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Abstract In this paper, we propose a computational frame-
work to incorporate regularization terms used in regularity
based variational methods into least squares based methods.
In the regularity based variational approach, the image is
a result of the competition between the fidelity term and a
regularity term, while in the least squares based approach
the image is computed as a minimizer to a constrained least
squares problem. The total variation minimizing denoising
scheme is an exemplary scheme of the former approach with
the total variation term as the regularity term, while the mov-
ing least squares method is an exemplary scheme of the lat-
ter approach. Both approaches have appeared in the litera-
ture of image processing independently. By putting schemes
from both approaches into a single framework, the resulting
scheme benefits from the advantageous properties of both
parties. As an example, in this paper, we propose a new de-
noising scheme, where the total variation minimizing term is
adopted by the moving least squares method. The proposed
scheme is based on splitting methods, since they make it
possible to express the minimization problem as a linear sys-
tem. In this paper, we employed the split Bregman scheme
for its simplicity. The resulting denoising scheme overcomes
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the drawbacks of both schemes, i.e., the staircase artifact in
the total variation minimizing based denoising and the noisy
artifact in the moving least squares based denoising method.
The proposed computational framework can be utilized to
put various combinations of both approaches with different
properties together.

Keywords Denoising · Total variation · Moving least
squares · Bregman iteration

1 Introduction

In the last two decades, the regularity based variational ap-
proach has aroused a large impact on the image process-
ing society [1, 17, 46]. Most of the models in this approach
take the form of an unconstrained regularized data fitting
model, where the desired image is obtained as a regular-
ized minimizer to a certain energy functional which contains
both fidelity and regularization terms. For example, the to-
tal variation based image restoration model [14, 45], which
has become one of the most popular image denoising mod-
els due to its edge preserving property, can be described as
an unconstrained problem with the total variation as the reg-
ularization term.

Often, it is hard, if not impossible, to find a regularized
minimizer solution in closed form for the regularized vari-
ational model. Therefore, iterative schemes are exploited
to obtain the regularized minimizer. In earlier works, itera-
tion schemes have been written in the Euler-Lagrange type,
which often result in nonlinear partial differential equations
(PDEs), which are normally slow and not applicable for
industrial purposes [1, 55]. To accelerate the computation,
several real-time working discretizations of Euler-Lagrange
type equations have been proposed. In [9], a real-time work-
ing discretization of the Euler-Lagrange equation is pro-
posed for the estimation of the optical flow field, which
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combines two hierarchical strategies. Bidirectional multi-
grid methods have also been applied to accelerate the speed
of a broad class of variational optic flow models [10]. Fur-
thermore, specific algorithms designed for parallel hard-
wares make real-time computation possible [31].

Recently, the iterative schemes have undergone a lot of
optimization, and faster iteration schemes, such as Bregman-
type iteration schemes, have been developed [2, 30, 43, 57,
61]. The development of iterative schemes not only has re-
sulted in faster computation but also has made it easier to
incorporate nonlinear regularization terms into variational
functionals.

Meanwhile, another type of variational approach, which
is in its nature a nonparametric data fitting approach and
is based on localized least squares method, has recently ap-
peared in the literature of image processing [5, 20, 27, 52, 60].
In this approach, the problem is formulated in the form of
a constrained data fitting model. The characteristics of this
approach is that it takes the data and its position to define
the structure of the approximation model, and therefore, the
local characteristics of the data can be taken into account
in the approximation. One of the most popular method in
this framework is the moving least squares (MLS) model
[35]. The MLS model constructs and evaluates a local poly-
nomial fit continuously over the entire domain, resulting in
the MLS fit function. The MLS model has shown good per-
formance for interpolation based image processing such as
image zooming and superresolution [5, 20, 27, 52, 60]. Nor-
mally, the MLS model seeks to find a solution in closed
form, which is often the case with methods in the least
squares framework.

In this paper, we propose to put the MLS model into the
iterative regularity based variational framework. By putting
the MLS model in the iterative framework, it becomes pos-
sible for the MLS model to adopt several well-known reg-
ularization terms that were formerly proposed in other reg-
ularized variational problems. To illustrate an example, we
show in this paper that the well-known total variation (TV)
minimizing regularizer can be successfully adopted in the
MLS model in the proposed framework. We want to empha-
size the fact that, until now, there exists no method which
has successfully adopted the TV regularizer into the MLS
model using the conventional least squares framework.

The adoption of the TV regularization term endows the
MLS model with better denoising property. Normally, MLS
based algorithms are weak against noise, since, in general,
least squares methods are weak against outliers. In contrast,
TV based methods are strong against outliers, since out-
liers have large variation values. The TV regularization term
eliminates the outliers very fast and helps the regularized
MLS to produce a better approximation to the original noise-
free image.

Furthermore, the proposed scheme can also provide a bet-
ter solution than conventional TV schemes. Conventional

TV schemes process the observed image towards a piece-
wise constant image, which exhibits many false jump dis-
continuities and is visually unpleasant. This phenomenon is
called the staircase effect. The staircase effect of the TV de-
noising is due to the fact that the total variation is not differ-
entiable and the differential equations involved in this prob-
lem are at most second order. This makes the solution of the
TV denoising to have a first order approximation. By incor-
porating the constraints used in the MLS problem into the
proposed scheme, the solution becomes more constrained
achieving a higher order approximation than that of the con-
ventional TV denoising. As a result, smooth regions are well
preserved, and the staircase effect is avoided without sacri-
ficing the edge preserving property too much, as is the case
with schemes trying to obtain a solution using higher order
regularization terms [16, 18, 19, 51, 56].

A main difference between the proposed model and other
regularized variational models is that we obtain an energy
functional, whose minimization is done with respect to the
parameters used in the reconstruction of the image rather
than the image itself. In other words, instead of working on
the image, we are working on the localized parameters used
to reconstruct a local region of the image, which gives us the
chance of finer control on the solution image. The proposed
framework can benefit from extensions of both the regular-
ized variational framework and the MLS framework. It is
possible to generate combinations of both extensions, result-
ing in numerous denoising schemes with different proper-
ties.

