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Abstract Hypercomplex Fourier transforms are increas-
ingly used in signal processing for the analysis of higher-
dimensional signals such as color images. A main stumbling
block for further applications, in particular concerning filter
design in the Fourier domain, is the lack of a proper con-
volution theorem. The present paper develops and studies
two conceptually new ways to define convolution products
for such transforms. As a by-product, convolution theorems
are obtained that will enable the development and fast im-
plementation of new filters for quaternionic signals and sys-
tems, as well as for their higher dimensional counterparts.
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1 Introduction

Recently, there has been an increased interest in applying
hypercomplex Fourier transforms (FTs) in various aspects
of signal processing where higher dimensional or vector
signals are used, such as color image processing [29, 37],
flow visualization [25, 26], and even spoken word recog-
nition [4]. The main idea behind these applications is the
representation of a signal (say, a color image) as a pure
quaternion or as an element of a suitable Clifford algebra
(see Sect. 2 for a precise definition). This representation is
subsequently analysed using a generalisation of the classical
Fourier transform to a hypercomplex FT, which takes into
account the multi-dimensional and multi-component nature
of the signal under consideration. This stands in stark con-
trast to a component based classical analysis, sometimes
also called marginal analysis. Successful further develop-
ments of the hypercomplex approach include the design of a
color edge filter [42], as well as other filters [45], construc-
tion of FFT methods to compute hypercomplex FTs [40],
etc.

The main issue that hinders further development of ap-
plications (and in particular of filter design not based on
ad hoc assumptions or ideas) is the lack of a suitable con-
volution theorem. Indeed, in [10] it was shown that hyper-
complex FTs such as the quaternionic FT do not interact
nicely with the classical convolution product, but rather lead
to very complicated expressions in the Fourier domain. This
means that, up to now, no filter design was possible in the
Fourier domain, and hence that no fast implementations as
multiplication operators have been obtained so far.

The main aim of the present paper is to tackle that prob-
lem. We will investigate, on theoretical grounds, the differ-
ent possible convolution products that can be defined for a
wide class of hypercomplex FTs. It turns out that two con-
ceptual ways exist to achieve this, both having a left and

mailto:bujack@informatik.uni-leipzig.de
mailto:scheuermann@informatik.uni-leipzig.de
mailto:Hendrik.DeBie@UGent.be
mailto:Nele.DeSchepper@UGent.be


J Math Imaging Vis (2014) 48:606–624 607

right version. Before explaining these two definitions, let us
recall that in the recent literature three different approaches
to hypercomplex FTs have been considered. We can identify
them as follows

– A: Eigenfunction approach
– B: Generalized roots of −1 approach
– C: Characters of Spin group approach

The first approach is mainly studied in [6–8, 15–21], and
aims at constructing new hypercomplex transforms by pre-
scribing eigenvalues to a suitable basis of a Clifford-algebra
valued L2 space. The choice of suitable eigenvalues implies
that there is a huge design freedom in this approach. The
transforms of this class also have a deep connection with
quantum mechanics and exhibit a very particular underly-
ing algebraic structure, namely that of the Lie superalgebra
osp(1|2). For a recent review from this point of view, we
refer the reader to [13].

The second approach is mainly advocated in [9, 10] and
boils down to replacing the imaginary unit i in the expo-
nent of the ordinary Fourier transform by a generalized root
of −1, belonging to a Clifford algebra (see e.g. [32, 34] for
a detailed study of such roots). It encompasses several of
the hypercomplex FTs often used in applications, such as
the quaternionic Fourier transform [29], the Sommen-Bülow
transform [11, 46], the Clifford Fourier transform (written
without hyphen) introduced in [26] and further extended
in [1, 33], and the cylindrical Fourier transform [8]. Again
this approach exhibits a huge design freedom, as the set of
roots of −1 is very big and as the roots can in principle be
chosen independently for each application.

Finally, a third approach is given in [2, 3], and uses
the notion of character (or group morphism) to generalize
the ordinary Fourier transform to the setting of the group
Spin(3), resp. Spin(5) for direct application in grey scale,
resp. color image processing. Although the conceptual ideas
of this third approach are very different from the second ap-
proach B, the resulting transforms can nevertheless be writ-
ten as special cases of the transforms in B. For that reason
we will only focus on the first two approaches in the se-
quel.

The classical FT and the classical convolution product
will serve as a guide to define the generalized convolution
products. Recall that the classical convolution product for
two functions f and g is defined by

f ∗ g(x) :=
∫

Rm

f (y)τyg(x)dy,

with τyg(x) := g(x −y). The classical FT, defined over R
m,

is given by

F (f )(y) := (2π)−
m
2

∫
Rm

e−i〈x,y〉f (x)dx

for f ∈ L1(R
m), where 〈x, y〉 = ∑m

j=1 xjyj is the standard
inner product. It interacts nicely with the convolution prod-
uct. Namely, one has

F (f ∗ g) = (2π)m/2 F (f )F (g). (1)

A first possibility to generalize the convolution product is
hence obtained by taking the inverse FT of the right-hand
side of (1) as a definition. This idea was first explored by
Mustard for the fractional Fourier transform, see [38].

Another way to generalize the convolution product is ob-
tained by introducing a generalization of the (geometric)
translation operator τy . This is also the strategy which is e.g.
used for the Dunkl transform (see [41, 49]). Let us first il-
lustrate the concept in some more detail for the ordinary FT.
First we compute the FT of the translation over z of a func-
tion f :

F (τzf )(y) = (2π)−
m
2

∫
Rm

e−i〈x,y〉f (x − z)dx

= e−i〈z,y〉(2π)−
m
2

∫
Rm

e−i〈x,y〉f (x)dx

= e−i〈z,y〉F (f )(y).

This means that, formally, the ordinary translation is recov-
ered via

τzf (u) = F −1(e−i〈z,y〉F (f )(y)
)
. (2)

Here, the inverse FT acts on the y variable and yields the u

variable.
Now let K(x,y) be the integral kernel of a hypercomplex

FT FK and K̃(x, y) be the kernel of its inverse F −1
K . Upon

replacing e−i〈z,y〉 by the kernel of the hypercomplex FT un-
der consideration in formula (2), one obtains the definition
of a generalized translation operator:

τK
y f (x) =

∫
Rm

K̃(ξ, x)K(y, ξ)FK(f )(ξ)dξ. (3)

Note that this definition immediately reduces to geometric
translation (i.e. formula (2)) when K is the kernel of the
classical FT.

We can hence summarize the four possible definitions for
a generalized convolution product, related to a hypercom-
plex FT FK :

– The first type of definition is inspired by convolution for
the fractional Fourier transform. It is given by

f ∗1 g(x) := F −1
K

(
FK(f )FK(g)

)
(x)

or

f ∗2 g(x) := F −1
K

(
FK(g)FK(f )

)
(x).
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These two versions in general do not coincide due to the
non-commutativity of the Clifford algebra. However, one
immediately observes that f ∗1 g = g ∗2 f . For symme-
try reasons it is nevertheless convenient to introduce both
versions.

This definition is clearly interesting as it forces a con-
volution theorem to hold for the hypercomplex FT under
consideration. As we will see in the sequel, it is possible
to derive explicit formulas for these new convolutions in
terms of classical convolutions (see e.g. the subsequent
Theorem 9).

– Using the generalized translation operator τK on the other
hand, one can also define

f ∗3 g(x) :=
∫

Rm

[
τK
y f (x)

]
g(y)dy

or

f ∗4 g(x) :=
∫

Rm

f (y)
[
τK
y g(x)

]
dy.

Both definitions are again different due to the non-
commutativity of the Clifford algebra. Moreover, in this
case there is no immediate relation expressing f ∗3 g in
terms of f ∗4 g or vice versa.

This definition is interesting for a different reason:
it allows to obtain inversion theorems for hypercomplex
FTs in a way similar to Theorem 8.4 in [21].

For hypercomplex FTs, so far only definition f ∗3 g has
been applied, in only one particular case, see [21]. In the
present paper, we will perform a detailed study of the four
different products mentioned above, for transforms belong-
ing to approach A and B. In both cases, we will intro-
duce specific notations to distinguish between the various
definitions. An overview of these notations and the results
obtained in the paper is given in Table 1. Note that the
methods developed in the paper can equally be extended
to other hypercomplex FTs that have not been designed
yet.

