖ε‖2, (20)

where Si ← Xi ∪ Di and X ∗ ← Pk(X
∗).

Lemma 6 states that, at each iteration, the active subspace
expansion step identifies a 2k rank subspace such that the
amount of unrecovered energy of X∗—i.e., the projection of
X∗ onto the orthogonal subspace of span(Si )—is bounded
by (20).

Then, Theorem 1 characterizes the iteration invariant of
Algorithm 1 for the matrix case:

Theorem 1 [Iteration invariant for MATRIX ALPS I] The
(i + 1)-th matrix estimate X(i + 1) of MATRIX ALPS I
satisfies the following recursion:
∥
∥X(i + 1) − X∗∥∥

F
≤ ρ

∥
∥X(i) − X∗∥∥

F
+ γ ‖ε‖2, (21)

where ρ := (
1+2δ2k

1−δ2k
)(

4δ2k

1−δ2k
+ (2δ2k + 2δ3k)

2δ3k

1−δ2k
) and γ :=

(
1+2δ2k

1−δ2k
)(

2
√

1+δ2k

1−δ2k
+ 2δ3k

1−δ2k

√
2(1 + δ2k)) +

√
1+δk

1−δk
. Moreover,

when δ3k < 0.1235, the iterations are contractive.

To provide some intuition behind this result, assume that
X∗ is a rank-k matrix. Then, according to Theorem 1, for
ρ < 1, the approximation parameter γ in (21) satisfies:

γ < 5.7624, for δ3k < 0.1235.

Moreover, we derive the following:

ρ <
1 + 2δ3k

(1 − δ3k)2

(
4δ3k + 8δ2

3k

)
<

1

2
⇒ δ3k < 0.079,

which is a stronger R-RIP condition assumption compared
to state-of-the-art approaches [21]. In the next section, we
further improve this guarantee using Algorithm 2.

Unfolding the recursive formula (21), we obtain the fol-
lowing upper bound for ‖X(i) − X∗‖F at the i-th iteration:

∥
∥X(i) − X∗∥∥

F
≤ ρi

∥
∥X(0) − X∗∥∥

F
+ γ

1 − ρ
‖ε‖2. (22)

Then, given X(0) = 0, MATRIX ALPS I finds a rank-k so-
lution X̂ ∈ R

m×n such that ‖X̂ − X∗‖F ≤ γ+1−ρ
1−ρ

‖ε‖2 after

i := � log(‖X∗‖F /‖ε‖2)
log(1/ρ)

� iterations.
If we ignore steps 5 and 6 in Algorithm 1, we obtain an-

other projected gradient descent variant for the affine rank
minimization problem, for which we obtain the following
performance guarantees—the proof follows from the proof
of Theorem 1.

Corollary 1 [MATRIX ALPS I Instance] In Algorithm 1,
we ignore steps 5 and 6 and let {Xi+1, X(i+1)} ← Pk(V i ).
Then, by the same analysis, we observe that the following
recursion is satisfied:

∥
∥X(i + 1) − X∗∥∥

F
≤ ρ

∥
∥X(i) − X∗∥∥

F
+ γ ‖ε‖2, (23)

for ρ := (
4δ2k

1−δ2k
+ (2δ2k + 2δ3k)

2δ3k

1−δ2k
) and γ := (

2
√

1+δ2k

1−δ2k
+

2δ3k

1−δ2k

√
2(1 + δ2k)). Moreover, ρ < 1 when δ3k < 0.1594.
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We observe that the absence of the additional estimate
update over restricted support sets results in less restrictive
isometry constants compared to Theorem 1. In practice, ad-
ditional updates result in faster convergence, as shown in
Fig. 1(c).

5.2 ADMiRA Instance

In MATRIX ALPS I, the gradient descent steps constitute
a first-order approximation to least-squares minimization
problems. Replacing Step 4 in Algorithm 1 with the follow-
ing optimization problem:

V (i) ← arg min
V :V ∈span(Si )

‖y − AV ‖2
2, (24)

we obtain ADMiRA (furthermore, we remove the de-bias
step in Algorithm 1). Assuming that the linear operator A,
restricted on sufficiently low-rank subspaces, is well condi-
tioned in terms of the R-RIP assumption, the optimization
problem (24) has a unique optimal minimizer. By exploiting
the optimality condition in Lemma 1, ADMiRA instance in
Algorithm 2 features the following guarantee:

Theorem 2 [Iteration invariant for ADMiRA instance] The
(i + 1)-th matrix estimate X(i + 1) of ADMiRA answers the
following recursive expression:
∥
∥X(i + 1) − X∗∥∥

F
≤ ρ

∥
∥X(i) − X∗∥∥

F
+ γ ‖ε‖F ,

ρ := (2δ2k +2δ3k)

√
1+3δ2

3k

1−δ2
3k

, and γ :=
√

1+3δ2
3k

1−δ2
3k

√
2(1 + δ3k)+

(

√
1+3δ2

3k

1−δ3k
+√

3)
√

1 + δ2k . Moreover, when δ3k < 0.2267, the
iterations are contractive.

Similarly to MATRIX ALPS I analysis, the parameter γ

in Theorem 2 satisfies:

γ < 5.1848, for δ3k < 0.2267.

Furthermore, to compare the approximation guarantees of
Theorem 2 with [21], we further observe:

δ3k < 0.1214, for ρ < 1/2.

We remind that [21] provides convergence guarantees for
ADMiRA with δ4k < 0.04 for ρ = 1/2.

6 Complexity Analysis

In each iteration, computational requirements of the pro-
posed hard thresholding methods mainly depend on the total
number of linear mapping operations A, gradient descent
steps, least-squares optimizations, projection operations and

matrix decompositions for low rank approximation. Differ-
ent algorithmic configurations (e.g. removing steps 6 and 7
in Algorithm 1) lead to hard thresholding variants with less
computational complexity per iteration and better R-RIP
conditions for convergence but a degraded performance in
terms of stability and convergence speed is observed in prac-
tice. On the other hand, these additional processing steps
increase the required time-complexity per iteration; hence,
low iteration counts are desired to tradeoff these operations.

A non-exhaustive list of linear map examples includes
the identity operator (Principal component analysis (PCA)
problem), Fourier/Wavelets/Noiselets transformations and
the famous Matrix Completion problem where A is a mask
operator such that only a fraction of elements in X is ob-
served. Assuming the most demanding case where A and
A∗ are dense linear maps with no structure, the compu-
tation of the gradient ∇f (X(i)) at each iteration requires
O(pkmn) arithmetic operations.

Given a set S of orthonormal, rank-1 matrices, the pro-
jection PS X for any matrix X ∈ R

m×n requires time com-
plexity O(max{m2n,mn2}) as a sequence of matrix-matrix
multiplication operations.5 In MATRIX ALPS I, the adap-
tive step size selection steps require O(max{pkmn,m2n})
time complexity for the calculation of μi and ξi quantities.
In ADMiRA solving a least-squares system restricted on
rank-2k and rank-k subspaces requires O(pk2) complexity;
according to [21, 32], the complexity of this step can be fur-
ther reduced using iterative techniques such as the Richard-
son method or conjugate gradients algorithm.

Using the Lanczos method, we require O(kmn) arith-
metic operations to compute a rank-k matrix approximation
for a given constant accuracy; a prohibitive time-complexity
that does not scale well for many practical applications. Sec-
tions 8 and 9 describe approximate low rank matrix projec-
tions and how they affect the convergence guarantees of the
proposed algorithms.

Overall, the operation that dominates per iteration re-
quires O(max{pkmn,m2n,mn2}) time complexity in the
proposed schemes.

7 Memory-Based Acceleration

Iterative algorithms can use memory to gain momentum in
convergence. Based on Nesterov’s optimal gradient methods
[42], we propose a hard thresholding variant, described in
Algorithm 3 where an additional update on X(i + 1) with
momentum step size τi is performed using previous matrix
estimates.

5While such operation has O(max{m2n,mn2}) complexity, each appli-
cation of PS X requires three matrix-matrix multiplications. To reduce
such computational cost, we relax this operation in Sect. 10 where in
practice we use only PU that needs one matrix-matrix multiplication.
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Algorithm 3 MATRIX ALPS II
Input: y, A, k, Tolerance η, MaxIterations
Initialize: X(0) ← 0, X0 ← {∅}, Q(0) ← 0, Q0 ← {∅}, τi ∀i, i ← 0
repeat

1: Di ← Pk(P Q⊥
i
∇f (Q(i))) (Best rank-k subspace orthogonal to Qi )

2: Si ← Di ∪ Qi (Active subspace expansion)

3: μi ← arg minμ ‖y − A(Q(i) − μ
2 P Si

∇f (Q(i)))‖2
2 = ‖PSi

∇f (Q(i))‖2
F

‖APSi
∇f (Q(i))‖2

2
(Step size selection)

4: V (i) ← Q(i) − μi

2 P Si
∇f (Q(i)) (Error norm reduction via gradient descent)

5: {Xi+1, X(i + 1)} ← Pk(V (i)) (Best rank-k subspace selection)
6: Q(i + 1) ← X(i + 1) + τi(X(i + 1) − X(i)) (Momentum update)
7: Qi+1 ← ortho(Xi ∪ Xi+1)

i ← i + 1
until ‖X(i) − X(i − 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Similar to μi strategies, τi can be preset as constant or
adaptively computed at each iteration. Constant momentum
step size selection has no additional computational cost but
convergence rate acceleration is not guaranteed for some
problem formulations in practice. On the other hand, em-
pirical evidence has shown that adaptive τi selection strate-
gies result in faster convergence compared to zero-memory
methods with similar complexity.

For the case of strongly convex objective functions, Nes-
terov [43] proposed the following constant momentum step
size selection scheme: τi = αi(1−αi)

α2
i +αi+1

, where α0 ∈ (0,1) and

αi+1 is computed as the root ∈ (0,1) of

α2
i+1 = (1 − αi+1)α

2
i + qαi+1, for q � 1

κ2(A)
, (25)

where κ(A) denotes the condition number of A. In this
scheme, exact calculation of q parameter is computationally
expensive for large-scale data problems and approximation
schemes are leveraged to compensate this complexity bot-
tleneck.

Based upon adaptive μi selection, we propose to select
τi as the minimizer of the objective function:

τi = arg min
τ

∥
∥y − AQ(i + 1)

∥
∥2

2

= 〈y − AX(i),AX(i) − AX(i − 1)〉
‖AX(i) − AX(i − 1)‖2

2

, (26)

where AX(i),AX(i − 1) are already pre-computed at each
iteration. According to (26), τi is dominated by the calcu-
lation of a vector inner product, a computationally cheaper
process than q calculation.

Theorem 3 characterizes Algorithm 3 for constant mo-
mentum step size selection. To keep the main ideas simple,
we ignore the additional gradient updates in Algorithm 3.
In addition, we only consider the noiseless case for clarity.
The convergence rate proof for these cases is provided in the
Appendix.

Theorem 3 [Iteration invariant for MATRIX ALPS II] Let
y = AX∗ be a noiseless set of observations. To recover X∗
from y and A, the (i + 1)-th matrix estimate X(i + 1) of
MATRIX ALPS II satisfies the following recursion:

∥
∥X(i + 1) − X∗∥∥

F
≤ α(1 + τi)

∥
∥X(i) − X∗∥∥

F

+ ατi

∥
∥X(i − 1) − X∗∥∥

F
, (27)

where α := 4δ3k

1−δ3k
+ (2δ3k + 2δ4k)

2δ3k

1−δ3k
. Moreover, solving

the above second-order recurrence, the following inequality
holds true:

∥
∥X(i + 1) − X∗∥∥

F
≤ ρi+1

∥
∥X(0) − X∗∥∥

F
, (28)

for ρ := α(1+τi )+
√

α2(1+τi )
2+4ατi

2 .