2 Previous Works

Several different algorithms are used in the construction of
the proposed scheme. In this section, we briefly review the
previous works related to the different algorithms used.

The Moving Least Squares (MLS) approximation was in-
troduced first in [34], and the details on the approximation
power, stability, and implementational issues related to MLS
surfaces are presented in [35]. Since then, the MLS method
has been applied to many areas. For example, a diffuse ap-
proximation method is proposed in [40] to replace the FEM
interpolation for solving partial differential equations. The
MLS is generalized in [38], and it is proved that it produces
the diffuse derivatives introduced in [40]. In [7], the MLS
approximation applied to optimization problems, such as the
construction of response formulation and the optimization
of sheet forming method. The MLS technique is also related
to local M-smoothers [20, 58] in the aspect that it approxi-
mates the local data by certain approximation functions. The
usage of such approximation in variational/regularization
method has been the topic of [39] and [44].
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Recently, the MLS method has been proved to be quite
useful in interpolation based image processing such as su-
perresolution and image zooming [5, 20, 27, 52, 60]. The
work in [27] applies MLS for image denoising by using two
different kinds of robust estimators. A paper that uses a KR-
based method as an edge-preserving smoother is given in
[20]. In [52], a steering kernel regression is proposed which
steers the local kernels along the directions of the local edge
structure. Bose and Ahuja applied the MLS to noise filtering
and approximation of irregularly spaced data in the super-
resolution problem [5]. Yoon and Lee employed the Gaus-
sian radial basis functions instead of algebraic polynomials
for an edge-directed image upsampling method [60]. How-
ever, the models show weakness against outliers, which is
the main reason that the denoising properties of MLS based
models normally are not good.

Meanwhile, the total variation based denoising model
was first introduced in [45] in the following form:

min
u

‖∇u‖1 + μ

2
‖u − f ‖2

2, (1)

where u is the solution image, f is the measured noisy im-
age, and ∇ is the gradient operator. The term ‖∇u‖1 is called
the total variation norm, and μ controls the balance between
the fidelity term and the total variation term. The minimiza-
tion of the total variation term smooths out very fast small-
scaled variations which results in removal of the noise. Com-
pared to the minimizing of the L2 norm of the image gradi-
ent, the minimizing of the total variation has the property
of preserving sharp discontinuities (edges) in images while
removing the noise. This is a desirable property for images,
since the visual quality of an image greatly depends on the
preservation of edges.

However, the minimizing of the TV norm also makes
smooth regions flat which makes the image look unnatural.
This is known as the staircasing effect [4, 42]. As shown
in [12] and [41], the staircasing effect of the total variation
based denoising is due to the fact that the total variation is
not differentiable and the total variation minimization tries
to approximate the image to an approximation of first order.
Therefore, to obtain higher order approximation of the solu-
tion image, smooth approximations and variants of the total
variation functional have been proposed to avoid the stair-
casing effect [4, 16, 18]. In [14], the infimal convolution of
functionals with first and second order derivatives as regular-
izers is used to obtain a higher order approximation. General
modified infimal convolution functionals which combine L1

norms with linear operators and which can be implemented
with fast algorithms are used in [50].

Extra constraint terms have also been proposed to pre-
serve the smooth areas. For example, in [56], they introduce
a constraint term for smooth area protection as a penalty
function. In [19], a second-order derivative is introduced

into the functional to reduce the penalty for slow variation in
smooth regions. These approaches try to obtain a higher or-
der approximation by modifying the regularization function
or the fidelity function. However, by modifying the regular-
ization function, the nice geometrical properties of the total
variation and the fast and strong denoising property may be
lost.

Another important topic relating the total variation min-
imization is the implementation issue. At the early stage,
Euler-Lagrange formulations have been used to imple-
ment the total variation minimization. However, the Euler-
Lagrange formulation contains the non-differentiable term
∇ · ∇u

|∇u| which can not be computed exactly at ∇u = 0.
Therefore, splitting methods have been exploited. Using
operator splitting methods, the term ∇ · ∇u

|∇u| can be split
into sub-operators of simpler forms which can be imple-
mented easier. Osher proposed the split Bregman algorithm
to solve the TV problem using the Bregman iteration [30].
The equivalence of the split Bregman algorithm and the aug-
mented Lagrangian method have been shown in [25, 49, 59].
In [48], it is shown that the alternating split Bregman algo-
rithm can be interpreted also as a Douglas-Rachford split-
ting algorithm [36] which is known to be a special case
of the proximal point algorithm [23]. Meanwhile, Cham-
bolle proposed an algorithm based on a dual formulation
which is fast and effective for minimizing the total varia-
tion [13]. When the dual part becomes more complicated
primal-dual formulations can be used, which update both a
primal and a dual variable. Zhu and Chan proposed an ef-
ficient primal-dual hybrid gradient algorithm for total vari-
ation image restoration [63]. Esser et al. proposed a mod-
ified version of the primal-dual hybrid gradient algorithm
proposed by Zhu and Chan [26]. Zhang et al. proposed a
unified primal-dual algorithm framework for two classes of
problems [62]. Currently, one of the most efficient primal-
dual splitting schemes is the scheme of Chambolle and Pock
which shows a fast convergence for problems where the pri-
mal or the dual objective is uniformly convex [15]. As will
be explained in Sect. 3, we exploit splitting methods to get
an explicit form for the sought solution.

In the next subsections, we give a detailed explanation of
the used methods in our formulation.

2.1 Moving Least Squares Based Denoising

The solution of the MLS method has a closed form and
is easily computed by solving a linear system. To explain
the MLS method, we use the following notations: Suppose
that our observed image is a discrete sampling of a func-
tion f : D → R at an equally spaced point set in a rectangle
D ⊂ R

2. We want to find an overall MLS approximation
function Lf of the data function f . For this aim, we first
construct local approximation functions p := px for each
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point x ∈ D. Then the overall MLS approximation function
Lf is obtained by collecting all the function values px(x)

from each local approximation function px at the points
x ∈ D:

Lf (x) = px(x), ∀x. (2)

For example, let us derive the local approximation functions
from a polynomial space of degree L, denoted by ΠL, where
the degree of a polynomial space represents the highest de-
gree of a polynomial in the polynomial space. We denote
by m the dimension of ΠL, i.e., the number of basis in ΠL,
which is calculated as

m := dimΠL = (L + 2)(L + 1)

2
,

and denote by {p�}m�=1 the basis of ΠL. For example, for

L = 2, m = (2+2)(2+1)
2 = 6, we get the polynomial space Π2

with the corresponding basis {p�}6
l=1 = {1, x, y, x2, xy, y2}.

