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Abstract Diffusion tensor imaging (DTI) is a powerful
technique for imaging axonal anatomy in vivo and its au-
tomatic segmentation is important for quantitative analysis
and visualization. Application of the watershed transform
is a recent approach for robustly segmenting diffusion ten-
sor images. Since an important step of the watershed-based
segmentation is the gradient computation, this paper investi-
gates scalar maps from DTI and their ability to enhance bor-
ders and, therefore, their usefulness in gradient calculation.
A comparison between existing scalar maps is conducted in
the context of segmentation. New diffusion scalar maps, in-
spired by mathematical morphology concepts are proposed
and included in the comparison. The watershed transform is
then applied to segment the corpus callosum, based on the
computed scalar maps.
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1 Introduction

Diffusion tensor imaging (DTI) is a relatively new MRI
modality capable of generating contrasts that are sensitive
to fiber orientations. It carries rich information about intra-
white-matter axonal anatomy, which cannot be seen in con-
ventional MRI. DTI-based segmentation, where regions of
interest are delineated, is necessary for performing sub-
sequent quantitative analysis and qualitative visualization.
While scalar image segmentation has been studied exten-
sively and different algorithms have been developed over the
last decades, DTI-based segmentation is a relatively new and
challenging task [4].

The use of DTI properties to perform the clustering of
brain tissue was initially described by Pierpaoli et al. [32].
More recently, DTI-based clustering strategies have been
described [3, 25, 29, 41, 42, 44, 45] and have been ap-
plied in many studies, including studies of the thalamic nu-
clei [11, 17, 18, 43, 45], the thalamocortical projections [7]
and the fetal brain [26]. Although the strategies are based
on well-known segmentation algorithms, such as level-sets,
region growing and graph-cuts, they were actually devel-
oped exclusively for DTI. Significant modifications in the
original algorithms, conceived to work with scalar images,
had to be done in order to deal with tensorial informa-
tion.

Instead of defining a new segmentation method, the
aim of this study is to explore the transformation of dif-
fusion tensor data into scalar maps and the use of these
scalar maps, together with the watershed transform, to
segment diffusion tensor fields. Preliminary investigation
of watershed segmentation of diffusion scalar maps has
been done [35], and this paper explores new scalar maps
and analyzes the performance of the segmentation with
them.
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The watershed transform is a region-based segmentation
approach and has been successfully applied to the solution
of many medical imaging problems, such as the segmenta-
tion of blood cells [12], neuromorphometry [13] and charac-
terization of human cortex [9, 33]. It was chosen over other
segmentation techniques because it is simple and efficient,
and does not require previous knowledge of the structures to
be segmented, surface initialization or manual seed place-
ment.

A crucial step of the watershed-based segmentation is the
computation of a gradient of the image to be segmented.
The magnitude of a gradient can be seen as a scalar map
that contains edge information. In the diffusion tensor field
context, it is desirable that the gradient helps to find edges
between regions with distinct diffusion characteristics. In
other words, the gradient should be strong where diffusion
changes are significant and weak where diffusion changes
are imperceptible.

Several scalar maps based on diffusion measures can be
found in the literature, including intra- and intervoxel mea-
sures. The mean diffusivity (MD), the fractional anisotropy
(FA) and the volume ratio (VR) are examples of intravoxel
measures. Other measures, such as the lattice index (LI) and
the coherence index (CI), are classified as intervoxel mea-
sures. It is important to point out that none of the above
scalar maps were conceived for segmentation purposes and,
therefore, they do not necessarily contain enough informa-
tion to distinguish regions with distinct diffusion character-
istics. Recently, we published a technique, called the tenso-
rial morphological gradient (TMG), that was design specif-
ically to be used in the context of segmentation. The TMG
transforms the diffusion tensor image into a scalar map with
meaningful values to detect borders between brain structures
[35]. The tensorial morphological gradient uses diffusion in-
tervoxel measures and combines them to compute a gradient
using concepts from mathematical morphology.

The contributions of this work are threefold: first, new
scalar maps are proposed by combining mathematical mor-
phology operators and existing measures. Second, we ana-
lyze the scalar maps, taking into account their suitability for
the segmentation task. Third, segmentation experiments us-
ing the watershed transform illustrate the main differences
between scalar maps and illuminate which are optimal for
segmentation.

