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Abstract In this paper we propose an adaptation of the
Eikonal equation on weighted graphs, using the framework
of Partial difference Equations, and with the motivation of
extending this equation’s applications to any discrete data
that can be represented by graphs. This adaptation leads
to a finite difference equation defined on weighted graphs
and a new efficient algorithm for multiple labels simulta-
neous propagation on graphs, based on such equation. We
will show that such approach enables the resolution of many
applications in image and high dimensional data processing
using a unique framework.

Keywords Eikonal equation · Weighted graph · Non-local
image processing · Active contour · PdE · Fast marching ·
High dimensional data

1 Introduction

The main goal of this paper is to propose an adaptation of the
Eikonal equation on weighted graphs, using the framework
of Partial difference Equations [17], with the motivation of
extending this equation’s applications, to any discrete data
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that can be represented by graphs. This adaptation leads to a
finite difference equation whose coefficients are data geom-
etry dependent, and that leads to an efficient algorithm, as
an extension of the Fast Marching algorithm, to propagate
multiple fronts without restriction in the direction of their
propagations. We will show that the combination of both co-
efficients and graph topology enables the resolution of many
applications in image and high dimensional data processing.

Many applications involve data defined on topologically
complex domains. These data can be defined on manifolds
(e.g., a sphere) or irregularly shaped domains, defined on
network-like structures (e.g., network communities), or de-
fined as high dimensional point clouds such as collections
of features vectors. Such unorganized data can be conve-
niently represented as graphs, where the vertices represent
initial data and the edges represent interactions between
them. Moreover, the use of a graph representation for usual
images also enables to take into account local and non-local
interactions and leads to very powerful tools for non-local
image processing [8, 19].

Processing and analyzing such structured types of data is
a major challenge for both the image and machine learning
communities. Hence, it is very important to transfer many
tools which were initially developed on usual Euclidean
spaces and proven to be efficient for many problems deal-
ing with usual image and signal domains, to graphs and net-
works.

Classical approaches for graph processing mainly come
from graph theory and one can quote two main categories
for these methods. Methods of the first category are based
on the minimization of an energy with applications in semi-
supervised segmentation. One can quote graph cuts [5], ran-
dom walks [20] or recently the power watershed [14]. A sec-
ond category groups techniques based on spectral graph the-
ory [12]. They have been successfully used for image filter-
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ing [24], image segmentation [42], data clustering [30], or
network communities extraction in complex networks [27],
and so on.

There has been also recently much interest in transposing
signal processing tools used in image and signal process-
ing on graphs. One can quote the generalization of wavelets
approach to graphs, with the work of Coifman et al. on dif-
fusion wavelets [13], Jansen on multiscale methods [31], or
recently Hammond et al. on spectral transform [23].

Similarly, there are recent works that aim to transpose
Partial Differential Equations (PDEs) on graphs. These
works exploit discrete calculus to perform such transcrip-
tion [25]. Discrete Calculus has been used in recent years
to produce a reformulation of continuous problems onto a
graph is such a manner that the solution behaves analo-
gously to the continuous formulation. See [22] and refer-
ences therein for a complete overview on that subject with
applications in image processing and machine learning.

To transpose PDEs on graphs, one approach consists in
exploiting Partial difference Equations (PdEs) on graphs.
Conceptually, PdEs are methods that mimic PDEs on the
graphs general domain, by replacing differential operators
by difference operator on graphs. Historically, it was first
introduced in the seminal paper of Courant, Friedrichs and
Lewy [15]. Then, the study of PdEs has appeared to be a
subject on its own interest, dealing with existence and qual-
itative behavior problems [3, 32, 34]. Introduction of such
methods for image processing started with the work of Chan
et al. [10] who introduced the TV digital filter for image de-
noising, which is the discrete analogue of total variation on
unweighted graphs. Zhou has also used TV on graphs for
semi-supervised classification [51].

Following the line of research we developed in previous
works, we base the contributions of this paper on difference
operators on graphs [24]. The motivation is that these op-
erators allows to simply adapt continuous formulations to
graphs by replacing continuous operators by their discrete
adaptation. In particular, it allows most techniques based on
the p-Laplacian and gradients to be handled with such oper-
ators on graphs in a very straightforward, simple and similar
manner [17, 47]. Such an approach enables an adaptation to
graphs that is not necessarily consistent with the continuous
formulation (see in [22]). This point is however not a prob-
lem for the paper and will be investigated in future works.

In previous works, using the PdEs formalism, we have in-
troduced non-local difference operators on graphs, and used
the framework of PdEs to transcribe PDEs on graphs [4].
In particular, in [17], we have introduced a non-local dis-
crete regularization on graphs of arbitrary topologies as a
framework for image and data filtering and clustering. With
the same ideas, we have proposed PdE morphological pro-
cesses on graphs that are a transcription of continuous mor-
phological PDEs [45]. Recently, we have also adapted a time

-dependent version of the Eikonal equation with PdEs mor-
phological processes on graphs [46, 47].

Eikonal Equation Background The Eikonal equation is
a special case of the following general continuous static
Hamilton-Jacobi equations:{

H(x,f,∇f ) = 0, x ∈ Ω ⊂ R
m,

f (x) = ψ(x), x ∈ Γ ⊂ Ω,
(1)

where ψ is a positive function defined on a domain Ω and
f (x) is the traveling time or distance from source Γ . Then,
the Eikonal equation can be expressed by using the follow-
ing Hamiltonian:

H(x,f,∇f ) = ∥∥∇f (x)
∥∥ − P(x), (2)

where P is a given potential function. This equation can be
linked to the level-set formulation for advancing fronts in-
troduced by Sethian [40]

∂φ(x, t)

∂t
= F (x)

∥∥∇φ(x, t)
∥∥, (3)

where φ is the level-set representation of Γ , and F = 1/P .
The relation between such formulation and the Eikonal
equation stems from the following change of variable:
φ(x, t) = t − f (x), under the condition that F is positive
on the whole domain Ω .

Solutions of static equation (2) are usually based on a
discretization of the Hamiltonian where the approximations
are performed by the Godunov methods [28] or with the
Lax-Friedrich schemes [40]. Numerous numerical schemes
have been proposed and investigated for solving the non-
linear system described by (2). Among the existing ones,
we can quote the following schemes. (i) An iterative scheme
has been proposed by [37] based on fixed point methods that
solve a quadratic equation. (ii) The fast sweeping methods
[50] that use Gauss-Seidel type of iterations to update the
distance function field. The key point of fast sweeping is to
update the points in a certain order. (iii) Tsitsiklis [48] was
the first to develop a Dijkstra like method and proposed an
optimal algorithm for solving the Eikonal equation. Based
on the same idea, Sethian [33, 40] proposed the fast march-
ing methods.

Another approach to solve Eq. (2) is to consider a time
dependent version of the equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂f (x, t)

∂t
= −∥∥∇f (x)

∥∥ + P(x), x ∈ Ω ⊂ R
m,

f (x, t) = ψ(x), x ∈ Γ ⊂ R
m,

f (x,0) = ψ0(x), x ∈ Ω.

(4)

At steady state, the solution of the system (4) satisfies the
Eikonal equation (2). Recently, we proposed in a conference
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paper [46] an adaptation of the time dependent formula-
tion of the Eikonal equation over weighted graphs. Based on
PdE, the analogue of (4) on a weighted graph G = (V ,E,w)

is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂f (u, t)

∂t
= −∥∥(∇−

w f
)
(u)

∥∥
p

+ P(u), u ∈ V,

f (u, t) = ψ(u), u ∈ V0 ⊂ V,

f (u,0) = ψ0(u), u ∈ V,

(5)

where V corresponds to the set of vertices of the graph and
V0 is the initial set of seed vertices. Operator ∇−

w corre-
sponds to the weighted internal morphological gradient on
graphs (detailed in Sect. 2.2) and ‖.‖p denotes the Lp-norm.
One can see that formulation (5) needs numerous iterations
due to finite propagation speed and CFL conditions to con-
verge to the solution of the Eikonal equation.

