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Abstract Image segmentation is one of the fundamental
problems in computer vision and image processing. In the
recent years mathematical models based on partial differen-
tial equations and variational methods have led to superior
results in many applications, e.g., medical imaging. A ma-
jority of works on image segmentation implicitly assume
the given image to be biased by additive Gaussian noise,
for instance the popular Mumford-Shah model. Since this
assumption is not suitable for a variety of problems, we pro-
pose a region-based variational segmentation framework to
segment also images with non-Gaussian noise models. Mo-
tivated by applications in biomedical imaging, we discuss
the cases of Poisson and multiplicative speckle noise inten-
sively. Analytical results such as the existence of a solution
are verified and we investigate the use of different regular-
ization functionals to provide a-priori information regard-
ing the expected solution. The performance of the proposed
framework is illustrated by experimental results on synthetic
and real data.
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1 Introduction

The task of automated image segmentation has become in-
creasingly important in the last decade, due to a fast expand-
ing field of applications, e.g., in biomedical imaging. The
main goal of image segmentation is to recover an object-
of-interest from a given dataset by partitioning it into dis-
joint compartments. In general, one can distinguish between
edge-based (cf. e.g., [15, 44, 55]) and region-based (cf. e.g.,
[20, 22, 79]) segmentation methods. In this paper we will
concentrate on the latter one, since our work is motivated by
segmentation tasks in biomedical imaging, where we have
to segment continuous objects-of-interest.

Recently, mathematical tools such as level sets, ac-
tive contours, and variational methods led to significant
improvements in automated image segmentation. One fa-
mous framework, which also allows to incorporate a-priori
knowledge into the process of segmentation, is the popu-
lar Mumford-Shah (MS) model [55]. Based on this frame-
work the frequently used Chan-Vese segmentation method
[20] was developed, which simplifies the MS segmentation
model to the case of piecewise constant approximations of
the image intensity.

1.1 Motivation

Despite its high level of awareness in the segmentation com-
munity, the MS formulation has not yet been investigated in
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a more general context of physical noise modeling. This is
a crucial part in image denoising, since the image noise nat-
urally has to be covered by the denoising method in order
to produce satisfying results. Some exemplary literature on
image denoising based on statistical methods can be found
in [6, 19, 47]. Furthermore, only few publications consid-
ered the effect of a specific noise model on the results of
image segmentation [23, 53]. Since the field of applications
for automated image segmentation grows steadily, a lot of
segmentation problems need a suitable noise model, e.g.,
synthetic aperture radar, positron emission tomography or
medical ultrasound imaging. Especially for data with poor
statistics, i.e., with a low signal-to-noise ratio, it is impor-
tant to consider the impact of the present noise model in the
process of segmentation as we will show in later sections.

Besides the application of different noise models, the se-
lection of appropriate regularizers has a remarkable influ-
ence on the results of a segmentation approach. By incorpo-
rating a-priori knowledge into the mathematical model one
is able to reduce the set of possible solutions to a subset of
segmentations satisfying certain constraints. This effect can
be seen best in the work of Chan-Vese [20], which restricts
the set of solutions of the segmentation problem to the sub-
set of piecewise constant functions. However, it is possible
to think about situations in which the original signal is not
constant at all, e.g., inhomogeneous intensity distributions
in magnetic resonance imaging [81] or medical ultrasound
imaging [85]. This motivates the possibility to adjust the in-
corporation of a-priori knowledge with the help of suitable
regularizers.

In the following we describe a general segmentation
framework for different physical noise models, which also
allows the incorporation of a-priori knowledge by using dif-
ferent regularization terms. In Sect. 2 we introduce a statis-
tical formulation of the region-based segmentation problem
and present the general segmentation framework. We study
our statistical formulation for three different noise models,
i.e., additive Gaussian noise, Poisson noise, and multiplica-
tive speckle noise. The framework is analyzed extensively in
Sect. 3. In particular, we investigate the existence of a solu-
tion and discuss different regularizers for the presented vari-
ational segmentation formulation, which allow us to incor-
porate a-priori knowledge about solutions to the segmenta-
tion problem. The relationship to the classical formulations
of Chan-Vese and Mumford-Shah is discussed in detail in
Sect. 4. In particular, we show that the region-based variant
of the popular MS model is a special case of our framework
for additive Gaussian noise. Moreover, we consider a natural
extension of the Chan-Vese method to non-Gaussian noise
models. Section 5 describes the numerical realization of the
proposed segmentation formulation. We discuss the possi-
bilities of global convex minimization and describe how

to implement the corresponding optimization schemes ef-
ficiently. We present experimental results in Sect. 6 and val-
idate our methods on both synthetic and real data from med-
ical imaging with challenging image attributes, e.g., high
noise level and intensity inhomogeneities. Finally, this pa-
per is ended by discussion in Sect. 8.

2 Region-Based Segmentation Framework

The main idea of the region-based segmentation framework
proposed in this paper is based on the fact that a wide range
of noise types is present in real-life applications, particu-
larly including noise models that are fundamentally different
from additive Gaussian noise. To formulate a segmentation
framework for different noise models and thus for a large
set of imaging modalities, we use tools from statistics. First,
we introduce some preliminary definitions to describe our
model accurately.

Let Ω ⊂ R
d be the image domain (we consider the typi-

cal cases d ∈ {2,3}) and let f be the given (noisy) image we
want to segment. The segmentation problem consists in sep-
aration of the image domain Ω into an “optimal” partition
Pm(Ω) of pairwise disjoint regions Ωi , i = 1, . . . ,m, i.e.,

Pm(Ω) ∈
{
(Ω1, . . . ,Ωm) : Ω =

m⋃
i=1

Ωi and

Ωi ∩ Ωj = ∅ for all i �= j

}
. (1)

Naturally, the partition Pm(Ω) is meant to be done with re-
spect to the given image information induced by f , e.g., sep-
aration into an object-of-interest and background for m = 2.
Finally, we remark that in most cases the specific order of
the Ωi in (1) does not matter.

In this work we are not only interested in the partition
Pm(Ω) of the image domain but also in the simultaneous
restoration of the given data f as an approximation of the
original noise free image. For this purpose we follow the
idea proposed in [12] and [84, Sect. 4.4.4] and compute a
smooth function ui for each subregion Ωi of Pm(Ω), where
the smoothness of ui is not only enforced in Ωi but on the
entire image domain Ω . Using this approach an approxima-
tion u of the noise free image is given by

u = χΩ1u1 + · · · + χΩmum, (2)

where χΩi
denotes the indicator function of Ωi and ui is a

global smooth function induced by Ωi and the given data f ,
i.e.,

χΩi
(x) =

{
1, if x ∈ Ωi,

0, else,
(3)



J Math Imaging Vis (2013) 47:179–209 181

and

ui =
{

restoration of f in Ωi,

appropriate extension in Ω \ Ωi.
(4)

2.1 Statistical Formulation of Region-Based Segmentation

In this section we provide a general region-based segmenta-
tion framework from the viewpoint of statistical (Bayesian)
modeling. Following [25, 61] the partition Pm(Ω) of the im-
age domain Ω can be computed via a maximum a-posteriori
probability (MAP) estimation, i.e., by maximizing the
a-posteriori probability density p(Pm(Ω)|f ) using Bayes’
theorem. However, since we also want to restore an approx-
imation u of the original noise free image, we have to maxi-
mize a modified a-posteriori probability density as discussed
below. In order to give precise statements on probability
densities we use a discrete formulation with N denoting the
number of pixels (or voxels) and expressing the dependency
on N by a superscript in the functions (to be interpreted as
piecewise constant on pixels and identified with the finite-
dimensional vector of coefficients in a suitable basis) and
partitions (any subdomain restricted to be a union of a fi-
nite number of pixels). As a last step we consider the formal
limit N → ∞ to obtain the variational model. Since this
serves as a motivation only, we will not treat the challeng-
ing problem of analyzing the continuum limit, which in the
case of hierarchical Bayesian priors related to the standard
Mumford-Shah model was already carried out in [40].

In the following, we have to maximize an a-posteriori
probability density p(uN, P N

m (Ω) | f N), which can be
rewritten as

p(uN, P N
m (Ω) | f N)

∝ p(P N
m (Ω))p(uN | P N

m (Ω))p(f N | uN, P N
m (Ω)). (5)

The main advantage of the statistical formulation in (5) is
the possibility to separate geometric properties of the par-
tition of Ω (first term) from image-based features (sec-
ond and third term). In addition, the densities on the
right-hand side of (5) are often easier to model than the
a-posteriori probability density p(uN, P N

m (Ω) | f N) itself.
For the sake of completeness, we note that the probabil-
ity densities p(P N

m (Ω)) and p(uN | P N
m (Ω)) in (5) allow

to incorporate a-priori information with respect to the de-
sired partition P N

m (Ω) and the restoration uN in (2) into
the segmentation process. Moreover, the posterior distribu-
tion p(f N | uN, P N

m (Ω)) in (5) solely depends on the noise
model in the given data f N , i.e., on the image formation
process of the imaging device.

In order to characterize the a-priori probability density
p(P N

m (Ω)) in (5), we consider a geometric prior which is
most frequently used in segmentation problems. This prior

provides a regularization constraint favoring smallness of
the edge set

Γ N =
⋃
i �=j

(∂ΩN
i ∩ ∂ΩN

j \ ∂Ω)

in the (d − 1)-dimensional Hausdorff measure Hd−1, i.e.,

p(P N
m (Ω)) ∝ e−βHd−1

N (Γ N ), β > 0. (6)

Note that in order to avoid unwanted grid effects one should
use an appropriate approximation Hd−1

N of the Hausdorff
measure which also guarantees a correct limit as N → ∞.

For characterization of the two remaining densities
p(uN | P N

m (Ω)) and p(f N | uN, P N
m (Ω)) in (5) we assume

in the following that the functions uN
i in (2) are uncorre-

lated and independent with respect to the partition P N
m (Ω).

This is natural since the segmentation should exactly sep-
arate the parts with different behavior of uN . Hence, due
to the composition of uN by functions uN

i and the pairwise
disjoint partition of ΩN by ΩN

i in (1), we obtain simplified
expressions of the form

p(uN | P N
m (Ω)) =

m∏
i=1

p(uN
i | ΩN

i ) (7)

and

p(f N | uN, P N
m (Ω)) =

m∏
i=1

p(f N | uN
i ,ΩN

i ), (8)

where p(uN
i | ΩN

i ) and p(f N | uN
i ,ΩN

i ) denote for a
region-of-interest ΩN

i the probability of observing an image
uN

i and f N , respectively.
First, we discuss the densities p(uN

i | ΩN
i ) from (7),

which can be reduced to a-priori probability density func-
tions p(uN

i ). The most frequently used a-priori densities, in
analogy to statistical mechanics, are Gibbs functions [31,
32] of the form

p(uN
i ) ∝ e−αiR

N
i (uN

i ), αi > 0, (9)

where RN
i is a discretized version of a non-negative (and

usually convex) energy functional Ri . Using these a-priori
densities (7) is then given by

p(uN | P N
m (Ω)) ∝

m∏
i=1

e−αiR
N
i (uN

i ). (10)

To characterize the densities p(f N | uN
i ,ΩN

i ) in (8) we
assume that each value f N |Px

(with Px ⊂ ΩN being a
pixel) describes a realization of a random variable and all
random variables are pairwise independent and identically
distributed in the same corresponding subregion ΩN

i . Con-
sequently, it is possible to replace the probability p(f N |
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uN
i ,ΩN

i ) by a joint a-posteriori probability pi(f
N | uN

i ) in
ΩN

i , i.e., the expression in (8) (with Px denoting a pixel)
reads as

p(f N | uN, P N
m (Ω))

∝
m∏

i=1

∏
Px⊂ΩN

i

pi(f
N |Px

| uN
i |Px

). (11)

As mentioned above, we use the MAP estimator to deter-
mine an approximation of the unknown image u and a parti-
tion of the image domain Pm(Ω). Following this approach,
we maximize the a-posteriori probability (5), respectively
minimize its negative logarithm, i.e.,

(uN, P N
m (Ω))MAP ∈ arg min

uN ,P N
m (Ω)

{
− logp(f N | uN, P N

m (Ω))

− logp(uN | P N
m (Ω)) − logp(P N

m (Ω))
}

.

By inserting the a-priori constraints (6) and (10) for the ge-
ometric and image terms, respectively, as well as the region-
based image term (11), we consequently minimize the fol-
lowing energy functional,

EN(uN
1 , . . . , uN

m,ΩN
1 , . . . ,ΩN

m )

=
m∑

i=1

∑
Px⊂ΩN

i

− logpi(f
N |Px

| uN
i |Px

)

+
m∑

i=1

αiR
N
i (uN

i ) + βHd−1
N (Γ N). (12)

We already stated above that a suitable selection of probabil-
ity densities pi(f

N | uN
i ) depends on the underlying phys-

ical noise model in the given data f N and the subregion
ΩN

i . For the cases of additive Gaussian, Poisson, and mul-
tiplicative speckle noise we present the corresponding form
of pi(f

N | uN
i ) in Sect. 2.2.

The variational problem (12) for the MAP estimate has
a formal continuum limit (with αi and β rescaled by the
pixel volume), which we shall consider as the basis of the
proposed variational framework in the following:

E(u1, . . . , um,Ω1, . . . ,Ωm)

= βHd−1(Γ )

+
m∑

i=1

(∫
Ωi

− logpi(f (x) | ui(x))dx + αiRi(ui)

)
.

(13)

Finally, we add that in the context of inverse problems the
functionals Ri in (13) and the Gibbs a-priori density in (9)

are related to regularization functionals, whereas the result-
ing functionals

∫
Ωi

− logpi(f (x) | ui(x))dx are related to
data fidelity terms for each subregion Ωi .

The main advantage of the proposed region-based seg-
mentation framework (13) is the ability to handle the in-
formation, i.e., the occurring type of noise and the desired
smoothness conditions, in each subregion Ωi of the image
domain Ω separately. For example, it is possible to choose
different smoothing functionals Ri if subregions of differ-
ent characteristics are expected. Moreover, the framework
in (13) describes a direct generalization of the Chan-Vese
method and the region-based version of the Mumford-Shah
segmentation model to non-Gaussian noise problems, which
is further discussed in Sect. 4.

2.2 (Non-)Gaussian Noise Models

As mentioned above, the choice of probability densities
pi(f | ui) in (13) solely depends on the noise occurring in
the data f and the subregion Ωi . Typical examples for prob-
ability densities pi(f | ui) are exponentially distributed raw
data f (see e.g., [23, 53]). In most cases it is (often implic-
itly) assumed that the data is perturbed by additive Gaus-
sian noise. However, there are many real-life applications
in which different types of noise occur, especially signal-
dependent ones, which form the main interest of this paper.
In this work we focus the attention on Poisson and multi-
plicative speckle noise. However, we note that there are also
other non-Gaussian noise models which can be of partic-
ular interest, e.g., salt-and-pepper noise or different types
of multiplicative noise like Gamma noise [6], multiplicative
Gaussian noise [67], or Rayleigh-distributed noise [68].

