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Abstract We consider a variational convex relaxation of a
class of optimal partitioning and multiclass labeling prob-
lems, which has recently proven quite successful and can be
seen as a continuous analogue of Linear Programming (LP)
relaxation methods for finite-dimensional problems. While
for the latter several optimality bounds are known, to our
knowledge no such bounds exist in the infinite-dimensional
setting. We provide such a bound by analyzing a probabilis-
tic rounding method, showing that it is possible to obtain an
integral solution of the original partitioning problem from a
solution of the relaxed problem with an a priori upper bound
on the objective. The approach has a natural interpretation as
an approximate, multiclass variant of the celebrated coarea
formula.
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1 Introduction and Background

1.1 Convex Relaxations of Partitioning Problems

In this work, we will be concerned with a class of varia-
tional problems used in image processing and analysis for
formulating multiclass image partitioning problems, which
are of the form

inf
u∈CE

f (u) :=
∫

Ω

〈
u(x), s(x)

〉
dx +

∫
Ω

dΨ (Du), (1)

CE := BV(Ω, E ) (2)

= {
u ∈ BV(Ω)l | u(x) ∈ E for a.e. x ∈ Ω

}
, (3)

E := {
e1, . . . , el

}
. (4)

The labeling function u : Ω → R
l assigns to each point

in the image domain Ω ⊂ R
d a label i ∈ I := {1, . . . , l},

which is represented by one of the l-dimensional unit vec-
tors e1, . . . , el . Since the labeling function is piecewise con-
stant and therefore cannot be assumed to be differentiable,
the problem is formulated as a free discontinuity problem
in the space BV(Ω, E ) of functions of bounded variation;
see [2] for an overview. We generally assume Ω to be a
bounded Lipschitz domain.

The objective function f consists of a data term and a
regularizer. The data term is given in terms of the nonnega-
tive L1 function s(x) = (s1(x), . . . , sl(x)) ∈ R

l , and assigns
to the choice u(x) = ei the “penalty” si(x), in the sense that

∫
Ω

〈
u(x), s(x)

〉
dx =

l∑
i=1

∫
Ωi

si(x)dx, (5)

where Ωi := u−1({ei}) = {x ∈ Ω | u(x) = ei} is the class
region for label i, i.e., the set of points that are assigned
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the i-th label. The data term generally depends on the in-
put data—such as color values of a recorded image, depth
measurements, or other features—and promotes a good fit
of the minimizer to the input data. While it is purely local,
there are no further restrictions such as continuity, convexity
etc., therefore it covers many interesting applications such
as segmentation, stitching, inpainting, multi-view 3D recon-
struction and optical flow [23].

1.2 Convex Regularizers

The regularizer is defined by the positively homogeneous,
continuous and convex function Ψ : R

d×l → R�0 acting on
the distributional derivative Du of u, and incorporates ad-
ditional prior knowledge about the “typical” appearance of
the desired output. For piecewise constant u, it can be seen
that the definition in (1) amounts to a weighted penalization
of the discontinuities of u:
∫

Ω

dΨ (Du)

=
∫

Ju

Ψ
(
νu(x)

(
u+(x) − u−(x)

)�)
dHd−1(x), (6)

where Ju is the jump set of u, i.e., the set of points where
u has well-defined right-hand and left-hand limits u+ and
u− and (in an infinitesimal sense) jumps between the val-
ues u+(x), u−(x) ∈ R

l across a hyperplane with normal
νu(x) ∈ R

d , ‖νu(x)‖2 = 1. We refer to [2] for the precise
definitions.

A particular case is to set Ψ = (1/
√

2)‖ · ‖2, i.e., the
scaled Frobenius norm. In this case J (u) is just the scaled
total variation of u, and, since u+(x) and u−(x) assume val-
ues in E and cannot be equal on the jump set Ju, it holds
that

J (u) = 1√
2

∫
Ju

∥∥u+(x) − u−(x)
∥∥

2dHd−1(x), (7)

= Hd−1(Ju). (8)

Therefore, for Ψ = (1/
√

2)‖·‖2 the regularizer just amounts
to penalizing the total length of the interfaces between class
regions as measured by the (d − 1)-dimensional Hausdorff
measure Hd−1, which is known as uniform metric or Potts
regularization.

A general regularizer was proposed in [19], based on [5]:
given a metric distance d : {1, . . . , l}2 → R�0, (not to be
confused with the ambient space dimension), define

Ψd(z) := sup
v∈Dd

loc

〈z, v〉, z = (
z1, . . . , zl

) ∈ R
d×l , (9)

Dd
loc :=

{(
v1, . . . , vl

) ∈ R
d×l | · · · ‖vi − vj‖2 � d(i, j)

∀i, j ∈ {1, . . . , l}, . . . ,
l∑

k=1

vk = 0

}
. (10)

It was then shown that

Ψd

(
ν
(
ej − ei

)�) = d(i, j), (11)

therefore in view of (6) the corresponding regularizer is non-
uniform: the boundary between the class regions Ωi and Ωj

is penalized by its length, multiplied by the weight d(i, j)

depending on the labels of both regions.
However, even for the comparably simple regularizer (7),

the model (1) is a (spatially continuous) combinatorial prob-
lem due to the integral nature of the constraint set CE , there-
fore optimization is nontrivial. In the context of multiclass
image partitioning, a first approach can be found in [20],
where the problem was posed in a level set-formulation in
terms of a labeling function φ : Ω → {1, . . . , l}, which is
subsequently relaxed to R. Then φ is replaced by polyno-
mials in φ, which coincide with the indicator functions ui

for the case where φ assumes integral values. However, the
numerical approach involves several nonlinearities and re-
quires to solve a sequence of nontrivial subproblems.

The representation (1) suggests a more straightforward
convex approach: replace E by its convex hull, which is the
unit simplex in l dimensions,

�l := conv
{
e1, . . . , el

}

=
{

a ∈ R
l | a � 0,

l∑
i=1

ai = 1

}
, (12)

and solve the relaxed problem

inf
u∈C

f (u), (13)

C := BV(Ω,�l) (14)

= {
u ∈ BV(Ω)l | u(x) ∈ �l for a.e. x ∈ Ω

}
. (15)

Sparked by a series of papers [5, 17, 30], recently there has
been much interest in problems of this form, since they—
although generally nonsmooth—are convex and therefore
can be solved to global optimality, e.g., using primal-dual
techniques. The approach has proven useful in a wide range
of applications [10, 11, 14, 29].

1.3 Finite-Dimensional vs. Continuous Approaches

Many of these applications have been tackled before in a
finite-dimensional setting, where they can be formulated as
combinatorial problems on a grid graph, and solved using
combinatorial optimization methods such as α-expansion
and related integer linear programming (ILP) methods
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Fig. 1 Segmentation of an image into 12 classes using a combinatorial
method. Top left: Input image, Top right: Result obtained by solving a
combinatorial discretized problem with 4-neighborhood. The bottom
row shows detailed views of the marked parts of the image. The mini-
mizer of the combinatorial problem exhibits blocky artifacts caused by
the choice of discretization

[4, 15]. These methods have been shown to yield an inte-
gral labeling u′ ∈ CE with the a priori bound

f
(
u′) � 2

maxi �=j d(i, j)

mini �=j d(i, j)
f

(
u∗

E
)
, (16)

where u∗
E is the (unknown) solution of the integral prob-

lem (1). They therefore permit to compute a suboptimal so-
lution to the—originally NP-hard [4]—combinatorial prob-
lem with an upper bound on the objective. No such bound is
yet available for methods based on the spatially continuous
problem (13).

Despite these strong theoretical and practical results
available for the finite-dimensional combinatorial energies,
the function-based, infinite-dimensional formulation (1) has
several unique advantages:

– The energy (1) is truly isotropic, in the sense that for a
proper choice of Ψ it is invariant under rotation of the co-
ordinate system. Pursuing finite-dimensional “discretize-
first” approaches generally introduces artifacts due to the
inherent anisotropy, which can only be avoided by in-
creasing the neighborhood size, thereby reducing sparsity
and severely slowing down the graph cut-based methods.

In contrast, properly discretizing the relaxed problem
(13) and solving it as a convex problem with subsequent
thresholding yields much better results without compro-
mising the sparse structure (Figs. 1 and 2, [13]). This can
be attributed to the fact that solving the discretized prob-
lem as a combinatorial problem in effect discards much
of the information about the problem structure that is con-
tained in the nonlinear terms of the discretized objective.

– Present combinatorial optimization methods [4, 15] are
inherently sequential and difficult to parallelize. On the
other hand, parallelizing primal-dual methods for solv-
ing the relaxed problem (13) is straight-forward, and GPU
implementations have been shown to outperform state-of-
the-art graph cut methods [30].

Fig. 2 Segmentation obtained by solving a finite-differences dis-
cretization of the relaxed spatially continuous problem. Left: Non-in-
tegral solution obtained as a minimizer of the discretized relaxed prob-
lem. Right: Integral labeling obtained by rounding the fractional labels
in the solution of the relaxed problem to the nearest integral label. The
rounded result is almost free of geometric artifacts

– Analyzing the problem in a fully functional-analytic set-
ting gives valuable insight into the problem structure, and
is of theoretical interest in itself.

1.4 Optimality Bounds

However, one possible drawback of the spatially continu-
ous approach is that the solution of the relaxed problem (13)
may assume fractional values, i.e., values in �l \ E . There-
fore, in applications that require a true partition of Ω , some
rounding process is needed in order to generate an integral
labeling ū∗. This may increase the objective, and lead to a
suboptimal solution of the original problem (1).