The paper is organized as follows. After some prelim-
inaries on Clifford algebras and analysis, we introduce in
Sect. 3 the most general hypercomplex FT that can be con-
sidered within the approach A. Its integral kernel takes the
form of an infinite series in terms of Gegenbauer polynomi-
als and Bessel functions. We discuss several examples and
calculate the action of the associated transform on a basis of
the relevant function space. We also construct the inverse of
this general transform. In Sect. 3.2 we define the four types
of convolution for this general transform, and study their ba-
sic properties. Next, in Sect. 3.3, we compute the action of
the generalized translation operator on the special class of
radial functions and prove that, for this special set of func-
tions, the new translation coincides in many cases with ordi-
nary translation. The proof of this result is technical, and the

reader may wish to skip it during a first reading of the paper.
In Sect. 4, we turn our attention to the transforms belonging
to approach B. We give the general definition and compute
the eigenvalues and eigenfunctions (thus establishing a con-
nection with the techniques used in approach A). Then we
revisit the different convolution definitions in this context.
Both in the case of Mustard convolution (Sect. 4.2) and in
the generalized translation operator approach (Sect. 4.3), we
can now obtain very explicit formulas for the new convo-
lutions, which can moreover easily be implemented in soft-
ware packages. In Sect. 4.4 we restate our results for the spe-
cial case of the quaternionic Fourier transform (qFT). This is
the most well-known hypercomplex FT used in engineering,
and hence deserves a separate treatment. We end the paper
with Table 1 where the results are summarized for the two
approaches A and B.

2 Preliminaries on Clifford Algebras and Analysis

The Clifford algebra Cl0,m over R
m is the algebra generated

by ei , i = 1, . . . ,m, under the relations

eiej + ej ei = 0, i �= j

e2
i = −1.

This algebra has dimension 2m as a vector space over R. It
can be decomposed as Cl0,m = ⊕m

k=0 Clk0,m with Clk0,m the
space of k-vectors defined by

Clk0,m := span{ei1 · · · eik , i1 < · · · < ik}.
In the applied literature, Clifford algebras are usually called
geometric algebras. For a detailed exposition from this point
of view, including geometric interpretations and applica-
tions in computer vision, we refer the reader to [24].

In the sequel, we will always consider functions f taking
values in Cl0,m, unless explicitly mentioned. Such functions
can be decomposed as

f = f0 +
m∑

i=1

eifi +
∑
i<j

eiej fij + · · · + e1 · · · emf1···m

with f0, fi, fij , . . . , f1···m all real- or complex-valued func-
tions on R

m.
The Dirac operator is given by ∂x := ∑m

j=1 ∂xj
ej and the

vector variable by x := ∑m
j=1 xj ej . The square of the Dirac

operator equals, up to a minus sign, the Laplace operator
in R

m: ∂2
x = −�. For more information regarding Clifford

analysis, we refer the reader to [5, 22].
Denote by P the space of polynomials taking values in

Cl0,m, i.e.

P := R[x1, . . . , xm] ⊗ Cl0,m.
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The space of homogeneous polynomials of degree k is then
denoted by Pk . The space Mk := ker ∂x ∩ Pk is called the
space of spherical monogenics of degree k.

Next we define the inner product and the wedge product
of two vectors x and y

〈x, y〉 :=
m∑

j=1

xjyj

x ∧ y :=
∑
j<k

ej ek(xj yk − xkyj ).

Remark 1 From now on, we will use the following con-
vention for denoting variables, resp. vectors. When x =
(x1, . . . , xm) ∈ R

m is used as a variable we will not under-
line it (in order not to overload notations). When it is used as
a vector x := ∑m

j=1 xj ej involving Clifford multiplication,
we use the underlined notation.

We introduce two different bases for the space S(Rm) ⊗
Cl0,m, where S(Rm) denotes the Schwartz space. Define the
functions ψj,k,� by

ψ2j,k,� := L
m
2 +k−1
j

(|x|2)M(�)
k e−|x|2/2,

ψ2j+1,k,� := L
m
2 +k

j

(|x|2)xM
(�)
k e−|x|2/2,

(4)

where j, k ∈ N, {M(�)
k ∈ Mk : � = 1, . . . ,dim Mk} is a ba-

sis for Mk , and Lα
j are the Laguerre polynomials. The set

{ψj,k,�} forms a basis of S(Rm) ⊗ Cl0,m, see [47]. This ba-
sis is called the Clifford-Hermite basis or the spherical basis.
Alternatively, define the one-dimensional Hermite functions
(see e.g. [48]) by

ψk(x) :=
(

x − d

dx

)k

e−x2/2

= Hk(x)e−x2/2

for k ∈ N. Then the set {ψj1,j2,...,jm} with

ψj1,j2,...,jm = ψj1(x1)ψj2(x2) · · ·ψjm(xm)

and j1, . . . , jm ∈ N is also a basis of S(Rm) ⊗ Cl0,m, called
the tensor product or Cartesian basis. Both bases interact
nicely with the ordinary FT. One has

F (ψj,k,�) = (−i)j+kψj,k,� (5)

F (ψj1,j2,...,jm) = (−i)j1+···+jmψj1,j2,...,jm . (6)

It is interesting to compare this result with the subsequent
Theorems 1 and 7. For more information about these two
bases, we refer the reader to [12].

3 Convolution Products in Approach A

3.1 Definition of the Transforms, Eigenfunctions,
Eigenvalues and Inverse

In this section we consider a general kernel of the following
form

K(x,y) = (
A(w, z̃) + (x ∧ y)B(w, z̃)

)

× e
i
2 (cotα)(|x|2+|y|2) (7)

with

A(w, z̃) =
+∞∑
k=0

αk(z̃)
−λJk+λ(z̃)C

λ
k (w)

B(w, z̃) =
+∞∑
k=1

βk(z̃)
−λ−1Jk+λ(z̃)C

λ+1
k−1 (w)

and αk,βk ∈ C, z̃ = (|x||y|)/ sinα, w = 〈x, y〉/(|x||y|), λ =
(m − 2)/2 and α ∈ [−π,π]. Here, Jν is the Bessel function
and Cλ

k the Gegenbauer polynomial. We exclude the cases
where α = 0 or α = ±π .

The integral transform associated with this kernel is de-
fined by

FK(f )(y) = ρα,m

∫
Rm

K(x, y)f (x)dx (8)

with

ρα,m = (
π

(
1 − e−2iα

))−m/2

and with dx the standard Lebesgue measure on R
m. The

precise form of the kernel in formula (7) is inspired by the
results obtained in [16]. In particular, it encompasses all pre-
viously studied kernels in the eigenfunction approach A.

Remark 2 In order to ensure good analytic behavior of the
transform (8), we additionally demand that both A(w, z̃) and
B(w, z̃) satisfy polynomial bounds of the following type

∣∣A(w, z̃)
∣∣ ≤ c

(
1 + |x|)j (1 + |y|)j

,

∣∣B(w, z̃)
∣∣ ≤ c

(
1 + |x|)j (

1 + |y|)j
,

with j ∈ N and c a constant.
This is the case for all subsequent examples, and allows

us to prove that the transform (8) yields a continuous map
on S(Rm) ⊗ Cl0,m, by adaptation of the proof in [16].

3.1.1 Some Examples

In the special case where α = π/2, the kernel takes the form

K(x,y) = A(w,z) + (x ∧ y)B(w, z) (9)
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with

A(w,z) =
+∞∑
k=0

αkz
−λJk+λ(z)C

λ
k (w)

B(w, z) =
+∞∑
k=1

βkz
−λ−1Jk+λ(z)C

λ+1
k−1 (w)

and z = |x||y|, w = 〈x, y〉/(|x||y|), λ = (m−2)/2. The cor-
responding integral transform is given by

FK(f )(y) = ρπ
2 ,m

∫
Rm

K(x, y)f (x)dx

where ρπ
2 ,m = (2π)−m/2.

Note that the kernel of the classical Fourier transform F ,
which can equally be expressed as the operator exponential

e
iπm

4 e
iπ
4 (�−|x|2), takes the form (9) with

αk = 2λΓ (λ)(k + λ)(−i)k

βk = 0.

Also the Clifford-Fourier transform (see [6–8, 21]), a gener-
alization of the classical Fourier transform in the framework
of Clifford analysis, takes this form. It is defined by the fol-
lowing exponential operator

F± := e
iπm

4 e
iπ
4 (�−|x|2∓2Γ ),

with

Γ := −
∑
j<k

ej ek(xj ∂xk
− xk∂xj

).

