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Abstract This paper is concerned with the computation of
the skeleton of a shape Ω included in R

2. We show some
connections between the Euclidean distance function d to
∂Ω and the solution u of the Poisson problem �u(x) = −1
if x is in Ω and u(x) = 0 if x is on ∂Ω . This enables us to
propose a new and fast algorithm to compute an approxima-
tion of the skeleton of ∂Ω . We illustrate the approach with
some numerical experiments.

Keywords Skeleton · Poisson equation · Distance
function · PDEs · ODEs

1 Introduction

One of the goal of shape analysis is to describe objects with
a minimal amount of information. Skeletonization answers
this question. The skeleton or medial axis of a shape gives
a thin topologically equivalent representation of the original
shape. The importance of skeleton was discussed by Blum
[4, 5] with motivation from visual perception. Nowadays
skeletonization is frequently used in computer vision and
pattern recognition. There exist several ways (more or less
equivalent) to define the skeleton of a shape in the real plane
(see for example [8] for a quick survey and references on
the subject). The first one goes back to [4, 5] whose author
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has introduced the concept of prairie fire in which the shape
is imagined to be filled with dry grass and the fire is started
at the shape boundary. The boundary propagates with con-
stant normal velocity and the skeleton is traced out by the
singular points where the front intersects itself. Another ap-
proach is to consider the skeleton as the geometric location
of centers of maximal discs contained in the shape [4, 6].
This definition is interesting since, in principle, if the radii
of these discs are recorded at the corresponding points on
the skeleton, the shape can be recovered as the envelope of
all the discs centered on the skeleton with radii recorded.
However, in practice, this approach is difficult to implement
numerically. A third approach is to consider the skeleton as
the set where the gradient of the distance function to the
shape is discontinuous. If Ω denotes the shape, the signed
distance to Ω is defined, for x ∈ R

2, by d(x) = d(x, ∂Ω) =
infy∈∂Ω ‖x − y‖ where ‖x‖ is the Euclidean norm of x. It
is well known that the gradient of the distance function sat-
isfies the Eikonal equation ‖∇d(x)‖ = 1 except at points x

where there exist at least two distinct points y and z ∈ ∂Ω

such that d(x) = ‖x − y‖ = ‖x − z‖. The set of such points
x form the skeleton and at that points ∇d is discontinuous.
We choose this last definition of the skeleton in the rest of
the paper and we refer to it as the real or Euclidean skeleton.

The challenge is how to compute the skeleton or an ap-
proximation of it. There exist in the literature many different
approaches on this issue. Let us only quote some of them:
the morphological approach [20, 21, 23, 26], the wavelet
approach [32] and those which are embedded in a partial
differential equation (PDE) or variational framework [9, 17,
27–29, 31]. In the four first papers the authors highlight the
connection between monotonically evolving fronts and the
Eikonal equation and they propose various algorithms for
tracking shocks. It is well-known that hyperbolic PDEs (as
the Eikonal equation) are not easy to solve numerically and
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very fine algorithms must be used. A different but related
point of view is given in [29] where the authors construct
a function v whose level curves mimic the curve evolution
with a speed consisting of a constant component and a com-
ponent proportional to curvature. The function v is defined
as the minimizer of a Modica-Mortola type functional [22]
which approximates the perimeter of the boundary of the
shape. More precisely v is the unique solution of the Poisson
equation �v(x) = v

σ 2 in Ω and v = 1 on ∂Ω . The smoothed
skeleton is then defined as the locus of points where the gra-
dient of v is minimum along the level curves i.e. the points
where d‖∇v‖

ds
= 0. Notice that this framework has been ex-

tended to non-local functionals in [30], and its relationship
with the notion of scale has been investigated in [3]. See
also [13] for a recent overview on skeleton extraction by
variational methods. Our model is significantly simpler than
those based on the Eikonal equation [17] since it relies on
the resolution of the well-known Poisson �u(x) = −1 with
Dirichlet boundary conditions. Our contribution is in the
same spirit as [27, 29]: we also solve a Poisson equation
(without any parameter) but our algorithm for extracting the
skeleton is different from the one proposed in [27, 29]. More
precisely if Ω denotes the shape we want to analyze, our al-
gorithm is as follows:

1. We solve the Poisson equation �u(x) = −1 in Ω , u = 0
on ∂Ω .

2. We determine the set

A = {x ∈ ∂Ω, the curvature of ∂Ω in x

has local maximum} (1)

3. For each x ∈ A, we solve the dynamical system

{
ξ ′(s) = ∇u(ξ(s))

ξ(0) = x
(2)

We denote by S1 the set of trajectories of these flows.
4. Let us define the sets W , E, and F :

W = {
x ∈ Ω, ∇u(x) = 0

} = E ∪ F (3)

E = {
x ∈ Ω, ∇u(x) = 0, λ1 ≤ λ2 < 0

}
(4)

F = {
x ∈ Ω, ∇u(x) = 0, λ1 < 0 ≤ λ2

}
(5)

where λ1 and λ2 are the eigenvalues of ∇2u (λi is real
since ∇2u is symmetric real). W is the set of critical
points of u in Ω . E is the set of extremal points of u

in Ω (which in fact are maximal points since �u = −1)
and F is the set of saddle points of u in Ω . We set S2

the trajectories from F to E (see Sect. 5 for more de-
tails).

5. The skeleton of Ω is defined by

S = S1 ∪ S2 ∪ W (6)

Let us explain briefly why this algorithm furnishes an ap-
proximation of the real skeleton. The justification comes
from four facts which will be proved in the next sections.

1. Actually the solution of the Poisson equation �u(x) =
−1 in Ω , u = 0 on ∂Ω , can be viewed as a regularization
of the distance function d .

2. As shown in [17, 18] the real skeleton tends to terminate
at the boundary at points of maximal curvature.

3. If d is the distance function and if locally we parametrize
the real skeleton by a curve ξ(s) then necessarily ξ(s)

satisfies the dynamical system

ξ ′(s) = ∇d
(
ξ(s)

)
(7)

where here the gradient ∇d of d has to be understood in
a generalized sense. Actually d is a function of bounded
variations and a meaning can be given to system (7) (see
[2]).

4. The trajectories defined in (2) converge asymptotically as
s → ±∞ to points in the critical set W which is finite.

Let us point out that Poisson equation has also been used
in [12] for shape representation. In [12] the authors utilize
the gradient and the curvature of the level sets of the solu-
tion of Poisson equation for segmenting silhouette, identi-
fying corners and deriving some structures of the skeleton
of a shape. In that paper no real mathematical justification
is given. Let us also note that Poisson equation is related to
the Brownian motion of a set of particles placed inside the
shape. Indeed the solution u of Poisson equation measures
the mean time required for a particle to hit the boundary
[15].

The paper is organized as follows. In Sect. 2 we first re-
call classical properties of Poisson equation. Then in Sect. 3
we give some reasons why u the solution of Poisson equa-
tion can be viewed as a regularization of the distance func-
tion. In Sect. 4 we study the dynamical system (2) and in
particular its asymptotic behaviour as s → ±∞. Then in
Sect. 5 we write the detailed algorithm. Finally we illustrate
the capability of our algorithm in Sect. 6 by showing several
computational examples.

2 Some Results About Poisson Equation

2.1 Classical Results

In this section we recall some well-known properties of the
solution u of Poisson equation:

�u(x) = −1 if x is in Ω , u = 0 on ∂Ω . (8)
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Proposition 1

• Existence and uniqueness: If ∂Ω is Lipschitz then (8) ad-
mits a unique solution u in the Sobolev space W

1,p

0 (Ω),

∀p ∈ [2,∞[.
• Regularity: If ∂Ω is of class C2, then u is in C2(Ω̄).
• Maximum principle: There exists C > 0 such that

0 ≤ u ≤ C on Ω̄ . Moreover, we have 0 < u on Ω .

Proof See [10, 11]. �

As a consequence of Proposition 1, we can then extend u

as a C2 function on R
2. This is what we do until the end of

the paper (so we suppose that ∂Ω is of class C2).