This paper is organized as follows: while Sect. 2 presents
existing intra- and intervoxel measures, Sect. 3 describes
a new class of intervoxel measures being proposed: gradi-
ents based on mathematical morphology. The experiments
are described in Sect. 4 and results are presented in Sect. 5.
Finally, Sect. 6 discusses the obtained results and Sect. 7
concludes the paper.

2 Existing Scalar Measures in Diffusion MRI

2.1 Intravoxel Diffusion Measures

Several properties of the diffusion tensor are rotationally in-
variant and useful in deriving quantitative information from
the diffusion tensor and in comparing different tensors and
ellipsoids. The most simple invariant measures obtained
from DTI is the mean diffusivity (MD), which is one third
of the trace of the tensor T:

MD = Trace(T)

3
= λ1 + λ2 + λ3

3
. (1)

Another simple kind of rotationally invariant measure is
the “diffusion anisotropy index” or DAI, that gives an idea
of the degree of anisotropy of a given diffusion tensor. The
common DAIs range from 0 to 1 and do not require eigen-
value sorting. The simplest anisotropy measure is the vari-
ance of the three eigenvalues about their mean. The vari-
ance alone, however, needs to be normalized to account for
regional differences in the overall magnitude of diffusiv-
ity. The most used DAI based on this logic is the fractional
anisotropy (FA) [5] given by:

FA =
√

3

2

√
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2√

λ2
1 + λ2

2 + λ2
3

. (2)

It normalizes the variance by the magnitude of the tensor as a
whole. In other words, FA measures the fraction of the tensor
that can be assigned to anisotropic diffusion. The FA mea-
sure is appropriately normalized so that it takes values from
zero (isotropic diffusion) to one (anisotropic diffusion).

There are many other ways to represent the anisotropy,
such as the scaled relative anisotropy (sRA):

sRA =
√

(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2
√

6MD
, (3)

and the volume fraction (VF),

VF = 1 − VR = 1 − λ1λ2λ3

MD3
, (4)

which is obtained by subtracting the volume ratio (VR) from
unity, in order to scale the measure from 0 to 1 [21].

2.2 Intervoxel Diffusion Measures

The rotationally invariant properties mentioned in the pre-
vious section are usually computed for a single voxel and
therefore, can be interpreted as an intravoxel measure. Fur-
ther interesting information can be obtained by looking at
how the tensor parameters estimated in a given voxel com-
pare with those in neighboring voxels. The simplest way to
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do this is to use measures that quantify the distance (or the
difference) between two neighboring tensors. Another ap-
proach is to compute the differences (or coherences) within
a neighborhood of a tensor and combine all the obtained
quantities into a single measure, that can be interpreted as
a homogeneity (or inhomogeneity) measure.

2.2.1 Diffusion Tensor Distances

Distance between tensors can also be viewed as intervoxel
measures. Given two tensors Ti and Tj , the most simple
comparison between two tensor quantities, used by Ziyan
et al. [45], is the dot product (DP) between the principal
eigenvector directions:

d1(Ti ,Tj ) = |e1,i · e1,j |, (5)

where e1,i and e1,j are the principal eigenvectors of tensors
Ti and Tj , respectively. Another simple similarity measure,
presented by Pierpaoli et al. [32] as an intervoxel anisotropy
measure, is the tensor dot product (TDP):

d2(Ti ,Tj ) = Ti : Tj =
3∑

k=1

3∑
l=1

(
√

λk,i

√
λl,j ek,i · el,j )

2. (6)

Alexander et al. [1] proposed a number of tensor similar-
ity measures. Their purpose was to match pairs of diffusion
tensor images and the proposed measures were based on the
diffusion tensor itself and indices derived from the diffusion
tensor. One of the similarity measures proposed by them was
obtained by negating the following Euclidean distance met-
ric:

d3(Ti ,Tj ) =
√

Trace
(
(Ti − Tj )2

)
. (7)