To solve a local polynomial approximation function p

around a certain point x, a finite set of data points around
x have to be involved into the computation. Let N (x) be a
finite set of distinct data points in R

2 around x, and N be
the number of points in N (x). Usually, N has to be bigger
than m so that the problem can be solved. Then, for a point
x ∈ D, the polynomial approximation function p is obtained
by solving the following quadratic minimization problem:

argmin
p∈ΠL

{
N∑

n=1

∥∥p(xn) − f (xn)
∥∥2

2θ
(‖x − xn‖2

)}
, (3)

where θ is a radial and fast decreasing smooth function
and N > dimΠL. The θ function is a weight function
which decides how much the data point f (xn) contributes
to the construction of the polynomial approximation p(xn).
If θ(‖x − xn‖2) is large, f (xn) contributes much to the con-
struction. This is done by reducing the error of the data
f (xn) and the evaluated value p(xn) at xn, i.e., by reduc-
ing ‖p(xn)−f (xn)‖2

2. A typical choice of θ is the Gaussian
function

θ(r) = e−|r|2/σ (4)

having a scale parameter σ > 0. This is based on the premise
that the data points near to x should have a large effect in the
construction. The minimizer p differs from pixel to pixel.
Since we construct p in ΠL of dimension m, we can write
p as a linear combination of the basis {p�}6

l=1:

p :=
m∑

�=1

c�p�. (5)

Therefore, we see that (3) is a least squares problem that
can be solved for the coefficients {c� : � = 1, . . . ,m} of the

Fig. 1 Exemplary illustration showing the construction of the MLS
approximation for a 1-D data profile

polynomial p. The coefficients {c� : � = 1, . . . ,m} satisfying
(3) are found by calculating the derivative of the function in
(3) with respect to {c� : � = 1, . . . ,m} and setting them equal
to zero:

∂(
∑N

n=1 ‖p(xn) − f (xn)‖2
2θ(‖x − xn‖2))

∂c�

= 0,

� = 1, . . . ,m. (6)

When the solution, say px(x), of the above quadratic mini-
mization problem is obtained for a certain point x ∈ D, then
the function value Lf (x) for the point x becomes Lf (x) =
px(x). Thus, the overall MLS approximation function Lf is
defined as follows:

Lf (x) = px(x), ∀x, (7)

where px(·) denotes the minimizer of (3) for the point x.
Figure 1 is an exemplary illustration showing the concept

of constructing the MLS approximation function for a 1-D
data profile. The blue and the red dotted lines show the con-
structed polynomial functions pxi

and pxi+1 for the points xi

and xi+1, respectively, using the data in the neighborhoods
N (xi ) and N (xi+1), respectively. The value pxi

(xi ) denotes
the value of pxi

at the point xi , and likewise for pxi+1(xi+1).
The overall approximation MLS function Lf becomes the
collection of all the values px(x) for all x ∈ D, which are
shown as black circle points in Fig. 1.

If f in (3) is a noisy version of the original data, the ap-
proximation Lf becomes a smoother one. By obtaining a
smoother approximation Lf , denoising is achieved. How-
ever, it is well-known that the MLS method has limitations
in denoising, because the output of least squares method
is highly affected by singular data (or outlier) error, which
results in noisy artifacts. The proposed scheme aims to re-
duce this artifact by introducing the TV norm into the least
squares method.
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2.2 Split Bregman Method

Even though other splitting methods can be applied to the
proposed scheme, as will be explained in Sect. 3, we exploit
the split Bregman method for its simplicity. The split Breg-
man method [30, 61] solves a minimization problem by op-
erator splitting and then applying Bregman iteration to solve
the split problem. It solves the problem

min
u

∥∥Φ(u)
∥∥

1 + E(u)

by the operator splitting

min
u,d

‖d‖1 + E(u) subject to Φ(u) = d,

where E is convex and Φ is convex and differentiable.
For image processing applications, u is the solution im-
age, and d is used to obtain the constraint formulation. Ap-
plying Bregman iteration with J (u, d) = ‖d‖1 + E(u) and
H(u,d) = 1

2‖d − Φ(u)‖2
2 yields

(
uk+1, dk+1) = min

u,d
J (u, d) − 〈

pk
u,u − uk

〉 − 〈
pk

d, d − dk
〉

+ λH(u,d)

pk+1
u = pk

u − λ∇uH
(
uk+1, dk+1)

pk+1
d = pk

d − λ∇dH
(
uk+1, dk+1)

(8)

where pu and pd are in the set of the sub-gradients of E

with respect to u and d , respectively, λ is a parameter that
controls the balance, k and k + 1 denote the current and the
next iteration step, and ∇uH(u, d) = (∇Φ(u))∗(Φ(u) − d)

and ∇dH(u, d) = d − Φ(u).
It is shown in [30] that (8) is equivalent to the following

two subproblems:

(
uk+1, dk+1) = min

u,d
‖u‖1 + E(u) + λ

2

∥∥d − Φ(u) − bk
∥∥2

2

bk+1 = bk + (
Φ

(
uk+1) − dk+1).

(9)

Here, the first subproblem works on the primal variable u,
on the image itself, and the second one works on the dual
variable b, which can be seen as the noise. The first sub-
problem can be solved by alternatingly minimizing u and
then d ,

uk+1 = arg min
u

E(u) + λ

2

∥∥dk − Φ(u) − bk
∥∥2

2

dk+1 = arg min
d

‖d‖1 + λ

2

∥∥d − Φ
(
uk+1) − bk

∥∥2
2.