In the following we discuss the selection of probabil-
ity densities pi(f | ui) for additive Gaussian noise, Poisson
noise, and multiplicative speckle noise. To illustrate the dif-
ferent characteristics of these noise forms we show in Fig. 1
a synthetic 1D signal corrupted by the mentioned three noise
models. We can observe that the appearance of Poisson and
speckle noise is in general stronger compared to the additive
Gaussian noise. Hence, an appropriate choice of probabil-
ity densities is required to handle the perturbation effects of
different noise models accurately. For the sake of simplicity
and since we are only interested in the formulation in (13),
we will write pi(f (x) | ui(x)) in the following. However,
this term has to be interpreted as the value of pixels in the
sense of a correct modeling.

2.2.1 Additive Gaussian Noise

One of the most commonly used noise models in com-
puter vision and mathematical image processing is the ad-
ditive Gaussian noise model (see Fig. 1(b)) of the form
f = u + η, where η is a Gaussian-distributed random vari-
able with expectation 0 and variance σ 2. This kind of noise
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Fig. 1 Illustration of three
physical noise models in one
dimension. (a) Noise free 1D
signal. (b) Signal biased by
additive Gaussian noise with
σ = 5 (see Sect. 2.2.1).
(c) Signal biased by Poisson
noise (see Sect. 2.2.2).
(d) Signal biased by speckle
noise with σ = 5 (see
Sect. 2.2.3). Note, that we cut
off a few values in case of the
speckle noise model to maintain
a comparable vertical scale for
each signal. We observe that the
Poisson and multiplicative
speckle noise is much stronger
than the classical additive
Gaussian noise

is signal-independent and has a globally identical distri-
bution of noise. For this case the conditional probability
pi(f (x) | ui(x)) in (11) is given by (cf. e.g., [11])

pi(f (x) | ui(x)) ∝ e
− 1

2σ2 (ui (x)−f (x))2
.

Thus, this model leads to the following negative log-
likelihood function in the energy functional E in (13),

− logpi(f (x) | ui(x)) = 1

2σ 2
(ui(x) − f (x))2. (14)

Consequently, the additive Gaussian noise model induces
the commonly used L2 data fidelity term, which is the
canonical choice of fidelity in many segmentation formu-
lations, e.g., in the Mumford-Shah or Chan-Vese model (see
Sect. 4). Therefore, these segmentation methods are success-
ful on a large class of images, since additive Gaussian noise
is the most common form of noise. Finally, we mention that
the factor σ 2 in (14) is neglected in the course of this work
because it can be scaled by the regularization parameters αi

and β in the energy functional (13).

2.2.2 Poisson Noise

In contrast to the additive noise model described above, we
are also interested in Poisson or the so-called ’photon count-
ing noise’. In Fig. 1(c) the effect of Poisson noise on an un-
biased signal can be observed. This type of noise is signal-

dependent and appears in a wide class of real-life applica-
tions, e.g., in positron emission tomography [78, 83], fluo-
rescence microscopy [27, 41], CCD cameras [74], and as-
tronomical images [46, 51]. For Poisson noise one indeed
counts natural numbers as data, so also the image in the
discrete modeling needs to be quantized. Thus, the condi-
tional probability pi(f

N |Px
| uN

i |Px
) in (11) with Px ⊂ ΩN

i

is modeled as (cf. e.g., [11])

pi(f
N |Px

= k | uN
i |Px

= λ) = λk

k! e
−λ,

and leads in the limit to the following negative log-likelihood
function for the energy functional E in (13),

− logpi(f (x) | ui(x)) = ui(x) − f (x) logui(x) + const.
(15)

Note that the fidelity can be rescaled in f and ui in a
straight-forward way, such that one can pass from quantized
intensities on to real values in the reasonable limit of suffi-
ciently high count rates. Appending additive terms indepen-
dent of ui , the corresponding data fidelity term in (15) be-
comes the so-called Kullback-Leibler (KL) divergence (also
known as cross entropy or I-divergence) between two non-
negative measures f and ui . The most significant difference
of the KL fidelity compared to the L2 data term in (14) is the
strong non-linearity in the KL functional, leading to compli-
cations in the computation of minimizers in (13).
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2.2.3 Multiplicative Speckle Noise

The last noise model we want to investigate for the gen-
eralized segmentation framework (13) is signal-dependent
noise of the form f = u + √

uη, where η is a Gaussian-
distributed random variable with mean 0 and variance σ 2.
The appearance of this noise form is illustrated in Fig. 1(d),
in which a spatial variation of noise variance yields differ-
ent signal amplitudes. This effect occurs because the noise
model is of multiplicative nature, i.e., the noise variance di-
rectly depends on the underlying signal intensity. This type
of noise can be found, e.g., in diagnostic ultrasound imaging
[43, 45, 52] and corresponds to an experimentally derived
model of multiplicative speckle noise [77] in ultrasound im-
ages. Using this noise model, the conditional probability
pi(f (x) | ui(x)) in (11) is modeled as

pi(f (x) | ui(x)) ∝ (ui(x))−
1
2 e

− 1
2σ2

(ui (x)−f (x))2

ui (x) ,

and the negative log-likelihood function in the energy func-
tional E in (13) is given by

− logpi(f (x) | ui(x))

= 1

2σ 2

(ui(x) − f (x))2

ui(x)
+ 1

2
logui(x). (16)

Although this noise model is somewhat similar to the ad-
ditive Gaussian noise model introduced in Sect. 2.2.1, its
impact on the given data f differs fundamentally from the
influence of additive Gaussian noise due to the multiplica-
tive adaption of the noise level η by the signal

√
u. Conse-

quently, this aspect leads to a more complicated form of the
data fidelity term and hence to more problems in the compu-
tation of minimizers in (13). As for additive Gaussian noise
in Sect. 2.2.1, we can multiply the right-hand side of (16) by
2σ 2 and incorporate this scaling factor in the regularization
parameter αi and β in (13).

2.3 Two-Phase Formulation of Region-Based
Segmentation Framework

In the following we will restrict the proposed segmentation
framework in Sect. 2.1 to a two-phase segmentation prob-
lem (i.e., we set m = 2 in (1) and (13)) for multiple reasons.
First, we are mainly interested in medical imaging applica-
tions in which we want to segment objects in a complex
background. Second, we extensively employ exact convex
relaxation (see e.g., Lemma 1) in our analysis and numeri-
cal solution. In principle an extension to multiphase models
can be performed with exactly the same difficulties as in the
case of the standard Chan-Vese model (cf. [13, 24, 26, 37,
48, 49, 63, 64, 79]).

For a two-phase formulation of the region-based segmen-
tation framework (13) we introduce the following notations.

First, we assume that we want to segment the image domain
Ω into a background and a target subregion for the wanted
partition P2(Ω) in (1), which we denote with Ωb and Ωt , re-
spectively. Subsequently, we introduce an indicator function
χ in order to represent both subregions such that

χ(x) =
{

1, if x ∈ Ωb,

0, else.
(17)

The negative log-likelihood functions − logpi(f | ui) in
(13) are defined as data fidelity functions using the notation

Di(f,ui) = − logpi(f | ui) for i ∈ {b, t}. (18)

Finally, we use the well-known relation between the Haus-
dorff measure and the total variation of an indicator func-
tion (see e.g., [5, Sect. 3.3] or [35, Ex. 1.4]), which implies
that Hd−1(Γ ) = |χ |BV(Ω). Here Γ ⊂ Ω is the edge set of
the partition P2(Ω) = (Ωb,Ωt), χ is defined in (17), and
|·|BV(Ω) denotes the total variation of a function in Ω . Then
the energy functional E in (13) can be rewritten for the case
of a two-phase segmentation problem as

E(ub,ut , χ) =
∫

Ω

χDb(f,ub) + (1 − χ)Dt(f,ut )dx

+ αbRb(ub) + αtRt (ut ) + β|χ |BV(Ω). (19)

3 Analysis of Region-Based Segmentation Framework

After introduction of the general region-based segmentation
framework in Sect. 2.1 we provide a mathematical analysis
of the variational problem induced by the energy functional
E defined in (13) in the following. For the sake of simplicity,
we restrict this analysis to the two-phase formulation pro-
posed in (19) and thus consider a variational problem of the
form

min
(ub,ut ,χ)∈D(E)

E(ub,ut , χ), (20)

for which D(E) denotes the (effective) domain of the energy
functional E.

3.1 Assumptions

In this section we introduce the necessary foundations for
the analysis of the variational problem (20). In particular,
we discuss the choice of function spaces in D(E) and state
the required assumptions on the data fidelity terms Di and
the regularization functionals Ri in (19) with i ∈ {b, t}.

We start with the characterization of D(E) and deal with
admissible sets of functions in the following (denoted by an
additional (Ω)), which we assume all to be closed subsets
of Banach spaces. First, we give a general formulation of
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these spaces and then provide detailed conditions such that
all integrals in (19) are well-defined.

Assumption 1 (Function sets) Let i ∈ {b, t}, then we con-
sider the following sets of functions:

(i) The domain Wi(Ω) of Ri in (19) is a subset of a Ba-
nach space W̃i(Ω), which is closed with respect to a
topology τW̃i

(which will later be the weak or strong
norm topology depending on specific examples).

(ii) The domain Ui(Ω) of Di in (19) is a subset of a Ba-
nach space Ũi(Ω) such that W̃i(Ω) ⊂ Ũi(Ω) and the
embedding (W̃i(Ω), τW̃i

) into Ũi(Ω) with the strong
norm topology is continuous.

(iii) The data function set is V (Ω) = Vb(Ω) ∩ Vt(Ω), for
which Vi(Ω) is a subset of a Banach space Ṽi(Ω) such
that Ṽi(Ω) is continuously embedded in Ũi(Ω), both
associated with the strong norm topologies.

Thus, the effective domain D(E) of the energy functional E

in (20) is given by

D(E) ={(ub,ut , χ) : ui ∈ Wi(Ω),

χ ∈ BV(Ω; {0,1}),E(ub,ut , χ) < +∞} .

Note that Assumption 1(i) and (ii) are required since the pur-
pose of the regularization functionals Ri is to restrict the ad-
missible solution set of the minimization problem (20) to
smooth functions. Additionally, the assumption on V (Ω) is
necessary due to the occurrence of the data function f in
both fidelity terms Di in (19).

Remark 1 The properties of the function sets in Assump-
tion 1 are chosen in this very general form in order to pro-
vide a unified framework for all cases of data fidelity and
regularization terms. These abstract assumptions become
more clear for specific models in the progress of this work.

To have a first impression of the function sets Wi(Ω),
W̃i(Ω), Ui(Ω), Ũi(Ω), Vi(Ω), and Ṽi (Ω), let us consider
the choice of these sets for the simple example of addi-
tive Gaussian noise in the subregions Ωi and a squared
H 1-seminorm regularization functional (cf. Sect. 3.4.1 and
3.5.1). Then we have to choose the function sets as

W̃i(Ω) = H 1(Ω)

and

Wi(Ω) =
{
u ∈ H 1(Ω) :

∣∣∣∣ 1

|Ω|
∫

Ω

udx

∣∣∣∣≤ Mi

}

for a positive constant Mi big enough and

Vi(Ω) = Ṽi(Ω) = Ui(Ω) = Ũi(Ω) = L2(Ω).

We continue with assumptions on the data fidelity terms
Di and the regularization functionals Ri in (19), which is
necessary to ensure the existence of a regularized solution.
For the sake of brevity, we introduce data fidelity functionals

D̄i : Vi(Ω) × Ui(Ω) × BV(Ω; [0,1]) → R ∪ {+∞}, (21)

defined by

D̄i(f,u, v) =
{∫

Ω
vDi(f,u)dx, if

(
vDi(f,u)

) ∈ L1(Ω),

+∞, else.

(22)

In the following we provide the required assumptions on
the functionals D̄i . However, note that some of these can
be transfered easily to assumptions on Di in (22).

Assumption 2 (Energy functionals) Let the function sets
Wi(Ω), Ui(Ω), and Vi(Ω) satisfy Assumption 1. Then we
assume the following:

(i) For any fixed ϕ ∈ Vi(Ω) and ψ ∈ BV(Ω; [0,1]), the
function u → D̄i(ϕ,u,ψ) is bounded from below.

(ii) For any fixed ϕ ∈ Vi(Ω) the function u → D̄i(ϕ,u,1)

is lower semi-continuous with respect to the topology
τW̃i

, where 1(x) = 1 for all x ∈ Ω .
(iii) The functional Ri : Wi(Ω) → R≥0 is convex and lower

semi-continuous with respect to the topology τW̃i
.

(iv) For any fixed ϕ ∈ Vi(Ω) and ψ ∈ BV(Ω; [0,1]),

D(D̄i(ϕ, ·,ψ)) ∩ D(Ri) �= ∅ (23)

holds, where D denotes the effective domain of a func-
tional. In particular, this implies that the functionals Ri

are proper.
(v) For every a > 0, the sub-level sets SRi

(a) of the func-
tional Ri , defined by

SRi
(a) := {u ∈ Wi(Ω) : Ri(u) ≤ a} , (24)

are sequentially precompact with respect to the topol-
ogy τW̃i

.

3.2 Convex Relaxation

In this section we shortly anticipate the numerical realiza-
tion of the minimization problem (20), for which we provide
a theoretical basis in this section. Due to the simultaneous
minimization with respect to ub , ut and χ , the problem (20)
is hard to solve in general and we use an alternating mini-
mization scheme to achieve our aim. This approach is com-
monly used for segmentation models in the literature (e.g.,
for the models of Ambrosio-Tortorelli [4], Chan-Vese [20],
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or Mumford-Shah [55]) and leads to the following iterative
minimization process,

(uk+1
b , uk+1

t ) ∈ arg min
ui∈Wi(Ω)

E(ub,ut , χ
k), (25a)

χk+1 ∈ arg min
χ∈BV(Ω;{0,1})

E(uk+1
b , uk+1

t , χ). (25b)

However, even the minimization step (25b) is a difficult task
since this problem is nonconvex due to the non-convexity of
the function set BV(Ω; {0,1}). Considering the form of the
energy functional E in (19), exact convex relaxation results
for such problems have been proposed by Chan, Esedoglu
and Nikolova in [22], which we recall in the following.