The regularizer Ψd as defined in (9) is tight in the sense
that it majorizes all other regularizers that can be written in
integral form and satisfy (11). Therefore it is in a sense “op-
timal”, since it introduces as few fractional solutions as pos-
sible. In practice, this forces solutions of the relaxed prob-
lem to assume integral values in most points, and rounding
is only required in a few small regions.

However, the rounding step may still increase the objec-
tive and generate suboptimal integral solutions. Therefore
the question arises whether the approach allows to recover
“good” integral solutions of the original problem (1).

In the following, we are concerned with the question
whether it is possible to obtain, using the convex relaxation
(13), integral solutions with an upper bound on the objec-
tive. We focus on inequalities of the form

f
(
ū∗) � Cf

(
u∗

E
)

(17)

for some constant C � 1, which provide an upper bound on
the objective of the rounded integral solution ū∗ with respect
to the objective of the (unknown) optimal integral solution
u∗

E of (1). Note that if the relaxation is not exact, it is only
possible to show (17) for some C strictly larger than one.
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The reverse inequality

f
(
u∗

E
)
� f

(
ū∗) (18)

always holds since ū∗ ∈ CE and u∗
E is an optimal integral

solution. An alternative interpretation of (17) is

f (ū∗) − f (u∗
E )

f (u∗
E )

� C − 1, (19)

which provides a bound on the relative gap to the optimal
objective of the combinatorial problem.

For many convex problems one can find a dual represen-
tation of the problem in terms of a dual objective fD and a
dual feasible set D such that

min
u∈C

f (u) = max
v∈D

fD(v), (20)

see [25] for the general case and [18, 19] for results on the
specific problem (13).

If such a representation exists, C can be obtained a pos-
teriori by actually computing (or approximating) ū∗ and a
dual feasible point: Assume that a feasible primal-dual pair
(u, v) ∈ C × D is known, where u approximates u∗, and as-
sume that some integral feasible ū ∈ CE has been obtained
from u by a rounding process. Then the pair (ū, v) is fea-
sible as well since CE ⊂ C , and we obtain an a posteriori
optimality bound with respect to the optimal integral solu-
tion u∗

E :

f (ū) − fD(u∗
E )

fD(u∗
E )

�
f (ū) − fD(u∗

E )

fD(v)

� f (ū) − fD(v)

fD(v)
=: δ, (21)

which amounts to setting C′ := δ + 1 in (19). However, this
requires that the primal and dual objectives f and fD can be
accurately evaluated, and requires to compute a minimizer
of the problem for the specific input data, which is generally
difficult, especially in the infinite-dimensional formulation.

In contrast, true a priori bounds do not require knowl-
edge of a solution and apply uniformly to all problems of
a class, irrespective of the particular input. When consid-
ering rounding methods, one generally has to discriminate
between

– deterministic vs. probabilistic methods, and
– spatially discrete (finite-dimensional) vs. spatially contin-

uous (infinite-dimensional) methods.

To our knowledge, most a priori approximation results hold
only in the finite-dimensional setting, and are usually proven
using graph-based pairwise formulations, see [28] for an
overview. In contrast, we assume an “optimize first” per-
spective due to the reasons outlined in the introduction.
Unfortunately, the proofs for the finite-dimensional results

often rely on pointwise arguments that cannot directly be
transferred to the continuous setting. Deriving similar results
for continuous problems therefore requires considerable ad-
ditional work.

1.5 Contribution and Main Results

In this work we prove that using the regularizer (9), the a
priori bound (16) can be carried over to the spatially con-
tinuous setting. Preliminary versions of these results with
excerpts of the proofs have been announced as conference
proceedings [18]. We extend these results to provide the ex-
act bound (16), and supply the full proofs.

As the main result, we show that it is possible to construct
a rounding method parametrized by γ ∈ Γ , where Γ is an
appropriate parameter space:

R : C × Γ → CE , (22)

u ∈ C �→ ūγ := Rγ (u) ∈ CE , (23)

such that for a suitable probability distribution on Γ , the
following theorem holds for the expectation Ef (ū) :=
Eγ f (ūγ ):

Theorem 1 Let u ∈ C , s ∈ L1(Ω)l , s � 0, and let Ψ :
R

d×l → R�0 be positively homogeneous, convex and con-
tinuous. Assume there exists a lower bound λl > 0 such that,
for z = (z1, . . . , zl),

Ψ (z) � λl

1

2

l∑
i=1

‖zi‖2 ∀z ∈ R
d×l ,

l∑
i=1

zi = 0. (24)

Moreover, assume there exists an upper bound λu < ∞ such
that, for every ν ∈ R

d satisfying ‖ν‖2 = 1,

Ψ
(
ν
(
ei − ej

)�)
� λu ∀i, j ∈ {1, . . . , l}. (25)

Then Algorithm 1 generates an integral labeling ū ∈ CE al-
most surely, and

Ef (ū) � 2
λu

λl

f (u). (26)

Algorithm 1 Continuous Probabilistic Rounding

1: u0 ← u, U0 ← Ω , c0 ← (1, . . . ,1) ∈ R
l .

2: for k = 1,2, . . . do
3: Randomly choose γ k = (ik, αk) ∈ I × [0,1] uni-

formly.
4: Mk ← Uk−1 ∩ {x ∈ Ω|uk−1

ik
(x) > αk}.

5: uk ← eik 1Mk + uk−11Ω\Mk .
6: Uk ← Uk−1 \ Mk .

7: ck
j ←

{
min{ck−1

j , αk}, j = ik,

ck−1
j , otherwise.

8: end for
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We refer to Sect. 3.1 for a description of the individual
steps of the algorithm. Note that always λu � λl , since (25)
and (24) imply

λu � Ψ
(
ν
(
ei − ej

)�)
� λl

2
(‖ν‖2 + ‖ν‖2) = λl (27)

for every ν with ‖ν‖2 = 1.
The proof of Theorem 1 (Sect. 4) is based on the work of

Kleinberg and Tardos [12], which is set in an LP relaxation
framework. However their results are restricted in that they
assume a graph-based representation and extensively rely on
the finite dimensionality. In contrast, our results hold in the
continuous setting without assuming a particular problem
discretization.

Theorem 1 guarantees that—in a probabilistic sense—the
rounding process may only increase the energy in a con-
trolled way, with an upper bound depending on Ψ . An im-
mediate consequence is

Corollary 1 Under the conditions of Theorem 1, if u∗ min-
imizes f over C , u∗

E minimizes f over CE , and ū∗ denotes
the output of Algorithm 1 applied to u∗, then

Ef
(
ū∗) � 2

λu

λl

f
(
u∗

E
)
. (28)

Therefore the proposed approach allows to recover, from
the solution u∗ of the convex relaxed problem (13), an ap-
proximate integral solution ū∗ of the nonconvex original
problem (1) with an upper bound on the objective.

In particular, for the tight relaxation of the regularizer as
in (9), we obtain

Ef
(
ū∗) � 2

λu

λl

= 2
maxi �=j d(i, j)

mini �=j d(i, j)
(29)

(cf. Proposition 13), which is exactly the same bound as has
been achieved for the combinatorial α-expansion method
(16).

To our knowledge, this is the first bound available for
the fully spatially convex relaxed problem (13). Related is
the work of Olsson et al. [21, 22], where the authors con-
sider an infinite-dimensional analogue to the α-expansion
method known as continuous binary fusion [27], and claim
that a bound similar to (16) holds for the corresponding fixed
points when using the separable regularizer

ΨA(z) :=
l∑

j=1

∥∥Azj
∥∥

2, z ∈ R
d×l , (30)

for some A ∈ R
d×d , which implements an anisotropic vari-

ant of the uniform metric. However, a rigorous proof in the
BV framework was not given.

In [3], the authors propose to solve the problem (1) by
considering the dual problem to (13) consisting of l cou-
pled maximum-flow problems, which are solved using a log-
sum-exp smoothing technique and gradient descent. In case
the dual solution allows to unambiguously recover an inte-
gral primal solution, the latter is necessarily the unique min-
imizer of f , and therefore a global integral minimizer of
the combinatorial problem (1). This provides an a posteri-
ori bound, which applies if a dual solution can be computed.
While useful in practice as a certificate for global optimality,
in the spatially continuous setting it requires explicit knowl-
edge of a dual solution, which is rarely available since it
depends on the regularizer Ψ as well as the input data s.

In comparison, the a priori bound (28) holds uniformly
over all problem instances, does not require knowledge of
any primal or dual solutions and covers also non-uniform
regularizers.