Contributions This work generalizes and extends signif-
icantly our previous works on the Eikonal equation. First,
we propose an adaptation of the stationary version of the
Eikonal equation over arbitrary weighted graphs. Based on
PdEs, our adaptation of (2) is given by this finite difference
equation{

F (u)
∥∥(∇−

w f
)
(u)

∥∥
p

= 1, u ∈ V,

f (u) = 0, u ∈ V0.
(6)

Explicits solutions of this equation are given for particu-
lar values of p ∈ {1,2,∞}. An efficient algorithm to obtain
such solutions, using the Fast Marching’s updating scheme,
is proposed, and proofs of existence and uniqueness are
also provided. This formulation generalizes front propaga-
tion methods on weighted graphs and recovers well known
schemes as Osher-Sethian discretization or Dijkstra shortest
path, for specific graphs and values of p.

Such an adaptation of the Eikonal equation on graphs en-
ables the transcriptions of efficient algorithms from the field
of image processing to a huge variety of discrete data that
can be represented by a weighted graph. Then, using this
adaptation, we also propose a new fast algorithm for propa-
gation and tracking of many concurrent fronts on a weighted
graph, the complexity of which is independent of the num-
ber of these fronts. Such an algorithm leads to several appli-
cations on weighted graphs such as semi-supervised image
segmentation or data clustering.

In these two previous contributions, we only considered
the case where the front is evolving in the outward normal
direction (with the speed F defined non-negative every-
where), but it is also interesting to consider both inward and
outward directions and both positive and negative speeds.
In particular, in the case of semi-supervised clustering, such
inward and outward evolutions enables to minimize or over-
come errors due to wrong initialization. Finally, we gener-
alize the previous algorithm to the case where the speeds of

the different fronts can be either positive or negative, which
leads to a graph-based active contour model with many con-
tours. This generalization provides a complete tool for mul-
tiple fronts propagation on arbitrary graphs, and offers a
novel extension to the classical Fast Marching, when applied
to regular grid graphs.

Paper Organization The rest of this paper is organized as
follows. In Sect. 2, we provide definitions and notations
used in this work. In Sect. 3, we present our new finite dif-
ference equation on weighted graphs with proofs for exis-
tence and uniqueness, and explicit solutions for values of
p ∈ {1,2,∞} are also given. Section 4 introduces two effi-
cient algorithms for labels propagation, using the previous
equation and an adaptation of the Fast Marching algorithm.
Then, Sect. 5 presents several experiments which illustrate
the behavior and efficiency of the proposed formulations
and algorithms, as geodesic distance, semi-supervised im-
age segmentation (with non-local configuration), active con-
tours or data clustering. Finally, Sect. 6 concludes this paper.

2 Operators on Graphs

As the core structure of our approach, in this section we
provide notations and basics on weighted graphs. We recall
our formulations of differences, morphological differences
and gradients on weighted graphs [4, 17, 45, 46]. The lat-
ter formulations constitute the basis of our proposed numer-
ical scheme for solving the Eikonal equation on weighted
graphs.

2.1 Notations

We consider the general situation where any discrete domain
can be viewed as a weighted graph. Let G = (V ,E,w) be a
weighted graph composed of two finite sets: vertices V and
weighted edges E ⊆ V × V . An edge (u, v) ∈ E connects
two adjacent (neighbor) vertices u and v. The neighborhood
of a vertex u is noted N(u) = {v ∈ V \ {u} : (u, v) ∈ E}.
The weight w(u,v) of an edge (u, v) can be defined with a
function w : V × V → R

+ if (u, v) ∈ E, and w(u,v) = 0
otherwise. For the sake of simplicity, w(u,v) will be de-
noted by wuv . Graphs are assumed to be simple, connected
and undirected implying that function w is symmetric.

Let f : V → R be a real-valued function that assigns a
real value f (u) to each vertex u ∈ V . We denote by H (V )

the Hilbert space of such functions and similarly by H (E),
the Hilbert space of functions that assign a real value to each
edge of E. These two spaces are endowed with the following
inner products:

〈f,h〉H (V ) =
∑
u∈V

f (u)h(u), (7)
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with f,h ∈ H (V ), and

〈F,H 〉H (E) =
∑
u∈V

∑
v∈V

F (u, v)H(u, v), (8)

where F,G ∈ H (E).
Given a function f ∈ H (V ), the integral of f is defined

as∫
V

f =
∑
u∈V

f (u) (9)

and it’s Lp norm is given by

‖f ‖p =
(∑

u∈V

∣∣f (u)
∣∣p)1/p

, 1 ≤ p < ∞,

‖f ‖∞ = max
u∈V

(∣∣f (u)
∣∣), p = ∞.

(10)

Let A be a set of connected vertices with A ⊂ V such
that for all u ∈ A , there exists a vertex v ∈ A with (u, v) ∈
E. We denote by ∂+A and ∂−A : the external and internal
boundary sets of A , respectively

∂+A = {
u ∈ A c : ∃v ∈ A with (u, v) ∈ E

}
and

∂−A = {
u ∈ A : ∃v ∈ A c with (u, v) ∈ E

} (11)

where A c = V \ A is the complement of A .

2.2 Operators and Gradients on Weighted Graphs

The weighted gradient operator or weighted difference op-

erator of a function f ∈ H (V ), noted
→∇w: H (V ) →

H (E), respectively dw , is defined on an edge (u, v) ∈ E

by

( →∇wf
)
(u, v)

def .= (dwf )(u, v)
def .= √

w(u,v)
(
f (v) − f (u)

)
.

(12)

The adjoint of the weighted gradient operator, noted
→

∇∗
wf :

H (E) → H (V ), is defined by:

〈 →∇wf ,H
〉 def .= 〈

f,
→

∇∗
wH

〉
, (13)

with f ∈ H (V ) and H ∈ H (E), and can be expressed as

( →
∇∗

wH
)
(u)

def .=
∑
v∼u

√
w(u,v)

(
H(v,u) − H(u,v)

)
, (14)

where v ∼ u means that v is adjacent to u.
This adjoint is linear and measures the flow of a func-

tion in H (E) at each vertex of the graph. Similarly to the
continuous case, the divergence of a function F ∈ H (E) is

defined by divwF = −
→

∇∗
wF .

These two definitions of the weighted gradient operator
and it’s adjoint allow to define a family of first and second
order operators on graphs, as the p-Laplace operator. But in
this paper we only focus on the first order weighted gradient
operator.

Based on the weighted gradient operator definition, two
weighted directional gradient operators are defined. The
weighted directional external and internal gradient opera-

tors are defined as
→
∇±

w : H (V ) → H (E), with

( →
∇+

w f
)
(u, v)

def .= √
w(u,v)

(
f (v) − f (u)

)+
,( →

∇−
w f

)
(u, v)

def .= √
w(u,v)

(
f (v) − f (u)

)−
,

(15)

with the following notations:

(x)+ = max(x,0) and (x)− = −min(x,0).

The weighted gradient of a function f ∈ H (V ) at ver-
tex u is defined as the vector of all weighted gradient with
respect to the set of edges (u, v) ∈ E

(∇wf )(u)
def .= ( →∇wf (u, v)

)
v∈V

. (16)

In the sequel, weighted gradient will refer to this gradient
defined on vertices. Similarly, the weighted morphological
internal and external gradients at a vertex u are expressed
as

(∇+
w f

)
(u) =( →

∇+
w f

)
(u, v)v∈V and

(∇−
w f

)
(u) =( →

∇−
w f

)
(u, v)v∈V .

(17)

The corresponding Lp-norms of gradients (17) and (16) for
a vertex u are

∥∥(∇+
w f

)
(u)

∥∥
p

=
[∑

v∼u

w
p/2
uv

∣∣(Df (u)
)+∣∣p]1/p

,

∥∥(∇−
w f

)
(u)

∥∥
p

=
[∑

v∼u

w
p/2
uv

∣∣(Df (u)
)−∣∣p]1/p

and

∥∥(∇wf )(u)
∥∥

p
=

[∑
v∼u

w
p/2
uv

∣∣Df (u)
∣∣p]1/p

(18)

with 0 < p < ∞ and where Df (u) = (f (v) − f (u)).
The relation between these directional gradients norms was
given in [46] as∥∥(∇wf )(u)

∥∥p

p
= ∥∥(∇+

w f
)
(u)

∥∥p

p
+ ∥∥(∇−

w f
)
(u)

∥∥p

p
. (19)

For the L∞-norm, we have∥∥(∇+
w f

)
(u)

∥∥∞ = max
v∼u

(√
wuv

∣∣(Df (u)
)+∣∣),∥∥(∇−

w f
)
(u)

∥∥∞ = max
v∼u

(√
wuv

∣∣(Df (u)
)−∣∣) and∥∥(∇wf )(u)

∥∥∞ = max
v∼u

(√
wuv

∣∣Df (u)
∣∣),

(20)
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with the following property:∥∥(∇wf )(u)
∥∥∞ = max

(∥∥(∇+
w f

)
(u)

∥∥∞,
∥∥(∇−

w f
)
(u)

∥∥∞
)
.