This similarity metric was also explored in other DTI
studies under different names, such as generalized tensor
dot product and Frobenius norm [19, 43, 45]. As affine in-
variance is a desirable property for segmentation purposes
and the Frobenius norm (FN) is not invariant to affine trans-
formations, Wang and Vemuri [41] proposed a novel defini-
tion of diffusion tensor “distance”, as the square root of the
J-divergence (Jdiv) of the corresponding Gaussian distribu-
tions, i.e.,

d4(Ti ,Tj ) = 1

2

√
Trace

(
T−1

i Tj − T−1
j Ti

) − 2n, (8)

where n is the matrix size that represents the tensor. Equa-
tion 8 is not a true distance since it violates the triangle in-
equality, but it is in fact a computationally efficient approx-
imation of Rao’s distance [41]. More recently, a new ap-
proach for calculating tensor similarity has been adopted in
DTI studies: the Log-Euclidean distances. Among the simi-
larity metrics proposed by Arsigny et al. [2], there is a met-
ric very closely related to the Frobenius norm, called the

similarity-invariant Log-Euclidean distance (LogE), defined
as :

d5(Ti ,Tj ) =
√

Trace
((

log(Ti ) − log(Tj )
)2)

. (9)

Contrary to the classical Euclidean framework on ten-
sors, one can see from Eq. 9 that symmetric matrices with
null or negative eigenvalues are at an infinite distance from
any tensor. To overcome this problem, in this paper we re-
place log(Ti ) by log(100 ∗ Ti + 1) to avoid the computation
of the logarithm of null values.

Another affine invariant metric for statistical analysis and
image processing of diffusion tensor data based on the Rie-
mannian geometry was introduced independently by differ-
ent authors [6, 31]:

d6(Ti ,Tj ) =
√

Trace
(
log(Dij )2

)
, (10)

where Dij is equal to T
− 1

2
i Tj T

− 1
2

i .
It is important to notice that the mentioned intervoxel

distance measures are not the only ones proposed in the
literature. They were chosen to be part of this study be-
cause they come from different approaches and privilege
specific aspects of the tensor. Peeters et al. [30] presented
a classification of the intervoxel distance measures based on
their derivation: measures based on scalar indices; measures
that make use of the angles between eigenvectors; measures
based on linear algebra; measures based on Riemannian ge-
ometry; measures considering the tensors as a representation
of a probability density function and measures that com-
bine different measures from the previous classes. Hence,
whereas the dot product is an angular difference, the tensor
dot product and the Frobenius norm come from linear alge-
bra, the Log-Euclidean distance and the affine-invariant Rie-
mannian metric (Riem) are based on Riemannian geometry
and the J-divergence derives from statistical considerations.

2.2.2 Neighborhood Anisotropy Measures

Intervoxel anisotropy measures were introduced by Pier-
paoli and Basser [32] and extended by Skare et al. [38] to
reduce the effect of noise. The principle is to perform spatial
averaging of indices based on both eigenvalues and eigen-
vectors.

One example of such a diffusion anisotropy measure is
the Add , that measures how much the directions of the tensor
eigenvectors differ between a given voxel and its neighbors,
and is defined as:

Add =
∑8

1 aNAN
dd∑

aN

, (11)

where

AN
dd = T̂i : T̂j

Ti : Tj

(12)
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and the tensor dot product between the anisotropic parts of
the tensor T̂i : T̂j is given by:

T̂i : T̂j = Ti : Tj − 1

3
Trace(Ti )Trace(Tj ). (13)

Another measure, first described by Klingberg et al. [23],
is the coherence index (CI). The CI in a voxel is the
mean dot-product of the primary eigenvector of the refer-
ence voxel and the primary eigenvector of each one of its
eight neighboring voxels. When the eigenvectors are of unit
length, the dot product is the cosine of the angle between
the primary eigenvectors of both tensors and has a value be-
tween 0 and 1.

2.2.3 Tensorial Morphological Gradient (TMG)

The tensorial morphological gradient (TMG) is an inter-
voxel diffusion measure based on mathematical morphol-
ogy. It was first applied to segment tensorial images repre-
senting color images [36, 37] and its concept was then ex-
tended and applied to synthetic diffusion tensor images [34].
It is based on mathematical morphology and intervoxel dis-
tances between neighboring tensors.

While the classical morphological gradient at each point
of a scalar image yields the difference between the maxi-
mum and the minimum values over the neighborhood at the
point determined by a structuring element, the tensorial mor-
phological gradient (TMG) [36] of a tensorial image is de-
fined by:

∇T
B(f )(x) = ∨

y,z∈Bx
dn(Ty,Tz), (14)

∀x ∈ E, where dn represents any of the intervoxel distances
presented in Sect. 2.2.1, B ⊂ E is a structuring element cen-
tered at the origin of E, Ty is the tensor that represents the
diffusion in y, and Tz is the tensor that represents the dif-
fusion in z (y and z are in the neighborhood of x, defined
by Bx ). ∇T

B is the proposed TMG. Because the intervoxel
measures are already comparisons between neighbors, the
proposed gradient is not the difference between the maxi-
mum and the minimum values, but only the maximum value.