In case of the Clifford-Fourier transform F−, the coeffi-
cients αk and βk in the kernel (9) take the form:

αk = 2λ−1Γ (λ + 1)
(
i2λ+2 + (−1)k

)

− 2λ−1Γ (λ)(k + λ)
(
i2λ+2 − (−1)k

)

βk = −2λΓ (λ + 1)
(
i2λ+2 + (−1)k

)
.

For the transform F+, similar expressions hold. Moreover,
in [15], an entire class of kernels of the form (9), for par-
ticular values of the coefficients αk and βk , was determined.
They yield new integral transforms that have the same calcu-
lus properties (i.e. interaction with the Dirac operator) as the
original Clifford-Fourier transform, but with different spec-
trum.

Also for general α, concrete examples have been studied.
The fractional Fourier transform (see [39]) is a generaliza-
tion of the classical Fourier transform. It is usually defined
using the operator expression

Fα = e
iαm

2 e
iα
2 (�−|x|2), α ∈ [−π,π].

Recently, a fractional version of the Clifford-Fourier trans-
form was introduced (see [16]). It is defined by the following
exponential operator

Fα,β = e
iαm

2 eiβΓ e
iα
2 (�−|x|2), α,β ∈ [−π,π].

The integral kernel of this transform takes the form (7) with

αk = 2λ−1Γ (λ)(k + λ)i−k
(
eiβ(k+2λ) + e−iβk

)

− 2λ−1Γ (λ + 1)i−k
(
eiβ(k+2λ) − e−iβk

)

βk = 2λΓ (λ + 1)

sinα
i−k

(
eiβ(k+2λ) − e−iβk

)
.

3.1.2 Eigenvalues

Now we calculate the action of the transform (8) on the basis
(4) of S(Rm) ⊗ Cl0,m. We start with the following auxiliary
result, expressing the radial behavior of the integral trans-
form.

Proposition 1 Let Mk ∈ Mk be a spherical monogenic of
degree k. Let f (x) = f0(|x|) be a real-valued radial func-
tion in S(Rm). Further, put ξ = x/|x| and η = y/|y|. Then
one has, putting β0 = 0,

FK

(
f (r)Mk

)
(y)

= cm

(
λ

λ + k
αk − sinα

k

2(k + λ)
βk

)
e

i
2 (cotα)|y|2Mk(η)

×
∫ +∞

0
rm+k−1f0(r)(z̃)

−λJk+λ(z̃)e
i
2 (cotα)r2

dr

and

FK

(
f (r)xMk

)
(y)

= cm

(
λ

λ + k + 1
αk+1 + sinα

k + 1 + 2λ

2(k + 1 + λ)
βk+1

)

× e
i
2 (cotα)|y|2ηMk(η)

×
∫ +∞

0
rm+kf0(r)(z̃)

−λJk+1+λ(z̃)e
i
2 (cotα)r2

dr

with z̃ = (r|y|)/ sinα, λ = (m − 2)/2 and

cm = 2

Γ (m
2 )(1 − e−2iα)m/2

.

Proof The proof goes along similar lines as the proof of
Theorem 6.4 in [21]. �

We then have the following theorem.
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Theorem 1 One has, putting β0 = 0,

FK(ψ2j,k,�)

= 2−λ

Γ (λ + 1)

(
λ

λ + k
αk − sinα

k

2(λ + k)
βk

)

× ike−iα(k+2j)ψ2j,k,�

and

FK(ψ2j+1,k,�)

= 2−λ

Γ (λ + 1)

(
λ

λ + k + 1
αk+1 + sinα

k + 1 + 2λ

2(λ + k + 1)
βk+1

)

× ik+1e−iα(k+2j+1)ψ2j+1,k,�.

Proof This follows from the explicit expression (4) of the
basis and the identity (see [31, p. 847, formula 7.421, num-
ber 4 with α = 1]):

∫ +∞

0
xν+1e−βx2

Lν
n

(
x2)Jν(xy)dx

= 2−ν−1β−ν−n−1(β − 1)nyνe
− y2

4β Lν
n

(
y2

4β(1 − β)

)
. �

Remark 3 Theorem 1 is very important; it allows us to de-
sign a hypercomplex Fourier transform FK by prescribing
the eigenvalues on the basis {ψj,k,�} via

FK(ψ2j,k,�) = λke
−iα2jψ2j,k,�

FK(ψ2j+1,k,�) = μke
−iα(2j+1)ψ2j+1,k,�

for any set of numbers λk,μk ∈ C. Indeed, it suffices to
solve the system of equations

λk = 2−λ

Γ (λ + 1)

(
λ

λ + k
αk − sinα

k

2(λ + k)
βk

)
ike−iαk

μk =
(

λ

λ + k + 1
αk+1 + sinα

k + 1 + 2λ

2(λ + k + 1)
βk+1

)

× 2−λ

Γ (λ + 1)
ik+1e−iαk

to determine the integral kernel K(x,y) in terms of the co-
efficients αk and βk .

3.1.3 Inverse Transform

In order to construct the inverse of the general transform
FK on the basis {ψj,k,�} we consider the following integral
transform:

F ∗
K(f )(y) = ρ−α,m

∫
Rm

K∗(x, y)f (x)dx,

where the kernel is given by

K∗(x, y) = (
A∗(w, z̃) + (x ∧ y)B∗(w, z̃)

)

× e− i
2 (cotα)(|x|2+|y|2)

with

A∗(w, z̃) =
+∞∑
k=0

(−1)kγk(z̃)
−λJk+λ(z̃)C

λ
k (w)

B∗(w, z̃) =
+∞∑
k=1

(−1)k+1δk(z̃)
−λ−1Jk+λ(z̃)C

λ+1
k−1 (w)

and γk, δk ∈ C, z̃ = (|x||y|)/ sinα, w = 〈x, y〉/(|x||y|), λ =
(m − 2)/2.

Similarly as for the transform FK , we can consecutively
calculate the radial behavior of the transform F ∗

K and deter-
mine its action on the basis {ψj,k,�}. This yields the follow-
ing result.

Theorem 2 One has, putting δ0 = 0,

F ∗
K(ψ2j,k,�)

= 2−λ

Γ (λ + 1)

(
λ

λ + k
γk + sinα

k

2(λ + k)
δk

)

× ikeiα(k+2j)ψ2j,k,�

and

F ∗
K(ψ2j+1,k,�)

= 2−λ

Γ (λ + 1)

(
λ

λ + k + 1
γk+1 − sinα

k + 1 + 2λ

2(λ + k + 1)
δk+1

)

× ik+1eiα(k+2j+1)ψ2j+1,k,�.

Proof Similar to the proof of Theorem 1. �

Combining Theorems 1 and 2, we are now able to con-
struct the inverse of the general transform FK on the basis
{ψj,k,�}.

Theorem 3 The inverse of FK on the basis {ψj,k,�} is given
by

F −1
K (f )(y) = ρ−α,m

∫
Rm

K̃(x, y)f (x)dx,

with

K̃(x, y) = (
Ã(w, z̃) + (x ∧ y)B̃(w, z̃)

)

× e− i
2 (cotα)(|x|2+|y|2)
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where

Ã(w, z̃) =
+∞∑
k=0

1

Nλ
k

(αk + βk sinα)(z̃)−λJk+λ(z̃)C
λ
k (w)

B̃(w, z̃) = −
+∞∑
k=1

1

Nλ
k

βk(z̃)
−λ−1Jk+λ(z̃)C

λ+1
k−1 (w),

and

Nλ
k = 1

22λ(Γ (λ + 1))2

(
λ

λ + k
αk − sinα

k

2(λ + k)
βk

)

×
(

λ

λ + k
αk + sinα

k + 2λ

2(λ + k)
βk

)
.

Proof Put K̃(x, y) = (Ã(w, z̃) + (x ∧ y)B̃(w, z̃)) ×
e− i

2 (cotα)(|x|2+|y|2) where

Ã(w, z̃) =
+∞∑
k=0

(−1)kγk(z̃)
−λJk+λ(z̃)C

λ
k (w)

B̃(w, z̃) =
+∞∑
k=1

(−1)k+1δk(z̃)
−λ−1Jk+λ(z̃)C

λ+1
k−1 (w)

and with γk, δk ∈ C. We need to have that

F −1
K

(
FK(f )

) = FK

(
F −1

K (f )
) = f.

Using Theorems 1 and 2, this condition is equivalent with
the system of equations (k = 0,1, . . .)