Properties of these gradients can be found in [45, 46]. One
can note that the general definitions presented in this sec-
tion are defined on graphs of arbitrary topology. They can
be used to process any discrete regular or irregular data sets
that can be represented by a weighted graph. Moreover, local
and non-local settings are directly handled in these defini-
tions and both are expressed by the graph topology in terms
of neighborhood connectivity [17].

2.3 Morphological Evolution Equations

Time dependent Hamilton-Jacobi equation formulated in (4)
is linked with mathematical morphology processes and can
be viewed as morphological evolution equations. We have
shown in [44, 45] that morphological gradients constitute
numerical schemes for solving time dependent morphologi-
cal dilation and erosion processes over graphs and therefore
solve the time dependent Eikonal equation.

Continuous scale morphology (see for instance in [7, 38]
and references therein) defines flat dilations δ : R

m → R
m

and erosions ε : R
m → R

m of a function f 0 : R
m → R by

structuring sets B = {x : ‖x‖p≤1}, with the general PDEs

∂tf = +‖∇f ‖p and ∂tf = −‖∇f ‖p (21)

where f is a modified version of f 0 and with the initial con-
dition ∂t=0f = f 0. With different values of p, one obtains
different structuring elements: a rhombus for p = ∞, a disc
with p = 2 and a square with p = 1.

We have proposed in [45] a graph-based versions of (21)
by using gradients defined in (17). Given a weighted graph
G = (V ,E,w) and a function f ∈ H (V ), the analogues of
(21) on G are

∂tf (u) = +∥∥(∇+
w f

)
(u)

∥∥
p

and

∂tf (u) = −∥∥(∇−
w f

)
(u)

∥∥
p
.

(22)

Intuitively, given a set of vertices A ⊂ V and using external
and internal graph boundaries (11), equation of dilation over
A can be interpreted as a growth process that adds vertices
from ∂+A to A . By duality, erosion over A can be inter-
preted as a contraction process that removes vertices from
∂−A to A .

As mentioned in the introduction, one approach to solve
the Eikonal equation (1) is to consider a time dependent ver-
sion (4) of this equation. The time dependent equation can
be viewed as an erosion process regarding the minus sign
and a null potential function P . Then, using the correspond-
ing internal gradient (∇−

w ) involved in discrete PdEs based
erosion process, one can directly obtain the time-dependent

adaptation of the eikonal equation on graphs. Given a graph
G = (V ,E,w) and a function f ∈ H (V ), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂f (u, t)

∂t
= −∥∥(∇−

w f
)
(u)

∥∥
p

+ P(u), u ∈ V,

f (u, t) = ψ(u), u ∈ V0 ⊂ V,

f (u,0) = ψ0(u), u ∈ V,

(23)

where V0 corresponds to the set of initial seed vertices. This
equation can be solved by steepest gradient descent method,
using the following iterative numerical scheme for all u ∈ V ,
with f n(u) ≈ f (u,n	t):

f n+1(u) = f n(u) − 	t
(∥∥(∇−

w f n
)
(u)

∥∥
p

− P(u)
)
. (24)

A complete and precise definition with numerical schemes
for p ∈ {1,2,∞} can be found in [46].

3 Adaptation of the Eikonal Equation over Weighted
Graphs

As mentioned in the introduction, the time dependent ver-
sion of the Eikonal equation on weighted graphs needs nu-
merous iterations to converge to the solution and our ap-
proach, detailed in Sect. 2.3 is not adapted to large graphs.
Therefore, we propose a new adaptation of the Eikonal equa-
tion and a new algorithm to solve such finite difference equa-
tion (6), that overcomes these limitations.

We consider the Eikonal equation that describes the evo-
lution of a propagation front Γ ,

{
F (x)‖∇f (x)‖ = 1,

f (x) = 0, x ∈ Γ,
(25)

where f (x) is the arrival time of the front at x and F ≥ 0.
The associated level-set function φ is defined as

∂φ(x, t)

∂t
= F (x)

∥∥∇φ(x, t)
∥∥, (26)

and we know that φ(x, t) = t − f (x), then

∂(t − f (x))

∂t
= F (x)

∥∥∇(
t −f (x)

)∥∥ = F (x)
∥∥∇f (x)

∥∥ = 1.

(27)

Transposed on a weighted graph G = (V ,E,w) with func-
tions f ∈ H (V ) and F ∈ H (V ) and using morphological
equations defined in (22), the level-set formulation (26) can
be rewritten as

∂φ(u, t)

∂t
= F (u)

∥∥(∇wφ
)
(u, t)

∥∥
p
, (28)
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and can be expressed as a morphological process with the
following sum of dilation and erosion

∂φ(u, t)

∂t
= [(

F (u)
)+∥∥(∇+

w φ
)
(u, t)

∥∥p

p

+ (
F (u)

)−∥∥(∇−
w φ

)
(u, t)

∥∥p

p

]1/p
. (29)

Only considering the case F ≥ 0, and with φ(u, t) = t −
f (u), one has

∂φ(u, t)

∂t
= F (u)

∥∥(∇+
w (t − f )

)
(u)

∥∥
p

= F (u)
∥∥(∇−

w f
)
(u)

∥∥
p

= 1. (30)

Finally, with P = 1/F we obtain a discrete adaptation of
the Eikonal equation on weighted graph, which describes a
morphological erosion process, and defined as{∥∥(∇−

w f
)
(u)

∥∥
p

= P(u), ∀u ∈ V,

f (u) = 0, ∀u ∈ V0.
(31)

3.1 Existence and Uniqueness of the Solution

The proof of existence and uniqueness of Eq. (31) can be
established considering the equation{∥∥(∇−

w f
)
(u)

∥∥
p

= P(u), u ∈ A ⊂ V,

f (u) = 0, u ∈ ∂A
(32)

which can be expressed as Su(u,f,f (v)v∼u) = 0 with⎧⎪⎪⎨
⎪⎪⎩

Su

(
u,f,

[
f (v)

]
v∼u

) = ∥∥(∇−
w f

)
(u)

∥∥
p

− P(u) = 0,

u ∈ A,

Su

(
u,f,

[
f (v)

]
v∼u

) = 0, u ∈ ∂A.

(33)

It can be easily shown that this scheme satisfies the follow-
ing properties for all f .

– H1. ∂Su[f ]/∂f (v) ≤ 0, ∀u �= v

– H2. Su[f + M] = Su[f ], ∀M ∈ R∀u

– H3. Su[λf ] = λSu[f ] + (λ − 1)P (u), ∀λ ≥ 0, ∀u

– H4. limf (u)→+∞ Su(u,f,f (v)v∼u) = −P(u)

– H5. limf (u)→−∞ Su(u,f,f (v)v∼u) = +∞

Uniqueness of the Solution Equation (31) has a unique so-
lution.

Proof Let f and g be two distinct solutions of (31) such that

max
A

(
f (u) − g(u)

)
> 0. (34)

Then for a given λ ≥ 1, we have

MH = max
A

(
f (u) − λg(u)

)
> 0. (35)

We denote u0 the u for which MH = f (u0) − λg(u0). Then
we can deduce that, with h(u) = MH + λg(u):{

f (u) ≤ h(u) ∀u ∈ A,

f (u0) = h(u0).
(36)

This implies that

0 = Su0[f ] ≥ Su0[h] (due to H1)

= Su0[λg] (due to H2)

= λSu0[g] + (λ − 1)P (u0)

> 0 (due to H3). (37)

There is a contradiction unless f (u) = g(u). �

Existence of Solution The proof of existence for Eq. (31)
solution can be easily shown. We know that equation
Su(u,f,f (v)v∼u) is continuous. Due to properties H4 and
H5, we can deduce that ∃ − ∞ < f (u) < +∞ such that
Su(u,f,f (v)v∼u) = 0.

3.2 Numerical Schemes and Algorithms

From (31) and using norms defined in (18) and (20) with the
property min(x,0) = −max(−x,0), we obtain the follow-
ing equations for the Lp and L∞ norms.