Theorem 3 provides convergence rate behaviour proof
for the case where τi is constant ∀i. The more elaborate
case where τi follows the policy described in (26) is left as
an open question for future work. To provide some insight
for (28), for τi = 1/4, ∀i and τi = 1/2, ∀i, δ4k < 0.1187
and δ4k < 0.095 guarantee convergence in Algorithm 3, re-
spectively. While the RIP requirements for memory-based
MATRIX ALPS II are more stringent than the schemes pro-
posed in the previous section, it outperforms Algorithms 1
and 2. Figure 2 shows the acceleration achieved in MA-
TRIX ALPS II by using inexact projections P U . Using the
proper projections (6)–(7), Fig. 3 shows acceleration in prac-
tice when using the adaptive momentum step size strategy:
while a wide range of constant momentum step sizes leads
to convergence, providing flexibility to select an appropriate
τi , adaptive τi avoids this arbitrary τi selection while further
decreases the number of iterations needed for convergence
in most cases.
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Fig. 3 Median error per iteration for various momentum step size
policies and 10 Monte-Carlo repetitions. Here, n = 1024, m = 256,
p = 0.25n2, and rank k = 40. We use permuted and subsampled noise-
lets for the linear map A. In brackets, we present the median time for
convergence in seconds

8 Accelerating MATRIX ALPS: ε-Approximation
of SVD via Column Subset Selection

A time-complexity bottleneck in the proposed schemes is
the computation of the singular value decomposition to find
subspaces that describe the unexplored information in ma-
trix X∗. Unfortunately, the computational cost of regular
SVD for best subspace tracking is prohibitive for many ap-
plications.

Based on [44, 45], we can obtain randomized SVD ap-
proximations of a matrix X using column subset selection
ideas: we compute a leverage score for each column that
represents its “significance”. In particular, we define a prob-
ability distribution that weights each column depending on
the amount of information they contain; usually, the distri-
bution is related to the �2-norm of the columns. The main
idea of this approach is to compute a surrogate rank-k ma-
trix P ε

k (X) by subsampling the columns according to this
distribution. It turns out that the total number of sampled
columns is a function of the parameter ε. Moreover, [46, 47]
proved that, given a target rank k and an approximation pa-
rameter ε, we can compute an ε-approximate rank-k matrix
P ε

k (X) according to the following definition.

Definition 4 [ε-approximate low-rank projection] Let X

be an arbitrary matrix. Then, P ε
k (X) projection provides a

rank-k matrix approximation to X such that:

∥
∥P ε

k (X) − X
∥
∥2

F
≤ (1 + ε)

∥
∥Pk(X) − X

∥
∥2

F
, (29)

where Pk(X) ∈ arg minY :rank(Y )≤k ‖X − Y‖F .

For the following theoretical results, we assume the fol-
lowing condition on the sensing operator A: ‖A∗β‖F ≤ λ,
∀β ∈ R

p where λ > 0. Using ε-approximation schemes to
perform the Active subspace selection step, the following
upper bound holds. The proof is provided in the Appendix:

Lemma 7 [ε-approximate active subspace expansion] Let
X(i) be the matrix estimate at the i-th iteration and let Xi

be a set of orthonormal, rank-1 matrices in R
m×n such that

Xi ← Pk(X(i)). Furthermore, let

Dε
i ← P ε

k

(
P X ⊥

i
∇f

(
X(i)

))
,

be a set of orthonormal, rank-1 matrices that span rank-k
subspace such that (29) is satisfied for X := P X ⊥

i
∇f (X(i)).

Then, at each iteration, the Active Subspace Expansion step
in Algorithms 1 and 2 captures information contained in the
true matrix X∗, such that:

∥
∥P X ∗ P S ⊥

i
X∗∥∥

F

≤ (2δ2k + 2δ3k)
∥
∥X(i) − X∗∥∥

F
+ √

2(1 + δ2k)‖ε‖2

+ 2λ
√

ε, (30)

where Si ← Xi ∪ Dε
i and X ∗ ← Pk(X

∗).

Furthermore, to prove the following theorems, we extend
Lemma 10, provided in the Appendix, as follows. The proof
easily follows from the proof of Lemma 10, using Defini-
tion 4:

Lemma 8 [ε-approximation rank-k subspace selection] Let
V (i) be a rank-2k proxy matrix in the subspace spanned by
Si and let Ŵ (i) ← P ε

k (V (i)) denote the rank-k ε-approxi-
mation to V (i), according to (5). Then:

∥
∥Ŵ (i) − V (i)

∥
∥2

F
≤ (1 + ε)

∥
∥W (i) − V (i)

∥
∥

F

≤ (1 + ε)
∥
∥P Si

(
V (i) − X∗)∥∥

F

≤ (1 + ε)
∥
∥V (i) − X∗∥∥

F
(31)

where W (i) ← Pk(V (i)).

8.1 MATRIX ALPS I Using ε-Approximate Low-Rank
Projection via Column Subset Selection

Using ε-approximate SVD in MATRIX ALPS I, the follow-
ing iteration invariant theorem holds:

Theorem 4 [Iteration invariant with ε-approximate projec-
tions for MATRIX ALPS I] The (i + 1)-th matrix estimate
X(i + 1) of MATRIX ALPS I with ε-approximate projec-
tions Dε

i ← P ε
k (P X ⊥

i
∇f (X(i))) and Ŵ (i) ← P ε

k (V (i)) in
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Fig. 4 Performance comparison using ε-approximation SVD [47] in
MATRIX ALPS II. m = n = 256, p = 0.4n2, rank of X∗ equals 2
and A constituted by permuted noiselets. The non-smoothness in the
error curves is due to the extreme low rankness of X∗ for this setting

Algorithm 1 satisfies the following recursion:
∥
∥X(i + 1) − X∗∥∥

F
≤ ρ

∥
∥X(i) − X∗∥∥

F
+ γ ‖ε‖2 + βλ,

(32)

where ρ := (1+ 3δk

1−δk
)(2+ε)[(1+ δ3k

1−δ2k
)4δ3k + 2δ2k

1−δ2k
], β :=

(1 + 3δk

1−δk
)(2 + ε)(1 + δ3k

1−δ2k
)2

√
ε, and γ := (1 + 3δk

1−δk
)(2 +

ε)[(1 + δ3k

1−δ2k
)
√

2(1 + δ2k) + 2
√

1+δ2k

1−δ2k
].

Similar analysis can be conducted for the ADMiRA algo-
rithm. To illustrate the impact of SVD ε-approximation on
the signal reconstruction performance of the proposed meth-
ods, we replace the best rank-k projections in steps 1 and 5
of Algorithm 1 by the ε-approximation SVD algorithm, pre-
sented in [47]. In this paper, the column subset selection al-
gorithm satisfies the following theorem:

Theorem 5 Let X ∈ R
m×n be a signal of interest with arbi-

trary rank < min{m,n} and let Xk represent the best rank-k
approximation of X. After 2(k + 1)(log(k + 1) + 1) passes
over the data, the Linear Time Low-Rank Matrix Approxi-
mation algorithm in [47] computes a rank-k approximation
P ε

k (X) ∈ R
m×n such that Definition 4 is satisfied with prob-

ability at least 3/4.

The proof is provided in [47]. In total, Linear Time
Low-Rank Matrix Approximation algorithm [47] requires
O(mn(k/ε + k2 logk) + (m + n)(k2/ε2 + k3 logk/ε +
k4 log2 k)) and O(min{m,n}(k/ε+k2 logk)) time and space
complexity, respectively. However, while column subset se-
lection methods such as [47] reduce the overall complex-
ity of low-rank projections in theory, in practice this ap-

plies only in very high-dimensional settings. To strengthen
this argument, in Fig. 4 we compare SVD-based MATRIX

ALPS II with MATRIX ALPS II using the ε-approximate
column subset selection method in [47]. We observe that the
total number of iterations for convergence increases due to
ε-approximate low-rank projections, as expected. Neverthe-
less, we observe that, on average, the column subset selec-
tion process [47] is computationally prohibitive compared
to regular SVD due to the time overhead in the column se-
lection procedure—fewer passes over the data are desirable
in practice to tradeoff the increased number of iterations
for convergence. In the next section, we present alternatives
based on recent trends in randomized matrix decompositions
and how we can use them in low-rank recovery.

9 Accelerating MATRIX ALPS: SVD Approximation
Using Randomized Matrix Decompositions

Finding low-cost SVD approximations to tackle the above
complexity issues is a challenging task. Recent works on
probabilistic methods for matrix approximation [26] provide
a family of efficient approximate projections on the set of
rank-deficient matrices with clear computational advantages
over regular SVD computation in practice and attractive the-
oretical guarantees. In this work, we build on the low-cost,
power-iteration subspace tracking scheme, described in Al-
gorithms 4.3 and 4.4 in [26]. Our proposed algorithm is de-
scribed in Algorithm 4.

The convergence guarantees of Algorithm 4 follow the
same motions described in Sect. 8, where ε is a function of
m,n, k and q .

10 Experiments

10.1 List of Algorithms

In the following experiments, we compare the following al-
gorithms: (i) the Singular Value Projection (SVP) algorithm
[3], a non-convex first-order projected gradient descent al-
gorithm with constant step size selection (we study the case
where μ = 1), (ii) the inexact ALM algorithm [18] based on
augmented Langrance multiplier method, (iii) the OptSpace
algorithm [48], a gradient descent algorithm on the Grass-
mann manifold, (iv) the Grassmannian Rank-One Update
Subspace Estimation (GROUSE) and the Grassmannian Ro-
bust Adaptive Subspace Tracking methods (GRASTA) [49,
50], two stochastic gradient descent algorithms that operate
on the Grassmannian—moreover, to allay the impact of out-
liers in the subspace selection step, GRASTA incorporates
the augmented Lagrangian of �1-norm loss function into the
Grassmannian optimization framework, (v) the Riemannian
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Algorithm 4 Randomized MATRIX ALPS II with QR Factorization
Input: y, A, k, q , Tolerance η, MaxIterations
Initialize: X(0) ← 0, X0 ← {∅}, Q(0) ← 0, Q0 ← {∅}, τi ∀i, i ← 0
repeat

1: Di ← RANDOMIZEDPOWERITERATION(P Q⊥
i
∇f (Q(i)), k, q) (Rank-k subspace via Randomized Power Iteration)

2: Si ← Di ∪ Qi (Active subspace expansion)

3: μi ← arg minμ ‖y − A(Q(i) − μ
2 P Si

∇f (Q(i)))‖2
2 = ‖PSi

∇f (Q(i))‖2
F

‖APSi
∇f (Q(i))‖2

2
(Step size selection)

4: V (i) ← Q(i) − μi

2 P Si
∇f (Q(i)) (Error norm reduction via gradient descent)

5: W ← RANDOMIZEDPOWERITERATION(V(i), k, q) (Rank-k subspace via Randomized Power Iteration)
6: X(i + 1) ← P W V(i) (Best rank-k subspace selection)
7: Q(i + 1) ← X(i + 1) + τi(X(i + 1) − X(i)) (Momentum update)
8: Qi+1 ← ortho(Xi ∪ Xi+1)

i ← i + 1
until ‖X(i) − X(i − 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Trust Region Matrix Completion algorithm (RTRMC) [51],
a matrix completion method using first- and second-order
Riemannian trust-region approaches, (vi) the Low rank Ma-
trix Fitting algorithm (LMatFit) [52], a nonlinear succes-
sive over-relaxation algorithm and (vii) the algorithms MA-
TRIX ALPS I, ADMiRA [21], MATRIX ALPS II and Ran-
domized MATRIX ALPS II with QR Factorization (referred
shortly as MATRIX ALPS II with QR) presented in this pa-
per.

10.2 Implementation Details

To properly compare the algorithms in the above list, we pre-
set a set of parameters that are common. We denote the ratio
between the number of observed samples and the number of
variables in X∗ as SR := p/(m ·n) (sampling ratio). Further-
more, we reserve FR to represent the degree of freedom in
a rank-k matrix to the number of observations—this corre-
sponds to the following definition FR := (k(m + n − k))/p.
In most of the experiments, we fix the number of observable
data p = 0.3mn and vary the dimensions and the rank k of
the matrix X∗. This way, we create a wide range of different
problem configurations with variable FR.