(10)

The step for uk+1 can be solved as a linear system, while in
the step for dk+1, the minimizer can be expressed in closed-
form as a shrinkage. For the total variation problem, E(u)

and Φ(u) becomes E(u) = ‖u − f ‖2
2 and Φ(u) = ∇u, and

thus the problem is solved by the following iterative 3 steps:

(1) uk+1 = min
u

μ

2
‖u − f ‖2

2 + λ

2

∥∥dk − ∇u − bk
∥∥2

2

(2) dk+1 = min
d

‖d‖1 + λ

2

∥∥d − ∇uk+1 − bk
∥∥2

2

= shrink
(∇uk+1 + bk,1/λ

)
(3) bk+1 = bk + ∇uk+1 − dk+1.

(11)

Here, the shrinkage operator is defined as follows:

shrink(x, τ ) =
{

x − τ sgn(x) if |x| ≥ τ ,

0 if |x| < τ,

where sgn(·) is the sign operator.
By using the split Bregman method, the total variation

problem can be solved faster than using conventional non-
linear partial differential equations. However, in this paper,
we do not use the Bregman method for fast computation, but
utilize and vary it to introduce the TV norm into the MLS
model.

3 Proposed Scheme

In this section, we first propose a new energy functional to
be minimized for data approximation. Then, we propose a
new computational framework that can solve the minimiza-
tion problem. Let f be a given reference image defined on
a domain Ω , and let x be a fixed point in Ω . Then, we con-
struct a local polynomial approximation of degree L:

p(r) := px(r) :=
∑

|α|1≤L

cαrα

by minimizing the following energy functional:

argmin
p∈Πm

{
N∑

n=1

∥∥∇p(xn)
∥∥

1 + μ

2

∥∥p(xn) − f (xn)
∥∥2

2θ(x,xn)

}
.

(12)

In this construction, we use a nonlocal weight function θ

which is defined as

θ(x, r) = exp

{
−Ga ∗ (‖f (x + ·) − f (r + ·)‖2)(0)

h2
0

}
,

where h0 is a small positive value, Ga is the Gaussian
function with standard deviation a, and +· denotes the
shifting operator. Nonlocal similarity measures have been
used in nonlocal denoising methods to decide whether a
certain pixel should be used in the denoising process or
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not [6, 8, 21, 22, 24, 28, 29, 33, 44, 53]. In comparison, we
use it as a weight function such that the weight function be-
comes data adaptive and consider the similarity of the local
areas between two positions x and r. The weight function
has a large value if the local areas around x and r are simi-
lar. In this case, the f (r) value is taken much into account in
constructing the local approximation at x. This is based on
the premise that the approximation function value should be
similar to the data value if the corresponding neighborhoods
are similar. Thus, pixel values which are spatially distant are
also incorporated into the approximation process if the cor-
responding θ value is large.

We construct p at each pixel in the image, and so we
are solving the minimization problem in (12) as many times
as there are pixels in Ω . Then, the overall approximation
function Lf becomes Lf (x) := p(x) := px(x) for all x ∈ Ω .

Without the first term, the energy functional in (12) be-
comes just that used in the conventional MLS model. The
incorporation of the TV norm endows the MLS model with
several desirable properties that helps to overcome the weak-
nesses of the MLS model. Again, we want to emphasize the
fact that even though the incorporation of the TV term may
seem simple, the problem cannot be solved in the conven-
tional moving least squares framework, and therefore, has
never been proposed. This is due to the fact that a solution
of the problem (12) having a closed form cannot be ob-
tained. This is in contrast with TV approaches, for which
quadratic data penalization have been frequently used with
the TV norm [3, 32, 55].

The proposed model is also different from the conven-
tional TV approach, in the sense that the solution sought

is not the image u, but are the parameters that are used
in the reconstruction of the p function which approximates
the image from the polynomial space. We call the proposed
method the MLS with TV minimizing (MLS-TV) model. We
will first explain the properties of the MLS-TV model by ex-
plaining its contributions to the conventional MLS and the
TV models. Then, we will propose a computational frame-
work which solves the problem in (12). The proposed frame-
work can be applied for denoising schemes with other regu-
larization terms.

3.1 Contribution of the MLS-TV Model to the MLS Model

By incorporating the TV norm, the proposed model gets
the following advantageous properties over the conventional
MLS model:

– The denoising property becomes better.
– The approximation becomes less affected by outliers.
– The local noisy artifact is eliminated.

These properties are due to the fact that the minimization
of the TV norm eliminates small scaled structures very fast
from the image.

As the outliers are eliminated very fast by the TV mini-
mization, the local noisy artifact is greatly reduced and the
approximation to the noise-free image gets better.

Figure 2 illustrates the fact that the incorporation of the
total variation minimizing term reduces the influence of out-
liers. Figure 2(a) shows a noisy 1-D profile. The noisy pro-
file is generated by adding Gaussian type noise to all posi-
tions, and some outlier noise to some positions (indicated

Fig. 2 Comparison of
denoising properties on a 1-D
profile (a) Noisy (b) MLS
denoised (c) TV denoised
(d) MLS-TV denoised
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by arrows in the figure) of the original profile. Figure 2(b)
is the result of applying the conventional MLS to Fig. 2(a)
which shows that the large noise results in local noisy ar-
tifacts. Figure 2(c) shows the denoised result using the TV
model which reveals also the staircasing artifact. Figure 2(d)
shows the result of applying the MLS-TV to the noisy 1-D
profile. Compared with Fig. 2(b), the local noisy artifact is
eliminated with the proposed scheme, while effectively re-
moving the noise.

Experimental results on images verifying the above prop-
erties will be given in the experimental section.

3.2 Contribution of the MLS-TV Model to the TV Model

As explained in Sect. 2, the minimization of the total varia-
tion norm tries to approximate the image to an approxima-
tion of first order. The fidelity term prevents the image from
becoming totally flat, but cannot preserve the order of ap-
proximation, since there exist no inherent constraints in the
u function that prevents the order from decreasing.

In contrast, the p function in the proposed model is con-
strained to have a pre-defined order due to the constraint to
lie in the polynomial space Πm. Therefore, the proposed
model has the following advantageous properties over the
conventional TV model.