2.2 More Refined Properties

We set λ1 ≤ λ2 the eigenvalues of ∇2u (notice that λi is real
since ∇2u is symmetric real). In Ω , we have �u = −1 =
λ1 + λ2. Hence λ1 < 0.

Let us consider the set W , E, and F defined by (3), (4)
and (5). W is the set of critical points of u in Ω . E is the
set of extremal points of u in Ω (which in fact are maximal
points since �u = −1) and F is the set of saddle points of u

in Ω . We give below a nontrivial result due to Alessandrini
et al [1] concerning the number of critical points of u. This
result is fundamental for our algorithm.

Theorem 1 Let us assume that Ω is a simply connected
open set in R

2. W is a non empty set, and W contains at most
a finite number of points (which are isolated). Moreover, we
have #E − #F = 1.

Remarks

1. If Ω is convex, then W is reduced to a single point which
is the maximizer of u on Ω [19].

For example [16], if Ω is symmetric and convex in
two orthogonal directions, then all the level sets of u are
symmetric and convex in those directions. Under those
assumptions, the gradient of u vanishes only in a single
point, the center of symmetry.

2. If Ω is not simply connected then W can be a curve.
For example if Ω is the annulus Ω = {(x, y);1 ≤ x2 +
y2 ≤ 4}. It is easy to see that u(x, y) = 3

8 log 2 log(x2 +
y2) − 1

4 (x2 + y2 + 1
4 ) is the solution of (8) and

ux = 3

4 log 2

x

x2 + y2
− 1

2
x (9)

uy = 3

4 log 2

y

x2 + y2
− 1

2
y (10)

Moreover, we have: ∇u(x, y) = (0,0) if and only if
x2 + y2 = 3

2 log 2 ≈ 2.16 (notice that (0,0) does not be-
long to Ω). Hence the set of critical points is a circle of
radius

√
2.16 ≈ 1.47. It is close to 1.5, but not equal to it.

Corollary 1 If x is in W and Ω simply connected, then x is
a non degenerate point, i.e. λ1 
= 0 and λ2 
= 0.

Proof If one of the eigenvalues is zero, then there exist non
isolated critical points (see [14, p. 326]), which contradicts
Theorem 1. �

Remark As a consequence, F (defined by (5)) is in fact:

F = {
x ∈ Ω, ∇u(x) = 0, λ1 < 0 < λ2

}
(11)

Proposition 2 There exists α > 0 such that ∇u.N ≥ α on
∂Ω , with N the inner normal to ∂Ω .

Proof This is a consequence of the Hopf lemma [10], and
of the fact that ∂Ω is C2 and Ω bounded. �

Corollary 2 Let β in (0, α) (with α given by Proposition 2).
Then there exists r > 0 such that ∇u.Nr ≥ β on ∂Ωr , with
Nr the inner normal to ∂Ωr , and

Ωr = {
x ∈ Ω, d(x,Ω) ≥ r

}
(12)

Proof This is a consequence of the fact that u is in C2(R2)

and of Proposition 2. �

3 Relating the Poisson Equation with the Distance
Function

In this section we give some heuristic reason showing the
connection between the solution of the Poisson equation and
the distance function. In all this section we denote by

u(x) the unique solution of Poisson equation:

�u(x) = −1 if x is in Ω , u(x) = 0 on ∂Ω . (13)

First of all, we think there exists no direct relation be-
tween u(x) and the Euclidean distance function d(x) i.e. we
cannot express u as a function of d . What we can say is as
follows:

• From the potential theory (see [7, 25]) we know there ex-
ist two positive constants A and B such that if x is in Ω

then

A

∫
Ω

log

(
1 + d(x)d(y)

|x − y|2
)

dy

≤ u(x) ≤ B

∫
Ω

log

(
1 + d(x)d(y)

|x − y|2
)

dy (14)

• As pointed out in [27, 29] and illustrated here on Fig. 1 the
level curves of u ressemble to those of d and they can be
viewed as a regularized version of the level curves of d . In
fact u attains its minimum at the shape boundary and (at
least for convex domains) increases monotonically from
the boundary to the center of the shape.
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Fig. 1 Level curves of u and d , u being the solution of �u = −1 inside the shape, and d being the distance function to the boundary of the shape.
As pointed out in [27, 29], the level curves of u ressemble to those of d and they can be viewed as a regularized version of the level curves of d

• A third heuristic argument is: let us consider for ε > 0 the
following PDE:⎧⎪⎨
⎪⎩

ε ∂z
∂t

(x, t) = �z(x, t) + 1 in Ω × (0,∞)

z(x, t) = 0 on ∂Ω × (0,∞)

z(x,0) = d(x)

(15)

where the initial condition d(x) is the Euclidean distance
function.