Most of the algorithms in comparison as well as the pro-
posed schemes are implemented in MATLAB. We note that
the LMaFit software package contains parts implemented in
C that reduce the per iteration computational time. This pro-
vides insights for further time savings in our schemes; we
leave a fully optimized implementation of our algorithms
as future work. In this paper, we mostly test cases where
m � n. Such settings can be easily found in real-world prob-
lems such as recommender systems (e.g. Netflix, Amazon,
etc.) where the number of products, movies, etc. is much
greater than the number of active users.

In all algorithms, we fix the maximum number of it-
erations to 500, unless otherwise stated. To solve a least

squares problem over a restricted low-rank subspace, we
use conjugate gradients with maximum number of itera-
tions given by cg_maxiter := 500 and tolerance parameter
cg_tol := 10−10. We use the same stopping criteria for the
majority of algorithms under consideration:

‖X(i) − X(i − 1)‖F

‖X(i)‖F

≤ tol, (33)

where X(i), X(i −1) denote the current and the previous es-
timate of X∗ and tol := 5 × 10−5. If this is not the case, we
tweak the algorithms to minimize the total execution time
and achieve similar reconstruction performance as the rest
of the algorithms. For SVD calculations, we use the lansvd
implementation in PROPACK package [53]—moreover, all
the algorithms in comparison use the same linear operators
A and A∗ for gradient and SVD calculations and conjugate-
gradient least-squares minimizations. For fairness, we mod-
ified all the algorithms so that they exploit the true rank.
Small deviations from the true rank result in relatively small
degradation in terms of the reconstruction performance. In
case the rank of X∗ is unknown, one has to predict the di-
mension of the principal singular space. The authors in [3],
based on ideas in [48], propose to compute singular values
incrementally until a significant gap between singular val-
ues is found. Similar strategies can be found in [18] for the
convex case.

In MATRIX ALPS II and MATRIX ALPS II with QR,
we perform Qi ← ortho(Xi ∪ Xi+1) to construct a set of or-
thonormal rank-1 matrices that span the subspace, spanned
by Xi ∪ Xi+1. While such operation can be implemented
using factorization procedures (such as SVD or QR de-
compositions), in practice this degrades the time complex-
ity of the algorithm substantially as the rank k and the
problem dimensionality increase. In our implementations,
we simply union the set of orthonormal rank-1 matrices,
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Fig. 5 Median error per iteration for MATRIX ALPS II variants over
10 Monte-Carlo repetitions. In brackets, we present the mean time con-
sumed for convergene in seconds. (a) n = 1024, m = 256, p = 0.25n2,

and rank k = 20. (b) n = 2048, m = 512, p = 0.25n2, and rank k = 60.
(c) n = 1000, m = 500, p = 0.25n2, and rank k = 50

without further orthogonalization. Thus, we employ inex-
act projections for computational efficiency which results
in faster convergence. Figure 5 shows the time overhead
due to the additional orthogonalization process. We compare
three algorithms: MATRIX ALPS II (no orthogonalization
step), MATRIX ALPS II using SVD for orthogonalization
and, MATRIX ALPS II using QR for orthogonalization. In
Figs. 5(a)–(b), we use subsampled and permuted noiselets
for linear map A and in Fig. 5(c), we test the MC prob-
lem. In all the experimental cases considered in this work,
we observed identical performance in terms of reconstruc-
tion accuracy for the three variants, as can be also seen in
Fig. 5. To this end, for the rest of the paper, we use MATRIX

ALPS II where Qi ← Xi ∪ Xi+1.

10.3 Limitations of ‖ · ‖∗-Based Algorithms: A Toy
Example

While nucluear norm heuristic is widely used in solving the
low-rank minimization problem, [54] presents simple prob-
lem cases where convex, nuclear norm-based, algorithms
fail in practice. Using the ‖ · ‖∗-norm in the objective func-
tion as the convex surrogate of the rank(·) metric might lead
to a candidate set with multiple solutions, introducing am-
biguity in the selection process. Borrowing the example in
[54], we test the list of algorithms above on a toy problem
setting that does not satisfy the rank-RIP. To this end, we de-
sign the following problem: let X∗ ∈ R

5×4 be the matrix of
interest with rank(X∗) = 2, as shown in Fig. 6(a). We con-
sider the case where we have access to X∗ only through a
subset of its entries, as shown in Fig. 6(b).

In Fig. 7, we present the reconstruction performance of
various matrix completion solvers after 300 iterations. Al-
though there are multiple solutions that induce the recovered
matrix and have the same rank as X∗, most of the algorithms
in comparison reconstruct X∗ successfully. We note that, in
some cases, the inadequancy of an algorithm to reconstruct

Fig. 6 Matrix Completion toy
example for X∗ ∈ R

5×4. We use
‘?’ to denote the unobserved
entried

X∗ is not because of the (relaxed) problem formulation but
due to its fast—but inaccurate—implementation (fast con-
vergence versus reconstruction accuracy tradeoff).

10.4 Synthetic Data

General affine rank minimization using noiselets: In this
experiment, the set of observations y ∈ R

p satisfy:

y = AX∗ + ε. (34)

Here, we use permuted and subsampled noiselets for the
linear operator A [12]. The signal X∗ is generated as the
multiplication of two low-rank matrices, L ∈ R

m×k and
R ∈ R

n×k , such that X∗ = LRT and ‖X∗‖F = 1. Both L
and R have random independent and identically distributed
(iid) Gaussian entries with zero mean and unit variance. In
the noisy case, the additive noise term ε ∈ R

p contains en-
tries drawn from a zero mean Gaussian distribution with
‖ε‖2 ∈ {10−3,10−4}.

We compare the following algorithms: SVP, ADMiRA,
MATRIX ALPS I, MATRIX ALPS II and MATRIX ALPS II
with QR for various problem configurations, as depicted in
Table 1 (there is no available code with arbitrary sensing op-
erators for the rest algorithms). In Table 1, we show the me-
dian values of reconstruction error, number of iterations and
execution time over 50 Monte Carlo iterations. For all cases,
we assume SR = 0.3 and we set the maximum number of it-
erations to 500. Bold font denotes the fastest execution time.
Furthermore, Fig. 8 illustrates the effectiveness of the algo-
rithms for some representative problem configurations.
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Fig. 7 Toy example reconstruction performance for various algorithms. We observe that X∗ is an integer matrix—since the algorithms under
consideration return real matrices as solutions, we round the solution elementwise

Fig. 8 Low rank signal reconstruction using noiselet linear opera-
tor. The error curves are the median values across 50 Monte-Carlo
realizations over each iteration. For all cases, we assume p = 0.3mn.
(a) m = 256, n = 512, k = 10 and ‖ε‖2 = 10−3. (b) m = 256, n = 512,

k = 10 and ‖ε‖2 = 10−4. (c) m = 256, n = 512, k = 20 and ‖ε‖2 = 0.
(d) m = 512, n = 1024, k = 30 and ‖ε‖2 = 0. (e) m = 512, n = 1024,
k = 40 and ‖ε‖2 = 0. (f) m = 1024, n = 2048, k = 50 and ‖ε‖2 = 0

In Table 1, MATRIX ALPS II and MATRIX ALPS II

with QR obtain accurate low-rank solutions much faster than

the rest of the algorithms in comparison. In high dimen-

sional settings, MATRIX ALPS II with QR scales better as

the problem dimensions increase, leading to faster conver-

gence. Moreover, its execution time is at least a few orders

of magnitude smaller compared to SVP, ADMiRA and MA-

TRIX ALPS I implementations.

Robust matrix completion: We design matrix comple-

tion problems in the following way. The signal of inter-

est X∗ ∈ R
m×n is synthesized as a rank-k matrix, factor-

ized as X∗ := LRT with ‖X∗‖F = 1 where L ∈ R
m×k and
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Table 1 General ARM using Noiselets

Configuration FR SVP ADMiRA MATRIX ALPS I

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

256 512 5 0 0.097 38 2.2 × 10−4 0.78 27 4.4 × 10−5 2.26 13.5 1 × 10−5 0.7

256 512 5 10−3 0.097 38 6 × 10−4 0.91 700 2 × 10−3 65.94 16 7 × 10−4 0.92

256 512 5 10−4 0.097 38 2.1 × 10−4 0.94 700 4.1 × 10−4 69.03 11.5 7.9 × 10−5 0.72

256 512 10 0 0.193 50 3.4 × 10−4 1.44 38 5 × 10−5 4.42 13 3.9 × 10−5 0.92

256 512 10 10−3 0.193 50 9 × 10−4 1.39 700 1.7 × 10−3 56.94 29 1.2 × 10−3 1.78

256 512 10 10−4 0.193 50 3.5 × 10−4 1.38 700 9.3 × 10−5 64.69 14 1.4 × 10−4 0.93

256 512 20 0 0.38 86 7 × 10−4 3.32 700 4.1 × 10−5 81.93 45 2 × 10−4 4.09

256 512 20 10−3 0.38 86 1.5 × 10−3 3.45 700 4.2 × 10−2 77.35 69 2.3 × 10−3 5.05

256 512 20 10−4 0.38 86 7 × 10−4 3.26 700 4 × 10−2 79.47 46 4 × 10−4 4.1

512 1024 30 0 0.287 66 4.9 × 10−4 8.79 295 5.4 × 10−5 143.53 24 1 × 10−4 8.01

512 1024 40 0 0.38 86 7 × 10−4 10.09 700 4.3 × 10−2 251.27 45 2 × 10−4 11.08

1024 2048 50 0 0.24 57 4.3 × 10−4 42.88 103 5.2 × 10−5 312.62 18 5.7 × 10−5 35.86

Configuration FR MATRIX ALPS II MATRIX ALPS II with QR

m n k ‖ε‖2 iter. err. time iter. err. time

256 512 5 0 0.097 8 7.1 × 10−6 0.42 10 9.1 × 10−6 0.39

256 512 5 10−3 0.097 9 7 × 10−4 0.56 20 7 × 10−4 0.93

256 512 5 10−4 0.097 8 7 × 10−5 0.5 10 7.8 × 10−5 0.46

256 512 10 0 0.193 10 2.3 × 10−5 0.68 13 2.4 × 10−5 0.64

256 512 10 10−3 0.193 19 1 × 10−3 1.29 27 1 × 10−3 1.35

256 512 10 10−4 0.193 10 1.1 × 10−4 0.68 13 1.1 × 10−4 0.62

256 512 20 0 0.38 21 1 × 10−4 1.92 24 1 × 10−4 1.26

256 512 20 10−3 0.38 36 1.5 × 10−3 2.67 39 1.5 × 10−3 1.69

256 512 20 10−4 0.38 21 2 × 10−4 1.87 24 2 × 10−4 1.22

512 1024 30 0 0.287 14 4.5 × 10−5 4.7 18 3.3 × 10−5 4.15

512 1024 40 0 0.38 21 1 × 10−4 6.01 24 1 × 10−4 4.53

1024 2048 50 0 0.24 12 2.5 × 10−5 22.76 15 3.3 × 10−5 17.94

R ∈ R
n×k as defined above. In sequence, we subsample

X∗ by observing p = 0.3mn entries, drawn uniformly at
random. We denote the set of ordered pairs that represent
the coordinates of the observable entries as Ω = {(i, j) :
[X∗]ij is known} ⊆ {1, . . . ,m} × {1, . . . , n} and let AΩ de-
note the linear operator (mask) that samples a matrix accord-
ing to Ω . Then, the set of observations satisfies:

y = AΩX∗ + ε, (35)

i.e., the known entries of X∗ are structured as a vector y ∈
R

p , disturbed by a dense noise vector ε ∈ R
p with fixed-

energy, which is populated by iid zero-mean Gaussians.
To demonstrate the reconstruction accuracy and the con-

vergence speeds, we generate various problem configura-
tions (both noisy and noiseless settings), according to (35).
The energy of the additive noise takes values ‖ε‖2 ∈

{10−3,10−4}. All the algorithms are tested for the same
signal-matrix-noise realizations. A summary of the results
can be found in Tables 2, 3 and, 4 where we present the
median values of reconstruction error, number of iterations
and execution time over 50 Monte Carlo iterations. For all
cases, we assume SR = 0.3 and set the maximum number
of iterations to 700. Bold font denotes the fastest execution
time. Some convergence error curves for specific cases are
illustrated in Figs. 9 and 10.