– Case p ∈ {1,2}:
(∑

v∼u

w
p/2
uv max

(
0, f (u) − f (v)

)p
)1/p

= P(u). (38)

With a simple transformation of variables and some con-
ventional notations, Eq. (38) can be rewritten as

n∑
i=1

(
(x − ai)

+

hi

)p

= C p, (39)

where x = f (u), hi = √
1/wuv , n = card(N(u)), a =

{f (vi)|vi ∈ N(u) with i = 1, . . . , n}, C = P(u).
– Case p = ∞:

max
v∼u

(√
wuv max

(
0, f (u) − f (v)

)) = P(u). (40)

Using the same transformation of variables we obtain

max
i

(
(x − ai)

+

hi

)
= C . (41)

Local solutions (i.e., solution for a vertex, assuming the
others are held fixed) of (31) over a weighted graph are given
by (39) and (41). Both equations are clearly independent
of the graph formulation, and can be applied to weighted
graphs of arbitrary topology.
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Algorithm 1 x computation (local solution)
Sort increasingly the ai , i = 1, . . . , n

an+1 ← ∞
m ← 1
x̂ ← ∞
while x̂m ≥ am+1 and m ≤ n − 1 do

x̂m ← solution of
∑m

i=1 [ x−ai

hi
]p = C p with p = 1 or 2

m ← m + 1
end while
x ← x̂m

For the case p = {1,2}, local solution x at a particular
vertex can be easily obtained with an iterative algorithm as
described in Algorithm 1. The algorithm is based on the
knowledge that there exists a k with 1 ≤ k ≤ n such that
ak ≤ x ≤ ak+1, and x is the unique solution of the equa-
tion. Then, the algorithm consists in sorting increasingly
the values ai and computing temporary solutions x̂m with
the following equations (42) and (43) until the condition
x̂m ≤ am+1 is satisfied.

For p = 1, the temporary local solution is given by:

x̂m =
∑m

i=1
ai

hi
+ C∑m

i=1
1
hi

. (42)

For p = 2, one has:

x̂m =
∑m

i=1
ai

h2
i

+
√∑m

i=1 [C 2

h2
i

− ∑
j>i

(ai−aj )2

h2
i h

2
j

]∑m
i=1

1
h2

i

. (43)

The numerical scheme for the L∞ norm is much simpler.
Considering Eq. (41), the local solution x for a particular
node is directly given by

x = n

min
i=1

(ai + hiC ), (44)

where n corresponds to the number of neighbors. One can
remark that this equation is equivalent to Dijkstra like local
update equation.

Many solvers can be adapted to compute global solution
(i.e., on the whole graph) as, for instance, the Fast Iterative
Method introduced by Jeong and Whitaker [49]. In this pa-
per, we prefer the Fast Marching method which has the ad-
vantage to be monotonic. On an arbitrary graph, the Fast
Marching consists in an active list (A) of vertices for which
the solution is already known and fixed, and in a narrow
band (NB) of vertices which are not yet fixed and have at
least one neighbor in the active list. Vertices which are nei-
ther active or in the narrow band are said far away (FA). The
narrow band is built as a sorted heap, and at each iteration,
the first vertex is removed from the narrow band, added to

the active list, and it’s neighbors are updated if they are not
yet fixed and added to the narrow band if they are far away.
Each neighbors v are updated simultaneously by computing
new local solutions xv from the new value of f (u) (and us-
ing Algorithm 1) and updating f (v) ← min(f (v), xv) un-
der the condition that the new local solution xv is inferior
to previous local solution. This is iterated until the narrow
band is empty. More details on the initial Fast Marching al-
gorithm and a proof that the initial algorithm constructs a
viable solution are given in [39].

Accuracy and Complexity of the Algorithm Let G =
(V ,E,w) be a weighted graph. The costs Cu,p to update
a vertex u (i.e., compute a new value of f (u)), according to
Algorithm 1 and Eqs. (41), (42) and (43), are given by

Cu,1(u) = Du(u)2 case p = 1,

Cu,2(u) = Du(u)3 case p = 2,

Cu,∞(u) = Du(u) case p = ∞,

(45)

where the quantity Du(u) corresponds to the number of nei-
ghbors of u which are not far away.

In order to generalize the cost functions Cu,p , we can
consider that the previous quantity Du(u) is constant and
corresponds to the maximum degree of a vertex of V . Such
constant is defined as D = maxu∈V (card(N(u))). Thus, in
the sequel we will use the following constants to denote the
update costs.

Cu,1 = D2 ≥ Cu,1(u) ∀u ∈ V,

Cu,2 = D3 ≥ Cu,2(u) ∀u ∈ V,

Cu,∞ = D ≥ Cu,∞(u) ∀u ∈ V.

(46)

Based on the previous constants, the activation costs Ca,p of
a vertex (i.e., the cost to change the state of a vertex from far
away to active, what implies to update every of it’s not yet
activated neighbors) can be defined as

Ca,p = DCu,p, p ∈ {1,2,∞}. (47)

while we know that N(u) ≤ D ∀u ∈ V . And we have

Ca,1 = D3 case p = 1,

Ca,2 = D4 case p = 2,

Ca,∞ = D2 case p = ∞.

(48)

Finally, the total cost of the algorithm can be summarized as
the following complexity

O
(
Ca,pN log(N)

)
(49)

where N is the number of vertices and the log(N) factor cor-
responds to the managing cost of the heapsort. In practice,
processing such an algorithm on strongly connected graphs
is very rare, and in the most cases we have Ca,p � N .
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3.3 Grid Graph Example

In this section, we show that with an adapted graph topology
and an appropriated weight function, the proposed formula-
tion recovers the well known Osher-Sethian scheme that has
been proposed in literature to solve the Eikonal equation.
Let G = (V ,E,w) be a weighted graph. In the case where
p = 2, we have the following scheme√∑

v∼u

wuv max
(
0, f (u) − f (v)

)2 = P(u). (50)

If the graph represents a m-dimensional grid in R
m, this

numerical scheme recovers the Osher-Sethian discretization
models on a m-dimensional grid.

Let u be a given vertex of V , that defines a vector of m-
dimensional spatial such that u = (i1h1, . . . , imhm) where
the hj represent the grid spacing and ij ∈ N. The neigh-
borhood of u can then be defined as N(u) = {v|v = u ±
hj ej with j ∈ 1, . . . ,m} where ej = (qk)k=1,...,m is a vector
of R

m such as qk = 1 if j = k and qk = 0 otherwise. Finally,
with the notations

D+
j f (u) = (

f (u + hj ej ) − f (u)
)
/hj ,

D−
j f (u) = (

f (u) − f (u − hj ej )
)
/hj

(51)

and with wuvj
= 1/hj for all vj ∈ N(u), (43) can be rewrit-

ten as√√√√ m∑
j=1

max
(
0,D−

j f (u)
)2 + min

(
0,D+

j f (u)
)2 = P(u) (52)

since min(0, a − b)2 = max(0, b − a)2. This Eq. (52) cor-
responds to the Osher-Sethian Hamiltonian discretization
scheme on a m-dimensional grid, and can be solved by the
initial Fast Marching algorithm [39].

4 A New Class of Fast Algorithms for Semi-supervised
Graph Clustering

In Sect. 3, we have introduced a new finite difference equa-
tion (31) which is an adaptation of the Eikonal equation over
weighted graph, and proposed an efficient algorithm based
on the Fast Marching method to solve such an equation. In
this section, we propose to extend the previous algorithm so
as to define a new class of fast algorithms for diffusion pro-
cesses, that enable the simultaneous propagation of many
concurrent labels on a weighted graph. Efficient algorithms
for concurrent label propagation on a weighted graph have a
great interest for graph partitioning and have led to numer-
ous applications in semi-supervised image segmentation and
data clustering. We will first present the algorithm when the

speed is always non-negative (F : V → [0,+∞]), then its
extension to the case where the speed can be either positive
or negative (F : V → [−∞,+∞]).

4.1 Label Propagation with Non-negative Speed

Given a graph G = (V ,E,w), let L = {l1, . . . , ln} be a set of
labels and S0 = S0

1 ∪ · · · ∪ S0
n be the set of vertices initially

marked by a label, where S0
i is the set of vertices initially

marked by li . We call S0
i the seed of li .