2 A Probabilistic View of the Coarea Formula

2.1 The Two-Class Case

As a motivation for the following sections, we first provide a
probabilistic interpretation of a tool often used in geometric
measure theory, the coarea formula (cf. [2]). Given a scalar
function u′ ∈ BV(Ω, [0,1]), the coarea formula states that
its total variation can be computed by summing the bound-
ary lengths of its super-levelsets:

TV
(
u′) =

∫ 1

0
TV(1{u′>α})dα. (31)

Here 1A denotes the characteristic function of a set A,
i.e., 1A(x) = 1 iff x ∈ A and 1A(x) = 0 otherwise. The
coarea formula provides a connection between problem (1)
and the relaxation (13) in the two-class case, where E =
{e1, e2}, and u ∈ CE implies u1 = 1 − u2: as noted in [16],

TV(u) = ∥∥e1 − e2
∥∥

2 TV(u1) = √
2 TV(u1), (32)

therefore the coarea formula (31) can be rewritten as

TV(u) = √
2
∫ 1

0
TV(1{u1>α})dα (33)

=
∫ 1

0
TV

(
e11{u1>α} + e21{u1�α}

)
dα (34)

=
∫ 1

0
TV(ūα)dα, where (35)

ūα := e11{u1>α} + e21{u1�α}. (36)

Consequently, the total variation of u can be expressed as the
mean over the total variations of a set of integral labelings
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{ūα ∈ CE | α ∈ [0,1]}, obtained by rounding u at different
thresholds α. We now adopt a probabilistic view of (36). We
regard the mapping

R : (u,α) ∈ C × [0,1] �→ ūα ∈ CE
(
a.e. α ∈ [0,1]) (37)

as a parametrized deterministic rounding algorithm that de-
pends on u and on an additional parameter α. From this we
obtain a probabilistic (randomized) rounding algorithm by
assuming α to be a uniformly distributed random variable.
With these definitions the coarea formula (36) can be written
as

TV(u) = Eα TV(ūα). (38)

This states that applying the probabilistic rounding to (ar-
bitrary, but fixed) u does—in a probabilistic sense, i.e., in
the mean—not change the objective. It can be shown that
this property extends to the full functional f in (13): in the
two-class case, the “coarea-like” property

f (u) = Eαf (ūα) (39)

holds. Functions with property (39) are also known as lev-
elable functions [8, 9] or discrete total variations [6] and
have been studied in [26]. A well-known implication is that
if u = u∗, i.e., u minimizes the relaxed problem (13), then in
the two-class case almost every ū∗ = ū∗

α is an integral mini-
mizer of the original problem (1), i.e., the optimality bound
(17) holds with C = 1 [7].

2.2 The Multi-Class Case and Generalized Coarea
Formulas

Generalizing these observations to more than two labels
hinges on a property similar to (39) that holds for vector-
valued u. In a general setting, the question is whether there
exist

– a probability space (Γ,μ), and
– a parametrized rounding method, i.e., for μ-almost ev-

ery γ ∈ Γ :

R : C × Γ → CE , (40)

u ∈ C �→ ūγ := Rγ (u) ∈ CE (41)

satisfying Rγ (u′) = u′ for all u′ ∈ CE ,

such that a “multiclass coarea-like property” (or generalized
coarea formula)

f (u) =
∫

Γ

f (ūγ )dμ(γ ) (42)

holds. The equivalent probabilistic interpretation is

f (u) = Eγ f (ūγ ). (43)

For l = 2 and Ψ (x) = ‖ · ‖2, (38) shows that (43) holds with
γ = α, Γ = [0,1], μ = L1, and R : C × Γ → CE as defined
in (37). However, property (38) is intrinsically restricted to
the two-class case and the TV regularizer.

In the multiclass case, the difficulty lies in providing a
suitable combination of a probability space (Γ,μ) and a
parametrized rounding step (u, γ ) �→ ūγ . Unfortunately, ob-
taining a relation such as (38) for the full functional (1) is un-
likely, as it would mean that solutions to the (after discretiza-
tion) NP-hard problem (1) could be obtained by solving the
convex relaxation (13) and subsequent rounding, which can
be achieved in polynomial time.

Therefore we restrict ourselves to an approximate variant
of the generalized coarea formula:

Cf (u) �
∫

Γ

f (ūγ )dμ(γ ) = Eγ f (ūγ ). (44)

While (44) is not sufficient to provide a bound on f (ūγ )

for particular γ , it permits a probabilistic bound: for any
minimizer u∗ of the relaxed problem (13), Eq. (44) implies

Eγ f
(
ū∗

γ

)
� Cf

(
u∗) � Cf

(
u∗

E
)
, (45)

and thus the ratio between the objective of the rounded re-
laxed solution and the optimal integral solution is bounded—
in a probabilistic sense—by the constant C.

In the following sections we construct a suitable param-
etrized rounding method and probability space in order to
obtain an approximate generalized coarea formula of the
form (44).

3 Probabilistic Rounding for Multiclass Image
Partitions

3.1 Approach

We consider the probabilistic rounding approach based on
[12] as defined in Algorithm 1.

The algorithm proceeds in a number of phases. At each
iteration, a label and a threshold

γ k := (
ik, αk

) ∈ Γ ′ := I × [0,1]

are randomly chosen (step 3), and label ik is assigned to all
yet unassigned points x where uk−1

ik
(x) > αk holds (step 5).

In contrast to the two-class case considered above, the ran-
domness is provided by a sequence (γ k) of uniformly dis-
tributed random variables, i.e., Γ = (Γ ′)N.

After iteration k, all points in the set Uk ⊆ Ω are still
unassigned, while all points in Ω \ Uk have been assigned
an (integral) label in iteration k or in a previous iteration. It-
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eration k + 1 potentially modifies points only in the set Uk .
The variable ck

j stores the lowest threshold α chosen for la-
bel j up to and including iteration k, and is only required for
the proofs.

For any u ∈ L1(Ω,�l) and fixed γ , the sequences (uk),
(Mk) and (Uk) are unique up to Ld -negligible sets, and
therefore the sequence (uk) is well-defined when viewed as
elements of L1.

In an actual implementation, the algorithm could be ter-
minated as soon as all points in Ω have been assigned a
label, i.e., |Uk| := Ld(Uk) = 0. However, in our framework
used for analysis the algorithm never terminates explicitly.
Instead, for fixed input u we regard the algorithm as a map-
ping between sequences of parameters (or instances of ran-
dom variables) γ = (γ k) ∈ Γ and sequences of states (uk

γ ),

(Uk
γ ) and (ck

γ ). We drop the subscript γ if it does not create

ambiguities. The elements of the sequence (γ (k)) are inde-
pendently uniformly distributed, therefore choosing γ can
be seen as sampling from the product space.

In order to define the parametrized rounding step
(u, γ ) �→ ūγ , we observe that once |Uk′

γ | = 0 occurs for

some k′ ∈ N, the sequence (uk
γ ) becomes stationary at uk′

γ . In

this case the output of the algorithm is defined as ūγ := uk′
γ :

Definition 1 Let u ∈ BV(Ω)l and f : BV(Ω)l → R. For
arbitrary, fixed γ ∈ Γ , let (uk

γ ) be the sequence generated

by Algorithm 1 and define ūγ : Ω → R̄
l as

ūγ (x)j :=
{

uk′
γ (x)j , ∃k′ ∈ N : |Uk′

γ | = 0,

+∞, otherwise.
(46)

We extend f to all functions u′ : Ω → R̄
l by setting

f (u′) := +∞ if u′ /∈ BV(Ω,�l) and consider the induced
mapping f (ū(·)) : Γ → R ∪ {+∞}, γ ∈ Γ �→ f (ūγ ), i.e.,

f (ūγ ) =
{

f (uk′
γ ), ūγ ∈ BV(Ω,�l),

+∞, otherwise.
(47)

We denote by f (ū) the random variable induced by assum-
ing γ to be uniformly distributed on Γ , and by μ the uni-
form probability measure on Γ .

In the following we often use P = μ where it does not
create ambiguities. Measures are generally understood to be
extended to the completion of the underlying σ -algebra, i.e.,
all subsets of zero sets are measurable.

As indicated above, f (ūγ ) is well-defined—indeed, if
|Uk′

γ | = 0 for some (γ, k′) then uk′
γ = uk′′

γ for all k′′ � k′.
Instead of focusing on local properties of the random se-
quence (uk

γ ) as in the proofs for the finite-dimensional case,

we derive our results directly for the sequence (f (uk
γ )). In

particular, we show that the expectation of f (ū) over all se-
quences γ can be bounded according to

Ef (ū) = Eγ f (ūγ ) � Cf (ū) (48)

for some C � 1, cf. (44). Consequently, the rounding pro-
cess may only increase the average objective in a controlled
way.

3.2 Termination Properties

Theoretically, the algorithm may produce a sequence (uk
γ )

that does not become stationary, or becomes stationary with
a solution that is not an element of BV(Ω)l . In Theorem 2
below we show that this happens only with zero probability,
i.e., almost surely Algorithm 1 generates (in a finite number
of iterations) an integral labeling function ūγ ∈ CE . The fol-
lowing two propositions are required for the proof. We use
the definition e := (1, . . . ,1).

Proposition 1 For the sequence (ck) generated by Algo-
rithm 1,

P
(
e�ck < 1

)

�
∑

p∈{0,1}l
(−1)e

�p

(
l∑

j=1

1

l

((
1 − 1

l

)pj
))k

(49)

holds. In particular,

P
(
e�ck < 1

) k→∞→ 1. (50)

Proof Denote by nk
j ∈ N0 the number of k′ ∈ {1, . . . , k} such

that ik
′ = j , i.e., the number of times label j was selected up

to and including the k-th step. Then

(
nk

1, . . . , n
k
l

) ∼ Multinomial

(
k; 1

l
, . . . ,

1

l

)
, (51)

i.e., the probability of a specific instance is

P
((

nk
1, . . . , n

k
l

)) =
{

k!
nk

1!···nk
l !

( 1
l
)k,

∑
j nk

j = k,

0, otherwise.
(52)

Therefore,

P
(
e�ck < 1

) =
∑

nk
1,...,n

k
l

P
(
e�ck < 1 | (nk

1, . . . , n
k
l

))

· P
((

nk
1, . . . , n

k
l

))
(53)

=
∑

nk
1+···+nk

l =k

k!
nk

1! · · ·nk
l !