(
λ

λ + k
αk − sinα

k

2(λ + k)
βk

)

×
(

λ

λ + k
γk + sinα

k

2(λ + k)
δk

)

= (−1)k
(
Γ (λ + 1)

)222λ

and

(
λ

λ + k
αk + sinα

k + 2λ

2(λ + k)
βk

)

×
(

λ

λ + k
γk − sinα

k + 2λ

2(λ + k)
δk

)

= (−1)k
(
Γ (λ + 1)

)222λ.

Solving these two equations for γk and δk then yields the
statement of the theorem. �

3.2 Four Types of Generalized Convolution

3.2.1 Definitions Based on an Idea of Mustard

The definitions of the first two types of convolutions are
based on the observation that in the classical case the fol-
lowing interaction between the convolution and the Fourier
transform holds:

F (f ∗ g) = (2π)m/2 F (f )F (g).

In our case, this leads to the following:

Definition 1 For f,g ∈ S(Rm) ⊗ Cl0,m, the generalized
convolution f ∗C,L g is defined for x ∈ R

m by

(f ∗C,L g)(x) := ρ−1
α,mF −1

K

(
FK(f )FK(g)

)
(x).

Similarly, the generalized convolution f ∗C,R g takes the
form

(f ∗C,R g)(x) := ρ−1
α,mF −1

K

(
FK(g)FK(f )

)
(x).

Note that, as already mentioned in the introduction,
f ∗C,R g = g ∗C,L f .

Taking into account the integral expression for FK and
its inverse F −1

K , see formula (8) and Theorem 3, we obtain
the following explicit formulas.

Proposition 2 The generalized convolutions f ∗C,L g and
f ∗C,R g take the following explicit form:

(f ∗C,L g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u, x)

× K(t,u)f (t)K(y,u)g(y)dtdydu

and

(f ∗C,R g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u, x)

× K(y,u)g(y)K(t, u)f (t)dtdudy,

with

cα,m = ρα,mρ−α,m

= (
π

(
1 − e2iα

))−m/2(
π

(
1 − e−2iα

))−m/2

= (2π)−m| sinα|−m.

3.2.2 Definitions Using the Generalized Translation
Operator

We first define a generalized translation operator related to
the integral transform FK defined in Sect. 3.1.
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Definition 2 Let f ∈ S(Rm) ⊗ Cl0,m. For y ∈ R
m the gen-

eralized translation operator f −→ τK
y f is defined by

FK

(
τK
y f

)
(x) = K(y,x)FK(f )(x), x ∈ R

m.

It can be expressed, by the inverse of FK (see Sect. 3.1.3),
as an integral operator

τK
y f (x) = ρ−α,m

∫
Rm

K̃(ξ, x)K(y, ξ)FK(f )(ξ)dξ. (10)

Using this generalized translation, we can again define
two types of convolution for functions with values in the
Clifford algebra.

Definition 3 For f,g ∈ S(Rm) ⊗ Cl0,m, the generalized
convolution f ∗L g, resp. f ∗R g, is defined for x ∈ R

m by

(f ∗L g)(x) :=
∫

Rm

[
τK
y f (x)

]
g(y)dy

resp.

(f ∗R g)(x) :=
∫

Rm

f (y)
[
τK
y g(x)

]
dy.

Using the integral expression for the generalized transla-
tion operator (see (10)):

τK
y f (x) = cα,m

∫
Rm

∫
Rm

K̃(u, x)K(y,u)K(t, u)f (t)dtdu,

we obtain the explicit formulas for the generalized convolu-
tions introduced above.

Proposition 3 The generalized convolutions f ∗L g and
f ∗R g take the following explicit form:

(f ∗L g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u, x)

× K(y,u)K(t, u)f (t)g(y)dtdudy

and

(f ∗R g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

f (t)K̃(u, x)

× K(t,u)K(y,u)g(y)dydudt.

3.2.3 Connection Between the Four Types of Convolution
and Further Properties

For scalar functions the four types of convolution defined in
the previous subsections are strongly related.

Proposition 4 Let f,g ∈ S(Rm) be scalar functions. Then
one has

(i) (f ∗C,L g)(x) = (f ∗R g)(x)

(ii) (f ∗C,R g)(x) = (f ∗L g)(x)

(iii) (f ∗L g)(x) = (g ∗R f )(x)

(iv) (f ∗C,L g)(x) = (g ∗C,R f )(x).

Proof These relations follow immediately from the explicit
formulas of the convolutions (see Propositions 2 and 3). �

The following proposition quantifies the difference be-
tween the left and right versions of the generalized convolu-
tions.

Proposition 5 Let f,g ∈ S(Rm) be scalar functions. Then
one has

(f ∗L g)(x) − (f ∗R g)(x)

= (f ∗C,R g)(x) − (f ∗C,L g)(x)

= cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u, x)
[
K(y,u),K(t, u)

]

× f (t)g(y)dtdudy,

where the commutator of K(y,u) and K(t,u) takes the form

[
K(y,u),K(t, u)

] = B(w1, z̃1)B(w2, z̃2)

× e
i
2 cotα(|y|2+|t |2+2|u|2)

× (
(y ∧ u)(t ∧ u) − (t ∧ u)(y ∧ u)

)

with z̃1 = (|y||u|)/ sinα, z̃2 = (|t ||u|)/ sinα, w1 = 〈ξ1, η1〉,
w2 = 〈ξ2, η1〉 where y = |y|ξ1, u = |u|η1and t = |t |ξ2.

From the definition of the convolutions f ∗C,L g and
f ∗C,R g we immediately obtain the following result.

Theorem 4 For f,g ∈ S(Rm) ⊗ Cl0,m, one has

FK(f ∗C,L g) = ρ−1
α,mFK(f )FK(g)

and

FK(f ∗C,R g) = ρ−1
α,mFK(g)FK(f ).

Taking into account Proposition 4 we obtain in case of
scalar functions a similar result for the convolutions f ∗L g

and f ∗R g.

Proposition 6 For f,g ∈ S(Rm) scalar functions, one has

FK(f ∗L g) = ρ−1
α,mFK(g)FK(f )

and

FK(f ∗R g) = ρ−1
α,mFK(f )FK(g).
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3.3 Generalized Translation of Radial Functions

The generalized translation defined in formula (10) no
longer equals geometric translation. However, in the special
case when we compute the translation of a radial function
and when α = π/2, we still find that generalized translation
equals geometric translation. That is the main result we will
obtain in this section. As a consequence, we will be able to
give more results on the new convolution products when one
of the functions is radial.

The key ingredient we need is a compact formula for the
integral over the unit sphere∫

Sm−1
K̃(rη, x)K(y, rη)dω(η)

where
∫

Sm−1 dω(η) = 1. This is derived using the series rep-
resentation of the kernel function and some lemmas which
are proven in [21]. We state them again for the convenience
of the reader.

Lemma 1 For k, � ∈ N, λ = (m − 2)/2 and x′, y′ ∈ S
m−1,

one has∫
Sm−1

(
y′ ∧ η

)
Cλ+1

k

(〈
η,y′〉)Cλ

�

(〈
η,x′〉)dω(η)

= − λ

k + 1 + λ
δ�−1,k

(
x′ ∧ y′)Cλ+1

k

(〈
x′, y′〉).

Lemma 2 For k, � ∈ N, λ = (m − 2)/2 and x′, y′ ∈ S
m−1,

one has∫
Sm−1

(
η ∧ x′)Cλ+1

k

(〈
η,x′〉)(y′ ∧ η

)
Cλ+1

�

(〈
η,y′〉)dω(η)

= δk,�

(k + 1)(k + 1 + 2λ)

4λ(k + λ + 1)
Cλ

k+1

(〈
x′, y′〉)

− δk,�

λ

k + λ + 1

(
x′ ∧ y′)Cλ+1

k

(〈
x′, y′〉).

We can now show the following result.

Theorem 5 For x, y ∈ R
m and r ∈ R+, one has

∫
Sm−1

K̃(rη, x)K(y, rη)dω(η)

= 2λΓ (λ + 1)u−λJλ(u)e− i
2 (cotα)(|x|2−|y|2)

with u = r
sinα

√|x|2 + |y|2 − 2〈x, y〉 = r
sinα

|x − y| and λ =
(m − 2)/2.