Lemma 1 (Exact convex relaxation) Let a ∈ R and g ∈
L1(Ω). Then there exists a minimizer of the constrained
minimization problem

min
χ∈BV(Ω;{0,1}) a +

∫
Ω

gχdx + |χ |BV(Ω), (26)

and every solution is also a minimizer of the relaxed problem

min
v∈BV(Ω;[0,1])

a +
∫

Ω

gvdx + |v|BV(Ω), (27)

consequently leading to the fact that the minimal functional
values of (26) and (27) are equal. Moreover, if v̂ solves (27),
then for almost every μ ∈ (0,1) the indicator function

χ̂ (x) =
{

1, if v̂(x) > μ,

0, else,

solves (26) and thus also (27).

Since we use the alternating minimization strategy pro-
posed in (25a)–(25b), there is an immediate implication of
Lemma 1.

Theorem 1 Let Wi(Ω), Ui(Ω), V (Ω), D̄i , and Ri sat-
isfy Assumptions 1 and 2. Additionally, we assume that
f ∈ V (Ω) and

Db(f,ub) − Dt(f,ut ) ∈ L1(Ω), ∀ui ∈ Wi(Ω). (28)

Here, if (ûb, ût , χ̂ ) is a minimizer of (20), then it is also a
minimizer of the relaxed problem

min
(ub,ut ,v)∈Drel (E)

E(ub,ut , v), (29)

where Drel(E) denotes the relaxed (effective) domain of the
energy functional E and is given by

Drel(E) ={(ub,ut , v) : ui ∈ Wi(Ω),

v ∈ BV(Ω; [0,1]),E(ub,ut , v) < +∞} .

Moreover, if (ûb, ût , v̂) solves (29), then for almost every
μ ∈ (0,1) and

χ̂ (x) =
{

1, if v̂(x) > μ,

0, else,

the triple (ûb, ût , χ̂ ) is a minimizer of (20).

Proof For fixed ub ∈ Wb(Ω) and ut ∈ Wt(Ω), set

a =
∫

Ω

Dt(f,ut )dx + αbRb(ub) + αtRt (ut )

and

g = Db(f,ub) − Dt(f,ut )
(28)∈ L1(Ω).

Thus, due to D(E) ⊂ Drel(E) and Lemma 1 we have

min
v∈BV(Ω;[0,1])E(ub,ut , v) = min

v∈BV(Ω;{0,1})E(ub,ut , v)

and we can conclude that

min
(ub,ut ,v)∈Drel (E)

E(ub,ut , v)

= min
ui∈Wi(Ω)

min
v∈BV(Ω;[0,1])E(ub,ut , v)

= min
ui∈Wi(Ω)

min
v∈BV(Ω;{0,1})E(ub,ut , v)

= min
(ub,ut ,v)∈D(E)

E(ub,ut , v). �

3.3 Existence of Minimizers

In this section we verify the existence of a minimizer of (20).
For this reason, we first show the sequential lower semi-
continuity of the energy functional E. With respect to the
following lemma we note that the weak* topology repre-
sents the natural choice of a topology in BV(Ω).

Lemma 2 (Sequential lower semi-continuity) Let Wi(Ω),
Ui(Ω), V (Ω), D̄i , and Ri satisfy Assumptions 1 and 2, and
let the data function f ∈ V (Ω). Moreover, let (un

i ) be any
τW̃i

-convergent sequence to some ui in Wi(Ω) and vn ⇀∗ v

in BV(Ω) with 0 ≤ vn ≤ 1 almost everywhere. Then, for

Db(f,un
b) − Dt(f,un

t )︸ ︷︷ ︸
=:gn

L1(Ω)→ Db(f,ub) − Dt(f,ut )︸ ︷︷ ︸
=:g

, (30)

we have

E(ub,ut , v) ≤ lim inf
n→∞ E(un

b,u
n
t , v

n).
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Proof Due to the sequential lower semi-continuity of the
functionals Rb , Rt , D̄t (f, ·,1) and the total variation semi-
norm |·|BV(Ω) (cf. e.g., [5, Prop. 3.6]), it is sufficient to show
the following convergence
∫

Ω

vngndx →
∫

Ω

vgdx,

where gn and g are defined as in (30). For this purpose we
consider the estimate∣∣∣∣
∫

Ω

(
vngn − vg

)
dx

∣∣∣∣
≤ ‖vn‖L∞(Ω)‖gn − g‖L1(Ω) + ∣∣〈vn − v,g

〉∣∣. (31)

The first term on the right-hand side of (31) vanishes in the
limit due to ‖vn‖L∞(Ω) ≤ 1 and assumption (30). For the
second term, the definition of the weak* topology on BV(Ω)

implies vn → v in L1(Ω) (cf. e.g., [5, Def. 3.11]). More-
over, as 0 ≤ vn ≤ 1 a.e., the Banach-Alaoglu theorem [54,
Thm. 2.6.18] delivers the existence of a subsequence (vnj )

with vnj ⇀∗ ṽ in L∞(Ω) and thus vnj ⇀ ṽ in L1(Ω). The
uniqueness of the limit yields ṽ = v, and we find that each
subsequence of (vn) has a subsequence converging to v in
the weak*-sense, which implies

∣∣〈vn − v,g〉∣∣→ 0. �

Theorem 2 (Existence of a minimizer) Let Wi(Ω), Ui(Ω),
V (Ω), D̄i , and Ri satisfy Assumptions 1 and 2. Assume that
αi , β > 0 and f ∈ V (Ω) be fixed. Moreover, let (30) hold
for any sequence (un

i ) converging to ui with respect to the
topology τW̃i

. Then there exists a minimizer of (29) and con-
sequently also of (20).

Proof With respect to Assumption 2 and Lemma 2 we use
the direct method of the calculus of variations (see e.g., [7,
Sect. 2.1.2]). Due to the boundedness of D̄i from below by a
constant Ci ∈ R and due to αi , β > 0 we have an inequality
of the form

Rb(u
n
b) + Rt(u

n
t ) + |vn|BV(Ω)

≤ 1

min{αb,αt , β} (C − Cb − Ct) < ∞, (32)

where (un
b, u

n
t , v

n) is a minimizing sequence of E in
Drel(E) with E(un

b,u
n
t , v

n) ≤ C and C > (Cb + Ct). By
using standard arguments, we obtain the existence of a min-
imizer of (29) and thus by Theorem 1 the existence of a
minimizer of (20). �

3.4 Discussion of Regularization Functionals

In this section we investigate different regularization func-
tionals that allow to incorporate a-priori information of pos-
sible solutions in the proposed segmentation framework. We

focus our attention on the Fisher information and the most
frequently used squared H 1-seminorm regularization. The
main objective of this section is to verify the properties of
these functionals with respect to the requirements in As-
sumption 2.

3.4.1 The Squared H 1-Seminorm

In this section we consider the case of the squared
H 1-seminorm regularization (sometimes also called Dirich-
let functional),

Ri(u) = 1

2

∫
Ω

|∇u|2dx, i ∈ {b, t}. (33)

Considering this smoothing functional, we choose the func-
tion space W̃i(Ω) as the Sobolev space H 1(Ω) and the sub-
set Wi(Ω) as

Wi(Ω) =
{
u ∈ H 1(Ω) :

∣∣∣∣ 1

|Ω|
∫

Ω

udx

∣∣∣∣≤ Mi

}
(34)

with a constant Mi > 0 big enough. Assumptions 2(iii) and
(v) are then satisfied if τW̃i

is the weak topology on H 1(Ω).
More precisely, the following lemma gives an overview on
properties of the functional in (33).

Lemma 3 (Properties of squared H 1-seminorm) Let Wi(Ω)

be the function set defined in (34) and Ri the squared H 1-
seminorm (33) defined on Wi(Ω), then the following state-
ments hold:

(i) Ri is convex.
(ii) Ri is lower semi-continuous with respect to the weak

topology on H 1(Ω).
(iii) Let a > 0 and SRi

(a) be a sub-level set of Ri defined
in (24). Then SRi

(a) is sequentially precompact with
respect to the weak topology on H 1(Ω).

Proof First, note that Wi(Ω) ⊂ H 1(Ω) is convex and
closed with respect to the strong norm topology on H 1(Ω).
Thus, Wi(Ω) is also weakly closed (cf. e.g., [9, p. 29, Prop.
1.2.5]).

(i) It is obvious that Ri is convex on H 1(Ω) and thus on
Wi(Ω), since Wi(Ω) is a convex subset.

(ii) It is also obvious that Ri defined on H 1(Ω) is lower
semi-continuous with respect to the strong norm topology
on H 1(Ω). By [28, p. 11, Cor. I.2.2], Ri defined on H 1(Ω)

is thus also lower semi-continuous with respect to the weak
topology and the assertion holds since Wi(Ω) is weakly
closed.

(iii) First, we mention that the functional ‖·‖∗
p,H 1(Ω)

given by

‖u‖∗
p,H 1(Ω)

:=
(∣∣∣∣ 1

|Ω|
∫

Ω

updx

∣∣∣∣
2
p +

∫
Ω

|∇u|2dx

) 1
2

(35)
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defines an equivalent norm on H 1(Ω) for p ∈ {1,2} (cf. [56,
Thm. 7.1]). Hence we obtain that ‖u‖∗

1,H 1(Ω)
is uniformly

bounded for every u ∈ SRi
(a) and the weak precompactness

of sub-level sets follows directly from the Banach-Alaoglu
theorem (cf. e.g., [54, Thm. 2.6.18]) since H 1(Ω) is reflex-
ive. �

Finally, we recall some basic results about the Sobolev
space H 1(Ω), which is needed in the course of following
sections.

Lemma 4 (Embedding of H 1(Ω)) Let Ω ⊂ R
d be an open

and bounded subset with a Lipschitz boundary, and d ≥ 1.
Then the following compact embedding of H 1(Ω) holds,

H 1(Ω)
c

↪→ Lr(Ω) for 2 ≤ r

⎧⎪⎨
⎪⎩

≤ ∞, if d = 1,

< ∞, if d = 2,

< 2d
d−2 , if d ≥ 3.

(36)

Additionally, H 1(Ω) is continuously embedded in Lr(Ω)

for r = 2d
d−2 and d ≥ 3.

Proof See [2, Thm. 6.2] and [3, Thm. 4.12]. �

3.4.2 The Fisher Information

In the following we discuss the Fisher information as regu-
larization functional, which can be written as

Ri(u) = 1

2

∫
Ω

|∇u|2
u

dx, u ≥ 0 a.e., (37)

with i ∈ {b, t}. We use this form of Fisher information since
the numerical motivation for this regularization energy gets
more apparent in (37). For a more rigorous definition we
refer to [34], in which its formulation based on a weak
definition of the “logarithmic gradient” in suitable measure
spaces. Under some regularity assumptions on u the energy
in (37) can also be written as (cf. [34, 80])

Ri(u) = 1

2

∫
Ω

u|∇ logu|2dx = 2
∫

Ω

|∇√
u|2dx. (38)

The use of this regularization energy is motivated by the
fact that the functional in (37) is one-homogeneous and thus
seems to be more appropriate for density functions than the
squared H 1-seminorm in (33). This is particularly signif-
icant in the context of problems with measured data cor-
rupted by Poisson or speckle noise, since in such applica-
tions the desired functions typically represent densities or
intensity information. Furthermore, the adaptive regulariza-
tion property of the denominator u in (37) is additionally
useful, since the background region of an image (with as-
sumed low intensities) will be regularized stronger than the

target subregion. Finally, we note that the Fisher information
energy has already been used as regularization functional in
density estimation problems [14, 58].

In the case of the Fisher information (37) as regulariza-
tion energy, we use the result stated in [34, Lemma 2.2],

Ri(u) < +∞ if and only if

u ≥ 0 a.e. and
√

u ∈ H 1(Ω),

for which the conditions get obvious with regard to the sec-
ond identity in (38). Thus we choose the function space
W̃i(Ω) as L

r
2 (Ω) with r given in (36), as well as

Wi(Ω) =
{
u ∈ L

r
2 (Ω) : u ≥ 0 a.e.,

√
u ∈ H 1(Ω) and

∣∣∣∣ 1

|Ω|
∫

Ω

udx

∣∣∣∣≤ Mi

}
(39)

with a positive constant Mi big enough. Then Assump-
tions 2(iii) and (v) are satisfied if τW̃i

is the strong norm

topology on L
r
2 (Ω) as we can see in the following lemma.

Lemma 5 (Properties of Fisher information) Let Wi(Ω) be
the function set defined in (39) with r chosen as in (36) and
Ri the Fisher information (37) defined on Wi(Ω). Then the
following statements hold:

(i) Ri is convex.
(ii) Ri is lower semi-continuous with respect to the strong

norm topology on L
r
2 (Ω).

(iii) Let a > 0 and SRi
(a) be a sub-level set of Ri defined

in (24). Then SRi
(a) is sequentially precompact with

respect to the strong norm topology on L
r
2 (Ω).

Proof (i) It is easy to show that the mapping (x, y) → x2

y
is

convex for y ≥ 0 defining x2

y
= +∞ for y = 0. Thus Ri is

convex since Wi(Ω) is a convex subset of {u ∈ L
r
2 (Ω) : u ≥

0 a.e.}.
(ii) Let (un) be a sequence in

S(Ω) := {u ∈ L
r
2 (Ω) : u ≥ 0 a.e. : √u ∈ H 1(Ω)}

and u ∈ S(Ω) such that un → u in L
r
2 (Ω), i.e., also

√
un →√

u in Lr(Ω). Since r is given as in (36) and ∇ : L2(Ω) →
H−1(Ω) is a continuous linear operator, we additionally
have that ∇√

un → ∇√
u in H−1(Ω), where H−1(Ω) is

the dual space of H 1
0 (Ω). We can also conclude that the

sequence (
√

un) is bounded in H 1(Ω) and thus there ex-
ists a weakly convergent subsequence in H 1(Ω) which con-
verges against

√
u due to the strong convergence of (

√
un)

in L2(Ω) and (∇√
un) in H−1(Ω). Thus we obtain that

every subsequence of (
√

un) has a weakly convergent sub-
sequence in H 1(Ω) with the same limit and consequently
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√
un ⇀

√
u in H 1(Ω). Finally, since the squared H 1-

seminorm (33) is lower semi-continuous with respect to the
weak convergence in H 1(Ω) and due to relation (38), we
obtain that the Fisher information is lower semi-continuous
with respect to the strong norm topology on L

r
2 (Ω).

(iii) Using the equivalent norm on H 1(Ω) in (35) with
p = 2, we see that the set

{√
u : u ∈ SRi

(a)
}

(40)

is bounded in H 1(Ω). Additionally, we note that the point-
wise mapping u → u2 is continuous from Lr(Ω) to L

r
2 (Ω).