(
1

l

)k

· P
(
e�ck < 1 | (nk

1, . . . , n
k
l

))
. (54)
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Since ck
1, . . . , c

k
l < 1

l
is a sufficient condition for e�c < 1,

we may bound the probability according to

P
(
e�c < 1

)
�

∑
nk

1+···+nk
l =k

k!
nk

1! · · ·nk
l !

(
1

l

)k

· P

(
ck
j <

1

l
∀j ∈ I | (nk

1, . . . , n
k
l

))
. (55)

We now consider the distributions of the components ck
j

of ck conditioned on the vector (nk
1, . . . , n

k
l ). Given nk

j , the

probability of {ck
j � t} is the probability that in each of the

nk
j steps where label j was selected the threshold α was ran-

domly chosen to be at least as large as t . For 0 < t < 1, we
conclude

P
(
ck
j < t | (nk

1, . . . , n
k
l

)) = P
(
ck
j < t | nk

j

)
(56)

= 1 − P
(
ck
j � t | nk

j

)
(57)

0<t<1= 1 − (1 − t)
nk

j . (58)

The above formulation also covers the case nk
j = 0 (note

that we assumed 0 < t < 1). For fixed k the distributions of
the ck

j are independent when conditioned on (nk
1, . . . , n

k
l ).

Therefore we obtain from (55) and (58)

P
(
e�c < 1

) (55)
�

∑
nk

1+···+nk
l =k

k!
nk

1! · · ·nk
l !

(
1

l

)k

·
l∏

j=1

P

(
ck
j <

1

l
| (nk

1, . . . , n
k
l

))
(59)

(58)=
∑

nk
1+···+nk

l =k

k!
nk

1! · · ·nk
l !

(
1

l

)k

·
l∏

j=1

(
1 −

(
1 − 1

l

)nk
j
)

. (60)

Expanding the product and swapping the summation order,
we derive

P
(
e�ck < 1

)
(61)

�
∑

nk
1+···+nk

l =k

k!
nk

1! · · ·nk
l !

(
1

l

)k

·
∑

p∈{0,1}l

l∏
j=1

(
−

(
1 − 1

l

)nk
j
)pj

(62)

=
∑

p∈{0,1}l
(−1)e

�p
∑

nk
1+···+nk

l =k

k!
nk

1! · · ·nk
l !

·
l∏

j=1

(
1

l

(
1 − 1

l

)pj
)nk

j

. (63)

Using the multinomial summation formula, we conclude

P
(
e�ck < 1

)

�
∑

p∈{0,1}l
(−1)e

�p

(
l∑

j=1

1

l

(
1 − 1

l

)pj

︸ ︷︷ ︸
=:qp

)k

, (64)

which proves (49). Note that in (64) the nk
j do not occur

explicitly anymore. To show the second assertion (50), we
use the fact that, for any p �= 0, qp can be bounded by 0 <

qp < 1. Therefore

P
(
e�ck < 1

)
� q0 +

∑
p∈{0,1}l ,p �=0

(−1)e
�p(qp)k (65)

= 1 +
∑

p∈{0,1}l ,p �=0

(−1)e
�p (qp)k︸ ︷︷ ︸

k→∞→ 0

(66)

k→∞→ 1, (67)

which proves (50). �

We now show that Algorithm 1 generates a sequence in
BV(Ω)l almost surely. The perimeter of a set A is defined
as the total variation of its characteristic function Per(A) :=
TV(1A) in Ω .

Proposition 2 For the sequences (uk), (Uk) generated by
Algorithm 1, define

A :=
∞⋂

k=1

{
γ ∈ Γ | Per

(
Uk

γ

)
< ∞}

. (68)

Then

P(A) = 1. (69)

If Per(Uk
γ ) < ∞ for all k, then uk

γ ∈ BV(Ω)l for all k as
well. Moreover,

P
(
uk ∈ BV(Ω)l ∧ Per

(
Uk

)
< ∞ ∀k ∈ N

) = 1, (70)

i.e., the algorithm almost surely generates a sequence of
BV functions (uk) and a sequence of sets of finite perimeter
(Uk).

Proof We first show that if Per(Uk′
) < ∞ for all k′ � k,

then uk ∈ BV(Ω)l for all k′ � k as well. For k = 0, the as-
sertion holds since u0 = u ∈ BV(Ω)l by assumption. For
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k � 1,

uk = eik 1Mk + uk−11Ω\Mk . (71)

Since Mk = Uk−1 ∩(Ω \Uk), and Uk,Uk−1 are assumed to
have finite perimeter, Mk also has finite perimeter. Applying
[2, Theorem 3.84] together with the boundedness of uk−1

and uk−1 ∈ BV(Ω)l and an induction argument then provide
uk ∈ BV(Ω)l .

We now denote

I k := {
γ ∈ Γ | Per

(
Uk

γ

) = ∞}
, (72)

and the event that the first set with non-finite perimeter is
encountered at step k ∈ N0 by

Bk := I k ∩ (
Γ \ I k−1) ∩ · · · ∩ (

Γ \ I 0). (73)

Note that U0 = Ω , therefore Per(U0) = TV(1U0) = 0 < ∞
and P(B0) = 0. For k � 1, we use the basic inequality
P(E ∩ F) � P(E | F) and obtain

P
(
Bk

) = P
(
Per

(
Uk

) = ∞ ∧ Per
(
Uk′)

< ∞ ∀k′ < k
)

� P
(
Per

(
Uk

) = ∞ | Per
(
Uk′)

< ∞ ∀k′ < k
)

= P(Per
(
Uk−1 ∩ {

x ∈ Ω | uk−1
ik

(x) � αk
})

= ∞|Per
(
Uk′)

< ∞ ∀k′ < k
)
. (74)

By the argument from the beginning of the proof, we know
that uk−1 ∈ BV(Ω)l under the condition on the perimeter
Per(Uk′

), therefore from [2, Theorem 3.40] we conclude
that Per({x ∈ Ω | uk−1

ik
(x) � αk}) is finite for L1-a.e. αk and

all ik , i.e., for fixed ik the set

{
αk ∈ [0,1] | Per

({
x ∈ Ω | uk−1

ik
(x) � αk

}) = ∞}
(75)

is contained in an L1-zero set. As the sets of finite perime-
ter are closed under finite intersection, and since the αk are
drawn from an uniform distribution, this implies that

P
(
Per

(
Uk

)
< ∞ | Per

(
Uk−1) < ∞) = 1. (76)

Together with (74) we arrive at

P
(
Bk

) = 0, (77)

which implies the assertion,

P(A) = 1 − P

( ∞⋃
k=0

Bk

)
� 1 −

∞∑
k=0

P
(
Bk

) = 1. (78)

Equation (70) follows immediately.
Measurability of the sets involved follows from a similar

recursive argument starting from (75) and using the fact that
all sets or their complements are contained in a zero set,

and are therefore measurable with respect to their respective
(complete) probability measures. �

Using these propositions, we now formulate the main re-
sult of this section: Algorithm 1 almost surely generates an
integral labeling that is of bounded variation.

Theorem 2 Let u ∈ BV(Ω)l and f (ū) as in Definition 1.
Then

P
(
f (ū) < ∞) = 1. (79)

Proof The first part is to show that (uk) becomes stationary
almost surely, i.e.,

P
(∃k ∈ N : |Uk| = 0

) = 1. (80)

Assume there exists k such that e�ck < 1, and assume fur-
ther that |Uk| > 0, i.e., Uk contains a non-negligible sub-
set where uj (x) � ck

j for all labels j . But then e�u(x) �
e�ck < 1 on that set, which is a contradiction to u(x) ∈
�l almost everywhere. Therefore Uk must be a zero set.
From this observation and Proposition 1 we conclude, for
all k′ ∈ N,

1 � P
(∃k ∈ N : |Uk| = 0

)
� P

(
e�ck′

< 1
) k′→∞→ 1, (81)

which proves (80).
In order to show that f (ūγ ) < ∞ with probability 1, it

remains to show that the result is almost surely in BV(Ω)l .
A sufficient condition is that almost surely all iterates uk are
elements of BV(Ω)l , i.e.,

P
(
uk ∈ BV(Ω)l ∀k ∈ N

) = 1. (82)

This is shown by Proposition 2. Then

P
(
f (ū) < ∞)

(83)

� P
({∃k ∈ N : |Uk| = 0

} ∧ {
uk ∈ BV(Ω)l ∀k ∈ N

})

= P
({

uk ∈ BV(Ω)l ∀k ∈ N
})

− P
({∀k ∈ N : |Uk| > 0

}

∧ {
uk ∈ BV(Ω)l ∀k ∈ N

})
(84)

(80)= P
({

uk ∈ BV(Ω)l ∀k ∈ N
}) − 0 (85)

(82)= 1. (86)

Thus P(f (ū) < ∞) = 1, which proves the assertion. �

4 Proof of the Main Theorem

In order to show the bound (48) and Theorem 1, we first need
several technical propositions regarding the composition of
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two BV functions along a set of finite perimeter. We denote
by (E)1 and (E)0 the measure-theoretic interior and exterior
of a set E, see [2],

(E)t :=
{
x ∈ Ω | lim

ρ↘0

|Bρ(x) ∩ E|
|Bρ(x)| = t

}
, t ∈ [0,1]. (87)

Here Bρ(x) denotes the ball with radius ρ centered in x, and
|A| := Ld(A) the Lebesgue content of a set A ⊆ R

d .