From [10], Eq. (15) admits a unique regular solution
zε(x, t). Thanks to (13), (15) can be written into⎧⎪⎨
⎪⎩

ε ∂z
∂t

(x, t) = �z(x, t) − �u(x) in Ω × (0,∞)

z(x, t) = 0 on ∂Ω × (0,∞)

z(x,0) = d(x)

(16)

Setting wε(x, t) = zε(x, t) − u(x) then wε(x, t) is a
solution of the following heat equation:⎧⎪⎨
⎪⎩

ε ∂wε

∂t
(x, t) = �wε(x, t) in Ω × (0,∞)

wε(x, t) = 0 on ∂Ω × (0,∞)

wε(x,0) = d(x) − u(x)

(17)

From classical estimations [10] for the heat equation
we get the following estimate:∥∥wε(., t)

∥∥
L2(Ω)

≤ ‖d − u‖L2(Ω)e
−(μ1t/ε) (18)

where μ1 is the first eigenvalue of the Laplacian. From
(18) we deduce when ε → 0+ that for all t > 0 then
zε(., t) → u(.). Therefore this convergence shows that
zε(x, t) is close to u(x) for ε small and for all t > 0. But
for small t > 0, zε(x, t) can be viewed as a smoothed ver-
sion of the distance function d(x). This argument shows
some proximity in the L2 sense between u and d . Of
course this argument does not imply that u is a distance
function. More arguments will be given later in Sect. 5.

4 Study of the Dynamical System

In this section we first study the gradient flow (2) associated
to u and then we justify why its trajectories can be used as
an approximation of the skeleton. From now on, we assume
that the shape Ω is a simply connected open set (thus the
points in W are isolated thanks to Theorem 1).

4.1 Definitions and Basic Results

We consider the following problem. Let x0 in Ω̄ , and:{
ξ ′(s) = ∇u(ξ(s))

ξ(0) = x0
(19)

where u is the unique solution of (8).
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Remark Notice that if x0 ∈ W , then ξ(s) = x0 for all s

in R.

Proposition 3 There exists a unique C1 function ξ solution
of (19). This solution is defined on R.

Proof The uniqueness of ξ is given by Cauchy-Lipschitz
theorem for ODE. The existence on R is standard, since ∇u

remains bounded on R
2. �

From Theorem 1, we know that the set of critical points
of ∇u are isolated points. Moreover, we saw that W =
{x ∈ Ω,∇u(x) = 0} = E ∪ F , with E the set of maximal
points of u in Ω , and F the set of saddle points of u in Ω .

Let us now state some basic results about the qualitative
property of (19) in a neighbourhood of a point in E.

Proposition 4 If x is in E, then x is an attractive point.
There exists r > 0 such that if x0 belongs to B(x, r) (the
ball of radius r centered in x), then ξ(s) → x as s → +∞.

Proof See Theorem 8.4, p. 366 of [14]. �

Proposition 5 If x is in F , then x is a saddle point, and we
have the following properties:

1. There exists exactly two trajectories ξi , i = 1,2, such that
ξi(s) → x as s → +∞.

2. There exists exactly two trajectories ξi , i = 1,2, such that
ξi(s) → x as s → −∞.

Proof See Theorem 8.5, p. 371 of [14]. �

Corollary 3 Let us consider ξ the unique solution of (19).

1. Let us assume that there exists an increasing sequence sn
such that sn → +∞, and ξ(sn) converges to some ele-
ment w of W . Then ξ(s) → w as s → +∞.