Thus, the assertion is ensured since the set in (40) is com-
pact in Lr(Ω) due to the compact embedding of H 1(Ω) in
Lemma 4 and the convexity of this set. �

Remark 2 In view of the squared H 1-seminorm in (33), one
might also consider an approximation of the Fisher informa-
tion (37) of the form

Ri(u) = 1

2

∫
Ω

|∇u|2
w

dx, w ∈ L∞(Ω) and w ≥ 0 a.e.,

(41)

where w is a given function and i ∈ {b, t}. Notice that the
condition w ∈ L∞(Ω) (or more precisely the boundedness
from above) is required to ensure the coercivity of the func-
tional in (41). The main motivation to use this weighted ver-
sion of the squared H 1-seminorm is the simpler form of
(41) compared to the Fisher information formulation in (37),
since the denominator in (41) is known. Furthermore, if the
function w is chosen as an appropriate approximation of u

such that the magnitude of w is close to the data function f ,
then the functional (41) is approximately one-homogeneous.
Simultaneously, the analytical results from Lemma 3 also
hold for the weighted version (41), due to the non-negativity
of w.

3.5 Discussion of Data Fidelity Terms

We discuss in this section the properties of data fidelity
terms that are used for the cases of additive Gaussian noise,
Poisson noise, and multiplicative speckle noise. For this pur-
pose we recall that a data fidelity functional D̄i(f,u, v),
i ∈ {b, t}, is induced by a negative log-likelihood function
Di(f,u) (cf. (18) and (22)) by setting

D̄i(f,u, v) =
∫

Ω

vDi(f,u)dx (42)

with

Di(f,u) = − logpi(f | u).

In the case of the noise models mentioned above the nega-
tive log-likelihood function Di(f,u) is chosen as described
in Sect. 2.2. In the following the objective is to verify the
properties of D̄i(f,u, v) regarding the requirements stated
in Assumption 2. We also prove the conditions (28) and
(30), which are required for the existence of a minimizer
in Sect. 3.3 above. However, it is sufficient to verify only
(30), due to the similarity of the respective statements. Fi-
nally, note that the following analysis strongly depends on
the general choice of regularization functionals in the seg-
mentation framework. Therefore, we focus in this work on
the Fisher information and squared H 1-seminorm regular-
ization proposed in Sect. 3.4.

3.5.1 Additive Gaussian Noise

We begin our investigation by discussion of the addi-
tive Gaussian noise model and consider the fidelity func-
tional D̄i(f,u, v) in (42) using the following negative log-
likelihood function (cf. (14)),

Di(f,u) = 1

2
(u − f )2. (43)

Due to this form, we choose the function sets in Assump-
tion 1 as

Vi(Ω) = Ṽi(Ω) = Ui(Ω) = Ũi(Ω) = L2(Ω)

and summarize the properties of this fidelity term in the fol-
lowing lemma.

Lemma 6 (Properties of additive Gaussian noise model) Let
Di(f,u) be defined as in (43). Moreover, we assume that
f ∈ L2(Ω) and v ∈ BV(Ω; [0,1]) are fixed. Then the fol-
lowing statements hold:

(i) D̄i(f, ·, v) is nonnegative and convex on L2(Ω).
(ii) D̄i(f, ·,1) is lower semi-continuous with respect to the

weak topology on H 1(Ω) and the strong norm topol-
ogy on L2(Ω).

(iii) The statement Di(f,un) → Di(f,u) in L1(Ω) (cf.
(30)) holds

• if un ⇀ u in H 1(Ω), i.e., using H 1-seminorm regu-
larization;

• if un → u in L
r
2 (Ω), r as in (36), and d ≤ 3, i.e.,

using Fisher information regularization.

Proof (i) Obviously both properties hold due to the non-
negativity of v and Di(f,u), and the convexity of the map-
ping u → u2.

(ii) It is clear that the functional D̄i(f, ·,1) is lower semi-
continuous with respect to the strong norm topology on
H 1(Ω) and L2(Ω). With [28, p. 11, Cor. I.2.2] it is then
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also lower semi-continuous with respect to the weak topol-
ogy on H 1(Ω) since the functional is convex.

(iii) Since f ∈ L2(Ω), we have to show that

‖(un)2 − u2‖L1(Ω) → 0 and ‖un − u‖L2(Ω) → 0.

However, due to the inequality

‖(un)2 − u2‖L1(Ω) ≤ ‖un + u‖L2(Ω)‖un − u‖L2(Ω)

and the fact that (un) is uniformly bounded in L2(Ω) if the
sequence is convergent, it is sufficient to show that

un → u in L2(Ω). (44)

Hence, if we assume un ⇀ u in H 1(Ω), we directly ob-
tain the required condition (44) due to the compact embed-
ding of H 1(Ω) in L2(Ω). Furthermore, assuming un → u

in L
r
2 (Ω) with r as given in (36), the condition (44) is ful-

filled if d ≤ 3. �

3.5.2 Poisson Noise

In this section we consider the case of the Poisson noise
model, for which the data fidelity functional D̄i(f,u, v)

in (42) is induced by the following negative log-likelihood
function (cf. (15)),

Di(f,u) = u − f logu. (45)

Disregarding additive terms independent of u, the corre-
sponding fidelity functional D̄i(f,u,1) in (42) is the so-
called Kullback-Leibler divergence (also known as cross en-
tropy or I-divergence) between two nonnegative measures f

and u. Consequently, we set in Assumption 1 the function
sets

Ũi(Ω) = L1(Ω) and Ṽi (Ω) = L∞(Ω),

as well as (see [65, Sects. 3.1 and 3.3])

Ui(Ω) =
{
u ∈ L1(Ω) : u ≥ c > 0 a.e. and

u logu ∈ L1(Ω)
}

(46)

and

Vi(Ω) =
{
f ∈ L∞(Ω) : f ≥ 0 a.e. and

f logf ∈ L1(Ω)
}

, (47)

and summarize the properties of this fidelity term in the fol-
lowing lemma.

Lemma 7 (Properties of Poisson noise model) Let Ui(Ω)

and Vi(Ω) be defined as in (46) and (47), respectively, and
Di(f,u) as in (45). We also assume that v ∈ BV(Ω; [0,1])
and f ∈ Vi(Ω) are fixed. Then the following statements
hold:

(i) D̄i(f, ·, v) is bounded from below on Ui(Ω).
(ii) D̄i(f, ·,1) is lower semi-continuous with respect to the

weak topology on H 1(Ω) and the strong norm topol-
ogy on L1(Ω).

(iii) The statement Di(f,un) → Di(f,u) in L1(Ω) (cf.
(30)) holds

• if un ⇀ u in H 1(Ω), i.e., using H 1-seminorm regu-
larization;

• if un → u in L
r
2 (Ω), r as in (36), i.e., using Fisher

information regularization.

Proof (i) As the function u → Di(f,u) attains its mini-
mum at u = f , the assertion follows directly since v and
‖f logf − f ‖L1(Ω) are bounded.

(ii) Due to the compact embedding of H 1(Ω) in
L2(Ω) ⊂ L1(Ω), it is sufficient to show the lower semi-
continuity with respect to the strong norm topology on
L1(Ω). In the following we show that the functional
D̄i(f, ·,1) is even continuous with respect to the strong
norm topology on L1(Ω). For this purpose note that

|D̄i(f,un,1) − D̄i(f,u,1)|
(42)≤ ‖Di(f,un) − Di(f,u)‖L1(Ω),

such that we need to prove Di(f,un) → Di(f,u) for un →
u in L1(Ω). Thus, using that f ∈ L∞(Ω), we have to show

‖un − u‖L1(Ω) → 0 and ‖logun − logu‖L1(Ω) → 0.

However, since the log function is Lipschitz continuous on
[c,+∞) with c given in (46), we obtain with the mean value
theorem the following inequality,

‖logun − logu‖L1(Ω) ≤ 1

c
‖un − u‖L1(Ω),

and conclude that Di(f,un) → Di(f,u) if un → u in
L1(Ω).

(iii) To prove the assertion it suffices to show that

un → u in L1(Ω), (48)

as we have seen in the proof of Lemma 7(ii). Hence, if we
assume un ⇀ u in H 1(Ω), we directly obtain the required
condition (48) due to the compact embedding of H 1(Ω)

in L2(Ω) ⊂ L1(Ω). Furthermore, supposing un → u in
L

r
2 (Ω) with r as given in (36), the condition (48) is fulfilled

directly. �
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3.5.3 Multiplicative Speckle Noise

Finally, we discuss the multiplicative speckle noise model
presented in Sect. 2.2.3. Here the data fidelity functional
D̄i(f,u, v) in (42) is induced by the negative log-likelihood
function given in (16),

Di(f,u) = (u − f )2

u
+ σ 2 logu. (49)

Considering the specific form of this function, we set the
function sets in Assumption 1 as following,

Vi(Ω) = Ṽi(Ω) = L∞(Ω) and Ũi(Ω) = L1(Ω),

as well as

Ui(Ω) =
{
u ∈ L1(Ω) : u ≥ c > 0 a.e.

}
, (50)

and describe the properties of the corresponding fidelity
functional in the lemma below.

Lemma 8 (Properties of multiplicative speckle noise model)
Let Ui(Ω) be as defined in (50) and Di(f,u) as in
(49). Moreover, we assume that f ∈ L∞(Ω) and v ∈
BV(Ω; [0,1]) are fixed. Then the following statements
hold:

(i) D̄(f, ·, v) is bounded from below on Ui(Ω).
(ii) D̄(f, ·,1) is lower semi-continuous with respect to the

weak topology on H 1(Ω) and the strong norm topol-
ogy on L1(Ω).

(iii) The statement Di(f,un) → Di(f,u) in L1(Ω) (cf.
(30)) holds

• if un ⇀ u in H 1(Ω), i.e., using H 1-seminorm regu-
larization;

• if un → u in L
r
2 (Ω), r as in (36), i.e., using Fisher

information regularization.

Proof (i) Let u ∈ Ui(Ω), then D̄i(f,u, v) ≥ |Ω|σ 2 log c for
all c > 0 in (50).

(ii) We proceed analogously to Lemma 7(ii) and thus
need to prove Di(f,un) → Di(f,u) for un → u in L1(Ω).
In this context we use the identity

(u − f )2

u
= u − 2f + f 2

u
,

and exploit the results from Lemma 7(ii) with the observa-
tion that we also have to show∥∥∥∥ 1

un
− 1

u

∥∥∥∥
L1(Ω)

→ 0.

We can use that the mapping u → 1
u

is Lipschitz continuous
on [c,+∞) with c as given in (50) and obtain with the mean

value theorem that∥∥∥∥ 1

un
− 1

u

∥∥∥∥
L1(Ω)

≤ 1

c2
‖un − u‖L1(Ω).

Finally, we obtain Di(f,un) → Di(f,u) if un → u in
L1(Ω) and the continuity of D̄(f, ·,1) with respect to the
strong norm topology on L1(Ω).

(iii) Using the results proven in Lemma 8(ii) we can ar-
gument analogously to the case of the Poisson noise model
in Lemma 7(iii). �

We finally mention that the assumption f ∈ L∞(Ω) can
be weakened in favor of the more natural condition f ∈
L2(Ω) by an alternative proof taking into account the spe-
cial structure of speckle noise data fidelity term and con-
sidering specific regularization terms. The coercivity of the
functional is clear and it thus remains to consider the weak
lower semi-continuity, which (by compact embeddings of
BV(Ω), respectively H 1(Ω)), can be reduced to the lower
semi-continuity of functionals of the form

(v,u) →
∫

Ω

v
(u − f )2

u
dx

=
∫

Ω

(
vu − 2vf + v

f 2

u

)
dx

with respect to the strong convergence of v and u in Lp(Ω)

for an appropriate p > 1. Now using the a-priori bounded-
ness of v it is straight-forward to pass to the limit in the first
two terms. Thus it remains to verify the weak lower semi-
continuity of

(v,u) →
∫

Ω

v
f 2

u
dx.

We can now substitute variables and use that w = √
v still

converges strongly in some Lq(Ω). Since the functional∫
Ω

w2 f 2

u
dx is jointly convex with respect to w and u it

is also lower semi-continuous in suitable reflexive Banach
spaces Lq(Ω) and Lp(Ω), respectively.

We mention that in the above data term the restriction
that u is bounded away from zero can also be removed us-
ing the joint convexity. However, in the overall functional
the nonconvex term including logu cannot be shown to be
lower semi-continuous without this restriction. This seems
not to be just a technical issue, but a fundamental property
of the multiplicative speckle noise model. Indeed, without
a lower bound it is extremely favorable to have very small
values of u if f is small due to the log term. Hence there
is a certain bias for decreasing u, which might be removed
if the logarithm term in the functional (49) is ignored. In
our numerical tests both cases gave very similar results, so
it might be possible to choose a convex speckle noise model
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without the logarithmic term in practice, which is easier to
handle numerically and allows a complete analysis without
restrictive assumptions.

3.6 Boundedness of Function Mean Values

In previous sections we discussed the analytical proper-
ties of different regularization functionals and data fidelity
terms, which were required to verify the existence of a min-
imizer of (20). In the course of this discussion the bounded-
ness of function mean values in (34) and (39) was needed
in order to prove the sequential precompactness of the sub-
level sets of the squared H 1-seminorm and Fisher informa-
tion functional. In the following we show that the existence
of such bounds on mean values can be guaranteed directly if
the energy functional E in (19) is bounded.

Lemma 9 (Boundedness of function mean values) Let
V (Ω) satisfy Assumption 1 and we choose the sets Ui(Ω)

and Vi(Ω) as in Sect. 3.5. Moreover, let f ∈ V (Ω), v ∈
BV(Ω; [0,1]), and αi , β > 0. Let Mi = ∞ for Wi(Ω) as
given in (34) and (39). For a set of (ub,ut , v) ∈ Drel(E)

such that E(ub,ut , v) is bounded, i.e., it exists a con-
stant C with E(ub,ut , v) ≤ C, there exist constants C̄b(C),
C̄t (C) > 0 independent of ub,ut , and v such that

|cb|‖v‖L1(Ω) ≤ C̄b(C) and |ct |‖1 − v‖L1(Ω) ≤ C̄t (C),

(51)

where ci are the mean values of ui , i ∈ {b, t}.

Proof Analogously to the proof of Theorem 2, let C >

(Cb + Ct), for which Ci ∈ R are lower bounds of the data
fidelity terms D̄i . We choose functions ub and ut such that
E(ub,ut , v) ≤ C and

ui ∈ H 1(Ω),

if Ri = squared H 1-seminorm (33),

ui ∈ {u ∈ L
r
2 (Ω) : u ≥ 0 a.e.,

√
u ∈ H 1(Ω)},

if Ri = Fisher information (37),

where r is given as in (36) and i ∈ {b, t}. The aim is to show
that there exist constants C̄i(C) > 0 independent of ut , ub ,
and v such that (51) is fulfilled. For the sake of complete-
ness, we note that the constants C̄i(C) also depend on the
image domain Ω ⊂ R

d , the dimension d , the lower bounds
Ci of the data fidelity terms D̄i , the data function f , and
the regularization parameters αi , β . However, for reasons
of clarity, we refrain to indicate all dependencies and use
only the bound C which is most crucial for the statement in
Lemma 9.