Proposition 3 Let Ψ be positively homogeneous and con-
vex, and satisfy the upper-boundedness condition (25). Then

Ψ
(
ν
(
z1 − z2)�)

� λu ∀z1, z2 ∈ �l. (88)

Moreover, there exists a constant C < ∞ such that

Ψ (w) � C‖w‖2 ∀w ∈ W, (89)

W :=
{

w = (
w1| · · · |wl

) ∈ R
d×l |

l∑
i=1

wi = 0

}
. (90)

Proof See the Appendix. �

Proposition 4 Let E,F ⊆ Ω be Ld -measurable sets. Then

(E ∩ F)1 = (E)1 ∩ (F )1. (91)

Proof See the Appendix. �

In the following proposition we denote by u+
F E

and v−
F E

the one-sided approximate limits of u and v on the reduced
boundary F E (traces in the sense of [2, Theorem 3.77]), and
by νE the generalized inner normal of the set E [2, Defini-
tion 3.54].

The measure Ψ (Du) is defined as (cf. [2, (2.26), Propo-
sition 3.23])

Ψ (Du)(A) :=
∫

A

Ψ

(
Du

|Du|
)

d|Du|. (92)

Proposition 5 Let u,v ∈ BV(Ω,�l) and E ⊆ Ω such
that Per(E) < ∞. Define

w := u1E + v1Ω\E. (93)

Then w ∈ BV(Ω,�l)
l , and

Dw = Du�(E)1 + Dv�(E)0

+ νE

(
u+

F E
− v−

F E

)�Hd−1�(F E ∩ Ω). (94)

Moreover, for continuous, convex and positively homoge-
neous Ψ satisfying the upper-boundedness condition (25)
and any Borel set A ⊆ Ω ,
∫

A

dΨ (Dw) �
∫

A∩(E)1
dΨ (Du)

+
∫

A∩(E)0
dΨ (Dv) + λu Per(E). (95)

Proof See the Appendix. �

Proposition 6 Let u,v ∈ BV(Ω,�l), E ⊆ Ω such that
Per(E) < ∞, and

u|(E)1 = v|(E)1 Ld -a.e. (96)

Then (Du)�(E)1 = (Dv)�(E)1, and Ψ (Du)�(E)1 =
Ψ (Dv)�(E)1. In particular,
∫

(E)1
dΨ (Du) =

∫
(E)1

dΨ (Dv). (97)

The result also holds when (E)1 is replaced by (E)0. More-
over, the condition (96) is equivalent to

u|E = v|E Ld -a.e. (98)

Proof See the Appendix. �

Remark 1 Note that taking the measure-theoretic interior
(E)1 is of central importance. Proposition 6 does not hold
when replacing the integral over (E)1 with the integral
over E, as can be seen from the example of the closed unit
ball, i.e., E = B1(0), u = 1E and v ≡ 1.

4.1 Proof of Theorem 1

In Sect. 3.2 we have shown that the rounding process in-
duced by Algorithm 1 is well-defined in the sense that it
returns an integral solution ūγ ∈ BV(Ω)l almost surely. We
now return to proving an upper bound for the expectation of
f (ū) as in the approximate coarea formula (44).

We first establish measurability and show that the expec-
tation of the linear part (data term) of f is invariant under
the rounding process.

Proposition 7 Let (uk
γ ) be the sequence generated by Algo-

rithm 1. Then for every k � 1 the mappings

gk : Γ × Ω → R
l , (γ, x) �→ uk

γ (x) (99)

and

h : Γ × Ω → R̄
l , (γ, x) �→ ūγ (x) (100)

are (μ × Ld)-measurable.

Proof In Algorithm 1, instead of step 5 we consider the sim-
pler update

uk ← eik 1{uk−1
ik

>αk} + uk−11{uk−1
ik

�αk}. (101)
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This yields exactly the same sequence (uk), since if
uk−1

ik
(x) > αk , then either x ∈ Uk−1, or uk−1

ik
(x) = 1. In

both algorithms, points that are assigned a label eik at some
point in the process will never be assigned a different label at
a later point. This is made explicit in Algorithm 1 by keep-
ing track of the set Uk of yet unassigned points. In contrast,
using the step (101), a point may be contained in several of
the sets {uk−1

ik
� αk} of points that get assigned label ik in

step k, but once assigned its label cannot change during a
later iteration.

For the measurability of the gk it suffices to show mea-
surability of the mapping

(
γ 1, . . . , γ k, x

) ∈ (
Γ ′)k × R �→ uk

(γ 1,...,γ k)
(x). (102)

From the update (101) we see that uk
(γ 1,...,γ k)

is a finite sum

of functions of the form eik · 1A1 · · ·1Al and u · 1A1 · · ·1Al ,
for some l � k, where each Am,m � l is either the set
{(γ 1, . . . , γ k, x) | u(x)im > αm} or its complement. Each
of these indicator functions is jointly measurable in (γ, x):
every component of u is again measurable, and for any
measurable scalar-valued function v, the set B := {(α, x) |
v(x) > α} is the countable union of measurable sets,

B =
⋃
t∈Q

(−∞, t] × {
v−1((t,+∞)

)}
, (103)

and therefore (α, x) �→ 1B(x) is jointly measurable in
(α, x). Consequently, uk

γ is the finite sum of products of
functions that are jointly measurable in (γ, x), which shows
the first assertion.

Regarding the second assertion, Theorem 2 shows that
h(γ, x) = limk→∞ gk(γ, x), except possibly for a negligible
set of γ where the sequence (uk

γ ) does not become station-

ary. Since all gk are measurable, their pointwise limit and
therefore h are measurable as well. �

Proposition 8 For every k � 1 the mappings

g′k : Γ → R, γ �→
∫

Ω

〈
uk

γ , s
〉
dx (104)

and

h′ : Γ → R, γ �→
∫

Ω

〈ūγ , s〉dx (105)

are μ-measurable.

Proof The first assertion follows directly from Proposition 7
and (μ × Ld)-measurability of the map (γ, x) �→ s(x). For
each fixed γ the sequence (g′k(γ ))k is bounded since s ∈
L1(Ω) and u is essentially bounded. Together with Theo-
rem 2 this implies

h′(γ ) = lim
k→∞g′k(γ ) for μ-a.e. γ ∈ Γ, (106)

therefore h′ is measurable as well, as it is the limit of mea-
surable functions. �

Proposition 9 The sequence (uk) generated by Algorithm 1
satisfies

E

∫
Ω

〈
uk, s

〉
dx =

∫
Ω

〈u, s〉dx ∀k ∈ N. (107)

Proof Proposition 8 shows that the expectation is well-
defined. Integrability on Γ × R

d again holds because uk
γ is

in L1(Ω,�l) and therefore essentially bounded, s ∈ L1(Ω),
and Ω is bounded, which uniformly bounds the inner inte-
gral over all γ .

Assume γ ∈ Γ is arbitrary but fixed, and denote γ ′ :=
(γ 1, . . . , γ k−1) and uγ ′ := uk−1

γ . We apply induction on k:
For k � 1,

Eγ

∫
Ω

〈
uk

γ , s
〉
dx (108)

= Eγ ′
1

l

l∑
i=1

∫ 1

0

∫
Ω

l∑
j=1

sj

· (ei1{uγ ′
i >α} + quγ ′

1{uγ ′
i �α}

)
j
dxdα (109)

= Eγ ′
1

l

l∑
i=1

∫ 1

0

∫
Ω

(
si · 1{uγ ′

i >α}

+ uγ ′
1{uγ ′

i �α}
〈
uγ ′

, s
〉)
dxdα (110)

= Eγ ′
1

l

l∑
i=1

∫ 1

0

∫
Ω

(
si · 1{uγ ′

i >α}

+ (1 − 1{uγ ′
i >α})

〈
uγ ′

, s
〉)

dxdα. (111)

We take into account the property [2, Proposition 1.78],
which is a direct consequence of Fubini’s theorem, and also
used in the proof of the thresholding theorem for the two-
class case [7]:

∫ 1

0

∫
Ω

si(x) · 1{ui>α}(x)dxdα (112)

=
∫

Ω

si(x)ui(x)dx. (113)

This leads to

Eγ

∫
Ω

〈
uk

γ , s
〉
dx

= Eγ ′
1

l

l∑
i=1

∫
Ω

(
siu

γ ′
i + 〈

uγ ′
, s

〉 − u
γ ′
i

〈
uγ ′

, s
〉)

dx (114)
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and therefore, using uγ ′
(x) ∈ �l a.e.,

Eγ

∫
Ω

〈
uk

γ , s
〉
dx = Eγ ′

∫
Ω

〈
uγ ′

, s
〉
dx (115)

= Eγ

∫
Ω

〈
uk−1

γ , s
〉
dx. (116)

Since 〈u0, s〉 = 〈u, s〉, the assertion follows by induction. �

Remark 2 Proposition 9 shows that the data term is—in the
mean—not affected by the probabilistic rounding process,
i.e., it satisfies an exact coarea-like formula, even in the mul-
ticlass case.