In Table 2, LMaFit [52] implementation has the fastest
convergence for small scale problem configuration where
m = 300 and n = 600. We note that part of LMaFit im-
plementation uses C code for acceleration. GROUSE [49]
is a competitive low-rank recovery method with attractive
execution times for the extreme low rank problem settings
due to stochastic gradient descent techniques. Nevertheless,
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Fig. 9 Low rank matrix recovery for the matrix completion prob-
lem. The error curves are the median values across 50 Monte-Carlo
realizations over each iteration. For all cases, we assume p = 0.3mn.

(a) m = 300, n = 600, k = 5 and ‖ε‖2 = 0. (b) m = 300, n = 600,
k = 20 and ‖ε‖2 = 10−4

Fig. 10 Low rank matrix recovery for the matrix completion prob-
lem. The error curves are the median values across 50 Monte-Carlo
realizations over each iteration. For all cases, we assume p = 0.3mn.
(a) m = 700, n = 1000, k = 30 and ‖ε‖2 = 0. (b) m = 700, n = 1000,

k = 50 and ‖ε‖2 = 10−3. (c) m = 700, n = 1000, k = 110 and
‖ε‖2 = 0. (d) m = 500, n = 2000, k = 10 and ‖ε‖2 = 0. (e) m = 500,
n = 2000, k = 50 and ‖ε‖2 = 10−3. (f) m = 500, n = 2000, k = 80
and ‖ε‖2 = 10−4

its execution time performance degrades significantly as we
increase the rank of X∗. Moreover, we observe how ran-
domized low rank projections accelerate the convergence

speed where MATRIX ALPS II with QR converges faster
than MATRIX ALPS II. In Tables 3 and 4, we increase the
problem dimensions. Here, MATRIX ALPS II with QR has
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Table 2 Matrix Completion problem for m = 300 and n = 600. “−” depicts no information or not applicable due to time overhead

Configuration FR SVP GROUSE TFOCS

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 43 2.9 × 10−4 0.59 – 1.52 × 10−4 0.08 – 8.69 × 10−5 3.36

300 600 5 10−3 0.083 42 6 × 10−4 0.65 – 2 × 10−4 0.082 – 5 × 10−4 3.85

300 600 5 10−4 0.083 43 3 × 10−4 0.64 – 2 × 10−4 0.079 – 1 × 10−4 3.5

300 600 10 0 0.165 54 4 × 10−4 0.9 – 4.5 × 10−6 0.22 – 2 × 10−4 6.43

300 600 10 10−3 0.165 54 9 × 10−4 0.89 – 2 × 10−4 0.16 – 8 × 10−4 7.83

300 600 10 10−4 0.165 54 4 × 10−4 0.91 – 2 × 10−4 0.16 – 1 × 10−4 6.75

300 600 20 0 0.326 85 8 × 10−4 2.04 – 1 × 10−4 0.81 – 2 × 10−4 30.04

300 600 40 0 0.637 241 3.4 × 10−3 11.1 – 3.1 × 10−3 13.94 – – –

Inexact ALM OptSpace GRASTA

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 24 6.7 × 10−5 0.47 31 2.8 × 10−6 2.41 – 2.2 × 10−4 2.07

300 600 5 10−3 0.083 24 6 × 10−4 0.49 297 5 × 10−4 22.82 – 1 × 10−4 2.07

300 600 5 10−4 0.083 24 1 × 10−4 0.49 267 1 × 10−4 21.56 – 8 × 10−5 2.1

300 600 10 0 0.165 26 1 × 10−4 0.6 37 2.3 × 10−6 8.42 – 8.6 × 10−6 4.5

300 600 10 10−3 0.165 26 8 × 10−4 0.59 304 8 × 10−4 66.02 – 5.5 × 10−3 3.43

300 600 10 10−4 0.165 26 1 × 10−4 0.61 304 1 × 10−4 65.56 – 5.3 × 10−3 3.44

300 600 20 0 0.326 44 3 × 10−4 1.37 – – – – 5 × 10−4 10.51

300 600 40 0 0.637 134 1.6 × 10−3 7.08 – – – – 5.2 × 10−3 251.34

RTRMC LMaFit MATRIX ALPS I

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 13 1.2 × 10−4 0.59 20 2.2 × 10−4 0.054 22 1.8 × 10−5 0.76

300 600 5 10−3 0.083 13 1 × 10−4 0.59 19 5 × 10−4 0.049 37 7 × 10−4 1.34

300 600 5 10−4 0.083 13 2 × 10−4 0.59 21 1 × 10−4 0.052 18 1 × 10−4 0.61

300 600 10 0 0.165 16 1.1 × 10−3 1.03 23 1 × 10−4 0.064 16 1 × 10−4 0.65

300 600 10 10−3 0.165 17 1 × 10−4 1.09 26 8 × 10−4 0.077 30 1.1 × 10−3 1.16

300 600 10 10−4 0.165 17 2 × 10−4 1.09 32 1 × 10−4 0.097 16 1 × 10−4 0.63

300 600 20 0 0.326 22 4 × 10−4 2.99 37 2 × 10−4 0.12 37 2 × 10−4 2.05

300 600 40 0 0.637 35 3 × 10−5 11.83 233 4.9 × 10−4 2.52 500 6.5 × 10−2 45.67

ADMiRA MATRIX ALPS II MATRIX ALPS II with QR

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 59 5.2 × 10−5 2.86 10 1.7 × 10−5 0.34 14 3.2 × 10−5 0.45

300 600 5 10−3 0.083 700 4 × 10−3 30.96 12 6 × 10−4 0.44 24 6 × 10−4 0.81

300 600 5 10−4 0.083 700 4.5 × 10−3 31.45 10 1 × 10−4 0.36 14 1 × 10−4 0.47

300 600 10 0 0.165 47 1 × 10−3 2.56 12 3 × 10−5 0.48 16 3.4 × 10−5 0.49

300 600 10 10−3 0.165 700 1.5 × 10−3 28.49 19 9 × 10−4 0.74 29 9 × 10−4 0.95

300 600 10 10−4 0.165 700 1 × 10−4 31.99 12 1 × 10−4 0.49 16 1 × 10−4 0.54

300 600 20 0 0.326 700 1.2 × 10−3 41.86 20 1 × 10−4 1.16 23 1 × 10−4 0.79

300 600 20 0 0.326 – – – 72 2 × 10−4 7.21 68 2 × 10−4 2.6

faster convergence for most of the cases and scales well
as the problem size increases. We note that we do not ex-
ploit stochastic gradient descent techniques in the recovery
process to accelerate convergence which is left for future
work.

10.5 Real Data

We use real data images to highlight the reconstruction per-
formance of the proposed schemes. To this end, we perform
grayscale image denoising from an incomplete set of ob-
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Table 3 Matrix Completion problem for m = 700 and n = 1000. “–” depicts no information or not applicable due to time overhead

Configuration FR SVP Inexact ALM GROUSE

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

700 1000 5 0 0.04 34 1.9 × 10−4 1.77 23 6.5 × 10−5 1.69 – 3.5 × 10−5 0.23

700 1000 5 10−3 0.04 34 4.2 × 10−4 1.92 23 3.7 × 10−4 1.87 – 3.1 × 10−4 0.24

700 1000 30 0 0.239 61 4.6 × 10−4 6.39 29 1.2 × 10−4 3.91 – 3.2 × 10−5 3.15

700 1000 30 10−3 0.239 61 1.1 × 10−3 6.33 29 1 × 10−3 3.87 – 8 × 10−4 3.14

700 1000 50 0 0.393 95 8.5 × 10−4 14.47 49 3.2 × 10−4 9.02 – 1.3 × 10−5 10.31

700 1000 50 10−3 0.393 95 1.6 × 10−3 15.15 49 1.4 × 10−3 9.11 – 8 × 10−4 10.34

700 1000 110 0 0.833 683 1.2 × 10−2 253.1 374 5.8 × 10−3 152.61 – 1.2 × 10−1 110.93

700 1000 110 10−3 0.833 682 1.3 × 10−2 256.21 374 6.8 × 10−3 154.34 – 1.05 × 10−1 111.05

LMaFit MATRIX ALPS II MATRIX ALPS II with QR

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

700 1000 5 0 0.04 24 7.2 × 10−6 0.67 8 1.5 × 10−5 1.15 15 8.3 × 10−5 1.05

700 1000 5 10−3 0.04 17 3.7 × 10−4 0.5 10 4.5 × 10−4 1.38 15 3.8 × 10−4 1.1

700 1000 30 0 0.239 34 9.2 × 10−6 1.95 14 4.5 × 10−5 3.69 35 1.1 × 10−4 2.6

700 1000 30 10−3 0.239 30 1 × 10−3 1.71 25 1.1 × 10−3 6.1 35 1 × 10−3 2.61

700 1000 50 0 0.393 53 2.7 × 10−5 4.59 25 8.6 × 10−5 8.87 57 1.6 × 10−5 4.47

700 1000 50 10−3 0.393 52 1.4 × 10−3 4.53 40 1.6 × 10−3 14.38 57 1.4 × 10−3 4.49

700 1000 110 0 0.833 584 9 × 10−4 101.95 280 8 × 10−4 214.93 553 7 × 10−4 51.72

700 1000 110 10−3 0.833 584 3.7 × 10−3 102.15 336 4.7 × 10−3 261.98 551 3.7 × 10−3 51.62

served pixels—similar experiments can be found in [52].
Based on the matrix completion setting, we observe a lim-
ited number of pixels from the original image and perform
a low rank approximation based only on the set of measure-
ments. While the true underlying image might not be low-
rank, we apply our solvers to obtain low-rank approxima-
tions.

Figures 11 and 12 depict the reconstruction results. In
the first test case, we use a 512 × 512 grayscale image as
shown in the top left corner of Fig. 11. For this case, we
observe only the 35 % of the total number of pixels, ran-
domly selected—a realization is depicted in the top right
plot in Fig. 11. In sequel, we fix the desired rank to k = 40.
The best rank-40 approximation using SVD is shown in
the top middle of Fig. 11 where the full set of pixels is
observed. Given a fixed common tolerance and the same
stopping criteria, Fig. 11 shows the recovery performance
achieved by a range of algorithms under consideration for
10 Monte-Carlo realizations. We repeat the same experi-
ment for the second image in Fig. 12. Here, the size of the
image is 256 × 256, the desired rank is set to k = 30 and
we observe the 33 % of the image pixels. In contrast to
the image denoising procedure above, we measure the re-
construction error of the computed solutions with respect to
the best rank-30 approximation of the true image. In both
cases, we note that MATRIX ALPS II has a better phase

transition performance as compared to the rest of the algo-
rithms.

11 Discussion

In this paper, we present new strategies and review existing
ones for hard thresholding methods to recover low-rank ma-
trices from dimensionality reducing, linear projections. Our
discussion revolves around four basic building blocks that
exploit the problem structure to reduce computational com-
plexity without sacrificing stability.