Proof First we slightly rewrite K(x,y) (see Sect. 3.1) and

K̃(x, y) (see Theorem 3) as

K(x,y) = (
Fλ(w, z̃) + (

x′ ∧ y′)Gλ(w, z̃)
)

× e
i
2 (cotα)(|x|2+|y|2)

K̃(x, y) = (
Sλ(w, z̃) + (

x′ ∧ y′)Tλ(w, z̃)
)

× e− i
2 (cotα)(|x|2+|y|2)

with

Fλ(w, z̃) =
+∞∑
k=0

αk (z̃)−λJk+λ(z̃)C
λ
k (w)

Gλ(w, z̃) = sinα

+∞∑
k=1

βk(z̃)
−λJk+λ(z̃)C

λ+1
k−1 (w)

Sλ(w, z̃) =
+∞∑
k=0

sk(z̃)
−λJk+λ(z̃)C

λ
k (w)

Tλ(w, z̃) = sinα

+∞∑
k=1

tk(z̃)
−λJk+λ(z̃)C

λ+1
k−1 (w)

where sk = (βk sinα + αk)/N
λ
k , tk = −βk/N

λ
k ,

Nλ
k = 1

22λ(Γ (λ + 1))2

(
λ

λ + k
αk − sinα

k

2(λ + k)
βk

)

×
(

λ

λ + k
αk + sinα

k + 2λ

2(λ + k)
βk

)

and x′ = x/|x|, y′ = y/|y|,w = 〈x′, y′〉, z̃ = (|x||y|)/ sinα,
λ = (m − 2)/2.

Using these decompositions, we obtain
∫

Sm−1
K̃(rη, x)K(y, rη)dω(η)

= e− i
2 (cotα)(|x|2−|y|2)(I1 + I2 + I3 + I4),

where we calculate the 4 pieces I1, I2, I3 and I4 separately.
For I1, we use the reproducing property of the spherical

harmonics to obtain

I1 =
∫

Sm−1
Sλ(w1, z̃1)Fλ(w2, z̃2)dω(η)

=
∞∑

k=0

λ

λ + k
skαk(z̃1z̃2)

−λJk+λ(z̃1)Jk+λ(z̃2)C
λ
k

(〈
x′, y′〉),

where we use the notations z̃1 = (r|x|)/ sinα, z̃2 = (r|y|)/
sinα, w1 = 〈η,x′〉 and w2 = 〈y′, η〉. For I2, we use Lemma 1
yielding

I2 =
∫

Sm−1

(
η ∧ x′)Tλ(w1, z̃1)Fλ(w2, z̃2)dω(η)

= − sinα
(
x′ ∧ y′) ∞∑

k=1

λ

λ + k
tkαk(z̃1z̃2)

−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ+1
k−1

(〈
x′, y′〉),
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and similarly for I3

I3 =
∫

Sm−1
Sλ(w1, z̃1)

(
y′ ∧ η

)
Gλ(w2, z̃2)dω(η)

= − sinα
(
x′ ∧ y′) ∞∑

k=1

λ

λ + k
skβk(z̃1z̃2)

−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ+1
k−1

(〈
x′, y′〉).

Finally, we can calculate the term I4 using Lemma 2 as fol-
lows

I4 =
∫

Sm−1

(
η ∧ x′)Tλ(w1, z̃1)

(
y′ ∧ η

)
Gλ(w2, z̃2)dω(η)

= (sinα)2
∞∑

k=1

k(k + 2λ)

4λ(k + λ)
tkβk(z̃1z̃2)

−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ
k

(〈
x′, y′〉)

− (sinα)2(x′ ∧ y′) ∞∑
k=1

λ

λ + k
tkβk(z̃1z̃2)

−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ+1
k−1

(〈
x′, y′〉).

Adding these 4 terms then gives

I1 + I2 + I3 + I4

=
∞∑

k=0

(
λ

λ + k
skαk + (sinα)2 k(k + 2λ)

4λ(k + λ)
tkβk

)
(z̃1z̃2)

−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ
k

(〈
x′, y′〉)

− (
x′ ∧ y′) sinα

∞∑
k=1

λ

λ + k
(tkαk + skβk + sinαtkβk)

× (z̃1z̃2)
−λJk+λ(z̃1)Jk+λ(z̃2)C

λ+1
k−1

(〈
x′, y′〉).

It is easy to check for all k that tkαk + skβk + sinαtkβk = 0,
so the term in (x′ ∧ y′) vanishes. Similarly we can compute
that

λ

λ + k
skαk + (sinα)2 k(k + 2λ)

4λ(k + λ)
tkβk

= 22λ
(
Γ (λ + 1)

)2 1

λ
(λ + k),

hence we conclude that

I1 + I2 + I3 + I4

= 22λ
(
Γ (λ + 1)

)2 1

λ

∞∑
k=0

(λ + k)(z̃1z̃2)
−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ
k

(〈
x′, y′〉).

Now we invoke the addition formula for Bessel functions
(see e.g. [36], p. 107) yielding

u−λJλ(u) = 2λΓ (λ)

∞∑
k=0

(λ + k)(z̃1z̃2)
−λ

× Jk+λ(z̃1)Jk+λ(z̃2)C
λ
k

(〈
x′, y′〉)

with u = r
sinα

√|x|2 + |y|2 − 2〈x, y〉. This completes the
proof of the theorem. �

We can now prove the main theorem in this section.

Theorem 6 Let f ∈ S(Rm) be a real-valued radial function
on R

m, i.e. f (x) = f0(|x|) with f0 : R+ −→ R, then

τK
y f (x) = 2α0

Γ (λ + 1)

(
1 − e2iα

)−m/2
e− i

2 (cotα)(|x|2−|y|2)

× Hλ

[
Fα(f )

]( |x − y|
sinα

)

with λ = (m − 2)/2, Fα the fractional version of the classi-
cal Fourier transform given by the integral transform

Fα(f )(y) = ρα,m

∫
Rm

e− i〈x,y〉
sinα e

i
2 cotα(|x|2+|y|2)f (x)dx

and Hλ the Hankel transform defined by

Hλf (s) :=
∫ ∞

0
f (r)

Jλ(rs)

(rs)λ
r2λ+1dr.

Proof If f (x) = f0(|x|) is real-valued and radial, then by
means of Proposition 1 we obtain that FK(f ) is a radial
function as well and it coincides (up to a factor) with the
fractional version Fα of the ordinary Fourier transform.
More precisely we have

FK(f )(x) = 2−λα0

Γ (λ + 1)
Fα(f )(x).

Hence, by definition of τK
y we obtain

FK

(
τK
y f

)
(x) = 2−λα0

Γ (λ + 1)
K(y, x)Fα(f )(x).

Taking the inverse and using polar coordinates x = rη,
r = |x|, we obtain

τK
y f

(
x′) = 2−λα0

Γ (λ + 1)

(
π

(
1 − e2iα

))−m/2
∫

Rm

˜K
(
x, x′)

× K(y,x)Fα(f )(|x|)dx

= 2−λ+1α0

(Γ (λ + 1))2

(
1 − e2iα

)−m/2
∫ +∞

0
Fα(f )(r)

×
(∫

Sm−1

˜K
(
rη, x′)K(y, rη)dω(η)

)
rm−1dr.
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In view of Theorem 5 this becomes

τK
y f

(
x′) = 2α0

Γ (λ + 1)

(
1 − e2iα

)−m/2
e− i

2 (cotα)(|x′|2−|y|2)

×
(∫ +∞

0
Fα(f )(r)rm−1u−λJλ(u)dr

)

with u = r
sinα

|x′ − y|. Taking into account the definition of
the Hankel transform Hλ, we finally obtain

τK
y f

(
x′) = 2α0

Γ (λ + 1)

(
1 − e2iα

)−m/2
e− i

2 (cotα)(|x′|2−|y|2)

× Hλ

[
Fα(f )

]( |x′ − y|
sinα

)
. �

In the special case when α = π/2, it follows from Theo-
rem 6 that the generalized translation operator τK

y coincides,
up to a constant, with geometric translation if f is a radial
function.

Corollary 1 Let f ∈ S(Rm) be a real-valued radial func-
tion on R

m, i.e. f (x) = f0(|x|) with f0 : R+ −→ R, then in
case of α = π/2, one has

τK
y f (x) = 2−λα0

Γ (λ + 1)
f (|x − y|)

with λ = (m − 2)/2.

Proof In case of α = π/2, the fractional Fourier transform
Fα reduces to the classical Fourier transform F . Moreover,
taking into account that for radial functions the classical
Fourier transform coincides with the Hankel transform Hλ

and that the inverse Hankel transform is given by

f (s) :=
∫ +∞

0
Hλf (r)

Jλ(rs)

(rs)λ
r2λ+1dr,

which holds under mild conditions on f , the desired result
follows. �

These results allow us to give more details about the
new convolution products, when one of the functions in-
volved is radial. This is summarized in the following propo-
sition.