Bounding the regularizer is more involved: For γ k =
(ik, αk), define

Uγ k := {
x ∈ Ω | uik (x) � αk

}
, (117)

Vγ k := (Uγ k )1, (118)

V k := (
Uk

)1
. (119)

As the measure-theoretic interior is invariant under
Ld -negligible modifications, given some fixed sequence γ

the sequence (V k) is invariant under Ld -negligible modifi-
cations of u = u0, i.e., it is uniquely defined when viewing
u as an element of L1(Ω)l . Some calculations yield

Uk = Uγ 1 ∩ · · · ∩ Uγ k , k � 1, (120)

Uk−1 \ Uk = Uγ 1 ∩ (
(Uγ 2 ∩ · · · ∩ Uγ k−1)

\ (Uγ 2 ∩ · · · ∩ Uγ k )
)
, k � 2. (121)

From these observations and Proposition 4,

V k = Vγ 1 ∩ · · · ∩ Vγ k , k � 1, (122)

V k−1 \ V k = Vγ 1 ∩ (
(Vγ 2 ∩ · · · ∩ Vγ k−1)

\ (Vγ 2 ∩ · · · ∩ Vγ k )
)
, k � 2, (123)

Ω \ V k =
k⋃

k′=1

(
V k′−1 \ V k′)

, k � 1. (124)

The last equality can be shown by induction: For the base
case k = 1, we have V 0 = (U0)1 = (Ω)1 = Ω , where the
last equality can be shown by mutual inclusion, using the
fact that Ω is open and has a Lipschitz boundary by assump-
tion. For k � 2,

k⋃
k′=1

V k′−1 \ V k′
(125)

= (
V k−1 \ V k

) ∪
k−1⋃
k′=1

(
V k′−1 \ V k′)

(126)

= (
V k−1 \ V k

) ∪ (
Ω \ V k−1) (127)

V k⊆V k−1= Ω \ V k, (128)

which shows (124).
Moreover, since V k is the measure-theoretic interior

of Uk , both sets are equal up to an Ld -negligible set
(cf. (197)). Again we first show measurability of the in-
volved mappings.

Proposition 10 For every k � 1 the mappings

g′′k : Γ → R, γ �→
∫

V k−1\V k

dΨ (Dūγ ) (129)

and

h′′ : Γ → R, γ �→
∫

Ω

dΨ (Dūγ ) (130)

are μ-measurable.

Proof We only sketch the proof. Let k � 1 be arbitrary but
fixed. Using a similar argument as in the proof of Proposi-
tion 8 (see also the proof of Theorem 1) one can see that
h′′(γ ) = ∑∞

k=1 g′′k(γ ), therefore it suffices to show measur-
ability of the g′′k .

We note that g′′k can be written, up to a μ-negligible set,
as the sum

g′′k(γ ) =
∞∑

k′=1

1{γ |e�ck′
<1�e�ck′−1}p

k′
(γ ),

pk′
(γ ) :=

∫
V k−1\V k

dΨ
(
Duk′

γ

)
.

(131)

The key is that uk′
γ = ūγ once e�ck′

< 1. Each pk′
depends

only on a finite number of γ i , and since the indicator func-
tion is measurable, it is enough to show measurability of the
mappings pk′

in their respective finite-dimensional subsets
of Γ for all k′ ∈ N.

Choose a fixed but arbitrary k′. With the definition Eγ :=
Uγ k we obtain from Proposition 4

V k−1 \ V k = V k−1 ∩ (
Ω \ (Eγ )1), (132)

which together with [2, Theorem 3.84] leads to

pk′
(γ ) =

∫
V k−1∩F Eγ

dΨ
(
Duk′

γ

)
(133)

=
∫

Ω

Ψ
(
(νEγ )

((
uk′

γ

)+
F Eγ

− (
uk′

γ

)−
F Eγ

)�)

· 1V k−1d|D1Eγ |, (134)

where νEγ (x) := (D1Eγ /|D1Eγ |)(x) on F Eγ . Measurabil-

ity of the pk′
can be shown using a result about measure-

valued mappings [2, Proposition 2.26]. This first requires
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to show that the mapping γ �→ |D1Eγ |(B) is μ-measurable
for every open set B ⊆ Ω , which is a corollary of the coarea
formula [2, Theorem 3.40].

The second requirement is that the integrand in (134) is
bounded and (Bμ × B(Ω))-measurable. For the indicator
function this follows from the definitions in a straightfor-
ward way. The normal mapping can be rewritten as

(γ, x) �→ 1F Eγ
lim
ρ→0

D1Eγ

(
Bρ(x)

)
/
∣∣D1Eγ

(
Bρ(x)

)∣∣. (135)

Using a slight modification of [2, Proposition 2.26] one
can show the (Bμ × B(Ω))-measurability of the mappings
(γ, x) �→ D1Eγ (Bρ(x)) and (γ, x) �→ |D1Eγ (Bρ(x))|, and
therefore of 1F Eγ

and of the normal mapping in (135).
Together with Proposition 7 this ensures (Bμ × B(Ω))-
measurability of the normal and trace terms in (134), and,
since Ψ is continuous, of the whole integrand.

Therefore all assumptions of [2, Proposition 2.26] are
fulfilled, and we obtain the μ-measurability of all pk′

and
finally of g′′k and h′′. �

We now prepare for an induction argument on the expec-
tation of the regularizing term when restricted to the sets
V k−1 \ V k . The following proposition provides the initial
step (k = 1).

Proposition 11 Assume that Ψ satisfies the lower- and
upper-boundedness conditions (24) and (25). Then

E

∫
V 0\V 1

dΨ (Dū) � 2

l

λu

λl

∫
Ω

dΨ (Du). (136)

Proof Denote (i, α) = γ 1. Since 1U(i,α)
= 1V(i,α)

Ld -a.e., we
have

ūγ = 1Ω\V(i,α)
ei + 1V(i,α)

ūγ Ld -a.e. (137)

Therefore, since V 0 = (U0)1 = (Ω)1 = Ω ,
∫

V 0\V 1
dΨ (Dūγ )

=
∫

Ω\V(i,α)

dΨ (Dūγ )

=
∫

Ω\V(i,α)

dΨ
(
D

(
1Ω\V(i,α)

ei + 1V(i,α)
ūγ

))
. (138)

Since u ∈ BV(Ω)l , we know that Per(V(i,α)) < ∞ holds for
L1-a.e. α and any i [2, Theorem 3.40]. Therefore we con-
clude from Proposition 5 that for L1-a.e. α,
∫

Ω\V(i,α)

dΨ (Dūγ )

� λu Per(V(i,α))

+
∫

(Ω\V(i,α))∩(Ω\V(i,α))
1
dΨ

(
Dei

)

+
∫

(Ω\V(i,α))∩(Ω\V(i,α))
0
dΨ (Dūγ ). (139)

Both of the integrals are zero, since Dei = 0 and

(Ω \ V(i,α))
0 = (V(i,α))

1 = V(i,α), (140)

therefore
∫

Ω\V(i,α)

dΨ (Dūγ ) � λu Per(V(i,α)). (141)

Since Proposition 10 provides measurability the bound car-
ries over to the expectation,

Eγ

∫
Ω\V(i,α)

dΨ (Dūγ ) � 1

l

l∑
i=1

∫ 1

0
λu Per(V(i,α))dα.

Also Per(V(i,α)) = Per(U(i,α)) since the perimeter is invari-
ant under Ld -negligible modifications. The assertion then
follows using V 0 = Ω , V 1 = V(i,α) and the coarea formula:

Eγ

∫
V 0\V 1

dΨ (Dūγ ) (142)

� 1

l

l∑
i=1

∫ 1

0
λu Per(U(i,α))dα (143)

coarea= λu

l

l∑
i=1

TV(ui) = λu

l

∫
Ω

l∑
i=1

d‖Dui‖2 (144)

(24)
� 2

l

λu

λl

∫
Ω

dΨ (Du). (145)

�

We now take care of the induction step for the regularizer
bound.

Proposition 12 Let Ψ satisfy the upper-boundedness con-
dition (25). Then, for any k � 2,

F := E

∫
V k−1\V k

dΨ (Dū) (146)

� (l − 1)

l
E

∫
V k−2\V k−1

dΨ (Dū). (147)

Proof Define the shifted sequence γ ′ = (γ ′k)∞k=1 by γ ′k :=
γ k+1, and let

Wγ ′ := V k−2
γ ′ \ V k−1

γ ′ (148)

= (Vγ 2 ∩ · · · ∩ Vγ k−1) \ (Vγ 2 ∩ · · · ∩ Vγ k ). (149)
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By Proposition 2 and Proposition 10 we may assume
that ūγ exists μ-a.e. and is an element of BV(Ω)l , and that
the expectation is well-defined. We denote γ 1 = (i, α), then
V k−1 \ V k = V(i,α) ∩ Wγ ′ due to (123). For each pair (i, α)

we denote by ((i, α), γ ′) the sequence obtained by prepend-
ing (i, α) to the sequence γ ′. Then

F = 1

l

l∑
i=1

∫ 1

0
Eγ ′

∫
V(i,α)∩Wγ ′

dΨ (Dū((i,α),γ ′))dα. (150)

Since in the first iteration of the algorithm no points in U(i,α)

are assigned a label, ū((i,α),γ ′) = ūγ ′ holds on U(i,α), and
therefore Ld -a.e. on V(i,α). Therefore we may apply Propo-
sition 6 and substitute Dū((i,α),γ ′) by Dūγ ′ in (150):

F = 1

l

l∑
i=1

∫ 1

0

(
Eγ ′

∫
V(i,α)∩Wγ ′

dΨ (Dūγ ′)

)
dα (151)

= 1

l

l∑
i=1

∫ 1

0

(
Eγ ′

∫
Wγ ′

1V(i,α)
dΨ (Dūγ ′)

)
dα. (152)

By definition of the measure-theoretic interior (87), the in-
dicator function 1V(i,α)

is bounded from above by the density
function ΘU(i,α)

of U(i,α),

1V(i,α)
(x) � Θ(i,α)(x) := lim

δ↘0

|Bδ(x) ∩ U(i,α)|
|Bδ(x)| , (153)

which exists Hd−1-a.e. on Ω by [2, Proposition 3.61].
Therefore, denoting by Bδ(·) the mapping x ∈ Ω �→ Bδ(x),

F � 1

l

l∑
i=1

∫ 1

0
Eγ ′

∫
Wγ ′

lim
δ↘0

|Bδ(·) ∩ U(i,α)|
|Bδ(·)| dΨ (Dūγ ′)dα.