In theory, constant μi selection schemes are accompa-
nied with strong RIP constant conditions but empirical ev-
idence reveal signal reconstruction vulnerabilities. While
convergence derivations of adaptive schemes are charac-
terized by weaker bounds, the performance gained by this
choice in terms of convergence rate, is quite significant.
Memory-based methods lead to convergence speed with
(almost) no extra cost on the complexity of hard thresh-
olding methods—we provide theoretical evidence for con-
vergence for simple cases but more theoretical justifi-
cation is needed to generalize this part as future work.
Lastly, further estimate refinement over low rank sub-
spaces using gradient update steps or pseudoinversion op-
timization techniques provides signal reconstruction effi-
cacy, but more computational power is needed per itera-
tion.
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Table 4 Matrix Completion problem for m = 500 and n = 2000. “–” depicts no information or not applicable due to time overhead

Configuration FR SVP Inexact ALM GROUSE

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

500 2000 30 0 0.083 64 5.3 × 10−4 10.18 32 1.9 × 10−4 6.47 – 1.6 × 10−4 2.46

500 2000 30 10−3 0.083 64 1.1 × 10−3 6.69 32 1 × 10−3 4.51 – 6 × 10−4 1.94

500 2000 30 10−4 0.083 64 5.4 × 10−4 10.14 32 2.2 × 10−4 6.51 – 1.6 × 10−4 2.46

500 2000 50 0 0.408 103 1.1 × 10−4 15.74 54 5 × 10−4 10.8 – 8 × 10−5 7.32

500 2000 50 10−3 0.408 103 1.8 × 10−3 24.97 54 1.55 × 10−3 16.14 – 9 × 10−4 8.6

500 2000 50 10−4 0.408 102 1.1 × 10−3 24.85 54 5 × 10−4 16.17 – 7 × 10−5 8.59

500 2000 80 0 0.645 239 3.5 × 10−3 92.91 134 1.7 × 10−3 59.33 – 1 × 10−4 79.64

500 2000 80 10−3 0.645 239 4.2 × 10−3 94.86 134 2.8 × 10−3 60.68 – 1 × 10−4 79.98

500 2000 80 10−4 0.645 239 3.6 × 10−3 93.95 134 1.8 × 10−3 60.76 – 1 × 10−4 79.48

500 2000 100 0 0.8 523 1.1 × 10−2 259.13 307 6 × 10−3 173.14 – 4.5 × 10−2 143.41

500 2000 100 10−3 0.8 525 1.2 × 10−2 262.19 308 7 × 10−3 176.04 – 5.2 × 10−2 142.85

500 2000 100 10−4 0.8 523 1.1 × 10−2 262.11 307 6 × 10−3 170.47 – 5.1 × 10−2 144.78

LMaFit MATRIX ALPS II MATRIX ALPS II with QR

m n k ‖ε‖2 iter. err. time iter. err. time iter. err. time

500 2000 30 0 0.083 37 1.3 × 10−5 3.05 13 3.1 × 10−5 4.84 37 1.2 × 10−5 4.04

500 2000 30 10−3 0.083 37 1 × 10−3 2.52 22 1.1 × 10−3 5.35 37 1 × 10−3 3.32

500 2000 30 10−4 0.083 35 1 × 10−4 2.86 13 1.3 × 10−4 4.85 37 1.6 × 10−4 4.05

500 2000 50 0 0.408 60 6 × 10−5 6.06 22 1 × 10−4 7.6 60 2 × 10−4 5.67

500 2000 50 10−3 0.408 60 1.4 × 10−3 7.26 36 1.6 × 10−3 19.64 59 1.6 × 10−3 6.91

500 2000 50 10−4 0.408 60 2 × 10−4 7.29 22 2 × 10−4 11.87 59 2 × 10−4 6.75

500 2000 80 0 0.645 183 3 × 10−4 33.65 61 2 × 10−4 49.53 151 3 × 10−4 18.66

500 2000 80 10−3 0.645 183 2.3 × 10−3 33.48 92 2.4 × 10−3 75.51 151 2.3 × 10−3 18.87

500 2000 80 10−4 0.645 183 3 × 10−4 33.47 61 4 × 10−4 49.52 151 3 × 10−4 18.92

500 2000 100 0 0.8 519 1.5 × 10−3 115.11 148 4 × 10−4 153.74 429 7 × 10−4 55.1

500 2000 100 10−3 0.8 529 3.6 × 10−3 117.7 228 3.7 × 10−3 239.92 427 3.4 × 10−3 55.7

500 2000 100 10−3 0.8 520 1.6 × 10−3 116.66 148 6 × 10−4 154.46 428 8 × 10−4 55.07

We connect ε-approximation low-rank revealing schemes
with first-order gradient descent algorithms to solve gen-
eral affine rank minimization problems; to the best of our
knowledge, this is the first attempt to theoretically charac-
terize the performance of iterative greedy algorithms with
ε-approximation schemes. In all cases, experimental results
illustrate the effectiveness of the proposed schemes on dif-
ferent problem configurations.
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Appendix

Remark 1 Let X ∈ R
m×n with SVD: X = UΣV T , and Y ∈

R
m×n with SVD: Y = ŨΣ̃Ṽ

T
. Assume two sets: (i) S1 =

{uiu
T
i : i ∈ I1} where ui is the i-th singular vector of

X and I1 ⊆ {1, . . . , rank(X)} and, (ii) S2 = {uiu
T
i , ũj ũj

T

: i ∈ I2, j ∈ I3} where ũi is the i-th singular vector of Y ,
I1 ⊆ I2 ⊆ {1, . . . , rank(X)} and, I3 ⊆ {1, . . . , rank(Y )}. We
observe that the subspaces defined by uiu

T
i and ũj ũj

T are
not necessarily orthogonal.

To this end, let Ŝ2 = ortho(S2); this operation can be eas-
ily computed via SVD. Then, the following commutativity
property holds true for any matrix W ∈ R

m×n:

P S1 P Ŝ2
W = P Ŝ2

P S1W . (36)

A.1 Proof of Lemma 6

Given X ∗ ← Pk(X
∗) using SVD factorization, we define

the following quantities: Si ← Xi ∪ Di , S ∗
i ← ortho(Xi ∪

X ∗). Then, given the structure of the sets Si and S ∗
i

P Si
P(S ∗

i )⊥ = P Di
P(X ∗∪Xi )

⊥ , (37)
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Fig. 11 Reconstruction performance in image denoising settings. The
image size is 512 × 512 and the desired rank is preset to k = 40. We
observe 35 % of the pixels of the true image. We depict the median re-

construction error with respect to the true image in dB over 10 Monte
Carlo realizations

and

P S ∗
i

P S ⊥
i

= P X ∗ P(Di∪Xi )
⊥ . (38)

Since the subspace defined in Di is the best rank-k subspace,
orthogonal to the subspace spanned by Xi , the following

holds true:

∥
∥P Di

P X ⊥
i

∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P X ∗ P X ⊥
i

∇f
(
X(i)

)∥
∥2

F

⇒ ∥
∥P Si

∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P S ∗
i
∇f

(
X(i)

)∥
∥2

F
.
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Fig. 12 Reconstruction performance in image denoising settings. The
image size is 256 × 256 and the desired rank is preset to k = 30. We
observe 33 % of the pixels of the best rank-30 approximation of the

image. We depict the median reconstruction with respect to the best
rank-30 approximation in dB over 10 Monte Carlo realizations

Removing the common subspaces in Si and S ∗
i by the com-

mutativity property of the projection operation and using the

shortcut P A\B ≡ P A P B⊥ for sets A, B, we get:

∥
∥P Si\S ∗

i
∇f

(
X(i)

)∥
∥2

F
≥ ∥

∥P S ∗
i \Si

∇f
(
X(i)

)∥
∥2

F

⇒ ∥
∥P Si\S ∗

i
A∗A

(
X∗ − X(i)

) + P Si\S ∗
i
A∗ε

∥
∥

F

≥ ∥
∥P S ∗

i \Si
A∗A

(
X∗ − X(i)

) + P S ∗
i \Si

A∗ε
∥
∥

F
. (39)

Next, we assume that P(A\B)⊥ denotes the orthogonal pro-

jection onto the subspace spanned by PA P B⊥ . Then, on the
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left hand side of (39), we have:
∥
∥P Si\S ∗

i
A∗A

(
X∗ − X(i)

) + P Si\S ∗
i
A∗ε

∥
∥

F

(i)≤ ∥
∥P Si\S ∗

i
A∗A

(
X∗ − X(i)

)∥
∥

F
+ ∥

∥P Si\S ∗
i
A∗ε

∥
∥

F

(ii)= ∥
∥P Si\S ∗

i

(
X∗ − X(i)

) + P Si\S ∗
i
A∗A

(
X∗ − X(i)

)∥
∥

F

+ ∥
∥P Si\S ∗

i
A∗ε

∥
∥

F

(iii)= ∥
∥
(
I − P Si\S ∗

i
A∗AP Si\S ∗

i

)(
X∗ − X(i)

)

+ P Si\S ∗
i
A∗AP(Si\S ∗

i )⊥
(
X∗ − X(i)

)∥
∥

F

+ ∥
∥P Si\S ∗

i
A∗ε

∥
∥

F

≤ ∥
∥
(
I − P Si\S ∗

i
A∗AP Si\S ∗

i

)(
X∗ − X(i)

)∥
∥

F

+ ∥
∥P Si\S ∗

i
A∗AP(Si\S ∗

i )⊥
(
X∗ − X(i)

)∥
∥

F

+ ∥
∥P Si\S ∗

i
A∗ε

∥
∥

F

(iv)≤ δ3k

∥
∥X∗ − X(i)

∥
∥

F
+ ∥

∥P Si\S ∗
i
A∗ε

∥
∥

F

+ ∥
∥P Si\S ∗

i
A∗AP(Si\S ∗

i )⊥
(
X∗ − X(i)

)∥
∥

F

(v)≤ δ3k

∥
∥X∗ − X(i)

∥
∥

F
+ ∥

∥P Si\S ∗
i
A∗ε

∥
∥

F

+ δ3k

∥
∥P(Si\S ∗

i )⊥
(
X∗ − X(i)

)∥
∥

F

(vi)≤ 2δ3k

∥
∥X∗ − X(i)

∥
∥

F
+ ∥

∥P Si\S ∗
i
A∗ε

∥
∥

F
, (40)

where (i) due to triangle inequality over Frobenius met-
ric norm, (ii) since P Si\S ∗

i
(X(i) − X∗) = 0, (iii) by us-

ing the fact that X(i) − X∗ := P Si\S ∗
i
(X(i) − X∗) +

P(Si\S ∗
i )⊥(X(i) − X∗), (iv) due to Lemma 4, (v) due

to Lemma 5 and (vi) since ‖P(Si\S ∗
i )⊥(X∗ − X(i))‖F ≤

‖X(i) − X∗‖F .
For the right hand side of (39), we calculate:

∥
∥P S ∗

i \Si
A∗A

(
X∗ − X(i)

) + P S ∗
i \Si

A∗ε
∥
∥

F

≥ ∥
∥P S ∗

i \Si

(
X∗ − X(i)

)∥
∥

F

− ∥
∥P S ∗

i \Si
A∗AP(S ∗

i \Si )
⊥
(
X∗ − X(i)

)∥
∥

F

− ∥
∥
(

P S ∗
i \Si

A∗AP S ∗
i \Si

− I
)(

X∗ − X(i)
)∥
∥

F

− ∥
∥P S ∗

i \Si
A∗ε

∥
∥

F

≥ ∥
∥P S ∗

i \Si

(
X∗ − X(i)

)∥
∥

F
− 2δ2k

∥
∥X(i) − X∗∥∥

F

− ∥
∥P S ∗

i \Si
A∗ε

∥
∥

F
(41)

by using Lemmas 4 and 5. Combining (40) and (41) in (39),
we get:

∥
∥PX ∗\Si

X∗∥∥
F

≤ (2δ2k + 2δ3k)
∥
∥X(i) − X∗∥∥

F

+ √
2(1 + δ2k)‖ε‖2.

A.2 Proof of Theorem 1

Let X ∗ ← Pk(X
∗) be a set of orthonormal, rank-1 matri-

ces that span the range of X∗. In Algorithm 1, W (i) ←
Pk(V (i)). Thus:

∥
∥W (i) − V (i)

∥
∥2

F
≤ ∥

∥X∗ − V (i)
∥
∥2

F

⇒ ∥
∥W (i) − X∗ + X∗ − V (i)

∥
∥2

F
≤ ∥

∥X∗ − V (i)
∥
∥2

F

⇒ ∥
∥W (i) − X∗∥∥2

F
≤ 2

〈
W (i) − X∗,V (i) − X∗〉. (42)

From Algorithm 1, (i) V (i) ∈ span(Si ), (ii) X(i) ∈
span(Si ) and (iii) W (i) ∈ span(Si ). We define E ←
ortho(Si ∪ X ∗) where rank(span(E )) ≤ 3k and let P E be
the orthogonal projection onto the subspace defined by E .