– An approximation of any pre-defined order can be ob-
tained.

– The scheme is less sensitive to the parameter deciding the
strength of total variation minimization.

Here, one important fact is that a higher order approximation
is obtained without varying the total variation minimization
term, i.e., we can control the order of the solution without
changing the regularization term. For example, if we want to
achieve an approximation of degree 2 (which is equal to an
approximation of order 3), we just let the solution p in (12)
to lie in the polynomial space Π2. The constraint to lie in a
certain polynomial space makes the solution also less sen-
sitive to the parameter μ in (12) which decides the strength
of competition between the regularization term and fidelity
term in (12). This is due to the fact that the number of basis
used in the reconstruction of p has a larger influence than the
parameter μ. Furthermore, since the proposed scheme still
uses the total variation minimization, it keeps the property
of effective removing of outliers.

3.3 Iterative Algorithm to Solve the MLS-TV Model

In this section, we explain the numerics to obtain the mini-
mizer p(r) in (12). Since we construct p in ΠL of dimen-
sion m, we can write p as a linear combination of the basis
{p�, � = 1, . . . ,m}:

p(x) :=
m∑

�=1

c�p�(x). (13)

Therefore, to find the minimizer p(r) we have to obtain the
following coefficients of the polynomial p,

c = {c� : � = 1, . . . ,m}.

A first try to obtain the coefficients might be to employ the
energy function with variable c

E (c) := μ

2
‖p − f‖2

θ,x + ‖∇p‖1 (14)

and try to find the coefficients by letting the derivative of the
function E (c) equal to zero:

∂E (c)
∂c�

= 0, � = 1, . . . ,m. (15)

Here, p := {p(xn) : xn ∈ N (x)} and f := {f (xn) : xn ∈
N (x)} denote the evaluated values of the polynomial p(x)

at xi and the vectors of the data points in N (x), respectively,
and thus p depends on c.

However, due to the L1 norm, a linear system for the co-
efficients c = {c� : � = 1, . . . ,m} cannot be obtained. There-
fore, to obtain a linear system for the coefficients, we exploit
splitting methods. It will be shown later that using splitting
methods we not only get a linear system but also an explicit
form for c. This is in contrast with the total variation min-
imization problem, where a linear system has to be solved,
for example, by Gauss-Seidel iteration. We might employ
any splitting method that results in a linear system for c,
but here we use the split Bregman iteration algorithm [30],
which was introduced to solve the L1 regularized optimiza-
tion problem in Sect. 2.2, due to its simplicity.

By placing the iterative minimization scheme into our
problem (12), we get the following iteration steps for each x:

(1) pk+1(x) = min
p

{
N∑

n=1

μ

2

∥∥p(xn) − f (xn)
∥∥2

2θ(x,xn)

+ λ

2

∥∥dk(xn) − ∇p(xn) − bk(xn)
∥∥2

2θ(x,xn)

}

(2) dk+1(x) = min
d

‖d‖1 + λ

2

∥∥d − ∇pk+1(x) − bk(x)
∥∥2

2

= shrink
(∇pk+1(x) + bk(x),1/λ

)
(3) bk+1(x) = bk(x) + ∇pk+1(x) − dk+1(x),

(16)

where xn ∈ N (x), and k and k + 1 indicate the current and
the next iteration level. The following notations are helpful
for further discussion of the suggested method. From now
on, any bolded character means a vector or matrix. More-
over, for a given function g and a weight function θ , the
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weighted norm for a vector g := {g(xn) : xn ∈ N (x)} is de-
fined by

‖g‖2
θ,x =

N∑
n=1

∥∥g(xn)
∥∥2

2θ(x,xn).

We are now ready to explain the specific algorithm of the
proposed scheme.

• Step 1: Let

f := {
f (xn) : xn ∈ N (x)

}
be the vector of the image brightness values at the data
points xi in N (x) and

p := {
p(xn) : xn ∈ N (x)

}
be the vector of the evaluated values of the polynomial p at
the data points xn in N (x). In other words, p is the vector
form of the polynomial p. Furthermore, let ∂xp and ∂yp be
the vectors of the partial derivatives of p(xi ) with respect to
x and y, respectively:

∂xp := {
∂xp(xn) : xn ∈ N (x)

}
∂yp := {

∂yp(xn) : xn ∈ N (x)
}
,

and let

bx := {
bk
x(xn) : xn ∈ N (x)

}
by := {

bk
y(xn) : xn ∈ N (x)

}
dx := {

dk
x (xn) : xn ∈ N (x)

}
dy := {

dk
y (xn) : xn ∈ N (x)

}
,

where bk
x(xn) and bk

y(xn) are the x and y components of
bk(xn), respectively, and likewise for dk

x (xn) and dk
y (xn).

Then the first step (1) of the proposed model can be writ-
ten in vector form as

argmin
p∈Πm

μ

2
‖p − f‖2

θ,x + λ

2
‖dx − ∂xp − bx‖2

θ,x

+ λ

2
‖dy − ∂yp − by‖2

θ,x. (17)

Since we construct p in ΠL of dimension m, we can write
p as a linear combination of the basis {p�, � = 1, . . . ,m}:

p(x) :=
m∑

�=1

c�p�(x). (18)

Therefore, we see that (17) is a least squares problem that
can be solved for the following coefficients of the polyno-
mial p,

c = {c� : � = 1, . . . ,m}.