Rearranging the integrals and the limit, which can be justi-
fied by TV(ūγ ′) < ∞ almost surely and dominated conver-
gence using (25), we get

F � 1

l
Eγ ′ lim

δ↘0

∫
Wγ ′

l∑
i=1

∫ 1

0

|Bδ(·) ∩ U(i,α)|
|Bδ(·)| dα dΨ (Dūγ ′)

= 1

l
Eγ ′ lim

δ↘0

∫
Wγ ′

1

|Bδ(·)|

·
(

l∑
i=1

∫ 1

0

∫
Bδ(·)

1{ui(y)�α}dydα

)
dΨ (Dūγ ′). (154)

We again apply [2, Proposition 1.78] to the two innermost
integrals (alternatively, use Fubini’s theorem), which leads
to

F � 1

l
Eγ ′ lim

δ↘0

∫
Wγ ′

1

|Bδ(·)| (155)

·
(

l∑
i=1

∫
Bδ(·)

(
1 − ui(y)

)
dy

)
dΨ (Dūγ ′). (156)

Using the fact that u(y) ∈ �l , this collapses according to

F � 1

l
Eγ ′ lim

δ↘0

∫
Wγ ′

1

|Bδ(·)|
(∫

Bδ(·)
(l − 1)dy

)
dΨ (Dūγ ′)

= 1

l
Eγ ′ lim

δ↘0

∫
Wγ ′

(l − 1)dΨ (Dūγ ′) (157)

= l − 1

l
Eγ ′

∫
Wγ ′

dΨ (Dūγ ′) (158)

= l − 1

l
Eγ ′

∫
V k−2

γ ′ \V k−1
γ ′

dΨ (Dūγ ′). (159)

Reverting the index shift and using ūγ ′ = ūγ concludes the
proof:

F � l − 1

l
Eγ

∫
V k−1

γ \V k
γ

dΨ (Dūγ ). (160)

�

We are now ready to prove the main result, Theorem 1,
as stated in the introduction.

Proof of Theorem 1 The fact that the algorithm provides
ū ∈ CE almost surely follows from Theorem 2. Therefore
there almost surely exists k′ := k′(γ ) � 1 such that |Uk′ | = 0
and ūγ = uk′

γ . On one hand, this implies

∫
Ω

〈ūγ , s〉dx =
∫

Ω

〈
uk′

γ , s
〉
dx = lim

k→∞

∫
Ω

〈
uk

γ , s
〉
dx (161)

almost surely. On the other hand, V k′ = (Uk′
)1 = ∅ and

therefore

k′⋃
k=1

V k−1 \ V k (124)= Ω \ V k′ = Ω (162)

almost surely. From (161) and (162) we obtain

Eγ f (ūγ ) = Eγ

(
lim

k→∞

∫
Ω

〈
uk

γ , s
〉
dx

)

+ Eγ

( ∞∑
k=1

∫
V k−1\V k

dΨ (Dūγ )

)
. (163)

In the first term, the uk
γ are elements of BV(Ω,�l) and

therefore L∞(Ω,R
l ) except possibly on a negligible set

of γ . Since s ∈ L1(Ω) this means γ �→ 〈uk
γ , s〉 = |〈uk

γ , s〉|
is bounded from above by a constant outside a negligible
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set (by Proposition 8 it is also measurable) and the domi-
nated convergence theorem applies. The second term satis-
fies the requirements for monotone convergence, since all
summands exist, are nonnegative almost surely, and mea-
surable by Proposition 10. Therefore the integrals and limits
can be swapped,

Eγ f (ūγ ) = lim
k→∞

(
Eγ

∫
Ω

〈
uk

γ , s
〉
dx

)

+
∞∑

k=1

Eγ

∫
V k−1\V k

dΨ (Dūγ ). (164)

The first term in (164) is equal to
∫
Ω

〈u, s〉dx due to Propo-
sition 9. An induction argument using Proposition 11 and 12
shows that the second term can be bounded according to

∞∑
k=1

Eγ

∫
V k−1\V k

dΨ (Dūγ ) (165)

�
∞∑

k=1

(
l − 1

l

)k−1 2

l

λu

λl

∫
Ω

dΨ (Du) (166)

= 2
λu

λl

∫
Ω

dΨ (Du), (167)

therefore

Eγ f (ūγ ) �
∫

Ω

〈u, s〉dx + 2
λu

λl

∫
Ω

dΨ (Du). (168)

Since s � 0 and λu � λl , and therefore the linear term is
bounded by

∫
Ω

〈u, s〉dx � 2(λu/λl)
∫
Ω

〈u, s〉dx, this proves
the assertion. �

Corollary 1 (see Sect. 1) follows immediately using
f (u∗) � f (u∗

E ), cf. (45). We have demonstrated that the pro-
posed approach allows to recover, from the solution u∗ of
the convex relaxed problem (13), an approximate integral
solution ū∗ of the nonconvex original problem (1) with an
upper bound on the objective.

For the specific case Ψ = Ψd as in (9), we have

Proposition 13 Let d : I 2 → R�0 be a metric and Ψ = Ψd .
Then one may set

λu = max
i,j∈{1,...,l}

d(i, j) and λl = min
i �=j

d(i, j).

Proof From the remarks in the introduction we obtain
(cf. [19])

Ψd

(
ν
(
ei − ej

)�) = d(i, j),

which shows the upper bound. For the lower bound, take any
z ∈ R

d×l satisfying ze = 0 as in (24), set c := mini �=j d(i, j),

v′i := c
2

zi

‖zi‖2
if zi �= 0 and v′i := 0 otherwise, and v :=

v′(I − 1
l
ee�). Then v ∈ Dd

loc, since ‖vi − vj‖2 = ‖v′i −
v′j‖2 � c and ve = v′(I − 1

l
ee�)e = 0. Therefore,

Ψd(z) � 〈z, v〉 = 〈
z, v′〉 (169)

=
∑

i=1,...,l,zi �=0

〈
zi,

c

2

zi

‖zi‖2

〉
= c

2

l∑
i=1

‖zi‖2, (170)

proving the lower bound. �

Finally, for Ψd we obtain the factor

2
λu

λl

= 2
maxi,j d(i, j)

mini �=j d(i, j)
, (171)

determining the optimality bound, as claimed in the in-
troduction (29). The bound in (28) is the same as the
known bounds for finite-dimensional metric labeling [12]
and α-expansion [4], however it extends these results to
problems on continuous domains for a broad class of reg-
ularizers.

5 Conclusion

In this work we considered a method for recovering approx-
imate solutions of image partitioning problems from solu-
tions of a convex relaxation. We proposed a probabilistic
rounding method motivated by the finite-dimensional frame-
work, and showed that it is possible to obtain a priori bounds
on the optimality of the integral solution obtained by round-
ing a solution of the convex relaxation.

The obtained bounds are compatible with known bounds
for the finite-dimensional setting. However, to our knowl-
edge, this is the first fully convex approach that is both for-
mulated in the spatially continuous setting and provides a
true a priori bound. We showed that the approach can also be
interpreted as an approximate variant of the coarea formula.

A peculiar property of the presented approach is that it
provides a bound of two for the uniform metric even in the
two-class case, where the relaxation is known to be exact.
The question remains how to prove an optimal bound.

While the results apply to a quite general class of regular-
izers, they are formulated for the homogeneous case. Non-
homogeneous regularizers constitute an interesting direction
for future work. In particular, such regularizers naturally oc-
cur when applying convex relaxation techniques [1, 24] in
order to solve nonconvex variational problems.

With the increasing computational power, such tech-
niques have become quite popular recently. For problems
where the convexity is confined to the data term, they permit
to find a global minimizer. A proper extension of the results
outlined in this work may provide a way to find good ap-
proximate solutions of problems where also the regularizer
is nonconvex.
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Appendix

Proof of Proposition 3 In order to prove the first asser-
tion (88), note that the mapping w �→ Ψ (νw�) is con-
vex, therefore it must assume its maximum on the polytope
�l − �l := {z1 − z2|z1, z2 ∈ �l} in a vertex of the poly-
tope. Since the polytope �l − �l is the difference of two
polytopes, its vertex set is at most the difference of their
vertex sets, V := {ei − ej |i, j ∈ {1, . . . , l}}. On this set, the
bound Ψ (νw�) � λu holds for w ∈ V due to the upper-
boundedness condition (25), which proves (88).