The objective of label propagation for graph clustering is
to mark each vertex u of V with a label li , under the con-
dition that u is closer to at least one vertex of S0

i than other
vertices of S0 (according to the topology of G, the weight
function w and a speed function Fli : V → R, li ∈ L), so
as to obtain a partition of the graph in n consistent clusters.
The propagation of each label li is driven by a front Γi , ini-
tialized as the boundary of S0

i , and the final partition Si is
given by the set of vertices reached by Γi until it is stopped
by another front or the boundary of the domain.

In practice, the propagation is performed in the same time
than the computation of the arrival-time (given by resolu-
tion of (31)): each time a vertex u is reached by a front, the
label of the front is propagated to u. The proximity condi-
tion is respected while in the case of several front propaga-
tion, the front that arrives at a vertex is necessarily the front
coming from the nearest source of that vertex (according to
weight and speed functions). This is a consequence of the
Fast Marching algorithm which activates vertices from the
smallest to the greatest distance (or arrival-time). Indeed, a
vertex u is considered reached by a front when it is activated
by the algorithm, and the propagated label comes necessar-
ily from it’s neighbor v which is already activated and such
that

s(u) = f (v)

wuv

= min
z∼u

(
f (z)

wuz

)
. (53)

The weight 1/w is used to penalize neighbors which are
close to a source but have very weak link with u. The whole
algorithm for label propagation on weighted graphs is given
in Algorithm 2.

Remark 1 In the case where several neighbors have the sa-
me contribution and where these neighbors have different
labels, several labels could be affected to node u. But, as
this situation is very rare and happens only where fronts col-
lapse, we choose, in this work, to label the vertex with only
one arbitrary label from the list. This choice is application
dependent and does not act as a rule.

Remark 2 Due to the multitude of fronts, we have to define
one speed per front and the speed of a front Γi at a vertex
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Algorithm 2 Labels propagation with non-negative speed
0. List of variables
S0 : the set of seed vertices.
A : the set of active vertices.
NB : the set of vertices in the narrow band
FA : the set of vertices said as far away
lab : the label indicator function

1. Initialization:
lab(u) = Initial label of u.
f (u) = 0 ∀ u ∈ S0 ; f (u) = +∞ ∀ u ∈ V \ S0

s(u) = +∞ ∀ u ∈ V \ S0

A = S0 ; NB = {u | ∃ v ∈ A and v ∈ N(u)}
FA = V \ A ∪ NB

2. Process:
while FA �= ∅ do

u ← first element of NB
remove u from NB and add u in A.
for all v ∈ N(u) ∩ A do

compute local solution t ← f (v)

if t < f (v) then
f (v) = t

if v ∈ FA then
remove v from FA and add v in NB.

else
update position of v in NB

end if
if f (u)/wuv < s(v) then

s(v) = f (u)/wuv

lab(v) = lab(u)

end if
end if

end for
end while

u is given by Fli (u). Consequently, each time a node u is
activated, it’s neighbors v such that v /∈ A are updated by:∥∥(∇−

w f
)
(v)

∥∥
p

= Pli (v), (54)

where li is the label of u and Pli (v) = 1/Fli (v).

One can remark that the algorithm complexity does not
depend on the number of labels (the complexity is the same
than for the classical Fast Marching algorithm described in
Sect. 3). Then, this algorithm opens the way to a new class of
fast algorithms for semi-supervised graph clustering, which
allows to cluster data or segment images in many partitions,
without loss of efficiency.

As noticed in Sect. 3, the label propagation is performed
with a speed F which is always non-negative. In the follow-
ing section, we propose an adaptive version of the algorithm
that can consider a front evolution (and then label propaga-
tion) with positive or negative speed.

4.2 Label Propagation Without Restrictions on Speed Sign

The case where the front’s speeds can be either positive or
negative is very interesting because it enables the labels to
be propagated when the speed is positive and removed when
the speed is negative, This also enables the tracking of mul-
tiple fronts subjected to changing sign speeds.

In the continuous case, Carlini has proposed an approach
for tracking an hypersurface with non always positive veloc-
ity, called Generalized Fast Marching Method (GFMM) [9].

Let Γ be a front evolving on a continuous domain
noted Ω , an represented by a characteristic discontinuous
function θ(x, t) defined as{

θt (x, t) = F (x, t)
∣∣∇(θ(x, t)

∣∣,
θ(x,0) = 1Ω0 − 1Ωc

0
,

(55)

where F (x, t) is a changing-sign speed and 1Ω0 − 1Ωc
0

is
equal to 1 on Ω0 and −1 on its complementary. The position
of the front Γ is then given by the discontinuities of function
θ and the time evolution is obtained by solving the stationary
Eikonal equation (25).

Then, the main idea of the Generalized Fast March-
ing Method is to split the front in two fronts: Γ t+ =
∂{x|θ(x, t) > 0} and Γ t− = ∂{x|θ(x, t) < 0} and perform
two Fast Marching along two narrow bands (NBt+ = Γ t+ ∩
{x,F (x, t) < 0} and NBt− = Γ t− ∩ {x,F (x, t) > 0}), with a
modified version of (55). Interested readers can refer to [9]
for a detailed presentation.

Then, we propose an extension of such an approach for
front tracking on weighted graphs, along with a generaliza-
tion of the previous algorithm (Algorithm 2) with positive
and negative speeds. This can be done by representing each
front Γi by two fronts Γ +

i and Γ −
i that describe the part of

front Γi subjected to a positive speed and respectively neg-
ative speed. Then, the propagation of a label li is performed
through two evolving fronts: Γ +

i which describes the growth
of the set Si (where the speed Fli is positive) and Γ −

i which
describes the decay of the set Si (where the speed Fli is neg-
ative). We have Γi = Γ +

i ∪ Γ −
i .

On the first hand, the front Γ +
i is initialized by the set

{u|u ∈ ∂−S0
i and Fli (u) > 0}. In other words, this corre-

sponds to the set of vertices of S0
i which lies in the inner

narrow band of S0
i and where the speed Fli of the front

is positive. Neighbors of the front are added to the narrow
band under an additional condition: as the speed of the front
has to be positive at their position. This additional condition
can be easily justified since the front can’t grow where its
speed is negative.

On the other hand, the front Γ −
i is initialized by the set

{u|u ∈ ∂+S0
i and Fli (u) < 0}. Neighbors are added to the

narrow band under the condition than the speed Fli is neg-
ative. Because this front describes the decay of Si , each time
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Fig. 1 Label propagation with changing-sign speed. The first graph is
a 4-adjacency grid graph, and the second a non-Cartesian graph. Ver-
tices inside the purple line represent S0

i . The speed is positive on the
left side and negative on the right side. Green points and red points
represent vertices in initial configuration of positive front Γ +

i , respec-
tively vertices in initial configuration of negative front Γ −

i . Blue points
represent vertices in the narrow band from the front Γ +

i (surrounded in
green) and from the front Γ −

i (surrounded in red) (Color figure online)

a vertex is reached by Γ −
i , the vertex is unmarked instead of

being marked by li .
Finally, in order to keep the distance (or arrival time) al-

ways positive, the signed version of the speed is replaced
by it’s modulus and the potential is given by Pli (u) =
1/|Fli (u)|.

Such an approach of label propagation with changing-
sign speed for two fronts is illustrated in Figs. 1 and 2. The
entire process is summarized in Algorithm 3.

Remark 3 In the case where p = ∞, and according to
Eq. (44), the arrival-time of a vertex is computed with the
contribution of exactly one edge. Geometrically, this means
that the fronts propagation follows the edges (one can see

Algorithm 3 Labels propagation with changing-sign speed
0. List of variables:
S0 : the set of seed vertices
A : the set of active vertices.
NB : the set of vertices in the narrow band
FA : the set of vertices said as far away
lab : the label indicator function
∂+S0

i : outer boundary of the set of seeds Si

∂−S0
i : inner boundary of the set of seeds Si

Fli : speed function associated to label li .
1. Initialization:
A = {u | u ∈ ∂+S0

i and Fli (u) < 0}
∪ {u | u ∈ ∂−S0

i and Fli (u) > 0}
NB = {u | ∃ v ∈ A ∩ N(u) and Fli (v) × Fli (u) > 0}
FA = V \ (A ∪ NB)

f (u) = 0; lab(u) = li ∀ u ∈ A

f (u) = min(1/wuv), v ∈ A ∩ N(u)

lab(u) = li; s(u) = f (u) ∀ u ∈ NB
f (u) = +∞; lab(u) = 0; s(u) = +∞ ∀ u ∈ FA

2. Process:
while FA �= ∅ do

u ← first element of NB
remove u from NB and add u in A.
for all v ∈ N(u) ∩ A and Fli (v) × Fli (u) > 0 do

compute local solution t ← f (v)

if t < f (v) then
f (v) = t

if v ∈ FA then
remove v from FA and add v in NB.

else
update position of v in NB

end if
if f (u)/wuv < s(v) then

s(v) = f (u)/wuv

lab(v) = lab(u)

end if
end if

end for
end while

edges as pipes in which the fronts evolve), and the front that
reaches a particular vertex comes from exactly one of its
neighbors. The label assignment is then automatically de-
duced.