To this end, let us employ the energy function with vari-
able c,

E (c) := μ

2
‖p − f‖2

θ,x + λ

2
‖dx − ∂xp − bx‖2

θ,x

+ λ

2
‖dy − ∂yp − by‖2

θ,x, (19)

which is indeed a quadratic polynomial of the variables c�

with � = 1, . . . ,m. Then, the coefficient vector c satisfying
(19) can be found by calculating the derivative of the func-
tion E (c) and setting this equal to zero:

∂E (c)
∂c�

= 0, � = 1, . . . ,m. (20)

In order to find the solution of this linear system, we need to
express (20) in a matrix form. For this, we denote by E, Ex

and Ey the matrices which (n, �) components are defined as:

E(n, �) := p�(xn), xn ∈ N (x), � = 1, . . . ,m

Ex(n, �) := ∂xp�(xn), xn ∈ N (x), � = 1, . . . ,m

Ey(n, �) := ∂yp�(xn), xn ∈ N (x), � = 1, . . . ,m,

(21)

where ∂x and ∂y are the partial derivative operators, i.e.,
∂x = ∂

∂x
and ∂y = ∂

∂y
. Moreover, recalling that the given

weight function θ is non-zero for any (x1,x2) ∈ R
2 × R

2,
let Dθ indicate the N × N diagonal matrix whose (n,n)-
component is defined by

Dθ (n,n) := θ(xn,x), xn ∈ N . (22)

Then, using these notations, a simple calculation reveals that
the condition (20) is equivalent to the following linear sys-
tem:

0 = μ
(
cET − f

)
DθE

+ λ
(
cET

x − (dx − bx)
)
DθEx

+ λ
(
cET

y − (dy − by)
)
DθEy.

This leads to the identity

c = (
μfDθE + λ(dx − bx)Dθ Ex + λ(dy − by)Dθ Ey

)
· (μET DθE + λET

x DθEx + λET
y Dθ Ey

)−1
. (23)

We see that the solution c is expressed explicitly, and there-
fore there is no need to solve a linear equation, which is
in contrast with the TV minimization case. Each column
of the matrices E,Ex and Ey are composed of the poly-
nomial basis and their partial derivatives. Therefore, it is
easy to see that the matrix [E;Ex;Ey] is a full rank ma-
trix. It is shown in [35], that for the conventional MLS prob-
lem we get the system matrix μET Dθ E, and that this ma-
trix is invertible if E is a full rank matrix and Dθ is di-
agonal. Although it is not straightforward, following the
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same procedure, it can be shown that the system matrix
μET Dθ E + λET

x Dθ Ex + λET
y DθEy becomes invertible if

[E;Ex;Ey] is a full rank matrix. Therefore, the inverse ma-
trix always exists.

We see that (17) can be solved if the vectors d and b, and
the initial noisy image f are given. We initialized the vectors
as d = 0 and b = 0. Finally, after obtaining this coefficient
vector c, our solution pk+1 is obtained by

pk+1 :=
m∑

�=1

c�p�.

• Step 2: After pk+1 has been obtained in step 1, we can
update dk+1. To update dk+1 := (dk+1

x , dk+1
y ) in step 2, we

explicitly solve the minimization problem using the shrink-
age operator used in [57] which is defined in Sect. 2.2, and
simply compute

dk+1 = shrink
(∇pk+1 + bk,1/λ

)

=

⎧⎪⎨
⎪⎩

∇pk+1 + bk − 1/λ sgn(∇pk+1 + bk)

if |∇pk+1 + bk| ≥ 1/λ,

0 if |∇pk+1 + bk| < 1/λ,

(24)

where sgn(·) is the sign operator.

• Step 3: After ∇pk+1 and dk+1 have been computed, the
update of bk+1 is done using the same update method as in
the Bregman algorithm.

bk+1 = bk + ∇pk+1 − dk+1. (25)

All the three steps have to be iteratively performed for each
pixel x ∈ Ω , which gets us all the local polynomial functions
p(x) = px(x) for all x ∈ Ω . Then, finally, the overall MLS
approximation function Lf is obtained by

Lf (x) = p(x) = px(x), ∀x ∈ Ω. (26)

3.4 Other Combinations Using the Proposed
Computational Framework

Other combinations of the least squares methods and the
regularized variational models can be implemented using the
computational framework explained in Sect. 3.3. For exam-
ple, the least squares method with directional kernel [52] and
the g-norm regularizer [37] can be put together with the pro-
posed computational framework in the same manner as the
MLS-TV model. Furthermore, we can also use other basis
than polynomial basis to reconstruct p, for example, expo-
nential basis [47, 54]. This will result in denoising models
with other properties.

4 Experimental Results

We compared the denoising results of the proposed scheme
with the conventional TV based denoising [45], the conven-

Fig. 3 Comparing the denoised results with the ‘Bird’ image (a) origi-
nal (b) noisy (σ = 12.75, PSNR = 26.0636 dB) (c) denoised with MLS
(PSNR = 28.2529 dB) (d) denoised with K-R (PSNR = 28.3158 dB)
(e) denoised with TV (PSNR = 29.5978 dB) (f) denoised with NLM
(PSNR = 29.7249 dB) (g) denoised with NLTV (PSNR = 28.0798 dB)
(h) denoised with MLS-TV (PSNR = 30.5168 dB)
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Table 1 PSNR comparison of
the denoised images by 8
different denoising algorithms,
where the noise is derived from
a Gaussian distribution with
standard deviation σ = 15.3
(and σ = 20.4 for the
‘Cameraman’ image with
PSNR = 22.2497)

Barbara
(24.4297)

Cameraman
(24.4535)

Cameraman
(22.2497)

House
(24.4291)

Lena
(24.4245)

Pirate
(24.4642)

K-R [52] 27.2142 32.2122 24.1324 35.2231 31.2146 28.7599

MLS [35] 29.8410 32.6258 28.9740 34.3328 32.1342 30.7242
NLM [11] 30.7963 32.8516 27.8477 35.7475 32.2955 29.6953

NL-SS [28] 30.4070 32.5087 28.8289 35.0515 32.2902 30.0761

NLM-SAP [22] 31.3233 31.9153 29.4391 34.0924 32.2028 30.0910

TV (μ = 5 ) [45] 23.2493 27.8844 27.0242 31.1925 27.7914 26.0073

TV (μ = 10) 24.6651 30.6648 27.1164 33.5688 30.3118 28.2854

TV (μ = 15) 26.2151 32.2118 27.2562 34.7114 31.6496 29.6941

TV (μ = 20) 27.4128 32.8499 27.5312 34.8779 32.1867 30.7167

NLTV (μ = 5 ) [61] 26.4092 29.4682 27.9632 32.6588 28.8038 26.7343

NLTV (μ = 10) 27.9442 30.6691 28.1291 33.5527 30.0034 27.8442

NLTV (μ = 15) 29.0939 31.6607 28.5713 34.2373 30.9416 28.7855

NLTV (μ = 20) 29.9209 32.4654 28.6154 34.7770 31.6599 29.5691

MLS-TV (μ = 5 ) 31.8894 32.0233 27.7223 33.9455 31.8842 29.9223

MLS-TV (μ = 10) 32.1009 32.9362 28.3934 34.9046 32.1009 30.0210

MLS-TV (μ = 15) 32.5240 33.3529 28.8635 35.4058 32.6126 30.4844

MLS-TV (μ = 20) 32.4647 33.5713 29.2147 35.4231 32.6219 30.5332

Fig. 4 Showing some details of
Fig. 3 for the denoised results
using the TV and the MLS-TV
models (a) TV (b) MLS-TV