Proposition 7 If g ∈ S(Rm) ⊗ Cl0,m and f ∈ S(Rm) is a
real-valued radial function, then

FK(f ∗L g) = FK(g ∗L f )

= FK(f ∗R g) = FK(g ∗R f )

= ρ−1
α,mFK(f )FK(g).

In particular, under these assumptions one has

f ∗L g = g ∗L f = f ∗R g = g ∗R f.

Proof If f is a real-valued radial function, then from Propo-
sition 1 we obtain that FK(f ) is a real-valued radial func-
tion as well. This implies that FK(f )h = hFK(f ) for any
Clifford algebra-valued function h. Moreover, from Theo-
rem 6 we observe that also τK

y f commutes with any Clifford
algebra-valued function.

Let us now, for example, show that FK(f ∗L g) =
ρ−1

α,mFK(f )FK(g). The other statements are proved simi-
larly. By definition of the transform FK , the convolution ∗L

and the Fubini theorem, we obtain consecutively

FK(f ∗L g)(x)

= ρα,m

∫
Rm

K(t, x)

(∫
Rm

[
τK
y f (t)

]
g(y)dy

)
dt

=
∫

Rm

(
ρα,m

∫
Rm

K(t, x)
[
τK
y f (t)

]
dt

)
g(y)dy

=
∫

Rm

FK

(
τK
y f

)
(x) g(y)dy

=
∫

Rm

K(y, x)FK(f )(x)g(y)dy

= ρ−1
α,mFK(f )(x)ρα,m

∫
Rm

K(y, x)g(y)dy

= ρ−1
α,mFK(f )(x)FK(g)(x),

where we have used Definition 2 and the fact that
K(y,x)FK(f ) = FK(f )K(y, x).

Finally, by applying the inverse transform F −1
K on

FK(f ∗L g) = FK(g ∗L f ) = FK(f ∗R g) = FK(g ∗R f ),

we obtain

f ∗L g = g ∗L f = f ∗R g = g ∗R f. �

4 Convolution Products in Approach B

4.1 Definition, Eigenvalues and Eigenfunctions

Let us start by defining the family of transforms we will be
looking at in this section.

Definition 4 Denote by Im the set {i ∈ Cl0,m | i2 = −1} of
geometric square roots of minus one. Let F1 := {i1, . . . , iμ},
F2 := {iμ+1, . . . , im} be two ordered finite sets of such
square roots, ik ∈ Im,∀k = 1, . . . ,m. The geometric Fourier
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transform (GFT) FF1,F2 of a function f : R
m → Cl0,m takes

the form:

FF1,F2(f )(u) := (2π)−
m
2

∫
Rm

(
μ∏

k=1

e−ikxkuk

)

× f (x)

(
m∏

k=μ+1

e−ikxkuk

)
dx.

This definition is a special case of the general geometric
Fourier transforms from [9], where also non-linear functions
in the exponentials are allowed. We will use this restriction
to guarantee that the inverse transform of any GFT is a GFT
itself, namely

F −1
F1,F2

= F{−iμ,...,−i1},{−im,...,−iμ+1}.

Moreover, the restriction also allows us to obtain the eigen-
values and eigenfunctions of the GFT. They are given in the
following theorem.

Theorem 7 The basis {ψj1,j2,...,jm} of S(Rm) ⊗ Cl0,m diag-
onalizes the GFT. One has

FF1,F2(ψj1,j2,...,jm)

=
(

μ∏
k=1

(−ik)
jk

)
ψj1,j2,...,jm

(
m∏

k=μ+1

(−ik)
jk

)
.

Proof By direct computation, we find

(2π)
m
2 FF1,F2(ψj1,j2,...,jm)

=
∫

Rm

(
μ∏

k=1

e−ikxkuk

)

× ψj1,j2,...,jm(x)

(
m∏

k=μ+1

e−ikxkuk

)
dx

=
(

μ∏
k=1

∫
R

e−ikxkukψjk
(xk)dxk

)

×
(

m∏
k=μ+1

∫
R

ψjk
(xk)e

−ikxkuk dxk

)

=
(

μ∏
k=1

(−ik)
jkψjk

(uk)

)(
m∏

k=μ+1

ψjk
(uk)(−ik)

jk

)

=
(

μ∏
k=1

(−ik)
jk

)
ψj1,j2,...,jm

(
m∏

k=μ+1

(−ik)
jk

)
.

Here, we used the result∫
R

ψjk
(xk)e

−ikxkukdxk = (−ik)
jkψjk

(uk)

which is a special case of formula (6). �

An important example of this family of transforms is
the two-sided quaternionic Fourier transform (qFT). We will
treat it in detail in Sect. 4.4.

Remark 4 Note that all subsequent results also hold in the
more general setup of functions f : R

m → Clp,q , com-
pare [9]. However, this is not the case for the transforms
of approach A, due to the fact that the Dirac operator is no
longer elliptic in arbitrary signature.

4.2 Convolution Formula Based on Mustard’s Idea

Based on the idea of Mustard we define a generalized con-
volution for any geometric Fourier transform.

Definition 5 For any GFT FF1,F2 we define the convolution
∗F1,F2 by

(f ∗F1,F2 g)(x) := (2π)
m
2 F −1

F1,F2

(
FF1,F2(f )FF1,F2(g)

)
(x).

Now we want to express the convolution ∗F1,F2 by means
of the standard convolution

(f ∗ g)(x) =
∫

Rm

f (y)g(x − y)dy.

To that aim, we introduce the following notation.

Notation 8 For functions f,g : R
m → Cl0,m and multi-

indices φ,γ ∈ {0,1}m we put

f φ(x) := f
(
(−1)φ1x1, . . . , (−1)φmxm

)
,

gγ (x) := g
(
(−1)γ1x1, . . . , (−1)γmxm

)
.

The following theorem is our main result.

Theorem 9 Let J = {0,1}4×m with j1,k + j2,k + j3,k ∈
{0,2} and j4,k = 0 for all k = 1, . . . ,m be a set of multi-
indices. Any generalized convolution ∗F1,F2 from Defini-
tion 5 can be expressed as a sum of classical convolutions
using Notation 8 by

(f ∗F1,F2 g)(x)

= 1

4m

∑
j∈J

∑
φ,γ∈{0,1}m

cj,φ,γ

×
(

1∏
k=μ

(ik)
j1,k

μ∏
k=1

(−ik)
j2,k f φ

m∏
k=μ+1

(−ik)
j2,k

)

∗
(

μ∏
k=1

(−ik)
j3,k gγ

m∏
k=μ+1

(−ik)
j3,k

μ+1∏
k=m

(ik)
j1,k

)
(x)
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with the sign cj,φ,γ given by

cj,φ,γ =
m∏

k=1

(−1)
(j(2φk+γk+1,k)+1)(δ(j1,k+j2,k+j3,k )−1)

,

where

δ(�) :=
⎧⎨
⎩

1, if � = 0,

0, if � �= 0.

Proof For the multi-indices j ∈ {0,1}3×m, which we address
by jν,k ∈ {0,1} for ν = 1,2,3 representing the integration
variables x, y, z and k = 1, . . . ,m representing the coordi-
nates, we use the notation

e
−ikxkuk

j1,k
:=

⎧⎨
⎩

cos(xkuk), if j1,k = 0,

− sin(xkuk), if j1,k = 1

and for ν = 2,3 corresponding to y, z analogously. Note that
e
−ikxkuk

j1,k
is always real valued and therefore in the center of

the Clifford algebra. We get

(2π)m(f ∗F1,F2 g)(x)

=
∫

Rm

1∏
k=μ

eikxkuk

×
(∫

Rm

μ∏
k=1

e−ikykukf (y)

m∏
k=μ+1

e−ikykukdy

)

×
(∫

Rm

μ∏
k=1

e−ikzkukg(z)

m∏
k=μ+1

e−ikzkuk dz

)

×
μ+1∏
k=m

eikxkukdu

=
∫

R3m

1∏
k=μ

eikxkuk

μ∏
k=1

e−ikykukf (y)

m∏
k=μ+1

e−ikykuk

×
μ∏

k=1

e−ikzkukg(z)

m∏
k=μ+1

e−ikzkuk

μ+1∏
k=m

eikxkukdydzdu

=
∑

j∈{0,1}3×m

∫
R3m

(
1∏

k=μ

(ik)
j1,k

1∏
k=μ

e
ikxkuk

j1,k

)

×
(

μ∏
k=1

(ik)
j2,k

μ∏
k=1

e
−ikykuk

j2,k

)
f (y)

×
(

m∏
k=μ+1

(ik)
j2,k

m∏
k=μ+1

e
−ikykuk

j2,k

)

×
(

μ∏
k=1

(ik)
j3,k

μ∏
k=1

e
−ikzkuk

j3,k

)

× g(z)

(
m∏

k=μ+1

(ik)
j3,k

m∏
k=μ+1

e
−ikzkuk

j3,k

)

×
(

μ+1∏
k=m

(ik)
j1,k

μ+1∏
k=m

e
ikxkuk

j1,k

)
dydzdu

=
∑

j∈{0,1}3×m

∫
R2m

(
m∏

k=1

∫ +∞

−∞
e
ikxkuk

j1,k
e
−ikykuk

j2,k
e
−ikzkuk

j3,k
duk

)

×
(

1∏
k=μ

(ik)
j1,k

)(
μ∏

k=1

(ik)
j2,k

)
f (y)

(
m∏

k=μ+1

(ik)
j2,k

)

×
(

μ∏
k=1

(ik)
j3,k

)
g(z)

(
m∏

k=μ+1

(ik)
j3,k

)

×
(

μ+1∏
k=m

(ik)
j1,k

)
dydz.