2. Let us assume that there exists an decreasing sequence
sn such that sn → −∞, and ξ(sn) converges to some el-
ement w of W . Then ξ(s) → w as s → −∞.

Proof We first remark that the points of W are isolated
thanks to Theorem 1. The rest of the proof is a straightfor-
ward consequence of Propositions 4 and 5. �

4.2 Qualitative Results

The next theorem states the following fact: given a point x0

in Ω̄\W , there exists a trajectory of the flow (19) such that
when s → +∞, ξ(s) → y∞ with y∞ in W . Moreover, there
exits s0 in R

∗− such that ξ(s0) ∈ ∂Ω or ξ(s) → z−∞ ∈ F as
s → −∞.

Theorem 2 Let x0 in Ω̄\W . The unique solution ξ of (19)
satisfies the two following properties.

1. ξ(s) belongs to Ω for all s > 0. Moreover, there exists
y∞ in W (given by (3)) such that: ξ(s) → y∞ as s →
+∞.

2. One of the two following properties hold:
(a) There exists s0 in R

∗− such that ξ(s0) belongs to ∂Ω ,
and ξ(s) ∈ R

2\Ω̄ if s < s0.
(b) ξ(s) remains in Ω for all s in R, and there exists z−∞

in F such that: ξ(s) → z−∞ as s → −∞. Moreover,
the set of elements x0, which satisfies this last prop-
erty, is embedded into a finite number of curves.

Proof 1. We begin by showing the first point of the propo-
sition. The fact that ξ(s) belongs to Ω for all s > 0 is a
straightforward consequence of Proposition 2.

Let us consider y0 in Ω such that u(y0) = maxx∈Ω̄ u(x)

and let F be the function:

F(x) = ∥∥u(x) − u(y0)
∥∥2 (20)

F is a Lyapunov function for problem (19). Indeed, F has a
minimum in y0, and if x is in Ω , x ∈ Ω̄\W , then:

〈∇F(x),∇u(x)
〉 = 2

∥∥∇u(x)
∥∥2(

u(x) − u(y0)
)
< 0 (21)

(using the fact that y0 is a maximum of u). Assertion 1. is
then a standard result on ODE (see [14], p. 363, Theorem 8.2
and Remark, p. 364). For the convenience of the reader we
detail the proof below.

We have:

d

ds

(
F

(
ξ(s)

)) = 〈
ξ ′(s),∇F

(
ξ(s)

)〉 = 〈∇u
(
ξ(s)

)
,∇F

(
ξ(s)

)〉
(22)

Hence:

d

ds

(
F

(
ξ(s)

)) = 2
(
u
(
ξ(s)

) − u(y0)
)∥∥∇u

(
ξ(s)

)∥∥2
< 0 (23)

for all s ≥ 0 since ξ(0) = x0 is not in W , so s �→ F(ξ(s)) is
a strictly decreasing non negative function.

ξ(s) belongs to Ω̄ for all s ≥ 0, and Ω is bounded. Let
us consider an increasing sequence sn which goes to +∞
as n → +∞. Let us denote ξ(sn) by ξn. (ξn) is a bounded
sequence in Ω̄ . Up to a subsequence, it is thus a convergent
sequence.

F(ξn) is a strictly decreasing non negative sequence. It
is therefore a convergent sequence. In particular, we have
F(ξn) − F(ξn+1) → 0.

But we know that there exists tn in (sn, sn+1) such that:

d

ds
F

(
ξ(tn)

) = F(ξn+1) − F(ξn) (24)

ξ(tn) is a bounded sequence. Hence, up to a subsequence, it
is a converging sequence. Let us denote by y∞ its limit. We
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have

d

ds
F (y∞) = 0 (25)

This implies with (23) that ∇u(y∞) = 0 and so y∞ be-
longs to W . We therefore have shown that any cluster point
of ξn belongs to W . We conclude thanks to Corollary 3 that
ξ(s) converges to y∞.

Remark If W is a singleton then y∞ = y0 (this is in partic-
ular the case when Ω is convex).