Since W (i) − X∗ ∈ span(E ) and V (i) − X∗ ∈ span(E ),
the following hold true:

W (i) − X∗ = P E
(
W (i) − X∗) and

V (i) − X∗ = P E
(
V (i) − X∗).

Then, (42) can be written as:

∥
∥W (i) − X∗∥∥2

F
≤ 2

〈
P E

(
W (i) − X∗), P E

(
V (i) − X∗)〉 ⇒

= 2
〈

P E
(
W (i) − X∗), P E

(
X(i) − X∗ − μi P Si

A∗A
(
X(i) − X∗))〉

︸ ︷︷ ︸
.=A

+2μi

〈
P E

(
W (i) − X∗), P E P Si

(
A∗ε

)〉

︸ ︷︷ ︸
.=B

. (43)

In B, we observe:

B := 2μi

〈
P E

(
W (i) − X∗), P E P Si

(
A∗ε

)〉

(i)= 2μi

〈
W (i) − X∗, P Si

(
A∗ε

)〉

(ii)≤ 2μi

∥
∥W (i) − X∗∥∥

F

∥
∥P Si

(
A∗ε

)∥
∥

F

(iii)≤ 2μi

√
1 + δ2k

∥
∥W (i) − X∗∥∥

F
‖ε‖2, (44)

where (i) holds since P Si
P E = P E P Si

= P Si
for span(Si ) ∈

span(E ), (ii) is due to Cauchy-Schwarz inequality and,

(iii) is easily derived using Lemma 2.
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In A, we perform the following motions:

A := 2
〈
W (i) − X∗, P E

(
X(i) − X∗)

− μi P Si
A∗AP E

(
X(i) − X∗)〉

(i)= 2
〈
W (i) − X∗, P E

(
X(i) − X∗)

− μi P Si
A∗A[P Si

+ P S ⊥
i
]P E

(
X(i) − X∗)〉

= 2
〈
W (i) − X∗,

(
I − μi P Si

A∗AP Si

)
P E

(
X(i) − X∗)〉

− 2μi

〈
W (i) − X∗, P Si

A∗AP S ⊥
i

P E
(
X(i) − X∗)〉

(ii)≤ 2
∥
∥W (i) − X∗∥∥

F

× ∥
∥
(
I − μi P Si

A∗AP Si

)
P E

(
X(i) − X∗)∥∥

F

+ 2μi

∥
∥W (i) − X∗∥∥

F

× ∥
∥P Si

A∗AP S ⊥
i

P E
(
X(i) − X∗)∥∥

F
, (45)

where (i) is due to P E (X(i)−X∗) := P Si
P E (X(i)−X∗)+

P S ⊥
i

P E (X(i) − X∗) and (ii) follows from Cauchy-Schwarz

inequality. Since 1
1+δ2k

≤ μi ≤ 1
1−δ2k

, Lemma 4 implies:

λ
(
I − μi P Si

A∗AP Si

) ∈
[

1 − 1 − δ2k

1 + δ2k

,
1 + δ2k

1 − δ2k

− 1

]

≤ 2δ2k

1 − δ2k

,

and thus:

∥
∥
(
I − μi P Si

A∗AP Si

)
P E

(
X(i) − X∗)∥∥

F

≤ 2δ2k

1 − δ2k

∥
∥P E

(
X(i) − X∗)∥∥

F
.

Furthermore, according to Lemma 5:

∥
∥P Si

A∗AP S ⊥
i

P E
(
X(i) − X∗)∥∥

F

≤ δ3k

∥
∥P S ⊥

i
P E

(
X(i) − X∗)∥∥

F

since rank(P KX) ≤ 3k, ∀X ∈ R
m×n for K ← ortho(E ∪ Si ).

Since P S ⊥
i

P E (X(i) − X∗) = P X ∗\(Di∪Xi )X
∗ where

Di ← Pk

(
P X ⊥

i
∇f

(
X(i)

))
,

then:

∥
∥P S ⊥

i
P E

(
X(i) − X∗)∥∥

F

= ∥
∥P X ∗\(Di∪Xi )X

∗∥∥
F

≤ (2δ2k + 2δ3k)
∥
∥X(i) − X∗∥∥

F
+ √

2(1 + δ2k)‖ε‖2,

using Lemma 6. Combining the above in (45), we compute:

A ≤
(

4δ2k

1 − δ2k

+ (2δ2k + 2δ3k)
2δ3k

1 − δ2k

)
∥
∥W (i) − X∗∥∥

F

× ∥
∥X(i) − X∗∥∥

F

+ 2δ3k

1 − δ2k

∥
∥W (i) − X∗∥∥

F

√
2(1 + δ2k)‖ε‖2. (46)

Combining (44) and (46) in (43), we get:

∥
∥W (i) − X∗∥∥

F

≤
(

4δ2k

1 − δ2k

+ (2δ2k + 2δ3k)
2δ3k

1 − δ2k

)
∥
∥X(i) − X∗∥∥

F

+
(

2
√

1 + δ2k

1 − δ2k

+ 2δ3k

1 − δ2k

√
2(1 + δ2k)

)

‖ε‖2. (47)

Focusing on steps 5 and 6 of Algorithm 1, we perform
similar motions to obtain:

∥
∥X(i + 1) − X∗∥∥

F
≤

(
1 + 2δ2k

1 − δ2k

)
∥
∥W (i) − X∗∥∥

F

+
√

1 + δk

1 − δk

‖ε‖2. (48)

Combining the recursions in (47) and (48), we finally com-
pute:

∥
∥X(i + 1) − X∗∥∥

F
≤ ρ

∥
∥X(i) − X∗∥∥

F
+ γ ‖ε‖2,

for ρ := (
1+2δ2k

1−δ2k
)(

4δ2k

1−δ2k
+ (2δ2k + 2δ3k)

2δ3k

1−δ2k
) and

γ :=
((

1 + 2δ2k

1 − δ2k

)(
2
√

1 + δ2k

1 − δ2k

+ 2δ3k

1 − δ2k

√
2(1 + δ2k)

)

+
√

1 + δk

1 − δk

)

.

For the convergence parameter ρ, further compute:

(
1 + 2δ2k

1 − δ2k

)(
4δ2k

1 − δ2k

+ (2δ2k + 2δ3k)
2δ3k

1 − δ2k

)

≤ 1 + 2δ3k

(1 − δ3k)2

(
4δ3k + 8δ2

3k

) =: ρ̂ (49)

for δk ≤ δ2k ≤ δ3k . Calculating the roots of this expression,
we easily observe that ρ < ρ̂ < 1 for δ3k < 0.1235.

A.3 Proof of Theorem 2

Before we present the proof of Theorem 2, we list a series
of lemmas that correspond to the motions Algorithm 2 per-
forms.
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Lemma 9 [Error norm reduction via least-squares optimiza-
tion] Let Si be a set of orthonormal, rank-1 matrices that
span a rank-2k subspace in R

m×n. Then, the least squares
solution V (i) given by:

V (i) ← arg min
V :V ∈span(Si )

‖y − AV ‖2
2, (50)

satisfies:

∥
∥V (i) − X∗∥∥

F
≤ 1

√
1 − δ2

3k(A)

∥
∥P S ⊥

i

(
V (i) − X∗)∥∥

F

+
√

1 + δ2k

1 − δ3k

‖ε‖2. (51)

Proof We observe that ‖V (i)−X∗‖2
F is decomposed as fol-

lows:

∥
∥V (i) − X∗∥∥2

F

= ∥
∥P Si

(
V (i) − X∗)∥∥2

F
+ ∥

∥P S ⊥
i

(
V (i) − X∗)∥∥2

F
. (52)

In (50), V (i) is the minimizer over the low-rank subspace
spanned by Si with rank(span(Si )) ≤ 2k. Using the opti-
mality condition (Lemma 1) over the convex set Θ = {X :
span(X) ∈ Si}, we have:

〈∇f
(
V (i)

)
, P Si

(
X∗ − V (i)

)〉 ≥ 0 ⇒
〈
AV (i) − y,AP Si

(
V (i) − X∗)〉 ≤ 0 (53)

for P Si
X∗ ∈ span(Si ). Given condition (53), the first term

on the right hand side of (52) becomes:

∥
∥P Si

(
V (i) − X∗)∥∥2

F

= 〈
V (i) − X∗, P Si

(
V (i) − X∗)〉

(53)≤ 〈
V (i) − X∗, P Si

(
V (i) − X∗)〉

− 〈
AV (i) − y,AP Si

(
V (i) − X∗)〉

≤ ∣
∣
〈
V (i) − X∗,

(
I − A∗A

)
P Si

(
V (i) − X∗)〉∣∣

+ 〈
ε,APSi

(
V (i) − X∗)〉. (54)

Focusing on the term |〈V (i) − X∗, (I − A∗A)P Si
(V (i) −

X∗)〉|, we derive the following:

∣
∣
〈
V (i) − X∗,

(
I − A∗A

)
P Si

(
V (i) − X∗)〉∣∣

= ∣
∣
〈
V (i) − X∗, P Si

(
V (i) − X∗)〉

− 〈
V (i) − X∗,A∗AP Si

(
V (i) − X∗)〉∣∣

(i)= ∣
∣
〈

P Si∪X ∗
(
V (i) − X∗), P Si

(
V (i) − X∗)〉

− 〈
AP Si∪X ∗

(
V (i) − X∗),AP Si

(
V (i) − X∗)〉∣∣

(ii)= ∣
∣
〈

P Si∪X ∗
(
V (i) − X∗), P Si∪X ∗ P Si

(
V (i) − X∗)〉

− 〈
AP Si∪X ∗

(
V (i) − X∗),

AP Si∪X ∗ P Si

(
V (i) − X∗)〉∣∣

= ∣
∣
〈
V (i) − X∗,
(
I − P Si∪X ∗A∗AP Si∪X ∗

)
P Si

(
V (i) − X∗)〉∣∣,

where (i) follows from the facts that V (i) − X∗ ∈
span(ortho(Si ∪ X ∗)) and thus P Si∪X ∗(V (i) − X∗) =
V (i) − X∗ and (ii) is due to P Si∪X ∗ P Si

= P Si
since

span(Si ) ⊆ span(ortho(Si ∪ X ∗)). Then, (54) becomes:

∥
∥P Si

(
V (i) − X∗)∥∥2

F

≤ ∣
∣
〈
V (i) − X∗,
(
I − P Si∪X ∗A∗AP Si∪X ∗

)
P Si

(
V (i) − X∗)〉∣∣

+ 〈
ε,AP Si

(
V (i) − X∗)〉

(i)≤ ∥
∥V (i) − X∗∥∥

F

× ∥
∥
(
I − P Si∪X ∗A∗AP Si∪X ∗

)
P Si

(
V (i) − X∗)∥∥

F

+ ∥
∥P Si

A∗ε
∥
∥

F

∥
∥P Si

(
V (i) − X∗)∥∥

F

(ii)≤ δ3k

∥
∥P Si

(
V (i) − X∗)∥∥

F

∥
∥V (i) − X∗∥∥

F

+ √
1 + δ2k

∥
∥P Si

(
V (i) − X∗)∥∥

F
‖ε‖2, (55)

where (i) comes from Cauchy-Swartz inequality and (ii) is
due to Lemmas 2 and 4. Simplifying the above quadratic
expression, we obtain:
∥
∥P Si

(
V (i) − X∗)∥∥

F
≤ δ3k

∥
∥V (i) − X∗∥∥

F
+ √

1 + δ2k‖ε‖2.