Fig. 5 Upper row: MLS-TV
(a) μ = 15 (b) μ = 5 (c) μ = 1,
Lower row: TV (d) μ = 15
(e) μ = 5 (f) μ = 1
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tional MLS based denoising [35], the nonlocal TV (NLTV)
based denoising [61], the kernel regression (K-R) based de-
noising [52], nonlocal mean (NLM) based denoising [11],
the nonlocal scale-shape (NL-SS) [28], and the nonlo-
cal method with shape-adaptive patches (NLM-SAP) [22]

Fig. 6 Comparing the denoised results with the ‘Barbara’ image
(a) original (b) noisy (σ = 15.3, PSNR = 24.4437 dB) (c) denoised
with MLS (PSNR = 29.8410 dB) (d) denoised with K-R (PSNR =
27.2142 dB) (e) denoised with TV (PSNR = 26.2151 dB) (f) denoised
with NLM (PSNR = 30.7963 dB) (g) denoised with NLTV (PSNR =
29.0939 dB) (h) denoised with MLS-TV (PSNR = 32.5240 dB)

methods. The TV and the NLTV methods are implemented
using the split Bregman method. The NL-SS uses the nonlo-
cal weighted linear diffusion process, while the NLM-SAP

Fig. 7 Enlarged versions of the denoised results in Fig. 6. (a) TV
(b) NLTV (c) NLM (d) MLS-TV

Fig. 8 Enlarged versions of the denoised results in Fig. 6. (a) TV
(b) NLTV (c) NLM (d) MLS-TV
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uses more general shapes for the patch in NLM instead of
the usual square patches.

The easiness in choosing the parameters is also an impor-
tant factor to measure the goodness of the algorithm. While
the proposed scheme is not so sensitive to the parameters,
the other schemes are sensitive to the choice of parameters,
especially the K-R based method. This is shown in Fig. 5
and also in Table 1, where it can be observed that the PSNR
values vary much for different parameters with other algo-
rithms, while for the proposed one the PSNR values are sim-
ilar.

Figure 3 compares the denoising results on the ‘Bird’ im-
age with Gaussian noise, where the PSNR is 26.0636 dB,
and the noise is generated from a zero mean Gaussian dis-
tribution with σ = 12.75, where σ is the standard deviation.
The local density and the global smoothing parameters [52]
used in the K-R method are 0.1 and 0.5, respectively, and
the structural sensitivity is 0.1. The width of Gaussian ker-
nel in the NLM is 0.06. The fidelity parameters (μ) for the
TV, NLTV, MLS-TV are all set to 15 (with λ = 5 in (16)),
and the number of data used in the reconstruction of the lo-
cal polynomial approximation (N in (16)) is 49 for both the
MLS and the MLS-TV models. Here, the parameter λ is the
Bregman parameter which appears in the Bregman formu-

lation of the model, and has an effect on the convergence
speed of the algorithm. The degree of polynomials and the
width of Gaussian are 3 and 0.3, respectively, for both the
MLS and the MLS-TV.

As can be seen in the backgrounds of Figs. 3(c) and 3(d),
the conventional MLS and the K-R based denoising show
local noisy artifacts due to the strong noise which affects the
neighborhood of kernel size. In contrast, with the proposed
scheme, the noisy artifact is effectively removed due to the
TV minimizing term. Compared with the conventional TV
based denoising scheme, the proposed scheme produces a
higher order approximation to the intensity function, and the
staircasing artifact does not appear in smooth regions. The
visual quality of the denoised image seems to be better even
than those removed by the conventional NLTV and the NLM
based denoising schemes.

Figure 4 shows some details of Figs. 3(e) and 3(h) to ver-
ify that the approximation using the proposed scheme is of
higher order than that of the TV model.

Figure 5 shows that the proposed scheme is not so sensi-
tive to the parameter deciding the strength of fidelity (μ in
(12)) as the TV model is. This is due to the additional con-
straint in the reconstruction of the p function. The insensi-
tiveness to the parameter makes the scheme stable.

Fig. 9 Comparing the denoised
results with the ‘Cameraman’
image (a) noisy (σ = 20.4,
PSNR = 22.2497 dB)
(b) denoised with MLS
(PSNR = 28.9740 dB)
(c) denoised with K-R (PSNR =
24.1324 dB) (d) denoised with
TV (PSNR = 27.2562 dB)
(e) denoised with NLM
(PSNR = 27.8477 dB)
(f) denoised with NLTV
(PSNR = 28.5713 dB)
(g) denoised with NLM-SAP
(PSNR = 29.4391 dB)
(h) denoised with NL-SS
(PSNR = 28.8289 dB)
(i) denoised with MLS-TV
(PSNR = 28.8635 dB)
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Fig. 10 Enlarged versions of
the denoised results in Fig. 9
(a) noisy (σ = 20.4, PSNR =
22.2497 dB) (b) denoised with
MLS (PSNR = 28.9740 dB)
(c) denoised with K-R (PSNR =
24.1324 dB) (d) denoised with
TV (PSNR = 27.2562 dB)
(e) denoised with NLM
(PSNR = 27.8477 dB)
(f) denoised with NLTV
(PSNR = 28.5713 dB)
(g) denoised with NLM-SAP
(PSNR = 29.4391 dB)
(h) denoised with NL-SS
(PSNR = 28.8289 dB)
(i) denoised with MLS-TV
(PSNR = 28.8635 dB)