2. To show the second point, we first see that if there ex-
ists s0 in R

∗− such that ξ(s0) belongs to ∂Ω , then ξ(s) ∈
R

2\Ω̄ if s < s0 (as a straightforward consequence of Propo-
sition 2).

Let β in (0, α) as in Corollary 2. Then if there exists s1

in R such that ξ(s1) belongs to R
2\Ωr , there exits s0 in R

∗−
such that ξ(s0) belongs to ∂Ω (as a consequence of Corol-
lary 2).

Now let us assume that ξ(s) remains in Ωr for all s in R,
and let us consider the function:

G(x) = ∥∥u(x)
∥∥2 (26)

G is a Lyapunov function for problem (19) with reversed
time. The rest of the proof is the same as before. �

We have thus completely determined the behaviour of the
trajectories of the flow (19). This is the basis of the algorithm
we introduce in the next section.

5 Detailed Algorithm

5.1 Our Approach

In this section we describe our algorithm for constructing the
Poisson skeleton of a shape Ω and we show more connec-
tion between that skeleton and the real skeleton constructed
from the distance function.

We first define the set:

A = {x ∈ ∂Ω, the curvature of ∂Ω in x

has local maximum}. (27)

Then let u be the solution of Poisson equation (8) and
the sets W , E and F defined respectively in (3), (4) and (5).
For constructing the Poisson skeleton of Ω we consider the
following flow starting from x in A:{

ξ ′(s) = ∇u(ξ(s))

ξ(0) = x
(28)

We denote by S1 the set of trajectories of these flows.
Thanks to Theorem 2, we know that these trajectories con-
verge to points in W . Of course, since the flow starts from
x on ∂Ω , we need to remove the beginning of these trajec-
tories. Since x is in A, it is easy to see that the length of
the trajectory to be removed is equal to 1/ρ, where ρ is the
curvature of ∂Ω in x [17]. To compute flow (28), we use a
dynamical programming approach. Given a point x on the
flow, we compute the next point y on the flow, in the neigh-
bourhood of x (8-neighbourhood of x in practice), as the
point y for which u(y) is maximum.

We set S2 the trajectories from F to E. If x is in F ,
then it is an unstable fixed point of the flow considered here.
Thus, from a numerical point of view, one just need to select
points in the neighbourhood of x (in 4 or 8 connectivity),
and to compute the trajectories from these points with the
flow (28).

So the question remains on how to compute the location
of the points in F . This could be done by computing the ze-
ros of the function x �→ ‖∇u(x)‖2 in Ω . But we have found
it to be more accurate to see the points in F as the points
where the sign of the curvature changes as explained later
[27].

Definition The Poisson skeleton is defined as

S = S1 ∪ S2 ∪ W (29)

Let us explain why the Poisson skeleton can be regarded
as an approximation of the real skeleton. The fact that the
skeleton tends to terminate at points on the boundary of
maximal curvature is well established in the computer vi-
sion community (see [17, 18]).

But why using Eq. (28)? Let us suppose that the real
skeleton is given by a parametrized curve X(t) and let
X0 = X(t0) be a point on the skeleton. By definition there
exist two points A and B on the boundary ∂Ω such that
d(x0, ∂Ω) = ‖X0A‖ = ‖X0B‖. It can also be shown that
the tangent X′(t0) is the bissector of the angle (X0A,X0B)

and that the segment AB is orthogonal to X′
0 = X′(t0) (see

Fig. 2).
Let us now define ∇+d(X0) (respectively ∇−d(X0)) as

the gradient of the distance function in the direction AX0

((respectively BX0)). It is easily seen that these vectors do
exist and that the vector (∇+d(X0) + ∇−d(X0)) is paral-
lel to X′(t0). Let us denote ∇•d(X(t)) = 1

2 (∇+d(X(t)) +
∇−d(X(t))). From the above considerations the vector
∇•d(X(t)) is parallel to X′(t) and this can be formally ex-
pressed as

∇•d
(
X(t)

) = X′(t) (30)

So we have just shown that if the skeleton is represented
by a curve X(t) then necessarily X(t) satisfies (30) which is
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Fig. 2 Local parametrization of the skeleton of an arbitrary shape. X is
on the skeleton, and points A and B realize the distance of X to the
boundary of the shape. The tangent vector X′ is the bissector of the
angle (XA,XB), and the segment AB is orthogonal to X′

the flow (28) where u is replaced by d . We think that this ob-
servation fully justifies the construction of the Poisson skele-
ton.