(56)

As a consequence, (52) can be upper bounded by:

∥
∥V (i) − X∗∥∥2

F
≤ (

δ3k

∥
∥V (i) − X∗∥∥

F
+ √

1 + δ2k‖ε‖2
)2

+ ∥
∥P S ⊥

i

(
V (i) − X∗)∥∥2

F
. (57)

We form the quadratic polynomial for this inequality as-
suming as unknown variable the quantity ‖V (i) − X∗‖F .
Bounding by the largest root of the resulting polynomial,
we get:

∥
∥V (i) − X∗∥∥

F
≤ 1

√
1 − δ2

3k(A)

∥
∥P S ⊥

i

(
V (i) − X∗)∥∥

F

+
√

1 + δ2k

1 − δ3k

‖ε‖2. (58)

�

The following lemma characterizes how subspace prun-
ing affects the recovered energy:
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Lemma 10 [Best rank-k subspace selection] Let V (i) ∈
R

m×n be a rank-2k proxy matrix in the subspace spanned
by Si and let X(i + 1) ← Pk(V (i)) denote the best rank-k
approximation to V (i), according to (5). Then:

∥
∥X(i + 1) − V (i)

∥
∥

F
≤ ∥

∥P Si

(
V (i) − X∗)∥∥

F

≤ ∥
∥V (i) − X∗∥∥

F
. (59)

Proof Since X(i + 1) denotes the best rank-k approxima-
tion to V (i), the following inequality holds for any rank-
k matrix X ∈ R

m×n in the subspace spanned by Si , i.e.
∀X ∈ span(Si ):

∥
∥X(i + 1) − V (i)

∥
∥

F
≤ ∥

∥X − V (i)
∥
∥

F
. (60)

Since P Si
V (i) = V (i), the left inequality in (59) is satisfied

for X := P Si
X∗ in (60). �

Lemma 11 Let V (i) be the least squares solution in Step 2
of the ADMiRA algorithm and let X(i + 1) be a proxy, rank-
k matrix to V (i) according to: X(i + 1) ← Pk(V (i)). Then,
‖X(i + 1)−X∗‖F can be expressed in terms of the distance
from V (i) to X∗ as follows:

∥
∥X(i + 1) − X∗∥∥

F
≤

√
1 + 3δ2

3k

∥
∥V (i) − X∗∥∥

F

+
√

1 + 3δ2
3k

√
3(1 + δ2k)

1 + 3δ2
3k

‖ε‖2. (61)

Proof We observe the following

∥
∥X(i + 1) − X∗∥∥2

F

= ∥
∥X(i + 1) − V (i) + V (i) − X∗∥∥2

F

= ∥
∥V (i) − X∗∥∥2

F
+ ∥

∥V (i) − X(i + 1)
∥
∥2

F

− 2
〈
V (i) − X∗,V (i) − X(i + 1)

〉
. (62)

Focusing on the right hand side of expression (62), 〈V (i) −
X∗,V (i)−X(i +1)〉 = 〈V (i)−X∗, P Si

(V (i)−X(i +1))〉
can be similarly analysed as in Lemma 10 where we obtain
the following expression:

∣
∣
〈
V (i) − X∗, P Si

(
V (i) − X(i + 1)

)〉∣
∣

≤ δ3k

∥
∥V (i) − X∗∥∥

F

∥
∥V (i) − X(i + 1)

∥
∥

F

+ √
1 + δ2k

∥
∥V (i) − X(i + 1)

∥
∥

F
‖ε‖2. (63)

Now, expression (62) can be further transformed as:

∥
∥X(i + 1) − X∗∥∥2

F

(i)≤ ∥
∥V (i) − X∗∥∥2

F
+ ∥

∥V (i) − X(i + 1)
∥
∥2

F

+ 2
(
δ3k

∥
∥V (i) − X∗∥∥

F

∥
∥V (i) − X(i + 1)

∥
∥

F

+ √
1 + δ2k

∥
∥V (i) − X(i + 1)

∥
∥

F
‖ε‖2

)
, (64)

where (i) is due to (63). Using Lemma 10, we further have:

∥
∥X(i + 1) − X∗∥∥2

F

≤ ∥
∥V (i) − X∗∥∥2

F
+ ∥

∥P Si

(
V (i) − X∗)∥∥2

F

+ 2
(
δ3k

∥
∥V (i) − X∗∥∥

F

∥
∥P Si

(
V (i) − X∗)∥∥

F

+ √
1 + δ2k

∥
∥P Si

(
V (i) − X∗)∥∥

F
‖ε‖2

)
. (65)

Furthermore, replacing ‖PSi
(X∗ − V (i))‖F with its upper

bound defined in (56), we get:

∥
∥X(i + 1) − X∗∥∥2

2

(i)≤ (
1 + 3δ2

3k

)
(

∥
∥V (i) − X∗∥∥

2 +
√

3(1 + δ2k)

1 + 3δ2
3k

‖ε‖
)2

,

(66)

where (i) is obtained by completing the squares and elimi-
nating negative terms. �

Applying basic algebra tools in (61) and (51), we get:

∥
∥X(i + 1) − X∗∥∥

F

≤
√

1 + 3δ2
3k

1 − δ2
3k

∥
∥P S ⊥

i

(
V (i) − X∗)∥∥

F

+
(

√
1 + 3δ2

3k

1 − δ3k

+ √
3

)√
1 + δ2k‖ε‖2.

Since V (i) ∈ span(Si ), we observe P S ⊥
i
(V (i) − X∗) =

−P S ⊥
i
X∗ = −P X ∗\(Di∪Xi )X

∗. Then, using Lemma 6, we
obtain:

∥
∥X(i + 1) − X∗∥∥

F

≤ (2δ2k + 2δ3k)

√
1 + 3δ2

3k

1 − δ2
3k

∥
∥X∗ − X(i)

∥
∥

F

+
[√

1 + 3δ2
3k

1 − δ2
3k

√
2(1 + δ3k)

+
(

√
1 + 3δ2

3k

1 − δ3k

+ √
3

)√
1 + δ2k

]

‖ε‖2. (67)

Given δ2k ≤ δ3k , ρ is upper bounded by ρ <4δ3k

√
1+3δ3k

1−δ2
3k

.

Then, 4δ3k

√
1+3δ3k

1−δ2
3k

< 1 ⇔ δ3k < 0.2267.
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A.4 Proof of Theorem 3

Let X ∗ ← Pk(X
∗) be a set of orthonormal, rank-1 matrices

that span the range of X∗. In Algorithm 3, X(i + 1) is the
best rank-k approximation of V (i). Thus:

∥
∥X(i + 1) − V (i)

∥
∥2

F
≤ ∥

∥X∗ − V (i)
∥
∥2

F

⇒ ∥
∥X(i + 1) − X∗∥∥2

F

≤ 2
〈
X(i + 1) − X∗,V (i) − X∗〉. (68)

From Algorithm 3, (i) V (i) ∈ span(Si ), (ii) Qi ∈
span(Si ) and (iii) W (i) ∈ span(Si ). We define
E ← ortho(Si ∪ X ∗) where we observe rank(span(E )) ≤ 4k

and let P E be the orthogonal projection onto the subspace
defined by E .

Since X(i + 1) − X∗ ∈ span(E ) and V (i) − X∗ ∈
span(E ), the following hold true:

X(i + 1) − X∗ = P E
(
X(i + 1) − X∗),

and,

V (i) − X∗ = P E
(
V (i) − X∗).

g(i + 1) ≤
[

b1

(
α(1 + τi) + √

Δ

2

)i+1

+ b2

(
α(1 + τi) − √

Δ

2

)i+1]∥
∥X(0) − X∗∥∥

F

≤
[

(b1 + b2)

(
α(1 + τi) + √

Δ

2

)i+1]

× ∥
∥X(0) − X∗∥∥

F
. (69)

Then, (68) can be written as:

∥
∥X(i + 1) − X∗∥∥2

F

≤ 2
〈

P E
(
X(i + 1) − X∗), P E

(
V (i) − X∗)〉

= 2
〈

P E
(
X(i + 1) − X∗),

P E
(
Qi + μi P Si

A∗A
(
X∗ − Qi

) − X∗)〉

(i)= 2
〈
X(i + 1) − X∗, P E

(
Qi − X∗)

− μi P Si
A∗A[P Si

+ P S ⊥
i
]P E

(
Qi − X∗)〉

= 2
〈
X(i + 1) − X∗,
(
I − μi P Si

A∗AP Si

)
P E

(
Qi − X∗)〉

− 2μi

〈
X(i + 1) − X∗, P Si

A∗AP S ⊥
i

P E
(
Qi − X∗)〉

(ii)≤ 2
∥
∥X(i + 1) − X∗∥∥

F

× ∥
∥
(
I − μi P Si

A∗AP Si

)
P E

(
Qi − X∗)∥∥

F

+ 2μi

∥
∥X(i + 1) − X∗∥∥

F

× ∥
∥P Si

A∗AP S ⊥
i

P E
(
Qi − X∗)∥∥

F
, (70)

where (i) is due to P E (Qi − X∗) := P Si
P E (Qi − X∗) +

P S ⊥
i

P E (Qi − X∗) and (ii) follows from Cauchy-Schwarz

inequality. Since 1
1+δ3k

≤ μi ≤ 1
1−δ3k

, Lemma 4 implies:

λ
(
I − μi P Si

A∗AP Si

) ∈
[

1 − 1 − δ3k

1 + δ3k

,
1 + δ3k

1 − δ3k

− 1

]

≤ 2δ3k

1 − δ3k

,

and thus:

∥
∥
(
I − μi P Si

A∗AP Si

)
P E

(
Qi − X∗)∥∥

F

≤ 2δ3k

1 − δ3k

∥
∥P E

(
Qi − X∗)∥∥

F
.

Furthermore, according to Lemma 5:

∥
∥P Si

A∗AP S ⊥
i

P E
(
Qi − X∗)∥∥

F

≤ δ4k

∥
∥P S ⊥

i
P E

(
Qi − X∗)∥∥

F

since rank(P KQ) ≤ 4k, ∀Q ∈ R
m×n where K ← ortho(E ∪

Si ). Since P S ⊥
i

P E (Qi − X∗) = P X ∗\(Di∪Xi )X
∗ where

Di ← Pk

(
P Q⊥

i
∇f (Qi )

)
,

then:

∥
∥P S ⊥

i
P E

(
Qi − X∗)∥∥

F
= ∥

∥P X ∗\(Di∪Xi )X
∗∥∥

F
≤ (2δ3k

+ 2δ4k)
∥
∥Qi − X∗∥∥

F
, (71)

using Lemma 6. Using the above in (70), we compute:

∥
∥X(i + 1) − X∗∥∥

F

≤
(

4δ3k

1 − δ3k

+ (2δ3k + 2δ4k)
2δ3k

1 − δ3k

)
∥
∥Qi − X∗∥∥

F
.

(72)

Furthermore:

∥
∥Qi − X∗∥∥

F

= ∥
∥X(i) + τi

(
X(i) − X(i − 1)

)∥
∥

F

= ∥
∥(1 + τi)

(
X(i) − X∗) + τi

(
X∗ − X(i − 1)

)∥
∥

F

≤ (1 + τi)
∥
∥X(i) − X∗∥∥

F
+ τi

∥
∥X(i − 1) − X∗∥∥

F
. (73)
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Combining (72) and (73), we get:
∥
∥X(i + 1) − X∗∥∥

F

≤ (1 + τi)

(
4δ3k

1 − δ3k

+ (2δ3k + 2δ4k)
2δ3k

1 − δ3k

)

× ∥
∥X(i) − X∗∥∥

F

+ τi

(
4δ3k

1 − δ3k

+ (2δ3k + 2δ4k)
2δ3k

1 − δ3k

)

× ∥
∥X(i − 1) − X∗∥∥

F
. (74)

Let α := 4δ3k

1−δ3k
+ (2δ3k + 2δ4k)

2δ3k

1−δ3k
and g(i) := ‖X(i +

1) − X∗‖F . Then, (74) defines the following homogeneous
recurrence:

g(i + 1) − α(1 + τi)g(i) + ατig(i − 1) ≤ 0. (75)

Using the method of characteristic roots to solve the above
recurrence, we assume that the homogeneous linear recur-
sion has solution of the form g(i) = ri for r ∈ R. Thus, re-
placing g(i) = ri in (75) and factoring out r(i−2), we form
the following characteristic polynomial:

r2 − α(1 + τi)r − ατi ≤ 0. (76)

Focusing on the worst case where (76) is satisfied with
equality, we compute the roots r1,2 of the quadratic char-
acteristic polynomial as:

r1,2 = α(1 + τi) ± √
Δ

2
, where Δ := α2(1 + τi)

2 + 4ατi.