In order to calculate the integration over the u-variable, we
use the trigonometric equalities

sinx siny sin z = 1

4

(
sin(x + y − z) + sin(y + z − x)

+ sin(z + x − y) − sin(x + y + z)
)

cosx cosy cos z = 1

4

(
cos(x + y − z) + cos(y + z − x)

+ cos(z + x − y) + cos(x + y + z)
)

sinx siny cos z = 1

4

(− cos(x + y − z) + cos(y + z − x)

+ cos(z + x − y) − cos(x + y + z)
)

sinx cosy cos z = 1

4

(
sin(x + y − z) − sin(y + z − x)

+ sin(z + x − y) + sin(x + y + z)
)
.

(11)

For each index k = 1, . . . ,m and j1,k + j2,k + j3,k = 0 we
have that the uk-integrand takes the form

e
ikxkuk

j1,k
e
−ikykuk

j2,k
e
−ikzkuk

j3,k

= 1

4

{
cos

(
(−xk + yk + zk)uk

) + cos
(
(xk − yk + zk)uk

)

+ cos
(
(xk + yk − zk)uk

) + cos
(
(xk + yk + zk)uk

)}
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and for j1,k + j2,k + j3,k = 2 we have

e
ikxkuk

j1,k
e
−ikykuk

j2,k
e
−ikzkuk

j3,k

= (−1)j2,k+j3,k

4

{
(−1)(j1,k+1) cos

(
(−xk + yk + zk)uk

)

+ (−1)(j2,k+1) cos
(
(xk − yk + zk)uk

)

+ (−1)(j3,k+1) cos
(
(xk + yk − zk)uk

)

− cos
(
(xk + yk + zk)uk

)}
.

Hence for j1,k + j2,k + j3,k even we can summarize both in

e
ikxkuk

j1,k
e
−ikykuk

j2,k
e
−ikzkuk

j3,k

= (−1)j2,k+j3,k

4

× {
(−1)

(j1,k+1)(δ(j1,k+j2,k+j3,k )−1)

× cos
(
(−xk + yk + zk)uk

)

+ (−1)
(j2,k+1)(δ(j1,k+j2,k+j3,k )−1) cos

(
(xk − yk + zk)uk

)

+ (−1)
(j3,k+1)(δ(j1,k+j2,k+j3,k )−1) cos

(
(xk + yk − zk)uk

)

+ (−1)
(δ(j1,k+j2,k+j3,k )−1) cos

(
(xk + yk + zk)uk

)}

with

δ(�) :=
⎧⎨
⎩

1, if � = 0,

0, if � �= 0.

In case of j1,k + j2,k + j3,k odd, the trigonometric equations
(11) immediately show that e

ikxkuk

j1,k
e
−ikykuk

j2,k
e
−ikzkuk

j3,k
equals a

sum of sine functions.
Hence, by splitting the equation

δ(x) = 1

2π

∫
R

e−ixudu

into real and imaginary part:

δ(x) = 1

2π

∫
R

cos(xu)du,

0 = 1

2π

∫
R

sin(xu)du,

one sees that all summands with j1,k +j2,k +j3,k odd vanish
after integration over uk , while the even ones become delta

distributions. As a result we have

∫ +∞

−∞
e
ikxkuk

j1,k
e
−ikykuk

j2,k
e
−ikzkuk

j3,k
duk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j1,k + j2,k + j3,k is odd,

π
2 (−1)j2,k+j3,k

∑
φk,γk∈{0,1}

× (−1)
(j(2φk+γk+1,k)+1)(δ(j1,k+j2,k+j3,k )−1)

× δ(xk + (−1)φk+1yk + (−1)γk+1zk),

if j1,k + j2,k + j3,k is even.

with j4,k = 0 ∀k and also

(f ∗F1,F2 g)(x)

= 1

4m

∑
j∈{0,1}4×m,

∀k=1,...,m:j1,k+j2,k+j3,k∈{0,2},j4,k=0

∑
φ,γ∈{0,1}m

×
(

m∏
k=1

(−1)
(j(2φk+γk+1,k)+1)(δ(j1,k+j2,k+j3,k )−1)

)

×
∫

Rm

(
1∏

k=μ

(ik)
j1,k

)(
μ∏

k=1

(−ik)
j2,k

)
f (y)

×
(

m∏
k=μ+1

(−ik)
j2,k

)(
μ∏

k=1

(−ik)
j3,k

)

×
(∫

Rm

g(z1, . . . , zm)

×
m∏

k=1

δ
(
xk + (−1)φk+1yk + (−1)γk+1zk

)
dz

)

×
(

m∏
k=μ+1

(−ik)
j3,k

)(
μ+1∏
k=m

(ik)
j1,k

)
dy.

For each index k = 1, . . . ,m using

g(x) =
∫

R

g(z)δ(z − x)dz,

we obtain

(f ∗F1,F2 g)(x)

= 1

4m

∑
j∈{0,1}4×m,

∀k=1,...,m:j1,k+j2,k+j3,k∈{0,2},j4,k=0

∑
φ,γ∈{0,1}m
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×
(

m∏
k=1

(−1)
(j(2φk+γk+1,k)+1)(δ(j1,k+j2,k+j3,k )−1)

)

×
∫

Rm

(
1∏

k=μ

(ik)
j1,k

)(
μ∏

k=1

(−ik)
j2,k

)
f (y)

×
(

m∏
k=μ+1

(−ik)
j2,k

)(
μ∏

k=1

(−ik)
j3,k

)

× g
(
(−1)γ1

(
x1 − (−1)φ1y1

)
, . . . ,

(−1)γm
(
xm − (−1)φmym

))

×
(

m∏
k=μ+1

(−ik)
j3,k

)(
μ+1∏
k=m

(ik)
j1,k

)
dy.

Finally we execute the substitution y′
k = (−1)φkyk ,

k = 1, . . . ,m, and obtain

(f ∗F1,F2 g)(x)

= 1

4m

∑
j∈{0,1}4×m,

∀k=1,...,m:j1,k+j2,k+j3,k∈{0,2},j4,k=0

∑
φ,γ∈{0,1}m

×
(

m∏
k=1

(−1)
(j(2φk+γk+1,k)+1)(δ(j1,k+j2,k+j3,k )−1)

)

×
(

1∏
k=μ

(ik)
j1,k

μ∏
k=1

(−ik)
j2,k f φ

m∏
k=μ+1

(−ik)
j2,k

)

∗
(

μ∏
k=1

(−ik)
j3,k gγ

m∏
k=μ+1

(−ik)
j3,k

μ+1∏
k=m

(ik)
j1,k

)
(x).

�

Remark 5 One can now introduce an immediate analog of
the convolution f ∗2 g mentioned in the introduction, by
considering g ∗F1,F2 f .

4.3 Convolution Formula Based on Generalized
Translation

We define a generalized translation operator related to the
GFT FF1,F2 . Contrary to our original definition in for-
mula (3), we now have to take into account that the kernel
consists of two parts.

Definition 6 For any GFT FF1,F2 the general translation op-
erator τ

F1,F2
y is defined by the relation

FF1,F2

(
τF1,F2
y f

)
(u)

:=
(

μ∏
k=1

e−ikykuk

)
FF1,F2(f )(u)

(
m∏

k=μ+1

e−ikykuk

)
.