On the contrary, in the case where p = {1,2} and ac-
cording to Eqs. (42), (43), the arrival-time of a vertex is
computed with the contribution of several edges. Thus, only
considering the graph structure, the front propagation is in-
terpreted as coming from several edges. In practice, we con-
sider that the front comes from the edge with the highest
contribution, and labels are propagated in this way. If we
consider a sufficiently higher-dimensional domain in which
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Fig. 2 Illustration of label propagation with changing-sign speed, with
a toy example. The set Si is represented in blue. The inner narrow band
which represents the position of front Γ +

i is superimposed in green,
and the outer narrow band which represents the front Γ −

i is superim-
posed in red. The six images show different steps of the evolution of
the set Si and both two fronts, with the speed Fli which is positive
on the gray background and negative on the white background (Color
figure online)

the graph is embedded (as it is the case for images, meshes
or manifolds), the front is coming between all the involved
edges.

5 Experiments and Applications

5.1 Graph Construction

There exists several popular methods that transform a set of
unorganized discrete data into a neighborhood graph. Con-
sidering a set of vertices V such that functions of H (V )

represent the data, the construction of such a graph con-
sists in modeling the neighborhood relationships between
the data through the definition of a set of edges E, using a
pairwise distance measure μ : V × V → R

+. In the general
case (where data are unorganized) one can quote:

– ε-neighborhood graphs where two data vi , vj ∈ V are
connected by an edge of E if μ(vi, vj ) ≤ ε, with ε > 0.

– k-nearest neighbor graphs (k-NNG) where each vertex vi

is connected with it’s k-nearest neighbors according to μ.
Such construction implies to build a directed graph, as
the neighborhood relationship is not symmetric. Never-
theless, an undirected graph can be obtained while adding
an edge between two nodes vi and vj if vi is among the
k-nearest neighbors of vj or if vj is among the k-nearest
neighbors ofvi .

In the case of structured data (i.e., images or meshes):

– Grid graphs which are the natural structure to describe an
image with a graph. Each pixel is connected by an edge
to its adjacent pixels.

– Region adjacency graphs (RAG), initially designed for
images where vertices correspond to image regions and
the set of edges is obtained by considering an adjacency
distance. A RAG can be built for any structured data
represented by a graph, where a region Ri is defined
as a set of connected vertices such that

⋃
Ri = V and⋂

Ri = ∅. Two regions Ri,Rj are adjacent if ∃vi ∈ Ri

and vj ∈ Rj | vi ∼ vj .

In both cases, weights are computed according to a measure
of similarity g : E → R

+, which satisfies:

w(u,v) =
{

g(u, v) if (u, v) ∈ E,

0 otherwise.
(56)

The similarity is usually based on a pairwise distance mea-
sure between data features, where each vertex u ∈ V is rep-
resented by a feature vector Fu ⊂ R

m. For a given edge
(u, v) ∈ E and a distance measure μ : V × V → R

+, we
can have

g0(u, v) = 1,

g1(u, v) = (
μ(Fu,Fv) + ε

)−1 with ε > 0, ε → 0,

g2(u, v) = exp
(−μ(Fu,Fv)/σ

2
)

with σ > 0,

(57)

where σ depends on the variation of the function μ over
the graph and controls the similarity scale. Several choices
can be considered for the expression of the feature vectors,
depending on the nature of the features to be used for the
graph processing. In the context of image processing, one
can quote the simplest grayscale or color feature vector Fu,
or the patch feature vector Fτ

u = ⋃
v∈W τ (u) Fv (i.e., the set

of values Fv where v is in a square window W τ (u) of size
(2τ + 1)× (2τ + 1) centered at a vertex pixel u), in order to
incorporate non-local features.

5.2 Weighted Geodesic Distances

In this section, we show the adaptivity of our framework
and illustrate the behavior of proposed numerical schemes
to compute weighted geodesic distances.

Figure 3 presents the application of the schemes formu-
lated by (39) and (41). Results are obtained with different
graph topologies and weight functions. They are all illus-
trated with color distance maps where iso-levels are super-
imposed in white.

The potential function P is constant and equal to 1 and
the propagation is performed for a unique label which initial
seed is located either at the top left corner of the original
image or at the center. The original image is a 256 × 256
grayscale image. First rows show results obtained with a
weighted 4-adjacency grid graph and different weight func-
tions w1, w2 and w3. The first weight function (w1 = 1) is
a constant weight function. Using such weight function and
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Fig. 3 Adaptive weighted distance computation with different p val-
ues, weight functions w and graph topologies G. Results represent
color distance maps with iso-level sets. At top: original image. First,
second and third columns: results with p = 2,1 and ∞. First row, the
weight w1 is constant. Second row, the weight w2 is designed to penal-
ize vertical diffusion. Third row, the weight w3 holds original image
informations. First rows, the graph is built on the whole image. On the
last, the distance is computed on a Region Adjacency Graph (RAG)
from a partition of the original image

in the case where p = 2 we obtain the same result as using
the initial Fast Marching algorithm [39], what verifies that
in such configuration our formulation recovers the Osher-
Sethian scheme. Similarly, in the case where p = ∞, our
algorithm is equivalent to a Dijkstra algorithm. The second
weight function is designed to favor horizontal diffusion to
vertical diffusion by penalizing the weights of vertical edges
and given by

w2(u, v) =
{

1 if vx = ux,

0.25 if vy = uy.
(58)

In that latter case, the seed is placed at the center of
the image. The third weight function (w3 = exp(−d2/σ 2))

is designed to hold the similarity between each connected
pixel (based on pixel intensity). Shape information is natu-
rally captured by the weights that stop the front evolution at
the boundaries. Clearly, in this case, one can obtain a seg-
mentation of the different shapes simply by thresholding the
obtained distance map. We provide results for different val-
ues of p = 1, p = 2 and p = ∞ at respectively first, second
and third column.

The last row illustrates distance computation on a Re-
gion Adjacency Graph (RAG), built from the original im-
age. The first column shows the partition. Second one shows
the associated graph where each node represents a region of
the RAG and two nodes are linked if their regions are ad-
jacent. Finally, the third column presents the distance map
obtained from the top-left region. In that case, the weight
function holds the similarity between two adjacent regions
in the sense of mean intensity of each region, and the dis-
tance was computed with p = ∞.

Figure 4 presents illustrations of geodesic distances com-
puted on an irregular 3d mesh and an irregular 2d graph
with constant speed/potential. The two graphs are said ir-
regular, because each vertex has a variable number of edges.
In these cases, our results does not necessarily coincide with
solutions of the Eikonal equation via Fast Marching algo-
rithms. Indeed, the finite difference equation (31) used to
compute these geodesics is not the Eikonal equation (but is
adapted from) and only consider values of functions defined
on graph vertices. There exists some algorithms, using ge-
ometric informations and local solvers designed for these
particular cases, which better approximate the solution of
the Eikonal equation on triangulated domains, as the Fast
Marching algorithm for triangulated domains proposed by
Kimmel [26], or Fast Sweeping on triangulated meshes by
Qian [35].

In the following section, we will present the accuracy of
the proposed fast algorithm to compute graph partitions.

5.3 Graph Partitioning

In this section, we present the accuracy of the proposed algo-
rithm (Algorithm 2) for graph partitioning using a distance
function (i.e. a metric), with some examples of data simplifi-
cation. The use of a distance function for graph partitioning
is not new, and we recommend interested readers to refer to
[1, 2, 18] an references therein for a more complete review
on this topic.