Figure 6 compares the denoising results with the ‘Bar-
bara’ image, which contains image structures with large os-
cillation. We used the following parameters in the denoising
of the ‘Barbara’ image. The used in the K-R method are
same as used in the ‘Bird’ image. The width of the Gaus-
sian kernel in the NLM is 0.08. The fidelity parameters (μ)
for the TV, NLTV, MLS-TV are 10, 20, and 10, respectively,
with λ = 5. The number of data (N ), the degree of poly-
nomials, and the width of Gaussian are 49, 3, 0.3, respec-
tively, for both the MLS and the MLS-TV. Again, the stair-
case artifact and the noise halo artifact can be observed with
the results of the TV and the NLM schemes, respectively,
especially in the enlarged figures in Fig. 7. With the pro-
posed scheme, these artifacts are suppressed. The proposed
scheme can also preserve the stripes in the ‘Barbara’ image,
as the NLM scheme does, as can be seen in Fig. 8.

Figure 9 compares the denoising results with the ‘Cam-
eraman’ image, which has a stronger Gaussian noise (σ =
20.4, PSNR = 22.2497 dB) than the ‘Bird’ and ‘Barbara’
image. For this, we compare the result with two more non-
local approach, NLM-SAP and NL-SS. The width of Gaus-
sian in the both methods is 0.08. We used 15 different shapes
for the patch in NLM-SAP and �t = 1/14 for the steep-

Fig. 11 Change of the ‖Lf k+1 −Lf k‖/‖Lf k‖ value according to the
number of iterations

est descent in NL-SS. The other parameters are the same as
with the ‘Barbara’ image for the other methods. Due to the
strong noise, the results with the conventional MLS and the
K-R based denoising suffer from significant local noisy ar-
tifacts. In removing the strong noise, the staircase artifact of
the TV and the NLTV scheme and the noise halo artifact of
the NLM scheme and NL-SS scheme, a typical artifact of the
NLM scheme which is due to an abrupt lack of redundancy
around edges, become apparent. These artifacts can be better
observed in the enlarged images in Fig. 10. The NLM-SAP
has the largest PSNR value, but artifacts can be seen in the
background. In contrast, the MLS-TV scheme has a better
visual quality as can be seen in Figs. 9(i) and 10(i).
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Table 1 further compares the PSNR values of the denois-
ing results on five different 512 × 512 noisy images, where
the noise was generated with a zero mean Gaussian distri-
bution with σ = 15.3. For the ‘Cameraman’ image, we also
tabled the results from Fig. 9, which has a stronger noise
(σ = 20.4, PSNR = 22.2497 dB). Especially, the NLTV,
TV, and MLS-TV methods are implemented with four dif-

Fig. 12 Change of the PSNR and the total iteration according to the
fidelity parameter (μ). The small dots corresponds to the proposed
method and the large dot to the TV method

ferent fidelity parameters for each image. The width of the
Gaussian kernels used in the NLM, NLM-SAP and NL-SS
methods is 0.06, and the other parameters are the same as
those used in Fig. 10. We see that the proposed MLS-TV
method has a good denoising result compared to the other
algorithms, when the noise is not too strong.

We used a stopping criterion to terminate the iteration
of the proposed scheme. The iteration stops if ‖Lf k+1 −
Lf k‖/‖Lf k‖ < 10−3, where Lf k denotes the approximated
image at the current step, and Lf k+1 denotes that at the
next step. To show the convergence property of the pro-
posed scheme, we draw a convergence plot of the pro-
posed scheme in Fig. 11. Figure 11 shows that the value
‖Lf k+1 − Lf k‖/‖Lf k‖ < 10−3 converges.

Figure 12 shows the plot of the PSNR value and the total
iteration number versus the fidelity parameter value, where
the PSNR values corresponds to the resulted images ob-
tained with the stopping criterion ‖Lf k+1 −Lf k‖/‖Lf k‖ <

Fig. 13 Showing the denoising
results on Fig. 9(a) with the
proposed method using a
degree 0 (first column), degree 3
(second column), degree 4 (third
column) approximation, and a
neighborhood of size 5 × 5 (first
row), 7 × 7 (second row), 9 × 9
(third row), 11 × 11 (fourth
row). The parameters μ = 15,
λ = 5 have been used for all
images
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10−3 for the TV method and the proposed method. This plot
shows the fact that the proposed method is less sensitive to
the fidelity parameter than the TV method.

Figure 13 shows how the denoised result of the proposed
method depends on the degree of the approximation and on
N (x), the size of the neighborhood. It can be seen that the
denoised results are similar for the images of degree 3 and
degree 4 approximations, since the difference in the approx-
imation error between the degree 3 and the degree 4 approx-
imations is small.

All the algorithms are implemented with the Matlab pro-
gram (version R2011a, 64-bit) using only Matlab commands
on an Intel Core2 CPU (2.66 GHz) and 8 GB memory. With
this configuration, the running time was about 180 seconds
on a 256 × 256 image with the proposed scheme. The run-
ning time is large compared with the TV method which took
about 0.8 seconds. The K-R, MLS, NLTV, NLM, NLM-
SAP, and the NL-SS methods took 47, 23, 1, 60, 36, 518
seconds, respectively. However, the code corresponding to
the proposed scheme was not optimized, and there is the
possibility that the running time of the proposed scheme can
be significantly reduced after optimization.

5 Conclusion

In this paper, we have proposed a computational framework
which can put regularity based variational methods and least
squares methods together. As an example, we showed how
the total variation minimization can be incorporated into
the moving least squares method, which resulted in a de-
noising scheme that can overcome the drawbacks of both
the conventional total variation based and the moving least
squares based denoising schemes. The proposed framework
can be used to further incorporate several other regulariza-
tion terms which have been proposed in the variational ap-
proaches into the least squares methods. Meanwhile, meth-
ods adopted from the least squares framework such as the
usage of steering kernels can also be incorporated in the pro-
posed framework. The proposed framework has opened pos-
sibilities for numerous schemes which can be derived in the
same manner as the proposed MLS-TV scheme.
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