With calculations analogous to the ones in the previous
section we can express the generalized translation operator
τ

F1,F2
y by means of the standard translation

τyf (x) = f (x − y).

Theorem 10 Let J = {0,1}4×m with j1,k + j2,k + j3,k ∈
{0,2} and j4,k = 0 for all k = 1, . . . ,m be a set of multi-
indices. The generalized translation operator τ

F1,F2
y from

Definition 6 can be expressed as the sum of classical trans-
lations τyφf γ (x) = f γ (x − yφ) using Notation 8 and yφ =
((−1)φ1y1, . . . , (−1)φmym) by

τF1,F2
y f (x) = 1

4m

∑
j∈J

∑
φ,γ∈{0,1}m

cj,φ,γ

×
1∏

k=μ

(ik)
j1,k

μ∏
k=1

(−ik)
j2,k

μ∏
k=1

(−ik)
j3,k

× τyφf γ (x)

×
m∏

k=μ+1

(−ik)
j3,k

m∏
k=μ+1

(−ik)
j2,k

μ+1∏
k=m

(ik)
j1,k ,

with cj,φ,γ = ∏m
k=1(−1)

(j(2φk+γk+1,k)+1)(δ(j1,k+j2,k+j3,k )−1).

Proof Similar to the proof of Theorem 9. �

Using this result, we can now give an explicit expression
for the convolution product defined using the translation op-
erator.

Corollary 2 Let J = {0,1}4×m with j1,k + j2,k + j3,k ∈
{0,2} and j4,k = 0 for all k = 1, . . . ,m be a set of multi-
indices. The convolution ∗τ

F1,F2
defined by

(
f ∗τ

F1,F2
g
)
(x) :=

∫
Rm

f (y)
[
τF1,F2
y g(x)

]
dy

with τ
F1,F2
y from Definition 6 can be expressed as a sum of

classical convolutions using Notation 8 by
(
f ∗τ

F1,F2
g
)
(x)

= 1

4m

∑
j∈J

∑
φ,γ∈{0,1}m

cj,φ,γ

×
(

f φ
1∏

k=μ

(ik)
j1,k

μ∏
k=1

(−ik)
j2,k

μ∏
k=1

(−ik)
j3,k

)

∗
(

gγ
m∏

k=μ+1

(−ik)
j3,k

m∏
k=μ+1

(−ik)
j2,k

μ+1∏
k=m

(ik)
j1,k

)
(x).
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Note that a similar expression as in Corollary 2 can be
obtained for∫

Rm

[
τF1,F2
y f (x)

]
g(y)dy.

4.4 Special Case: the Two-Sided Quaternionic Fourier
Transform

4.4.1 Definition of the qFT

The quaternion algebra H is isomorphic with the Clifford
algebra Cl0,2 under the identification i = e1, j = e2 and k =
e1e2.

Let μ,ν ∈ H be quaternions with μ2 = ν2 = −1. Then,
following [35], we define the two-sided qFT as

F μ,ν(f )(y1, y2)

:= (2π)−1
∫

R2
e−μx1y1f (x1, x2)e

−νx2y2dx1dx2

for functions f ∈ L1(R
2;H) where we have introduced a

different normalization (2π)−1. The first definition of this
two-sided transform, with μ = j and ν = k, was introduced
in the Ph.D. thesis [27], see also [28]. In earlier work, a one
sided version was given by Ernst et al. [30] and by Del-
suc [23], although these authors use an adaptation of the
quaternion algebra. The applicability of the qFT to color im-
age processing was first demonstrated in [43] using a dis-
crete version. At that point, the switch was made to two
general orthogonal axes μ and ν instead of j and k. In-
deed, for color image processing there is an arbitrary but
preferred axis of the grey-line in the color space, so the
transform kernel axes are generally aligned to or perpen-
dicular to this axis. At the same time ([44]), a change was
again made to one-sided transforms, mostly driven by the
complexity of the resulting operational formula when using
the two-sided qFT definition. Finally, the orthogonality con-
dition on μ and ν was relaxed in [35]. For a recent review on
the use of the qFT in image processing, we refer the reader
to [29].

4.4.2 Convolution for the qFT

In this section, we discuss the Mustard and generalized
translation definitions of the convolution product for the
qFT. First, we give the interaction of the qFT with the or-
dinary convolution. To that aim, we need the following def-
inition.

Definition 7 For an invertible multivector b ∈ Cl0,m and an
arbitrary multivector a ∈ Cl0,m we define the commutative

and anticommutative part of a with respect to b by

ac0(b) = 1

2

(
a + b−1ab

)
,

ac1(b) = 1

2

(
a − b−1ab

)
.

Using this definition, the quaternionic Fourier transform
of the ordinary convolution (f ∗ g)(x) is given by

F μ,ν(f ∗ g)(u)

= 2π

1∑
j,k=0

(
F μ,(−1)kν(f )(u)

)
cj (μ)

F (−1)j μ,ν(gck(ν))(u).

This formula is a special case of the convolution theorem
for a general GFT, obtained in [10]. In the discrete case, a
similar formula was earlier obtained in [29]. Note that, in
particular,

F μ,ν(f ∗ g) �= 2π F μ,ν(f )F μ,ν(g). (12)

The Mustard convolution, as obtained explicitly in Theo-
rem 9 for an arbitrary GFT, reduces in the case of the two-
sided qFT to

(f ∗q g)(x) = 1

16

∑
j∈{0,1}4×2,

∀k=1,2:j1,k+j2,k+j3,k∈{0,2},j4,k=0

∑
φ,γ∈{0,1}2

cj,φ,γ

(
(μ)j1,1(−μ)j2,1f φ(−ν)j2,2

)

∗ (
(−μ)j3,1gγ (−ν)j3,2(ν)j1,2

)
(x).

It can be checked that this expression coincides with the
more symmetric formula

(f ∗q g)(x) = 1

4

1∑
j1,j2=0

1∑
k1,k2=0

cj1,j2,k1,k2

× ((
μj1f k1νj2

) ∗ (
μj1gk2νj2

))
(x)

where

cj1,j2,k1,k2 := (−1)(k2+1)δj1,1(−1)(k1+1)δj2,1

and

f k1(x1, x2) = f
(
x1, (−1)k1x2

)
, k1 ∈ {0,1}

gk2(x1, x2) = g
(
(−1)k2x1, x2

)
, k2 ∈ {0,1}.
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Table 1 Results on
convolutions for the two
approaches A and B

Approach A Approach B

Eigenfunction approach Generalized roots of −1 approach

Definition FK

formulas (7), (8)
FF1,F2

Definition 4

Eigenfunctions ψj,k,� ψj1,j2,...,jm

Eigenvalues Complex numbers
Theorem 1

Elements from Cl0,m

Theorem 7

Mustard convolution Definition 1 Definition 5

Expression for convolution Proposition 2 Theorem 9

Generalized translation τK
y Definition 2 τ

F1,F2
y Definition 6

Action on: Radial functions
Theorem 6

Arbitrary functions
Theorem 10

Translation convolution Definition 3 Corollary 2

Expression for convolution Proposition 3 Corollary 2

The advantage of the Mustard definition is that in this case,
contrary to formula (12), the following holds:

F μ,ν(f ∗q g) = 2π F μ,ν(f )F μ,ν(g).

The situation is quite different for the convolution defined
using the generalized translation. First of all, it can easily be
proven (see e.g. [14]) for any function f that the generalized
translation in the case of the qFT coincides with geometric
translation:

τμ,ν
y f (x) = τyf (x).

As a consequence, the associated convolution also coincides
with the classical convolution, i.e.

(
f ∗τ

μ,ν g
)
(x) = (f ∗ g)(x).

This can also be proven starting from the result in Corol-
lary 2.

5 Conclusions

In this paper, we have studied two conceptual ways of defin-
ing convolution products, namely using the method of Mus-
tard and using the generalized translation operator. We ap-
plied these ideas to two important families of hypercomplex
Fourier transforms. A summary of our results can be found
in Table 1.

We expect that in particular the Mustard convolution will
find many applications in color image processing. Currently,
the design of filters for such images using hypercomplex
methods is hindered by the lack of a proper convolution the-
orem. Our results now enable the development of a com-
plete theory of linear system design in the quaternionic case

(as well as in higher dimensions, which may be interest-
ing for other applications). A Fourier domain analysis, us-
ing the Mustard convolution, of the color edge filter con-
structed in [42] will serve as the guiding example to achieve
this.
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