First, we recall a definition of metric-based graph parti-
tion. Let G = (V ,E,w) be a weighted graph and CG(u, v)

be the set of paths connecting two vertices u,v ∈ V . A path
c(u, v) is a sequence of vertices (u1, . . . , uj ) such as u = u1

and v = uj with (ui, ui+1) ∈ E and i = 1, . . . , j − 1.
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Fig. 4 First row: geodesic distance on a 3d mesh from two distinct
seeds with, at left the seeds, at right the rainbow distance map where
red means near and blue means far. Second row: geodesic distance on
an irregular graph in R

2 with one seed

Let ρ : E → R be a metric defined as

ρ(u, v) = min
ρ∈CG(u,v)

j−1∑
i=1

(
f (ui+1) − f (ui)

)
. (59)

Given a set of K labels L = {li}i=1,...,K and a set of K seeds
S0 = {s0

i }i=1,...,K ⊆ V (where s0
i is the seed of li ), the en-

ergy ρS : V → R
m induced by the metric ρ for all seed of

S0 is

ρS(u) = min
si∈S

ρ(si, u) ∀u ∈ V. (60)

The region Ri of a label li , is the set of vertices which are
closer to s0

i than to any other seeds with respect to the met-
ric ρ. Ri can be defined as

Ri = {
u ∈ V : ρ(

s0
i , u

) ≤ ρ
(
s0
j , u

)
,∀j = 1, . . . ,K

}
. (61)

A partition of G, for a given set of labels (with seeds S0) and
a metric ρ, is finally the set R(L,ρ) = {Ri,∀li ∈ L}. For a
graph G, to find it’s partition corresponds to seek a minimal
cost path over G, and can be easily computed with a simple
Dijkstra like algorithm.

This general formulation of graph partitioning according
to a metric can be easily linked with our definition of label
propagation for graph clustering (see Sect. 4.1). Indeed, such
a partition can be processed using the new finite difference
equation (31) and the new class of algorithms proposed in
Algorithm 2 or Algorithm 3, since we know that the label
propagated at each vertex u ∈ V is the label which seed is

the nearest of u (see Sect. 4 for more details). Given a vertex
u ∈ V with a label li , we have the following relation

f (u) = ρS(u) = ρ
(
u, s0

i

) = min
s0
j ∈S0

(
ρ
(
u, s0

j

))
. (62)

Moreover, graph partitioning is intrinsic to our algorithm,
because of the label propagation according to the distance
measure (or arrival time), which naturally cluster the graph.
The resulting partition corresponds to a generalized Voronoï
diagram. In the next paragraph, we present a methodology to
compute graph partition using our equations and algorithms,
we call supervertices.

From Super Pixels to Super Vertices Initially developed by
Ren and Malik [36], superpixels are an efficient way to re-
duce image complexity by grouping pixels in a region map
while preserving contours. With TurboPixels [29], Levin-
shtein et al. have proposed an implementation of superpixels
in which an image partition is obtained by dilating a regular
grid of seeds so as to adapt to local image structure, where
the dilation is performed using a level-set approach. In this
paper, we propose to extend such approach of image sim-
plification to weighted graphs, using our fast algorithm for
multilabel propagation on graphs. Because this adaptation
groups vertices instead of pixels, we name it supervertices.
As TurboPixels, our approach uses a set of labels whose
seeds are placed on initial data, but seeds dilation becomes a
label propagation which is controlled by our fast algorithm
instead of iterative evolving equations. Figure 5 presents two
examples of supervertices on 3D meshes. A review of some
other mesh partitioning methods can be found in [41] and
references therein. In the case of image processing, the pro-
cess is very similar to superpixels: the simplification is per-
formed from a regular grid of distinct labels whose seeds
position can be perturbed in the direction of the descend-
ing image gradient to avoid placing seeds close to string
boundaries. This is illustrated in Fig. 6 on two images from
the Berkeley Database.1 Such partition can be easily trans-
formed in a Region Adjacency Graph (RAG), which can be
used as a simplified version of the initial image that pre-
serves texture information and strong boundaries. Then, it
becomes very interesting to perform any graph-based algo-
rithm on such a reduced version of the image. This is illus-
trated in Sect. 5.4.4 with active contour and semi-supervised
image segmentation using RAG.

5.4 Semi-supervised Image Segmentation and Data
Clustering

In this section, we present the behavior and efficiency of our
algorithm for semi-supervised image segmentation and data

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Fig. 5 Supervertices on meshes. Graphs used in this example are faces
graphs, where each face of meshes is represented by a vertex and linked
by an edge to any adjacent face. In both cases, the weight function is
given by f = 1 and P = 1. First column presents initial meshes with
superimposed random seeds. Second column shows the distance maps
computed where red means near a seed and purple means far from a
seed. Finally, last column shows the resulting partition in super vertices

clustering, using graph representation of these data. First we
give qualitative and quantitative comparison with a recent
and efficient graph-based approach for semi-supervised im-
age segmentation. Then, we illustrate the algorithm behavior
with local or non-local configurations and with non-negative
speeds or either positive or negative speeds, through several
examples involving different kinds of data.

In the case of image semi-supervised segmentation,
graph-based approaches have became very popular in recent
years. Many graph-based algorithms for image segmenta-
tion have been proposed, such as graph cuts [5], random
walk [20], shortest-path, watershed or frameworks that unify
some of the previous methods (as powerwatershed) [14,
43]. Recently, these algorithms were all placed into a com-
mon framework [14] that allows them to be seen as special
cases of a single general semi-supervised algorithms, and
leads to the following general formulation: Given a graph
G = (V ,E,w), the general algorithm consists in finding the
function f which minimizes the following energy function:

Ep,q(f ) =
∑

u∼v∈E

w
p
uv

∣∣f (u) − f (v)
∣∣q (63)

where f represents the target configuration. Using such a
formulation in the case of two classes A and B such that
VA ∪ VB = V and VA ∩ VB = ∅, the graph clustering can be
performed as follow:

Fig. 6 Image partition with supervertices. Both images were parti-
tioned using a regular grid of seeds (perturbed according to the image
gradient). See text for details

1. The first step consists in finding an optimum f for (63),
which is obtained by solving the equation

⎧⎪⎪⎨
⎪⎪⎩

f (A) = 1,

f (B) = 0,

f = arg min
f

Ep,q(f ).

(64)

Such formulation can be interpreted using PdEs as
arg min

∑‖(∇wf )(u)‖ with w depending on p and q ,
and A and B represents the internal Dirichlet boundary
condition.

2. Finally, the segmentation is performed via a threshold
and the labeling function L : V → {1,0} is given by

L(u) =
{

0 if f (u) < 1/2,

1 if f (u) ≥ 1/2.
(65)

In the case of more than two classes, the method needs to
find as many optimum fi as distinct labels, where the shape
is given by the set of vertices of the label and the background
by the set of vertices of all other labels. Then, the labeling
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Fig. 7 Qualitative comparison between power watershed and the proposed approach, using two images from the grabcut database. See text for
more details

function is given by

L(u) = arg max
i

fi(u). (66)

Another approach [2, 18] to perform a graph clustering con-
sists in computing a graph partition from the set of user’s
seeds and a metric, as it is described in the previous section.
In this paper, we consider this approach which can be easily
performed using Algorithms 2 and 3.

5.4.1 Comparison with Power Watershed

In this paragraph, we propose qualitative and quantitative
comparisons between our method and the recent power wa-
tershed [14] which is one of the most efficient methods pro-
posed in the previously cited framework. Results for the
power watershed are obtained using the source code from
Couprie’s website.2

Figure 7 presents a qualitative comparison between the
two algorithms for semi-supervised image segmentation
with two labels (shape and background). The comparison is
performed on images from the Microsoft Grabcut database.3

The initial set of seeds is replaced by an eroded version
in order to penalize both algorithms (as all propagation al-
gorithms are very efficient when desired boundaries and
seeds are very close). Results are presented for values of
p ∈ {1,2,∞} and the power watershed (given by (63) with
p = 2, q = 2). The mean computation time is given for each
method (although it is quite difficult to compare runtime
from two different implementations) and one can remark

2http://www.esiee.fr/~coupriec/.
3http://research.microsoft.com/en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm.

that the runtime difference between each p-norm is negligi-
ble, while the case p = 2 outperform the three other methods
(p = 1,∞ and power watershed), with smoother results.