Remarks

1. From a mathematical point of view the writing of (30)
can be justified. Actually the distance function be-
longs to the space: BV2(Ω) = {f ∈ W 1,1(Ω); ∂f

∂xi
∈

BV (Ω) for i = 1, . . . , n} and ∇•d is called the precise
representation of ∇d . In this setting it can be shown
that (30) admits a solution in a generalized meaning (see
[2, 24]).

2. Our construction of the Poisson skeleton shares some
similarities with the one of Shah et al [27, 29]. In that pa-
per the authors define an approximation of the skeleton
as the locus of points where the norm of the gradient of
a smoothed distance function v(x) is minimum along the
level curves i.e. they solve d‖∇v‖

ds
= 0 where s is the arc-

length along the level curves of v. The smoothed distance
v is constructed as the minimum of a Modica-Mortola
functional which is characterized by the Poisson equa-
tion �v(x) = v

σ 2 in Ω and v = 1 on ∂Ω . Notice that v

depends on the parameter σ . Then a direct computation
shows that the equation d‖∇v‖

ds
= 0 is equivalent to

vxy(v
2
x − v2

y) − vxvy(vxx − vyy)

|∇v|3 = 0 (31)

But this expression is exactly the curvature of the
trajectories defined in (28). Indeed, we have: ξ ′(s) =
∇u(ξ(s)), and thus ξ ′′(s) = ∇u(ξ(s))ξ ′(s). We remind
the reader that the curvature of a parametrized s �→ ξ(s)

is:

κ(s) = ξ ′
1ξ

′′
2 − ξ ′

2ξ
′′

1

((ξ ′
1)2 + (ξ ′

1)2)3/2
(32)

So here ξ ′
1 = ux , ξ ′

2 = uy , ξ ′′
1 = uxxux +uyxuy , ξ ′′

2 =
uxyux + uyyuy . Hence:

κ(s) = ux(uyuyy + uxuxy) − uy(uxuxx + uyuyx)

|∇u|3 (33)

i.e.:

κ(s) = uxy(u
2
x − u2

y) − uxuy(uxx − uyy)

|∇u|3 (34)

which is precisely the expression (31) where v is replaced
by u.

As will be seen in the next section on Figs. 3 to 8, the sign
of the curvature gives some indication on where the skeleton
is (see [27, 29] for further details). However, as pointed in
[27, 29], such an approach gives an approximation of both
the skeleton and the anti skeleton: a pruning step is needed
afterwards.

5.2 Basic Examples for Ω

Here we detail basic examples of Ω where we can actually
show that the skeleton computed with our algorithm is the
true skeleton.

Circle In such a simple case, it is easy to see that our algo-
rithm give the center of the circle as the unique element of
the inner skeleton of the circle.

Ellipse Again it is easy to show that the center of the el-
lipse is the unique critical point of u and that ∂u

∂y
(x,0) = 0.

Moreover, Ω has only two points with maximal curvature:
the summits corresponding to the largest radius of the el-
lipse.

Without any restriction, let us assume that the horizon-
tal axis is the largest radius of the ellipse. Then, since
∂u
∂y

(x,0) = 0, it implies that the trajectories starting from
these two summits go straight to the center of the ellipse.

We conclude that in this particular case, our algorithm
give the exact solution.

Square Since the diagonal are symmetry axes for Ω , and
since the two diagonals are non parallel (in fact they are even
orthogonal), we conclude with the same arguments as above
that our algorithm provide the user with the exact solution.

Rectangle Unfortunately, even in such a simple example,
it remains an open question to prove that the skeleton given
by our algorithm is indeed an approximation of the genuine
skeleton. Nevertheless, as will be shown on Fig. 5, our algo-
rithm provide numerically a perfect result.
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6 Numerical Examples

In this section, we show some numerical examples to illus-
trate that indeed our algorithm gives a good approximation
of the skeleton. As a comparison, we give the sign of the
curvature given by Eq. (34), which is the first step of the ap-
proach of [27]. We also show the result provided by the mat-
lab function bwmorph (with option skel) which calculates a
medial axis skeleton.