To prove this assertion we proceed in two steps. At first
we utilize the form of the data fidelity terms and show

that ‖vub‖L1(Ω) and ‖(1 − v)ut‖L1(Ω) are bounded. Sub-
sequently, these results and the form of the regularization
functionals are used in order to show the boundedness pre-
sented in (51).

We start with the fidelity functional D̄b(f,ub, v) for the
case of additive Gaussian noise discussed in Sect. 3.5.1. Due
to the positivity of the used regularization functionals and
the boundedness of D̄t from below (cf. Assumption 2), we
obtain by using the Cauchy-Schwarz inequality

1

2

(‖vub‖L1(Ω) − ‖vf ‖L1(Ω)

)2

≤ 1

2
‖v (ub − f )‖2

L1(Ω)

= 1

2
‖√v

√
v (ub − f )‖2

L1(Ω)

≤ ‖v‖L1(Ω) D̄b(f,ub, v)︸ ︷︷ ︸
≤(C−Ct )

,

which results in

‖vub‖L1(Ω) ≤√
2|Ω|(C − Ct) +√|Ω|‖f ‖L2(Ω).

Thus ‖vub‖L1(Ω) is bounded due to f ∈ L2(Ω) in the case
of additive Gaussian noise (cf. Sect. 3.5.1).

Next, we consider the Poisson noise fidelity functional
D̄b(f,ub, v) investigated in Sect. 3.5.2. Using the properties
of the Kullback-Leibler divergence presented, e.g., in [65,
Lemma 3.3] (cf. comments to (45)), we obtain the estimate

‖vub − vf ‖2
L1(Ω)

≤
(

2

3
‖vf ‖L1(Ω) + 4

3
‖vub‖L1(Ω)

)
D̄b(f,ub, v)

≤
(

2‖vf ‖L1(Ω) + 4

3
‖vub − vf ‖L1(Ω)

)
(C − Ct). (52)

Adding 4(C−Ct )
2

9 on both sides of (52) yields

(
‖vub − vf ‖L1(Ω) − 2(C − Ct)

3

)2

≤ 2‖vf ‖L1(Ω)(C − Ct) + 4(C − Ct)
2

9

and consequently

‖vub‖L1(Ω) ≤
√

2‖f ‖L1(Ω)(C − Ct) + 4(C − Ct)2

9

+ 2(C − Ct)

3
+ ‖f ‖L1(Ω).

Thus ‖vub‖L1(Ω) is bounded due to f ∈ L∞(Ω) in the case
of Poisson noise (cf. Sect. 3.5.2).
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We proved above that ‖vub‖L1(Ω) is bounded in the case
of additive Gaussian and Poisson noise fidelity term. Anal-
ogously we can show the boundedness of ‖(1 − v)ut‖L1(Ω).
In the following we prove (51), assuming that there exist
constants C̃b(C), C̃t (C) > 0 such that

‖vub‖L1(Ω) ≤ C̃b(C) and

‖(1 − v)ut‖L1(Ω) ≤ C̃t (C).
(53)

We start with the squared H 1-seminorm (33) as regular-
ization functional Ri and split ui into

ui = ci + wi (54)

with ci being the mean value of ui and wi := ui − ci satis-
fying

∫
Ω

widx = 0. For this purpose, we use the Poincaré-
Wirtinger inequality (see e.g., [7, Sect. 2.5.1]), which gives
us

‖wi‖2
L1(Ω)

≤ |Ω|‖wi‖2
L2(Ω)

≤ C1 ‖∇wi‖2
L2(Ω)︸ ︷︷ ︸

=Ri(ui )

(32)≤ C1C2, (55)

where C1 > 0 is a constant which depends on Ω ⊂ R
d and

d only, and C2 > 0 is specified as in (32). Using the bound-
edness of ‖vub‖L1(Ω), we obtain

(‖vcb‖L1(Ω) − ‖vwb‖L1(Ω)

)2

≤ ‖vub‖2
L1(Ω)

(53)≤ (
C̃b(C)

)2
,

and consequently

|cb|‖v‖L1(Ω)

(55)≤ C̃b(C) +√
C1C2

(=: C̄b(C)
)
.

We can conclude analogously that there exists a constant
C̄t (C) such that |ct |‖1 − v‖L1(Ω) ≤ C̄t (C).

Now we investigate the case of the Fisher information
(37) as regularization functional Ri . Since we assume ui ≥
0 a.e., we split

√
ui into

√
ui = ci + wi (56)

with ci being the mean value of
√

ui and wi := √
ui − ci

satisfying
∫
Ω

widx = 0. To show the boundedness of the
mean value of ui we observe∣∣∣∣ 1

|Ω|
∫

Ω

uidx

∣∣∣∣≤ 1

|Ω| ‖ui‖L1(Ω)

(56)= 1

|Ω| ‖(ci + wi)
2‖L1(Ω)

= 1

|Ω| ‖ci + wi‖2
L2(Ω)

,

such that further estimates for ‖ci‖L2(Ω) and ‖wi‖L2(Ω) are
required. As in (55) the Poincaré-Wirtinger inequality yields
an estimate of ‖wi‖L2(Ω),

‖wi‖2
L2(Ω)

≤ C3‖∇wi‖2
L2(Ω)

(56)= C3

∫
Ω

|∇√
ui |2dx

︸ ︷︷ ︸
(38)= 1

2 Ri(ui )

(32)≤ C3C2

2
, (57)

where C3 > 0 is a constant which depends only on Ω ⊂ R
d

and d , and C2 > 0 is specified as in (32). In addition we have

(‖vcb‖L2(Ω) − ‖vwb‖L2(Ω)

)2

≤ ‖v√
ub‖2

L2(Ω)

(56)= ‖vub‖2
L1(Ω)

(53)≤ (
C̃b(C)

)2

and (57) yields the following estimate,

|cb|‖v‖L2(Ω) ≤ C̃b(C) +
√

C3C2

2
.

Thus, there exists a constant C̄b(C) with |cb|‖v‖L1(Ω) ≤
C̄b(C). Analogously, we can conclude that there exists a
constant C̄t (C) such that |ct |‖1 − v‖L1(Ω) ≤ C̄t (C). �

Remark 3 With some modifications, the statement of
Lemma 9 can also be proved in the case of the multiplicative
speckle noise data fidelity term presented in Sect. 3.5.3. For
this we note that ub ≥ c > 0 a.e. (50) and thus we can obtain
the following estimate using the Cauchy-Schwarz inequal-
ity,

‖vub − vf ‖2
L1(Ω)

=
∥∥∥∥
√

vub

√
v (ub − f )√
ub

∥∥∥∥
2

L1(Ω)

≤ ‖vub‖L1(Ω)

∫
Ω

v
(ub − f )2

ub

dx.

Hence, for all c > 0 in (50) we have σ 2 logub ≥ σ 2 log c and

‖vub − vf ‖2
L1(Ω)

≤ ‖vub‖L1(Ω)

(
D̄b(f,ub, v) − |Ω|σ 2 log c

)
.

Now, we are able to use the same strategies as for the Pois-
son noise model in the proof of Lemma 9.

3.7 Existence of Minimizers for Proposed Noise and
Regularization Models

In Theorem 2 we proved the existence of minimizers of
(20) using the most general assumptions on data fidelity and



194 J Math Imaging Vis (2013) 47:179–209

regularization functionals without further knowledge about
the specific form of these terms (see Assumption 2). Subse-
quently, we verified the corresponding assumptions for three
different noise models (additive Gaussian, Poisson, and mul-
tiplicative speckle noise) and two regularization functionals
((weighted) squared H 1-seminorm and Fisher information)
in Sects. 3.4–3.6. For reasons of clarity we summarize the
presented results for the proposed noise and regularization
models again in the following.

Lemma 10 (Existence of a minimizer for proposed noise
and regularization models) Let V (Ω) satisfy Assumption 1
and we choose the sets Ui(Ω) and Vi(Ω) as in Sect. 3.5.
Moreover, let f ∈ V (Ω) and αi , β > 0 be fixed. Let Mi = ∞
for Wi(Ω) as given in (34) and (39), then there exists a min-
imizer of (29) and consequently also of (20) corresponding
to each investigated noise and regularization model.

Proof Analogously to the proof of Theorem 2 let C >

(Cb + Ct), where Ci ∈ R are lower bounds of the data fi-
delity terms D̄i , which exist as proven in Lemmata 6–8(i).
Moreover, let (un

b, u
n
t , v

n) be a minimizing sequence of E

with E(un
b,u

n
t , v

n) ≤ C and

un
i ∈ H 1(Ω),

if Ri = squared H 1-seminorm (33),

un
i ∈ {u ∈ L

r
2 (Ω) : u ≥ 0 a.e.,

√
u ∈ H 1(Ω)},

if Ri = Fisher information (37),

for which r is given as in (36) and i ∈ {b, t}.
Since the functionals Ri are nonnegative the result in

(32) and the constraint ‖vn‖L∞(Ω) ≤ 1 imply the uniform
boundedness of (vn) in BV(Ω) and thus the existence of a
weakly* convergent subsequence (cf. [1, Thm. 2.5] and [5,
Prop. 3.13]), without restriction of generality vn itself. Since
the constraint 0 ≤ vn ≤ 1 prevails for n → ∞ we see that the
limit belongs to BV(Ω; [0,1]).

If ‖vn‖L1(Ω) and ‖1 − vn‖L1(Ω) do not tend to zero, then
Lemma 9 implies that the mean values of (un

b) and (un
t ) are

uniformly bounded, and we can use the results proposed in
Lemmata 3 and 5. Thus, we can satisfy the conditions re-
quired for the proof in Theorem 2 and obtain the existence
of a minimizer of (29).

It remains to discuss the case ‖vn‖L1(Ω) → 0 as the
case ‖1 − vn‖L1(Ω) → 0 is completely analogous. Due to
0 ≤ vn ≤ 1 we conclude that ‖1 − vn‖L1(Ω) → 1 �= 0 such
that by Lemma 9 the mean values of (un

t ) are uniformly
bounded. With the help of (32) we can use the results pro-
posed in Lemmata 3(iii) and 5(iii), which ensure the exis-
tence of a convergent subsequence (u

nj

t ) that converges to
some ût ∈ Wt(Ω). In addition, due to the nonnegativity of
vn and the uniqueness of the limit, vn converges to zero also

in the weak* topology of BV(Ω). Thus, with the simple es-
timate

E(un
b,u

n
t , v

n) ≥
∫

Ω

(1 − vn)Dt (f,un
t )dx

+ αtRt (u
n
t ) + β|vn|BV(Ω),

we can conclude that

infE(ub,ut , v) = lim inf
j→∞ E(u

nj

b , u
nj

t , vnj )

≥ lim inf
j→∞

(∫
Ω

(1 − vnj )Dt (f,u
nj

t )dx

+ αtRt (u
nj

t ) + β|vnj |BV(Ω)

)

=
∫

Ω

Dt(f, ût )dx + αtRt (ût )

= E(1, ût ,0),

showing that (1, ût ,0) is a minimizer of (29).
Finally, by Theorem 1 we conclude the existence of a

minimizer of (20) corresponding to each noise and regu-
larization model investigated in Sects. 3.4 and 3.5, namely
the additive Gaussian, Poisson, and multiplicative speckle
noise model in combination with the (weighted) squared
H 1-seminorm and Fisher information regularization func-
tional. �

4 Special Cases of the Segmentation Framework

In the following we investigate some special cases of
the proposed segmentation framework in Sect. 2 which
correspond to a region-based formulation of the popular
Mumford-Shah model [84] and the Chan-Vese model [20].

4.1 Mumford-Shah Formulation

First, we study the Mumford-Shah model [55], which is well
known within the segmentation community. This model can
achieve edge-based segmentations of high quality for a large
class of images and is formulated as a minimization problem
of an energy functional of the following form,

EMS(u,Γ ) = βHd−1(Γ )

+ 1

2

∫
Ω

(u − f )2dx + α

2

∫
Ω\Γ

|∇u|2dx.

(58)

In this context Γ ⊂ Ω denotes the edge set, which is mea-
sured in the (d − 1)-dimensional Hausdorff measure Hd−1,
and u is a smoothed approximation of the perturbed image
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f on Ω \ Γ . As already mentioned the original formulation
of the Mumford-Shah model (58) is an edge-based segmen-
tation method but can be turned into a region-based model
if Γ is restricted to be the contour delineating the different
subregions of Ω , e.g., in the case of two subregions Ω1 and
Ω2 = Ω \ Ω1 by the restriction Γ = ∂Ω1 \ ∂Ω .

In [84] the author proposes an efficient region-based vari-
ant of the Mumford-Shah model, which is based on the mod-
ification of the boundary conditions on the edge set leading
to different extensions of functions outside the subregions.
The efficiency of this approach is induced by reformulating
the Helmholtz-type optimality equations to the whole image
domain Ω , which can be enforced by the following energy
functional,

EMS∗(u1, u2,Γ )

= βHd−1(Γ ) + 1

2

∫
Ω1

(u1 − f )2dx + 1

2

∫
Ω2

(u2 − f )2dx

+ α

2

∫
Ω

(
|∇u1|2 + |∇u2|2

)
dx. (59)

Note that the case of two subregions Ω1 and Ω2 = Ω \ Ω1

is used in (59) only for the sake of simplicity. Apparently,
this functional is equivalent to our generalized segmenta-
tion framework in (13) choosing the negative log-likelihood
functions − logpi(f |ui) as squared distances (14) and the
regularizers Ri as squared H 1-seminorms (33). As already
discussed in Sect. 2.2.1 this choice of likelihood functions
corresponds to the assumption of the additive Gaussian
noise model for the observed data f . Thus, the region-based
version of the Mumford-Shah formulation in (59) repre-
sents a special case of the proposed generalized segmenta-
tion framework for an additive Gaussian noise model and
H 1-seminorm regularization.