Then, as a general solution, we combine the above roots with
unknown coefficients b1, b2 to obtain (69). Using the initial

condition g(0) := ‖X(0)−X∗‖F
X(0)=0= ‖X∗‖F = 1, we get

b1 + b2 = 1. Thus, we conclude to the following recurrence:

∥
∥X(i + 1) − X∗∥∥

F
≤

(
α(1 + τi) + √

Δ

2

)i+1

.

A.5 Proof of Lemma 7

Let Dε
i ← P ε

k (P X ⊥
i

∇f (X(i))) and Di ←
Pk(P X ⊥

i
∇f (X(i))). Using Definition 4, the following holds

true:

∥
∥P Dε

i
∇f

(
X(i)

) − ∇f
(
X(i)

)∥
∥2

F

≤ (1 + ε)
∥
∥P Di

∇f
(
X(i)

) − ∇f
(
X(i)

)∥
∥2

F
. (77)

Furthermore, we observe:

∥
∥∇f

(
X(i)

)∥
∥2

F

= ∥
∥∇f

(
X(i)

)∥
∥2

F
⇔ ∥

∥P Dε
i
∇f

(
X(i)

)∥
∥2

F

+ ∥
∥P(Dε

i )⊥∇f
(
X(i)

)∥
∥2

F

= ∥
∥P X ∗\Xi

∇f
(
X(i)

)∥
∥2

F
+ ∥

∥P(X ∗\Xi )
⊥∇f

(
X(i)

)∥
∥2

F
.

(78)

Here, we use the notation defined in the proof of Lemma 6.
Since P Di

∇f (X(i)) is the best rank-k approximation to
∇f (X(i)), we have:

∥
∥P Di

∇f
(
X(i)

) − ∇f
(
X(i)

)∥
∥2

F

≤ ∥
∥P X ∗\Xi

∇f
(
X(i)

) − ∇f
(
X(i)

)∥
∥2

F

⇔ ∥
∥P D⊥

i
∇f

(
X(i)

)∥
∥2

F
≤ ∥

∥P(X ∗\Xi )
⊥∇f

(
X(i)

)∥
∥2

F

⇔ (1 + ε)
∥
∥P D⊥

i
∇f

(
X(i)

)∥
∥2

F

≤ (1 + ε)
∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
, (79)

where rank(span(ortho(X ∗ \ Xi ))) ≤ k. Using (77) in (79),
the following series of inequalities are observed:

∥
∥P(Dε

i )⊥∇f
(
X(i)

)∥
∥2

F

≤ (1 + ε)
∥
∥P D⊥

i
∇f

(
X(i)

)∥
∥2

F

≤ (1 + ε)
∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
. (80)

Now, in (78), we compute the series of inequalities in (81)-
(82).

∥
∥P Dε

i
∇f

(
X(i)

)∥
∥2

F
+ ∥

∥P(Dε
i )⊥∇f

(
X(i)

)∥
∥2

F
= ∥

∥P X ∗\Xi
∇f

(
X(i)

)∥
∥2

F

+ ∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F

(79)⇔ (81)
∥
∥P Dε

i
∇f

(
X(i)

)∥
∥2

F
+ (1 + ε)

∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P X ∗\Xi
∇f

(
X(i)

)∥
∥2

F

+ ∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
⇔

∥
∥PDε

i
∇f

(
X(i)

)∥
∥2

F
+ ε

∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P X ∗\Xi
∇f

(
X(i)

)∥
∥2

F
⇔
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∥
∥P Dε

i
∇f

(
X(i)

)∥
∥2

F
+ ∥

∥P Xi
∇f

(
X(i)

)∥
∥2

F
+ ε

∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P X ∗\Xi
∇f

(
X(i)

)∥
∥2

F
+ ∥

∥P Xi
∇f

(
X(i)

)∥
∥2

F
⇔

∥
∥PSi

∇f
(
X(i)

)∥
∥2

F
+ ε

∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P S ∗
i
∇f

(
X(i)

)∥
∥2

F
⇔

∥
∥P Si\S ∗

i
∇f

(
X(i)

)∥
∥2

F
+ ε

∥
∥P(X ∗\Xi )

⊥∇f
(
X(i)

)∥
∥2

F
≥ ∥

∥P S ∗
i \Si

∇f
(
X(i)

)∥
∥2

F
⇔

∥
∥P Si\S ∗

i
A∗(y − AX(i)

)∥
∥2

F
+ ε

∥
∥P(X ∗\Xi )

⊥A∗(y − AX(i)
)∥
∥2

F
≥ ∥

∥P S ∗
i \Si

A∗(y − AX(i)
)∥
∥2

F
⇔

∥
∥PSi\S ∗

i
A∗(y − AX(i)

)∥
∥

F
+ √

ε
∥
∥P(X ∗\Xi )

⊥A∗(y − AX(i)
)∥
∥

F
≥ ∥

∥P S ∗
i \Si

A∗(y − AX(i)
)∥
∥

F
. (82)

Focusing on ‖P ⊥
X ∗\Xi

A∗(y − AX(i))‖F , we observe:

∥
∥P(X ∗\Xi )

⊥A∗(y − AX(i)
)∥
∥

F

= ∥
∥P(X ∗\Xi )

⊥A∗(AX∗ + ε − AX(i)
)∥
∥

F

≤ ∥
∥P(X ∗\Xi )

⊥A∗A
(
X∗ − X(i)

)∥
∥

F
+ ∥

∥P ⊥
X ∗\Xi

A∗ε
∥
∥

F

≤ ∥
∥A∗A

(
X∗ − X(i)

)∥
∥

F
+ ∥

∥A∗ε
∥
∥

F
≤ 2λ. (83)

Moreover, we know the following hold true from Lem-
ma 6:
∥
∥P Si\S ∗

i
A∗A

(
X∗ − X(i)

) + P Si\S ∗
i
A∗ε

∥
∥

F

≤ 2δ3k

∥
∥X∗ − X(i)

∥
∥

F
+ ∥

∥P Si\S ∗
i
A∗ε

∥
∥

F
(84)

and
∥
∥P S ∗

i \Si
A∗A

(
X∗ − X(i)

) + P S ∗
i \Si

A∗ε
∥
∥

F

≥ ∥
∥P S ∗

i \Si

(
X∗ − X(i)

)∥
∥

F
− 2δ2k

∥
∥X(i) − X∗∥∥

F

− ∥
∥P S ∗

i \Si
A∗ε

∥
∥

F
. (85)

Combining (83)–(85) in (82), we obtain:

∥
∥P S ∗

i \Si
X∗∥∥

F
= ∥

∥P X ∗\Si
X∗∥∥

F

≤ (2δ2k + 2δ3k)
∥
∥X(i) − X∗∥∥

F

+ √
2(1 + δ2k)‖ε‖2 + 2λ

√
ε.

A.6 Proof of Theorem 4

To prove Theorem 4, we combine the following series of
lemmas for each step of Algorithm 1.

Lemma 12 [Error norm reduction via gradient descent] Let
Si ← ortho(Xi ∪ Dε

i ) be a set of orthonormal, rank-1 matri-
ces that span a rank-2k subspace in R

m×n. Then (86) holds.

∥
∥V (i) − X∗∥∥

F
≤

[(

1 + δ3k

1 − δ2k

)

(2δ2k + 2δ3k + δk) + 2δ2k

1 − δ2k

]
∥
∥X(i) − X∗∥∥

F

+
[(

1 + δ3k

1 − δ2k

)√
2(1 + δ2k) +

√
1 + δ2k

1 − δ2k

]

‖ε‖2 +
(

1 + δ3k

1 − δ2k

)

2λ
√

ε. (86)

Proof We observe the following:

∥
∥V (i) − X∗∥∥2

F
= ∥

∥P Si

(
V (i) − X∗)∥∥2

F

+ ∥
∥P S ⊥

i

(
V (i) − X∗)∥∥2

F
. (87)

The following equations hold true:

∥
∥P S ⊥

i

(
V (i) − X∗)∥∥2

F
= ∥

∥P S ⊥
i
X∗∥∥2

F
= ∥

∥P X ∗\Si
X∗∥∥2

F
.

Furthermore, we compute:
∥
∥P Si

(
V (i) − X∗)∥∥

F

=
∥
∥
∥
∥P Si

(

X(i) − μi

2
P Si

∇f
(
X(i)

) − X∗
)∥

∥
∥
∥

F

= ∥
∥P Si

(
X(i) − X∗) − μi P Si

A∗A
(
X(i) − X∗)

+ μi P Si
A∗ε

∥
∥

F

≤ ∥
∥
(
I − μi P Si

A∗AP Si
P Si

(
X(i) − X∗))∥∥

F

+ μi

∥
∥P Si

A∗AP S ⊥
i

(
X(i) − X∗)∥∥

F

+ μi

∥
∥P Si

A∗ε
∥
∥

F

(i)≤ 2δ2k

1 − δ2k

∥
∥P Si

(
X(i) − X∗)∥∥

F

+ δ3k

1 − δ2k

∥
∥P S ⊥

i

(
X(i) − X∗)∥∥

F
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+
√

1 + δ2k

1 − δ2k

‖ε‖2, (88)

where (i) is due to Lemmas 2, 4, 5 and 1
1+δ2k

≤ μi ≤ 1
1−δ2k

.
Using the subadditivity property of the square root in

(87), (88), Lemma 7 and the fact that ‖P Si
(X(i)−X∗)‖F ≤

‖X(i) − X∗‖F , we obtain:
∥
∥V (i) − X∗∥∥

F

≤ ∥
∥P Si

(
V (i) − X∗)∥∥

F
+ ∥

∥P S ⊥
i

(
V (i) − X∗)∥∥

F

≤ ρ̂
∥
∥X(i) − X∗∥∥

F

+
(

1 + δ3k

1 − δ2k

)√
ε
∥
∥P ⊥

X ∗\Xi
A∗ε

∥
∥

F

+
[(

1 + δ3k

1 − δ2k

)√
2(1 + δ2k) +

√
1 + δ2k

1 − δ2k

]

‖ε‖2,

(89)

where ρ̂ := (1 + δ3k

1−δ2k
)(2δ2k + 2δ3k) + 2δ2k

1−δ2k
. �

We exploit Lemma 8 to obtain the following inequalities:
∥
∥Ŵ i − X∗∥∥

F
= ∥

∥Ŵ i − V (i) + V (i) − X∗∥∥
F

≤ ∥
∥Ŵ i − V (i)

∥
∥

F
+ ∥

∥V (i) − X∗∥∥
F

≤ (1 + ε)
∥
∥W (i) − V (i)

∥
∥

F
+ ∥

∥V (i) − X∗∥∥
F

≤ (2 + ε)
∥
∥V (i) − X∗∥∥

F
, (90)

where the last inequality holds since W (i) is the best rank-
k matrix estimate of V (i) and, thus, ‖W (i) − V (i)‖F ≤
‖V (i) − X∗‖F .

Following similar motions for steps 6 and 7 in Matrix
ALPS I, we obtain:
∥
∥X(i + 1) − X∗∥∥

F

≤
(

1 + 2δk

1 − δk

+ δ2k

1 − δk

)
∥
∥Ŵ i − X∗∥∥

F

+
√

1 + δk

1 − δk

‖ε‖2. (91)

Combining (91), (90) and (89), we obtain the desired in-
equality.
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