Figures 3 to 8 present results on different simply con-
nected shapes. Our algorithm gives interesting approxima-
tion in all cases. The reader should notice the difference be-
tween the skeleton provided by our method, and the infor-
mation given by the sign of the curvature. One should also
notice that the intersection of the boundary with the change
of sign of the curvature gives a robust and accurate approxi-
mation of the location of the local maximum of the curvature
along the boundary.

Eventually, the reader should compare the skeleton com-
puted with our approach to the one obtained with the matlab
function bwmorph. In the case of the rectangle shape for in-
stance (Fig. 5), both results are almost identical, whereas in
the case of the hand with the wise palm (Fig. 8), the results
are quite different. This comes from the fact the Poisson

skeleton is a good approximation of the Euclidean skeleton
in tubular like shapes (like the fingers of the hand in Fig. 8
for instance), but the approximation is not so good with large
blobs. The same conclusion can be done with the sign of the
curvature given by Eq. (34) (which is the first step of the
approach of [27]).

In Fig. 3, we show the obtained result on a moon-like
shape. There are already differences between the Poisson
skeleton and the Euclidean skeleton.

In Fig. 4, we show the obtained result on a star-like shape.
This example is a perfect match for our algorithm.

In Fig. 5, we show the obtained result on a rectangle. No-
tice that the method works although the rectangle boundary
is not C2. As explained above, the Poisson skeleton and the
Euclidean skeleton are almost identical in that case.

In Fig. 6, we show the obtained result on a complicated
shape. One should notice that the approximate location of
the stationary points of the flow are given by the location
of the change of signs of the curvature. This is the first ex-
ample for which E is non void (it is reduced to one point
here). In this example, the boundary of the shape are noisy.
Notice that our algorithm is still capable of computing a
good approximation of the result. Notice also that it seems

Fig. 3 Skeleton computation of a moon-like shape. The change of sign of the curvature gives the location of the maximum of the curvature on the
boundary of the shape

Fig. 4 Skeleton computation of a star-like shape. This kind of shape is perfect for the framework developed in this paper
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Fig. 5 Skeleton computation of a rectangle shape. Although the boundary is not C2, our algorithm performs well

Fig. 6 Skeleton computation of a complicated shape with a noisy boundary. Our algorithm works even in the case when the set of saddle points
F (5) is non empty (in this case F is reduced to one point). Moreover, the skeleton we compute is not polluted by some spurious artifacts

Fig. 7 Skeleton computation of a complicated shape. Our algorithm works even in the case when the set of saddle points F (5) is non empty (in
this case F is composed of two points)

to have less spurious artifacts than the one computed with
bwmorph.

Figure 7 shows another example for which E is non void
(it is composed of two points here). Our algorithm handles
correctly this case too.

In Fig. 8, we display an example of skeleton computation
in the case of a hand with a wide palm. As explained above,
the approximation given by the Poisson skeleton is not good
within the wide palm, and much better inside the fingers.
This illustrates the limitation of the methods: for the Pois-
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Fig. 8 Skeleton computation of a hand with a wide palm. Our algorithm shows its limitations within the wide palm of the hand

son skeleton to give a good approximation of the Euclidean
skeleton, the shape should not contain large blobs (the same
problem can be noticed in Fig. 3), and it should essentially
be made of tubular components (such as the fingers in Fig. 8,
or the branches of the star in Fig. 4).

7 Conclusion

In this paper, we have proposed a novel algorithm to com-
pute an approximation of the skeleton. Based on a mathe-
matical analysis, we gave some insight on why such an ap-
proach is well-founded. The Poisson equation has already
been used to compute approximation of the skeleton in the
computer vision community [12, 27, 29]. We gave here new
mathematical arguments to justify such an approach, and we
have proposed a new algorithm that seems to perform well,
as demonstrated in our numerical examples.
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