4.2 Chan-Vese Formulation

The traditional Chan-Vese segmentation model in [20]
evolved as a simplification of the Mumford-Shah formu-
lation presented in (58). It is based on the assumption that
the intensities in the different subregions of Ω can be mod-
eled as piecewise-constant functions. The Chan-Vese model
can be formulated as minimization problem of an energy
functional from the following form,

ECV (c1, c2,Γ )

= βHd−1(Γ )

+ 1

2

∫
Ω1

(c1 − f )2dx + 1

2

∫
Ω2

(c2 − f )2dx. (60)

Here f is the perturbed image to be segmented and Γ again
denotes the delineating contour of subregions Ω1 and Ω2 =

Ω \ Ω1 of Ω , defined by Γ = ∂Ω1 \ ∂Ω . The functions c1

and c2 are constant approximations of f in Ω1 and Ω2, re-
spectively. For the Chan-Vese segmentation method the re-
lationship to our generalized segmentation framework (13)
gets obvious choosing the fidelity functions − logpi(f |ui)

as squared distances like for the Mumford-Shah model in
Sect. 4.1 and the regularizers Ri as

Ri(ui) =
{

0, if |∇ui | = 0,

∞, else.
(61)

In this way we can enforce the solutions u1 and u2 to be con-
stant. Analogous to the case of the Mumford-Shah formula-
tion, we discussed in Sect. 2.2.1 that the choice of fidelity
functions above corresponds to an additive Gaussian noise
model assumed in the given data f . Hence, the Chan-Vese
segmentation model is a special case of the proposed seg-
mentation framework for the additive Gaussian noise model
and regularizers Ri in (61), which enforce constant solutions
of the segmentation problem.

4.3 Extension of Chan-Vese Formulation to Non-Gaussian
Noise Models

In this section we discuss the natural extension of the Chan-
Vese formulation presented in the section above to non-
Gaussian noise models described in Sect. 2.2. To perform
this extension it suffices to exchange the L2 distance func-
tions in (60) by general negative log-likelihood functions
− logpi(f |ui) such that the functional in (60) gets the fol-
lowing form,

ECV ∗(c1, c2,Γ )

= βHd−1(Γ )

+
∫

Ω1

− logp1(f | c1)dx +
∫

Ω2

− logp2(f | c2)dx.

(62)

As we can see this energy functional corresponds to the
region-based segmentation framework (13) for the two-
phase formulation (m = 2) using the regularization function-
als Ri defined in (61) in order to enforce constant solutions
c1 and c2. Actually, these optimal constants can be com-
puted explicitly using the form of the negative log-likelihood
functions. Thus, we obtain in the case of additive Gaussian
(14) and Poisson (15) noise model the following constants,

ci =
∫
Ωi

f dx

|Ωi | ,

and in the case of multiplicative speckle noise (16),

ci = 1

2

⎛
⎝
√

σ 4 + 4
∫
Ωi

f 2dx

|Ωi | − σ 2

⎞
⎠ .
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Due to the simple form of these constants, the extension of
the Chan-Vese segmentation method to non-Gaussian noise
models in (62) is easy to implement and allows to be used
in a wide range of applications in which piecewise constant
approximations can be expected.

5 Numerical Realization

After the introduction and analysis of our region-based seg-
mentation framework in earlier sections, we now discuss the
details of its numerical implementation. For the sake of sim-
plicity we restrict this discussion to the two-phase formu-
lation proposed in (19) and thus deal with the realization of
minimization problem (20). We use an alternating minimiza-
tion strategy proposed in (25a)–(25b) in order to minimize
the energy functional E in (19). Deviating from (25a)–(25b)
we split the minimization step (25a) into separate subprob-
lems regarding uk+1

b and uk+1
t and have to solve the follow-

ing minimization problems,

uk+1
b ∈ arg min

ub∈Wb(Ω)

{∫
Ω

χkDb(f,ub)dx + αbRb(ub)

}
, (63a)

uk+1
t ∈ arg min

ut∈Wt (Ω)

{∫
Ω

(1 − χk)Dt (f,ut )dx + αtRt (ut )

}
,

(63b)

χk+1 ∈ arg min
χ∈BV(Ω;{0,1})

{
β|χ |BV(Ω)

+
∫

Ω

(Db(f,uk+1
b ) − Dt(f,uk+1

t ))χdx

}
. (63c)

The first two minimization problems (63a) and (63b) can be
interpreted as denoising problems, since their solutions uk+1

i

are meant to be approximations of the given noisy data f in-
side the subregions specified by χk and (1−χk) with appro-
priate extensions outside of these, and which are character-
ized by the choice of regularization functionals Ri . The nu-
merical realization of these two subproblems are discussed
in Sects. 5.2 and 5.3 for the cases of additive Gaussian noise,
multiplicative speckle noise, and Poisson noise. The third
minimization problem (63c) is derived from (25b) by ne-
glecting additive terms independent of χ . This subproblem
is related to the actual partition of Ω into subregions given
by χ and (1 − χ) and depends on the previously computed
solutions uk+1

i . The numerical solution of the minimization
step (63c) is discussed in Sect. 5.4.

5.1 Numerical Realization of Denoising Steps: Preliminary
Remarks

First, we discuss the numerical realization of denoising
problems (63a) and (63b) for each of the noise models de-
scribed in Sect. 2.2, i.e., additive Gaussian noise, Poisson

noise, and multiplicative speckle noise. To simplify this dis-
cussion, we see that both problems are of the form

uk+1
i ∈ arg min

ui∈Wi(Ω)

{∫
Ω

χ̃k
i Di(f,ui)dx + αiRi(ui)

}
(64)

with i ∈ {b, t} and an indicator function χ̃ k
i such that χ̃ k

b =
χk in the case of (63a) and χ̃ k

t = (1 − χk) in the case
of (63b). In sections below we distinguish between the
choice of the regularization functional Ri as the squared H 1-
seminorm (33) (respectively its weighted version (41)) and
the Fisher information (37) in order to propose a numerical
strategy solving (64).

Finally, we mention the following aspects of the numeri-
cal realization below.

• In Assumption 2(iii) we assumed the regularization func-
tionals Ri to be convex. Thus, we use the concept of
subdifferentials from convex analysis (see e.g., [28, Sect.
5.1]) to compute the first order optimality condition of the
minimization problem (64) and denote the subdifferential
with ∂ .

• With respect to the analytical results in Sect. 3 the opti-
mization problem (64) implies additional complications
in the computation of minimizers using the Poisson and
speckle noise model, or for the Fisher information reg-
ularization. As we can see in (39) and (46) the admis-
sible function spaces only allow non-negative solutions
in these cases, which needs to be enforced in the mini-
mization problem (64). However, for reasons of clarity,
we refrain to note the non-negativity constraint on ui in
(64) explicitly but include this condition in the function
set Wi(Ω) whenever it is required.

5.2 Numerical Realization of Denoising Steps: (Weighted)
H 1-Seminorm Regularization

We start with a discussion of the problem (64) using the
squared H 1-seminorm regularization (33) and its weighted
variant (41). Since the weighted version is more general
than the basic H 1-seminorm, we focus on the weighted H 1-
seminorm regularization functional and denote it with RH 1

w
.

In order to propose an appropriate numerical strategy min-
imizing the problem (64) with Ri = RH 1

w
for each of the

noise models described in Sect. 2.2, we proceed in two steps.
First, we show that for each fixed k ∈ N the problem (64) can
be equivalently realized by a sequence of convex variational
problems of the form

(
uk+1

i

)n+1 ∈ arg min
ui

{
1

2

∫
Ω

χ̃k
i

(ui − qn)2

hn
dx

+ αiRH 1
w
(ui)

}
, (65)
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Table 1 Overview for the setting of functions qn and hn in (65) with
respect to the different physical noise models proposed in Sect. 2.2

Noise model qn hn

Additive Gaussian noise f 1

Poisson noise f (uk+1
i )n

Multiplicative speckle noise f 2

(uk+1
i )n

− σ 2 (uk+1
i )n

with an appropriate setting of the noise function qn and
the weighting function hn with respect to the present noise
model. The choice of these functions is summarized in Ta-
ble 1. The advantage of this strategy is that it allows to pro-
pose a uniform numerical framework for the realization of
the denoising steps (64) without depending on the actual
form of the fidelity functions Di(f,ui). In the second part
we discuss the numerical realization of the variational prob-
lem (65).

5.2.1 Additive Gaussian Noise

The first case that we want to investigate is the minimiza-
tion problem (64) using the negative log-likelihood function
Di(f,ui) for additive Gaussian noise,

Di(f,ui)
(18)= − logpi(f | ui)

(14)= 1

2
(ui − f )2 .

Then, the problem (64) is apparently a special case of (65)
for hn ≡ 1 and qn = f , and hence no inner iterations are
needed for this case.

5.2.2 Poisson Noise

We concentrate now on the problem of denoising images
perturbed by Poisson noise. For this purpose we insert the
following fidelity term Di(f,ui) into (64),

Di(f,ui)
(18)= − logpi(f | ui)

(15)= ui − f logui.

Note that the Poisson noise model needs an additional non-
negativity constraint on the solution ui in (64) (cf. (46)).
Hence, we use the Karush-Kuhn-Tucker (KKT) optimality
conditions, which formally provide the existence of a La-
grange multiplier λ ≥ 0, such that the stationary points of
the functional in (64) need to fulfill the equations,

0 = χ̃ k
i

(
1 − f

uk+1
i

)
+ αip

k+1
i − λ, (66a)

0 = λuk+1
i , (66b)

where pk+1
i ∈ ∂RH 1

w
(uk+1

i ) and 1(x) = 1 on Ω . Multiplying

(66a) by uk+1
i the Lagrange multiplier λ can be eliminated

by (66b) leading to a fixed point equation of the form

0 = χ̃ k
i

(
uk+1

i − f
)+ αiu

k+1
i pk+1

i .

Here, we use a semi-implicit iteration approach proposed in
[70] (see [69, Sect. 4.5] for details) and obtain the following
iteration scheme to compute uk+1

i ,

χ̃ k
i

(
uk+1

i

)n+1 = χ̃ k
i f − αi

(
uk+1

i

)n(
pk+1

i

)n+1 (67)

with

(
pk+1

i

)n+1 ∈ ∂RH 1
w

((
uk+1

i

)n+1)
.

Considering the form of (67), we can see that each step of
this iteration sequence can be realized by solving the follow-
ing convex variational problem,

(
uk+1

i

)n+1 ∈ arg min
ui≥0

{
1

2

∫
Ω

χ̃k
i

(ui − f )2

(uk+1
i )n

dx

+ αiRH 1
w
(ui)

}
. (68)

Inspecting the first order optimality condition of (68) con-
firms the equivalence of this minimization problem with the
iteration step in (67) due to convexity. Hence, the original
problem (64) can be realized in the Poisson case by a se-
quence of minimization problems of the form (68), which is
a special case of (65) with qn = f and hn = (uk+1

i )n. We
note that we incorporate an additional non-negativity con-
straint in (68), and thus automatically ensure the comple-
mentarity condition (66b). Finally, using the convergence
result in [69], we terminate the sequence (68) if the rel-
ative distance between two consecutive iteration solutions
falls below a specified threshold, i.e., if

‖(uk+1
i )n+1 − (uk+1

i )n‖L2(Ω)

‖(uk+1
i )n+1‖L2(Ω)

< ε. (69)

Note that we can initialize the function (uk+1
i )0 in (68)

as (uk+1
i )0 ≡ 1. However, in our experiments we observed

that a combination of smoothed results of the last step of
our outer minimization strategy (63a)–(63c), i.e., (uk+1

i )0 =
uk = χkuk

b + (1 − χk)uk
t , resulted in a better performance.

5.2.3 Multiplicative Speckle Noise

The last case that we want to discuss is dedicated to im-
ages biased by multiplicative speckle noise proposed in
Sect. 2.2.3 and thus we investigate the following negative
log-likelihood function Di(f,ui) in (64),

Di(f,ui)
(16)= (ui − f )2

ui

+ σ 2 logui.
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Considering the non-negativity constraint on the solution ui

in (64) (cf. Sect. 3.5.3), we can proceed analogously to the
case of the Poisson noise fidelity term in Sect. 5.2.2. Thus,
we obtain that each step of the resulting semi-implicit itera-
tion sequence can be realized by solving a convex variational
problem of the form (see [69, Sect. 5.3] for details),

(
uk+1

i

)n+1 ∈ arg min
ui≥0

{
αiRH 1

w
(ui)

+ 1

2

∫
Ω

χ̃k
i

(ui − (
f 2

(uk+1
i )n

− σ 2))2

(uk+1
i )n

dx

}
. (70)

We can see that (70) corresponds to (65) by setting qn =
f 2/(uk+1

i )n − σ 2 and hn = (uk+1
i )n. Finally, we terminate

the sequence (70) as in (69) and initialize (uk+1
i )0 analo-

gously to Sect. 5.2.2 as (uk+1
i )0 = uk = χkuk

b + (1 − χk)uk
t .

5.2.4 Numerical Realization of Variational Problem (65)

In Sects. 5.2.1–5.2.3 we have seen that the proposed numer-
ical schemes lead to solving a sequence of variational prob-
lems introduced in its most general form in (65). In this sec-
tion we discuss the numerical realization of variational prob-
lems occurring in the sequence (65). For the sake of simplic-
ity, we neglect in the following the indices k, n and i, and
hence deal with the following minimization problem using
the definition of the regularization functional RH 1

w
in (41),

min
u≥0

1

2

∫
Ω

χ̃
(u − q)2

h
dx + α

2

∫
Ω

|∇u|2
w

dx. (71)

Due to the presented results in (68) and (70) regarding
the Poisson and speckle noise model, respectively, we con-
sider in (71) the more interesting case of an additional
non-negativity constraint. The case of the additive Gaussian
noise model (i.e., where the non-negativity condition is un-
necessary) is indicated in Remark 5 below.

In order to solve the problem (71) efficiently, we propose
to use an augmented Lagrangian minimization approach and
refer, e.g., to [30, 36, 42] for an introduction to this topic.
The major motivation for this approach is that we want to
obtain a unified method which can handle the weights h

and w in (71) in a simple way and simultaneously incor-
porate the non-negativity condition on the solution without
great effort. A scheme of that form has been used by the au-
thors for inverse problems with Poisson noise and total vari-
ation regularization [69] demonstrating good performance
and variability. In principle it would be possible to use alter-
native techniques, e.g., Newton’s method or a conjugate gra-
dient method, particularly for the case of additive Gaussian
noise and the standard H 1-seminorm regularization (i.e., us-
ing h = w ≡ 1 in (71)). However, one has to take special

care for the non-negativity constraint. Furthermore, if the
weights h in the data fidelity term and w in the regulariza-
tion functional are not identity functions, further problems
can arise, such as choosing a proper preconditioner matrix
for the conjugate gradient method for instance. Finally, an-
other motivation for using the augmented Lagrangian ap-
proach is that the most expensive part of this iteration se-
quence is the computation of a Helmholtz-type optimality
equation (see (74) below), which can be solved efficiently
and exactly using the discrete cosine transform. This has the
advantage that it provides the opportunity to accelerate this
sub-step directly using fast methods, e.g., by using GPU-
based approaches.