On the contrary to others methods, the proposed algo-
rithm complexity and computation time does not depend of
the number of labels (neither seeds). Indeed, whatever the
number of labels, each vertex is activated exactly once by
the algorithm (and we recall that the arrival time and the
label of each vertex are fixed when the vertex is activated,
see Sect. 4.1). This is illustrated on Figs. 8 and 9, which
presents the runtime variation of both methods, in func-
tion of an increasing number of labels. The labels propa-
gation is performed on a cytological slide photography (size
1280 × 2960) on which we consider a label for the back-
ground and a label per cell. For each experiment, an increas-
ing number of label’s seeds are placed on the image, and the
non-seeded cells are considered as background. Figures 8
and 9 presents the whole set of labels and the slide segmen-
tation with all labels for both two methods. One can remark
that where the power watershed runtime grows as the num-
ber of labels, the proposed method runtime is relatively con-
stant (the little increase is implementation dependent and is
not a consequence of the algorithm).

5.4.2 Non-local Image Segmentation

Our approach using graphs has the advantage to naturally
enable local and non-local configurations in the same formu-
lation. In this paragraph, we show the benefits of non-local
schemes as compared to local ones for semi-supervised im-
age segmentation, especially noisy images or images that
contain fine and repetitive structures. In order to hold non-
local configurations, the graph is construct as a k-grid graph,
(i.e. a pixel u is linked to every pixels in a k × k window
centered on u), and each pixel is associated with a patch

http://www.esiee.fr/~coupriec/
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
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Fig. 8 Runtime variation in function of the number of labels. Variation
is given for the power watershed (in red) and the proposed approach
(in blue). The sets of seeds for the maximum number of labels, and

segmentation results for both methods are illustrated. See text for a
comment (Color figure online)

Fig. 9 Runtime variation in function of the number of labels. Variation
is given for the power watershed (in red) and the proposed approach (in
blue). The graph illustrates the runtime variation while the number of
labels increase from 20 to 240. See text for a comment (Color figure
online)

feature vector (where each vector can be seen as a patch
of texture). Figure 10 presents several examples of textured
image segmentation. First column presents initial image and
seeds. Second column shows local results obtained with a
4-adjacency grid graph using color feature vectors. Finally,
the last column shows non-local results with a 11 × 11 win-
dow and patchs of 3 × 3. All results were computed with a
potential function P = 1 and p = 2. These results demon-
strate the benefits of non-local configurations especially for
textured images, where classical methods fail to found cor-
rectly the desired object. In non-local configuration cases,

the graph weights better capture fine and repetitive informa-
tion contained in the image.

5.4.3 Active Contour

In this paragraph, we illustrate the behavior of our algorithm
to perform active contour on graphs using an adaptation of
the Chan and Vese model [11]. Although many recent ap-
proaches outperform this model [6, 16, 21], our choice lies
in that we are not interested in present a new active con-
tour model on graph, but only illustrate the adaptivity of our
finite difference equation and algorithms. Given a front Γ

represented by the level-set function φ, the Chan and Vese
active contours model (without regularization term) can be
summarized by the following PDE

∂φ(x, t)

∂t
= [(

Fx − μ1(t)
)2 − (

Fx − μ2(t)
)2]∥∥∇φ(x, t)

∥∥,

(67)

where Fx is the feature vector of x, μ1(t) and μ2(t) are the
mean outside the front Γ at time t , respectively the mean
inside. With F (x, t) = (Fx − μ1(t))

2 − (Fx − μ2(t))
2 such

an Eq. (67) is equivalent to the level-set function defined in
(26), which is the continuous version of our finite difference
equation. Then, transposed on weighted graphs, the active
contours model for a front Γi can be written as∥∥(∇−

w f
)
(u)

∥∥
p

= Pli (u, t), (68)

with Pli (u, t) = 1/Fli (u, t) and Fli (u, t) = (Fu −
μ1(t, li ))

2 − (Fu − μ2(t, li ))
2. Finally, the front evolution

is performed using Algorithm 3 with the advantages given
by our formulation as the speed of the Fast Marching and
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Fig. 10 Semi-supervised image segmentation using the proposed al-
gorithm. For each image, results are provided for two different graph
topologies and weight functions. The first column presents images to
segment with superimposed initial labels (respectively 2 and 3). The
second one shows results for 4-adjacency grid graphs where each pixel

is characterized by it’s color feature vector. Finally, third column shows
results for a larger neighborhood (each pixel u is linked with any pixel
in a 11 × 11 window centered on u) and pixels are characterized by
patchs of 3 × 3

Fig. 11 Another example of active contours on a natural image. The
evolution of the 9 contours is performed simultaneously without lost of
efficiency

the ability to perform several active contours evolution si-
multaneously. It is illustrated by Fig. 13, where different
steps of the contours evolutions are presented. The graph is
a 4-adjacency grid graph, and the 4 initial sets of labels (or
in other words the initial position of contours) were deliber-
ately roughly placed, to illustrate the behavior of the algo-
rithm in such configuration. Figure 11 presents another ex-
ample which involves 9 distinct fronts/contours. Here again,
the seeds are deliberately roughly placed to illustrate the
robustness of the method to imprecise initialization

Remark 4 In Algorithm 3, in order to transcript the time de-
pendence of speed, the speeds Fli are periodically updated.

Fig. 12 Active contours on a weighted RAG from one contour. (a) The
image partition the RAG is built on. (b, c, d) Different steps of the
contour evolution. Points represent vertices and white lines represent
edges. The contour is given by the red points and blue points represent
the vertices which lie inside the contour. (e) The final contour trans-
posed on initial image (Color figure online)
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Fig. 13 An application of the proposed algorithm to active contours. Different steps of the simultaneous evolution of 4 contours on the 4-grid
graph representation of the given image. See text for details

Fig. 14 Semi supervised non-local-region-based segmentation. First image: original image with two seeds. Second image: image partition with
region boundaries superimposed. Final image: final segmentation (performed on the RAG). See text for details

5.4.4 Region Adjacency Graph

Another advantage of our graph-based formulation is that
the proposed algorithm can be applied to any graph, and
therefore any graph representing images. To illustrate such
an adaptive behavior, we propose to use other image struc-
tures, such as regions maps, instead of pixels grids to build
the graph for image segmentation. In the following exam-
ples, we use two graphs. The first is a 4-adjacency grid graph
used to build an image partition in a supervertices lattice.
The obtained region map is then transformed in a second
graph, a Region adjacency Graph (RAG), on which the seg-
mentation algorithm is performed. Figure 14 illustrates non-
local semi-supervised image segmentation using a RAG. In
order to let the labels grow beyond local neighborhood, each
vertex neighborhood is extended by a k-nearest neighbor-
hood based on mean color value. The final graph is a RAG ∪
k-NNG. One can remark that every cells are extracted even
those without initial marker. Another example, presented in
Fig. 12, illustrates active contour on a RAG. Finally, using
region based graphs has the following advantages.

– Fast computation. By reducing the number of graph ver-
tices (approximately 98 % of reduction in term of vertices

as compared to the pixel based graph), the computing time
is reduced due to the reduced number of data to consider.

– Non-local segmentation. The first example shows non-
local object segmentation, where only one object is ini-
tially marked and the others are found by our method even
if the objects are not spatially close or connected.

– Minimal number of initial seeds. With an appropriate
graph structure, the segmentation requires a minimal
number of initial seeds.

5.4.5 Data Clustering

Finally, this last experiment illustrates the adaptivity and be-
havior of the proposed algorithm for high-dimensional un-
organized data clustering. The clustering is performed simi-
larly to the non-local image segmentation case, using a set of
seeds and a weighted graph. The data consists in a set of 500
cells extracted from a cytological slide. Each cell ci is rep-
resented by a feature vector Fci

and the graph is a 7-NNG.
Figure 15 presents the graph with 4 initial sets of labels, and
the final clustering.
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Fig. 15 Unorganized real data clustering. The graph is a 7-nn graph built from a set of 500 cells, and each cell ci is represented by a feature
vector Fci

. At left, the graph with initial labels. At right, the final clustering

6 Conclusion

In this paper, we have considered a new finite difference
equation which is an adaptation of the Eikonal equation
and defined on weighted graphs. We have shown that this
equation has a unique solution and proposed numerical
schemes for its resolution with different Lp norms, with
p ∈ {1,2,∞}. Based on such an equation, we have pro-
posed efficient algorithms for multiple labels propagation on
graphs of arbitrary topology which enables numerous appli-
cations as graph clustering, geodesic distance computation
or front tracking. This can be used on many domains such
as images, meshes, data or any structure that can be repre-
sented by a weighted graph.
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