3 Gradients: A New Intervoxel Diffusion Measures
Class

In previous works, a tensorial morphological gradient
(TMG) was conceived to allow the segmentation of diffu-
sion tensor fields by the watershed transform. Experiments
depicted that the TMG is able to preserve borders while
transforming the diffusion tensor filed in a scalar map, a
desirable requisite of gradients to be used in segmentation
tasks. Inspired by the good results obtained by the tensorial

morphological gradient, a new class of intervoxel diffusion
measures is being proposed: gradients based on mathemat-
ical morphology. This new class of diffusion measures are,
therefore, composed by the tensorial morphological gradient
(TMG) of diffusion intervoxel measures and the morpholog-
ical gradient (MG) of diffusion intravoxel measures.

The morphological gradient (MG) is the most common
gradient based on mathematical morphology used in image
processing [16], and depends on the size and shape of the
chosen structuring element. Let E be the set of all points in
the image. Using a flat structuring element at each point, the
morphological gradient (MG) yields the difference between
the maximum and the minimum values over the neighbor-
hood at the point determined by the flat structuring element:

∇I
B(f ) = ∨

y∈Bx
Iy − ∧

y∈Bx
Iy, (15)

where B ⊂ E is a structured element centered at the origin
of E and Iy is the intensity value in y (y is in the neighbor-
hood of x, defined by Bx ).

Because the diffusion tensor image does not have a single
intensity value to be considered in the morphological gra-
dient computation, the proposed solution is to compute the
morphological gradient of any intravoxel measure presented
in Sect. 2.1, obtaining a new class of intervoxel measures.
As an example, by taking the fractional anisotropy FAy as
the Iy , it is possible to compute the morphological gradient
of the fractional anisotropy (MG-FA):

∇FA
B (f ) = ∨

y∈Bx
FAy − ∧

y∈Bx
FAy. (16)

Although the FA is an intravoxel measure, by comput-
ing its morphological gradient, information of the neighbor-
hood is incorporated, resulting in an intervoxel measure. As
with the TMG, the neighborhood intervoxel measures pre-
sented in Sect. 2.2.2 (Add and CI) result from comparison
between tensors in the neighborhood using intervoxel mea-
sures. The main difference between them and the TMG is
that the TMG takes the maximum between the computed in-
tervoxel measurements while the Add and the CI take the
average of the measurements (weighted or not by the dis-
tance of each neighbor).

Hence, it is possible to extend the definition of the TMG
to Add (TMG-Add ), for example, defining a new measure:

∇Add

B (f )(x) = ∨
y,z∈Bx

Add(Ty,Tz). (17)

By using the same reasoning, it is easy to conclude that
the extension of the Coherence Index (CI), originally com-
puted as the mean value of the dot product within a de-
fined neighborhood, is the TMG based on the dot product
(TMG-DP). Furthermore, whereas the neighborhood in the
CI computation is fixed as a square around the voxel (8
neighbors), the neighborhood in the TMG-DP computation
is defined by the structuring element and can be chosen ac-
cordingly to the application.



218 J Math Imaging Vis (2013) 45:214–226

Table 1 Summary of existing intra and intervoxel measures, their ro-
tationally invariance and their dependence on eigenvalues and eigen-
vectors

Measure Rot. Inv. Eigenval. Eigenvec.

Intravoxel MD yes yes no

FA yes yes no

VF yes yes no

sRA yes yes no

Intervoxel DP yes no yes

TDP yes yes yes

FN no yes yes

Jdiv yes yes yes

Riem yes yes yes

LogE no yes yes

AN
dd yes yes yes

Table 2 Summary of proposed neighborhood measures, concerning
their computation method: mean, maximum or difference between the
maximum and the minimum value within the neighborhood