Due to the weights χ̃ , h and w occurring in (71), we in-
troduce auxiliary functions ũ and v to simplify handling of
these weights. Hence, we consider the following equivalent
constrained optimization problem,

min
u,ũ,v

1

2

∫
Ω

χ̃
(ũ − q)2

h
dx + α

2

∫
Ω

|v|2
w

dx + i≥0(ũ)

s.t. ũ = u and v = ∇u, (72)

where i≥0 is an indicator functional given by i≥0(u) = 0 if
u ≥ 0 a.e. and +∞ else. Following the idea of augmented
Lagrangian methods and using the standard Uzawa algo-
rithm (without preconditioning) [29], we obtain an alternat-
ing minimization scheme given by (cf. [69, Sect. 6.3.4] for a
detailed description in the case of total variation regulariza-
tion)

ul+1 ∈ arg min
u

{〈
λl

ũ, ũ
l − u

〉
+ μũ

2
‖ũl − u‖2

L2(Ω)

+
〈
λl

v, v
l − ∇u

〉
+ μv

2
‖vl − ∇u‖2

L2(Ω)

}
, (73a)

ũl+1 ∈ arg min
ũ

{
1

2

∫
Ω

χ̃
(ũ − q)2

h
dx + i≥0(ũ)

+
〈
λl

ũ, ũ − ul+1
〉
+ μũ

2
‖ũ − ul+1‖2

L2(Ω)

}
, (73b)

vl+1 ∈ arg min
v

{
α

2

∫
Ω

|v|2
w

dx

+
〈
λl

v, v − ∇ul+1
〉
+ μv

2
‖v − ∇ul+1‖2

L2(Ω)

}
, (73c)

λl+1
ũ

= λl
ũ + μũ

(
ũl+1 − ul+1

)
, (73d)

λl+1
v = λl

v + μv

(
vl+1 − ∇ul+1

)
, (73e)

where λũ, λv are Lagrange multipliers and μũ,μv are pos-
itive relaxation parameters. The efficiency of this strategy
strongly depends on how fast one can solve each of the sub-
problems in (73a)–(73e). First, the problem (73a) is differ-
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entiable with the following Helmholtz-type optimality equa-
tion assuming Neumann boundary conditions,

(μũI − μv�)ul+1

= λl
ũ + μũũ

l − div
(
λl

v + μvv
l
)

︸ ︷︷ ︸
=:zl

, (74)

where I is the identity operator and � denotes the Laplace
operator. In the discrete setting using finite difference dis-
cretization on a rectangular domain Ω , this equation can be
solved efficiently by the discrete cosine transform (DCT-II),
since −� is diagonalizable in the DCT-transformed space,

ul+1 = DCT−1

(
DCT

(
zl
)

μũ + μvk̂

)
, (75)

where zl is defined in (74), k̂ represents the negative Laplace
operator in the discrete cosine space (see [69, Sect. 6.3.4]),
and DCT−1 denotes the inverse discrete cosine transform.
Moreover, the solution of the minimization problem (73b)
can be computed by an explicit formula of the form

ũl+1 = max

{
χ̃q + h

(
μũu

l+1 − λl
ũ

)
χ̃ + μũh

,0

}
, (76)

where the maximum operation has to be interpreted point-
wise (i.e., for each x ∈ Ω). Finally, the sub-problem (73c)
can be computed by the following explicit formula,

vl+1 = w
(
μv∇ul+1 − λl

v

)
α + μvw

. (77)

Remark 4 From a practical point-of-view, we note that the
augmented Lagrangian approach presented above can be
simplified for the original squared H 1-seminorm regular-
ization (33) in (71), i.e., considering w ≡ 1 in (71). In this
special case the auxiliary function v = ∇u in (72) is not nec-
essarily required and hence the iteration steps (73e) and (77)
disappear. In addition, the formula in (75) can be simplified
and the resulting numerical scheme has only to perform the
following iteration sequence,

ul+1 = DCT−1

(
DCT

(
λl

ũ
+ μũũ

l
)

μũ + αk̂

)
,

followed by steps in (76) and (73d). This increases the algo-
rithm performance significantly in the special case of w ≡ 1
compared to the more general approach presented in (73a)–
(73e) and (77).

Remark 5 Finally, we want to discuss the case where the
non-negativity condition in (71) is unnecessary, i.e. consid-
ering the additive Gaussian noise model. The only differ-
ence is that the indicator functional i≥0 in (72) and (73b) is

no longer required and hence we only have to modify (76)
to

ũl+1 = χ̃q + h(μũu
l+1 − λl

ũ
)

χ̃ + μũh
.

5.3 Numerical Realization of Denoising Steps: Fisher
Information Regularization

In Sect. 5.2 we considered the numerical realization of the
denoising problem (64) using the (weighted) squared H 1-
seminorm regularization Ri . In this section we discuss the
case of the Fisher information regularization defined in (37),
i.e., we consider

uk+1
i ∈ arg min

ui≥0

{∫
Ω

χ̃k
i Di(f,ui)dx+αi

2

∫
Ω

|∇ui |2
ui

dx

}
.

(78)

Note that in the case of the Fisher information regularization
a non-negativity constraint on the solution is always required
due to the admissible domain of the functional in (39).

Before we discuss the implementation of (78), we explain
why the differentiation between the Fisher information and
squared H 1-seminorm regularization is required to propose
a numerical strategy minimizing (64). It is apparent that for
the Fisher information regularization we can proceed analo-
gously to Sect. 5.2 and propose an iteration scheme solving
the following minimization problem (cf. (71)),

min
u≥0

1

2

∫
Ω

χ̃
(u − q)2

h
dx + α

2

∫
Ω

|∇u|2
u

dx. (79)

The complexity of this minimization functional, compared
to the one in (71), arises from the unknown denominator
in the regularization energy in (79). Hence, the augmented
Lagrangian approach used in Sect. 5.2.4 leads for (79) to
several realization problems, which require further detailed
investigations and hence go beyond the scope of this work.
Thus, we decided to omit these additional discussions from
this paper.

We rather propose to use another approach to solve (64)
with the Fisher information (37) as regularization functional
Ri in the following. There we derive the following iteration
scheme for each fixed k ∈ N,

(
cI − αi�

)(
uk+1

i

)n+1

= (c − rn)(uk+1
i )n + sn − αi

2

|∇(uk+1
i )n|2

(uk+1
i )n︸ ︷︷ ︸

=:z̃n

, (80)

where c > 0 is a constant, while I and � denote the identity
and Laplace operator, respectively. The choice of functions
rn and sn in (80) is discussed below for each of the noise
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Table 2 Overview for the setting of functions rn and sn in (80) with
respect to the different physical noise models proposed in Sect. 2.2

Noise model rn sn

Additive Gaussian noise

if f ≥ 0 everywhere χ̃ k
i (uk+1

i )n χ̃k
i (uk+1

i )nf

else χ̃ k
i ((uk+1

i )n − f ) 0

Poisson noise χ̃ k
i χ̃ k

i f

Multiplicative speckle noise χ̃ k
i (1 + σ 2

(uk+1
i )n

) χ̃ k
i

f 2

(uk+1
i )n

models described in Sect. 2.2 and summarized in Table 2.
Now, each iteration step in (80) requires the solution of a
Helmholtz-type equation, which can be realized efficiently
in the discrete setting using the discrete cosine transform,

(
uk+1

i

)n+1 = DCT−1
(

DCT (z̃n)

c + αik̂

)
,

using the notation of (75) with z̃n as defined as in (80).
Finally, we have to ensure the non-negativity of (uk+1

i )n

for each n ∈ N since the solution of this iteration sequence
should be non-negative in the case of Fisher information reg-
ularization (see (39)). This can be guaranteed if the right-
hand side of (80) is non-negative due to the maximum prin-
ciple for elliptic partial differential equations. To ensure this
property we have to choose the functions sn and (uk+1

i )0

non-negative and

c ≥ ess sup
Ω

(
rn + αi

2

|∇(uk+1
i )n|2

((uk+1
i )n)2

)
(81)

for each n ∈ N, whereas the latter condition is a simple con-
sequence of the negative terms occurring in (80). The ter-
mination of (80) is realized as in (69). With respect to the
convergence of (80), which is depending on c, we refer to
[73] and the references therein, where the convergence of
similar numerical schemes is discussed. It is obvious that
we cannot guarantee a sufficiently fast convergence of the
iteration sequence (80) due to potentially high values of c

in (81). Thus, further development of alternative algorithms
will be required in the future.

In the following we discuss the choice of functions rn

and sn in (80) with respect to additive Gaussian, Poisson,
and multiplicative speckle noise.

5.3.1 Additive Gaussian Noise

We start with the investigation of (78) using the negative log-
likelihood function Di(f,ui) corresponding to the additive
Gaussian noise presented in (14), i.e., we have Di(f,ui) =
1
2 (ui − f )2. Due to the non-negativity constraint on the so-
lution ui in (78) we use KKT conditions, which formally
provide the existence of a Lagrange multiplier λ ≥ 0, such

that the stationary points of the functional in (78) need to
fulfill the equations,

0 = χ̃ k
i (uk+1

i − f ) − αi

�uk+1
i

uk+1
i

+ αi

2

|∇uk+1
i |2

(uk+1
i )2

− λ, (82a)

0 = λuk+1
i , (82b)

for which we assume Neumann boundary conditions. Mul-
tiplying (82a) by uk+1

i the Lagrange multiplier λ can be
eliminated by (82b) and the subsequent addition of the term
cuk+1

i − cuk+1
i with c > 0 leads to a fixed point equation of

the form

0 = cuk+1
i − cuk+1

i + χ̃ k
i uk+1

i (uk+1
i − f )

− αi�uk+1
i + αi

2

|∇uk+1
i |2

uk+1
i

. (83)

Using a semi-implicit approach, we now obtain the iteration
sequence (80) by setting

• rn = χ̃ k
i (uk+1

i )n and sn = χ̃ k
i (uk+1

i )nf , if f is non-
negative everywhere;

• rn = χ̃ k
i ((uk+1

i )n − f ) and sn = 0 else.

The case differentiation presented here is motivated by prac-
tical reasons. It is obvious that we can always choose c in
(81) large enough such that the right-hand side of (80) is
non-negative. On the other hand, it should be as small as
possible to yield a reasonable convergence behavior of the
iteration sequence. Thus, in the case of additive Gaussian
noise, where the data function f can also be negative, using
the functions above is more convenient. Finally, note that the
resulting fixed point of (83) is a minimizer of (78) if the cor-
responding derivative has the correct sign, a condition which
has to be checked in the numerical realization.

5.3.2 Poisson Noise

Here we consider the problem (78) in the case of Poisson
noise, where the negative log-likelihood function Di(f,ui)

is given in (15), i.e., Di(f,ui) = ui − f logui . In this case
we can proceed analogously to the additive Gaussian noise
discussed in Sect. 5.3.1 and hence obtain the following fixed
point equation using KKT and Neumann boundary condi-
tions,

cuk+1
i − cuk+1

i + χ̃ k
i (uk+1

i − f )

− αi�uk+1
i + αi

2

|∇uk+1
i |2

uk+1
i

= 0.

Then a semi-implicit approach yields the iteration sequence
(80) with rn = χ̃ k

i and sn = χ̃ k
i f . Note that the non-

negativity of sn results from Sect. 3.5.2 since f ∈ Vi(Ω)

is non-negative.
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5.3.3 Multiplicative Speckle Noise

Finally, we discuss (78) for the case of the speckle noise
likelihood function introduced in (49), i.e., we consider

Di(f,ui) = (ui−f )2

ui
+ σ 2 logui . In this case the KKT con-

ditions give a fixed point equation of the form

cuk+1
i − cuk+1

i + χ̃ k
i

(
uk+1

i − f 2

uk+1
i

+ σ 2

)

− αi�uk+1
i + αi

2

|∇uk+1
i |2

uk+1
i

= 0,

with Neumann boundary conditions. Consequently, a semi-
implicit approach results in the iteration sequence (80) with

rn = χ̃ k
i

(
1 + σ 2

(uk+1
i )n

)
and sn = χ̃ k

i

f 2

(uk+1
i )n

.

5.4 Numerical Realization of the Segmentation Step

After discussing the numerical realization of the denoising
problems (63a) and (63b) we now concentrate on the seg-
mentation problem (63c) in the proposed alternating mini-
mization strategy. In this context we are interested in com-
puting the current segmentation indicated by χk+1 using the
updated denoised images uk+1

b and uk+1
t .

The standard approaches to solve geometric problems are
active contour models such as snakes initially proposed by
Kass, Witkin and Terzopoulos in [44] or level set methods
introduced by Osher and Sethian in [60]. Although these
models have attracted strong attention in the past, there are
several drawbacks leading to complications in the computa-
tion of segmentation results. For example, the explicit curve
representation of snake models do not allow changes in
curve topology or the level set methods require an expensive
re-initialization of the level set function during the evolution
process (cf. e.g., [50, 59]). However, the main drawback of
these methods is the non-convexity of the associated energy
functionals and consequently the existence of local minima
leading to unsatisfactory results with wrong scales of details.

Recently, several globally convex segmentation models
have been proposed in [12, 22, 39] to overcome the funda-
mental issue of existence of local minima. The main idea
of all these approaches is based on the unification of image
segmentation and image denoising tasks into a global mini-
mization framework. In our work we follow the idea found
in [16], where a relation between the well known Rudin-
Osher-Fatemi (ROF) model [66] and the minimal surface
problem is presented. In order to do so we recall this re-
lation in the following lemma and note that the ROF model
always admits a unique solution, since the associated energy
functional is strictly convex.

Lemma 11 Let β > 0 be a fixed parameter, g ∈ L2(Ω), and
û the unique solution of the ROF minimization problem

min
u∈BV(Ω)

1

2

∫
Ω

(u − g)2dx + β|u|BV(Ω). (84)

Then, for almost every t ∈ R, the indicator function

χ̂ (x) =
{

1, if û(x) > t,

0, else,
(85)

is a solution of the minimal surface problem

min
χ∈BV(Ω;{0,1})

∫
Ω

χ(x) (t − g(x)) dx + β|χ |BV(Ω). (86)

In particular, for all t but a countable set, the solution of the
problem (86) is even unique.

Using Lemma 11 we are capable to translate the segmen-
tation problem (63c) to a standard ROF denoising problem.
We can observe that the problem (63c) corresponds to the
minimal surface problem (86) by setting

t = 0 and g = Dt(f,uk+1
t ) − Db(f,uk+1

b ). (87)

Therefore, the solution χk+1 of the segmentation step (63c)
can now be computed by simple thresholding of the form
(85) with t = 0, where û is the solution of the ROF problem
(84) with g specified in (87).