The second equality (90) follows from the fact that G :=
{bik := ek(ei − ei+1)� | 1 � k � d,1 � i � l − 1} is a basis
of the linear subspace W , satisfying Ψ (bik) � λu, and Ψ is
positively homogeneous and convex, and thus subadditive.
Specifically, there is a linear transform T : W → R

d×(l−1)

such that w = ∑
i,k bikαik for α = T (w). Then

Ψ (w) = Ψ

(∑
i,k

bikαik

)
(172)

� Ψ

(∑
ik

|αik| sgn(αik)b
ik

)
(173)

�
∑
ik

|αik|Ψ
(
sgn(αik)b

ik
)
. (174)

Since (25) ensures Ψ (±bik) � λu, we obtain

Ψ (w) � λu

∑
ik

|αik| � λu‖T ‖‖w‖2 (175)

for any suitable operator norm ‖ · ‖ and any w ∈ W . �

Proof of Proposition 4 Denote Bδ := Bδ(x). We prove mu-
tual inclusion:

“⊆”: From the definition of the measure-theoretic inte-
rior,

x ∈ (E ∩ F)1 ⇒ lim
δ↘0

|Bδ ∩ E ∩ F |
|Bδ| = 1. (176)

Since |Bδ| � |Bδ ∩ E| � |Bδ ∩ E ∩ F | (and vice versa for
|Bδ ∩ F |), it follows by the “sandwich” criterion that both
limδ↘0 |Bδ ∩E|/|Bδ| and limδ↘0 |Bδ ∩F |/|Bδ| exist and are
equal to 1, which shows x ∈ E1 ∩ F 1.

“⊇”: Assume that x ∈ E1 ∩ F 1. Then

1 � lim
δ↘0

sup
|Bδ ∩ E ∩ F |

|Bδ| (177)

� lim
δ↘0

inf
|Bδ ∩ E ∩ F |

|Bδ| (178)

= lim
δ↘0

inf
|Bδ ∩ E| + |Bδ ∩ F | − |Bδ ∩ (E ∪ F)|

|Bδ| . (179)

We obtain equality,

1 � lim
δ↘0

inf
|Bδ ∩ E ∩ F |

|Bδ| (180)

� lim
δ↘0

inf
|Bδ ∩ E|

|Bδ| + lim
δ↘0

inf
|Bδ ∩ F |

|Bδ|

+ lim
δ↘0

inf

(
−|Bδ ∩ (E ∪ F)|

|Bδ|
)

(181)

= 2 − lim
δ↘0

sup
|Bδ ∩ (E ∪ F)|

|Bδ|︸ ︷︷ ︸
�1

� 1, (182)

from which we conclude that

lim
δ↘0

sup
|Bδ ∩ E ∩ F |

|Bδ| = lim
δ↘0

inf
|Bδ ∩ E ∩ F |

|Bδ| = 1,

i.e., x ∈ (E ∩ F)1. �

Proof of Proposition 5 First note that

∫
F E∩Ω

∥∥w+
F E

− w−
F E

∥∥
2dHd−1 (183)

� sup
{∥∥w+

F E
(x) − w−

F E
(x)

∥∥
2 | x ∈ F E ∩ Ω

}

· Hd−1(F E ∩ Ω) (184)

(∗)

� esssup
{∥∥w(x) − w(y)

∥∥
2 | x, y ∈ Ω

} · TV(1E) (185)

(∗∗)

�
√

2 TV(1E) (186)

= √
2 Per(E) < ∞. (187)

The inequality (∗) is a consequence of the definition of
w±

F E
and [2, Theorem 3.77], and (∗∗) follows directly from

w(x),w(y) ∈ �l a.e. on Ω . The upper bound (187) per-
mits applying [2, Theorem 3.84] on w, which provides
w ∈ BV(Ω)l and (94). Due to [2, Proposition 3.61], the
sets (E)0, (E)1 and F E form a (pairwise disjoint) par-
tition of Ω , up to an Hd−1-zero set. Therefore, since
Ψ (Du) � |Du| � Hd−1 by construction, from [2, Theo-
rem 2.37, 3.84] we obtain, for any Borel set A,

∫
A

dΨ (Dw) (188)

=
∫

A∩(E)1
dΨ (Dw) +

∫
A∩(E)0

dΨ (Dw)
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+
∫

A∩F E∩Ω

Ψ
(
νE

(
w+

F E
(x) − w−

F E
(x)

)�)
dHd−1.

(189)

Since w(x) ∈ �l a.e. by assumption, we conclude that w+
F E

and w−
F E

must have values in �l as well, see [2, Theo-
rem 3.77]. Therefore we can apply Proposition 3 to obtain

∫
A

dΨ (Dw) (190)

�
∫

A∩(E)1
dΨ (Dw) +

∫
A∩(E)0

dΨ (Dw)

+
∫

A∩F E∩Ω

λudHd−1 (191)

�
∫

A∩(E)1
dΨ (Dw) +

∫
A∩(E)0

dΨ (Dw)

+ λu Per(E). (192)

We rewrite Ψ (Dw) using (94),

Ψ (Dw) = Ψ
(
Du�(E)1 + Dv�(E)0

+ νE

(
u+

F E
− v−

F E

)�Hd−1�(F E ∩ Ω)
)
. (193)

From [2, Proposition 2.37] we obtain that Ψ is additive on
mutually singular Radon measures μ,ν, i.e., if |μ|⊥|ν|, then

∫
B

dΨ (μ + ν) =
∫

B

dΨ (μ) +
∫

B

dΨ (ν) (194)

for any Borel set B ⊆ Ω . This holds in particular for the
three measures in (193), therefore

Ψ (Dw) = Ψ
(
Du�(E)1) + Ψ

(
Dv�(E)0)

+ Ψ
(
νE

(
u+

F E
− v−

F E

)�Hd−1�(F E ∩ Ω)
)
.

(195)

Since Du�(E)1 � |Du�(E)1| = |Du|�(E)1, we conclude
Ψ (Dw)�(E)1 = Ψ (Du)�(E)1 and Ψ (Dw)�(E)0 =
Ψ (Dv)�(E)0. Substitution into (192) proves the remaining
assertion,

∫
A

dΨ (Dw)

�
∫

A∩(E)1
dΨ (Du) +

∫
A∩(E)0

dΨ (Dv) + λu Per(E).

(196)

�

Proof of Proposition 6 We first show (98). It suffices to
show that

{
x ∈ (E)1 ⇔ x ∈ E

}
for Ld -a.e. x ∈ Ω. (197)

This can be seen by considering the precise representative
1̃E of 1E [2, Definition 3.63]: Starting with the definition,

x ∈ (E)1 ⇔ lim
δ↘0

|E ∩ Bδ(x)|
|Bδ(x)| = 1, (198)

the fact that limδ↘0
|Ω∩Bδ(x)|

|Bδ(x)| = 1 implies

x ∈ (E)1 ⇔ lim
δ↘0

|(Ω \ E) ∩ Bδ(x)|
|Bδ(x)| = 0 (199)

⇔ lim
δ↘0

1

|Bδ(x)|
∫

Bδ(x)

|1E − 1|dy = 0 (200)

⇔ 1̃E(x) = 1. (201)

Substituting E by Ω \ E, the same equivalence shows that

x ∈ (E)0 ⇔ 1̃Ω\E(x) = 1 ⇔ 1̃E(x) = 0. As Ld(Ω \ ((E)0 ∪
(E)1)) = 0, this shows that 1E1 = 1̃E Ld -a.e. Using the

fact that 1̃E = 1E [2, Proposition 3.64], we conclude that
1(E)1 = 1E Ld -a.e., which proves (197) and therefore the as-
sertion (98).

Since the measure-theoretic interior (E)1 is defined over
Ld -integrals, it is invariant under Ld -negligible modifica-
tions of E. Together with (197) this implies

(
(E)1)1 = (E)1, F (E)1 = F E,

(
(E)1)0 = (E)0. (202)

To show the relation (Du)�(E)1 = (Dv)�(E)1, consider

Du�(E)1 = D(1Ω\(E)1u + 1(E)1u)�(E)1 (203)

(∗)= D(1Ω\(E)1u + 1(E)1v)�(E)1. (204)

The equality (∗) holds due to the assumption (96), and
due to the fact that Df = Dg if f = g Ld -a.e. (see, e.g.,
[2, Proposition 3.2]). We continue from (204) via

Du�(E)1 (205)

Proposition 5= {
Du�

(
(E)1)0 + Dv�

(
(E)1)1 (206)

+ ν(E)1

(
u+

F E1 − v−
F E1

)�Hd−1�
(

F (E)1 ∩ Ω
)}

�(E)1

(202)= (
Du�(E)0 + Dv�(E)1)�(E)1

+ (
ν(E)1

(
u+

F E1 − v−
F E1

)�Hd−1�(F E ∩ Ω)
)
�(E)1

(207)
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= Du�
(
(E)0 ∩ (E)1) + Dv�

(
(E)1 ∩ (E)1)

+ ν(E)1

(
u+

F E1 − v−
F E1

)�Hd−1�
(

F E ∩ Ω ∩ (E)1)
(208)

= Dv�(E)1. (209)

Therefore Du�(E)1 = Dv�(E)1. Then,

Ψ (Du)�(E)1

= Ψ
(
Du�(E)1 + Du�

(
Ω \ (E)1))�(E)1 (210)

(∗)= Ψ
(
Du�(E)1)�(E)1 + Ψ

(
Du�

(
Ω \ (E)1))�(E)1.

(211)

In the equality (∗) we used the additivity of Ψ on mutually
singular Radon measures [2, Proposition 2.37]. By defini-
tion of the total variation, |μ�A| = |μ|�A holds for any mea-
sure μ, therefore |Du�(Ω \ (E)1)| = |Du|�(Ω \ (E)1) and
|Du�(Ω \ (E)1)|((E)1) = 0, which together with (again by
definition) Ψ (μ) � |μ| implies that the second term in (211)
vanishes. Since all observations equally hold for v instead
of u, we conclude

Ψ (Du)�(E)1 = Ψ
(
Du�(E)1)�(E)1 (212)

(209)= Ψ
(
Dv�(E)1)�(E)1 (213)

= Ψ (Dv)�(E)1. (214)

Equation (97) follows immediately. �
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