In conclusion, the ROF model (84) is a well understood
and intensively studied variational problem in mathematical
image processing. Hence, a variety of numerical schemes
have been already proposed in literature in order to solve
this problem. Exemplarily, we refer to the projected gra-
dient descent algorithm of Chambolle in [17], a nonlinear
primal-dual method of Chan, Golub and Mulet in [21], the
split Bregman algorithm of Goldstein and Osher in [38], and
some first-order algorithms in [8, 18].

6 Experimental Results on Synthetic Data

In this section we validate the proposed variational segmen-
tation framework on synthetic data and focus on the choice
of an appropriate data fidelity term and the selection of reg-
ularization functionals. To fully understand the influence of
these variables we propose different experimental settings in
the following, which are constructed to highlight observed
characteristics of our segmentation framework. In order to
segment the images discussed below, we use the alternat-
ing minimization scheme given in (63a)–(63c), for which
25 iteration steps are sufficient in most cases. To terminate
the inner iteration loops discussed in Sects. 5.2 and 5.3 we
choose ε = 10−6 in (69).
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Fig. 2 Comparison of Chan-Vese segmentation result with ground
truth on synthetic data

6.1 Impact of Regularization Term

First, we investigate the impact of the selected regularization
term (cf. Sect. 3.4) on the results of segmentation and espe-
cially on the estimated approximations to the original object
data. For this purpose we use an image of size 150 × 150
pixels scaled to [0,1] with a simple object structure illus-
trated in Fig. 2(a). In this image we put inhomogeneities in
Ωt and Ωb covering the full range of intensities, such that
both regions have the same mean value. The challenge of
this data is the occurence of the same grayscale values in
both regions with strong intensity changes at the border of
the object structure. Apparently, this situation is quite untyp-
ical in real-life applications. However, it illustrates the limits
of the proposed segmentation framework.

Due to this constructed properties it is obvious that
a regularization functional enforcing piecewise constant
functions is not feasible in this situation, as can be seen
in Fig. 2(c) for the popular Chan-Vese algorithm from
Sect. 4.2. This motivates the investigation of the squared
H 1-seminorm and the Fisher information regularization dis-
cussed in Sect. 3.4. For this purpose we concentrate on data
which are perturbed by Poisson noise (cf. Sect. 2.2.2) as
illustrated in Fig. 3(b). In order to guarantee identical pre-
conditions we keep β = 0.4 fix for both experiments.

For the squared H 1-seminorm the regularization parame-
ters are chosen as αb = 7 and αt = 540 in order to achieve a
satisfying segmentation result illustrated in Fig. 3(c). The
strong difference in the absolute values of αb and αt is
caused by the extraordinary form of the given data. How-
ever, as a consequence of this choice we obtain an over-
smoothing of the target region and on the other hand a
low regularization in the background region as presented in
Fig. 3(e). The same observations can also be made for the
Fisher information regularization, where the parameters are
chosen as αb = 20 and αt = 30. The corresponding segmen-
tation and approximation results are illustrated in Figs. 3(d)
and 3(f), respectively. However, in order to demonstrate the
difference of approximations in Figs. 3(e) and 3(f) we plot
the intensity values of these results in Fig. 4 along the il-
lustrated profile lines. As we can see the Fisher information
result approximates the target object significantly better than
the squared H 1-seminorm result.

Fig. 3 Comparison of segmentation and approximation results for
synthetic data biased by Poisson noise using the squared H 1-seminorm
and Fisher information regularization. The grayscale values in (a), (e)
and (f) are scaled to a uniform interval and the horizontal white lines
represent the position of the profile lines plotted in Fig. 4

Fig. 4 Profile lines of the squared H 1-seminorm and Fisher informa-
tion approximations from Fig. 3

During our experiments described above we also ob-
served a possible convergence of our algorithm against the
local minima presented in Fig. 2(c). For the Fisher infor-
mation regularization we illustrate such segmentation result
in Fig. 5(c), where the regularization parameters are chosen
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Fig. 5 Comparison of segmentation results for synthetic data biased
by Poisson noise using the Fisher information regularization and dif-
ferent initializations

as described above and the initialization given in Fig. 5(a)
are used. This unsatisfactory result can be avoided as illus-
trated in Fig. 5(d) using another initialization as presented in
Fig. 5(b). The reason for this behavior is the non-convexity
of the whole energy functional given in (19) such that a con-
vergence against a global minimum cannot be guaranteed,
although each subproblem in (63a)–(63c) has a global solu-
tion. Hence, we state that the convergence of the presented
method against an optimal solution depends not only on the
specified regularization parameters but also on a suitable ini-
tialization.

6.2 Impact of the Data Fidelity Term

To evaluate the importance of a correct noise model in auto-
mated image segmentation we investigate images perturbed
by physical noise forms described in Sect. 2.2, i.e., additive
Gaussian noise, Poisson noise, and multiplicative speckle
noise. For the sake of simplicity we perform this experiment
on piecewise constant images, since this case is known from
the popular Chan-Vese formulation [20] and we can neglect
the regularization parameters αb and αt . For the segmenta-
tion we use the generalized Chan-Vese two-phase segmen-
tation model proposed in Sect. 4.3, i.e., we only separate
regions-of-interest from the background.

We choose the objects to be segmented with respect to
typical segmentation tasks from biomedical imaging. Often,
only one major anatomical region-of-interest has to be seg-
mented, e.g., the left ventricle of the heart in echocardio-
graphic examinations [57, 76] or [18F]FDG uptake studies

Fig. 6 Synthetic data with anatomical structures of different size

in positron emission tomography [62]. Furthermore, it is de-
sirable to preserve as many image details as possible during
the process of segmentation. Especially in tumor imaging
[75] small lesions in a size of only few pixels can easily
be overseen, due to a loss of details by too intense regular-
ization. This leads to severe consequences if not taken into
account and hence it is important to preserve details of small
image regions.

Figure 6(a) shows our experimental data without per-
turbation of noise and the ground truth segmentation in
Fig. 6(b). In the image center we place an approximate shape
of the left ventricle of the human heart as it would be imaged
in an apical four-chamber view in echocardiography. Below
this major structure we put three small squares with sizes of
1,2, and 4 pixels to simulate minor structures, such as small
lesions, which we want to preserve during the process of au-
tomated image segmentation. On the left and right side of
our heart phantom we set two curved lines with a diameter
of 1 and 2 pixels to simulate vessel-like structures, which
play an important role in perfusion studies of different or-
gans [33, 82], e.g., liver veins or coronary arteries of the
heart.

To validate the impact of the data fidelity term we bias
the image in Fig. 6(a) with synthetic noise and try to find the
optimal value of the regularization parameter β . This opti-
mization was done with respect to the following two criteri-
ons,

• Segmentation of the main structure without noise arti-
facts.

• Preservation of small anatomical structures without loss
of details.

Naturally, it is hard to fulfill both criterions simultaneously,
since there is a trade-off between noise-free segmentation
results and a detailed partition of the image. For our syn-
thetic images we look for the highest possible value of β ,
which preserves as many small structures as possible, and
on the other hand for the lowest possible value of β that
ensures a complete segmentation of the main structure with-
out noise-induced artifacts. These two limiting cases are the
foundation for our observations in the following experiment.
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Fig. 7 Comparison of different data fidelity models on synthetic data
of simulated anatomical structures biased by additive Gaussian noise

First, we perturb the data with additive Gaussian noise
as illustrated in Fig. 7(a). In Fig. 7(b) the data fidelity term
for additive Gaussian noise (cf. (14)) produces a satisfy-
ing segmentation result, which fulfills both criterions dis-
cussed above. For this case we observe very similar results
for the Poisson and speckle data fidelity term as illustrated
in Figs. 7(c), 7(d) and 7(e), 7(f), respectively.

In the next experiment we perturb the synthetic data with
Poisson noise as presented in Fig. 8(a). For this image we
state that the Poisson data fidelity term in (15) is an appro-
priate choice as can be seen in Fig. 8(b). In Fig. 8(c) and
8(d) we test the additive Gaussian noise fidelity term and
choose the regularization parameter β according to the cri-
terions discussed above. In order to preserve all small struc-
tures in Fig. 8(c) we have to accept a significant amount of
noise artifacts within the main structure. On the other hand,
we lose almost all small structures in Fig. 8(d) by choos-
ing β high enough to guarantee a segmentation of the center
object without pertubation of noise. In this case the trade-
off between smooth segmentations and the loss of details
becomes obvious. Figure 8(e) and 8(f) show the results in

Fig. 8 Comparison of different data fidelity models on synthetic data
of simulated anatomical structures biased by Poisson noise

the case of the speckle data fidelity term. Since we do not
observe any satisfying results for different values of β , we
show two representative segmentations for this model. Com-
pared to the results in the case of additive Gaussian noise,
the choice of the appropriate noise model has a significantly
higher impact on the segmentation results in the presence of
Poisson noise.

Finally, we investigate the case of data biased by multi-
plicative speckle noise as shown in Fig. 9(a). The segmen-
tation result for the corresponding speckle data fidelity term
(cf. (16)) is presented in Fig. 9(b). Again, we observe that we
are able to satisfy both segmentation criterions when choos-
ing the correct noise model. In Fig. 9(c) and 9(d) the seg-
mentation results for the data fidelity term of additive Gaus-
sian noise are presented. As for the results in Fig. 8(c) and
8(d), the Gaussian model is inappropriate in the presence of
multiplicative speckle noise. For the Poisson fidelity term
we observe in Fig. 9(e) and 9(f) similar effects compared
to the Gaussian case, but with a better trade-off between
smooth segmentation results and the preservation of small
image structures.
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Fig. 9 Comparison of different data fidelity models on synthetic data
of simulated anatomical structures biased by multiplicative speckle
noise

In conclusion, we emphasize that the incorporation of
physical noise modeling for given data has a significant im-
pact on segmentation results and leads to improved accuracy
in applications dealing with non-Gaussian noise.

7 Experimental Results on Real Data

In this section we use real data from biomedical imaging and
investigate the performance of the proposed variational seg-
mentation framework in real segmentation tasks. Therefore,
we present images from two imaging modalities dealing
with the non-Gaussian noise models discussed in Sect. 2.2.

7.1 Positron Emission Tomography

To test the variational segmentation framework on data
which are heavily perturbed by noise we take images from
positron emission tomography (PET). PET belongs to the
field of molecular imaging in which a specific radioactive
tracer is injected into blood circulation and its binding to
certain molecules is studied [83]. One possible tracer is, e.g.,

Fig. 10 Segmentation result for reconstruction of cardiac H2[15O]
PET data

H2[15O] (radioactive-labeled water), which can be used for
quantification of the myocardial blood flow [71]. However,
this quantification needs a segmentation of myocardial tis-
sue [10, 71], which is extremely difficult to realize due to a
very low signal-to-noise (SNR) ratio of H2[15O] data.

Figure 10(a) shows a slice of a reconstructed H2[15O]
study using the expectation maximization (EM) algorithm
[72] with signal intensities in the range of up to 2,000,000
counts. The data were captured in the moment, when the
tracer flooded into the left ventricle of the human heart.
This very short interval leads to a high level of Poisson
noise in the data and thus in the corresponding EM recon-
structions, causing a challenging task for most segmenta-
tion algorithms. Based on our observations in the last sec-
tion we choose the Poisson data fidelity term (cf. (15))
and use Fisher information as regularization functional. For
our experiment we focus on the region-of-interest shown in
Fig. 10(b), which corresponds to the area around the my-
ocardial tissue. As regularization parameters we determine
αt = 140, αb = 20, and β = 380,000 (low SNR).

In Fig. 10(c) and 10(d) we show the approximation and
segmentation result in the region-of-interest, respectively.
The segmented region corresponds to the myocardium in-
cluding the left and right ventricle. As can be seen, the
proposed segmentation framework can segment the my-
ocardium in data with very low SNR. However, we were
not able to separate left and right ventricle as it would be
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needed for myocardial perfusion quantification. The reason
for this is the used two-phase formulation in (19), which is
not suitable to segment different uptake levels and additional
background activity.

7.2 Medical Ultrasound Imaging

The last case we want to investigate is medical ultrasound
data. As proposed in [45, 52] the physical noise occurring
in this imaging modality can be modeled by multiplica-
tive speckle noise as presented in Sect. 2.2.3 and hence the
speckle data fidelity term (cf. (16)) is an appropriate choice
in this context. In the following we concentrate on the task of
blood vessel segmentation, which can be used in perfusion
studies of different organs, e.g., the myocardium [33, 82].

In Fig. 11(a) we illustrate a section of an ultrasound
B-mode image containing parts of a human liver. The darker
regions within these data represent the blood vessels to be
segmented. In Figs. 11(b)–11(d) we present three segmen-
tation results for β ∈ {1000,2000,5000} using the classical
Chan-Vese model (additive Gaussian noise) from Sect. 4.2.
As can be seen we were not able to segment the small
structures of the blood vessels accurately without over-
segmenting the data. We compare the best segmentation re-
sult for the classical CV approach with β = 2000 against
the corresponding extension to the speckle noise model pre-
sented in Sect. 4.3. As can be seen in Fig. 11(e) by exchang-
ing only the data fidelity term we can observe a significant
improvement in the segmentation accuracy and suppression
of noise artifacts. Although, the result in Fig. 11(e) appears
to segment the blood vessels within the image correctly, we
can identify some small structures that have been left out. In
order to include these microvessels we exchanged the regu-
larization term to the Fisher information for target and back-
ground region and used the regularization parameters αt =
15, αb = 25, and β = 25. We could not achieve any mean-
ingful segmentation result using the squared H 1-seminorm
regularization due to oversmoothing of small structures.

As illustrated in Fig. 11(f) the proposed segmentation
framework is able to segment even smallest structures within
the given data. Especially in low contrast regions, e.g., the
lower-left corner of the image, we observe satisfying seg-
mentation results. Figure 11(g) shows the corresponding ap-
proximation of the data for the Fisher information regular-
ization and illustrates a non-constant approximation of the
target region while preserving edges at the blood vessels
within the image.

8 Conclusion

In this work we proposed a variational segmentation frame-
work for different physical noise models and analyzed the

Fig. 11 Segmentation results for ultrasound (US) data from an exam-
ination of a human liver comparing classical and extended Chan-Vese
(CV) method for speckle noise, and Fisher information for speckle
noise

corresponding mathematical theory. In particular, we inves-
tigated a selected variety of regularization terms and noise
models, i.e., additive Gaussian noise, Poisson noise, and
multiplicative speckle noise, for automated image segmen-
tation. Experimental results on synthetic and real data show
the necessity to adapt an algorithm to present conditions,
e.g., incorporating a-priori knowledge about the solution.

We plan to translate the theoretical fundament provided
in this work to more real world applications and to validate
the presented variational segmentation framework on a vari-
ety of realistic data. Furthermore, we plan to explore the in-
corporation of more physical noise models, e.g., Rayleigh-
or Gamma-perturbed data.
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