Original measure Operator Neighborhood measurea

Intravoxel MD max−min MG-MD

FA max−min MG-FA

VF max−min MG-VF

sRA max−min MG-sRA

Intervoxel DP mean CI

max TMG-DP

TDP max TMG-TDP

FN max TMG-FN

Jdiv max TMG-Jdiv

Riem max TMG-Riem

LogE max TMG-LogE

AN
dd

mean Add

max TMG-Add

aProposed by the authors, except CI and Add

Tables 1 and 2 summarize all intravoxel and intervoxel
measures presented in Sects. 2 and 3. Table 1 lists the ex-
isting voxelwise measures and points out whether the in-
travoxel and intervoxel measures are rotationally invariant
or not, based on the eigenvalues and/or eigenvectors. Table 2
lists each neighborhood measure and identifies which mea-
sure it is based on, and whether it is an average of the mea-
sure within a neighborhood (mean), the biggest difference
between neighbors (max−min) or it is the maximum mea-
sure found in the neighborhood (max). It is valuable to note
that the measures listed in the last column of Table 2, with
the exception of CI and Add , are the ones based on mathe-
matical morphology and proposed by the authors.

4 Methods

4.1 Acquisition of Human Brain Data

Real data were acquired on a Siemens 3T Trio MR scan-
ner with N = 30 diffusion encoding directions, 63 slices,
2.0 mm × 2.0 mm × 2.0 mm, TE = 95 ms, TR = 8.7 s and
b = 1000 s/mm2. Fifteen human subjects were scanned. The
diffusion data was first linearly interpolated before tensor
estimation and the negative eigenvalues were replaced with
zero [24]. The MINC tools1 from the Montreal Neurologi-
cal Institute, McGill University, were used for all diffusion
image preprocessing.

4.2 Segmentation Experiments

In order to compare the performance of distinct diffusion
scalar measures when used together with the watershed in
DTI-based segmentation of white matter structures we stud-
ied the corpus callosum. The corpus callosum is the major
white matter structure and conduit for information trans-
fer between the cerebral hemispheres and plays an integral
role in relaying sensory, motor and cognitive information be-
tween homologous cortical regions.

The original image was cropped around the corpus callo-
sum to a subvolume of size 33 × 44 × 21 voxels (xyz ori-
entation). Although the scalar maps would not differ if cal-
culated for the entire image (brain) or only for a cropped
version of it, the watershed results would suffer consider-
ably if run for the entire brain. In order to detect all the bor-
ders of the corpus callosum, the number of regions chosen
for the hierarchical watershed would have to be increased
tremendously, since several markers would appear outside
the corpus callosum. In other words, the method would at-
tempt to detect all borders inside the brain, even the ones
not related to the corpus callosum, and would have less pre-
cision in the corpus callosum region. In the other hand, when
the image is cropped around the corpus callosum, the water-
shed transform concentrates its efforts on distinguishing the
corpus callosum from the background.

Intravoxel and intervoxel maps were computed and visu-
alized. All morphological gradients were computed using a
3 × 3 diamond structuring element and the measures based
on the average used the 8-connected two-dimensional neigh-
borhood of the reference tensor. The 8-connected neighbor-
hood was used because of the original definition of CI and
Add , even though a 6-connected three-dimensional neigh-
borhood is expected to result in a better scalar map.

The diffusion scalar maps were analyzed in the context
of the segmentation task. After computation of the scalar

1http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC.

http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
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maps, the hierarchical segmentation was achieved by the ap-
plication of the 3D watershed from markers [8, 10, 14, 40]
and extinction values computation [15, 27, 28, 39]. In other
words, after calculating the scalar map of the original image,
the n structures in the image which had the greatest volume
extinction values were automatically selected. The n mark-
ers assigned to these regions were then used in the watershed
transform, which segmented the scalar map into n regions.

The main goal of the segmentation experiments was to
identify which scalar maps were able to successfully seg-
ment the corpus callosum for all fifteen sets of real data.
A segmentation was considered successful if it was able to
segment the corpus callosum as only one connected compo-
nent.

The results obtained by the watershed using the scalar
measures able to segment the corpus callosum success-
fully for all datasets, i.e., the MG-FA, Add and the TMG-
Add(max), were compared to manual segmentation results,
in order to evaluate the performance of the segmentation.
Since there was no segmentation ground truth for compar-
ison, the definition of a segmentation standard was based
on manual segmentations made by specialists, as described
by Kaus et al. [20]. Three specialists delineated the corpus
callosum boundaries in the FA map and the standard seg-
mentation in each subject image was defined as those voxels
labeled as corpus callosum by at least two specialists. All
other voxels were labeled as background.

Two different metrics were used to evaluate the obtained
segmentation in comparison with the standard: kappa and
overlap [22]. The kappa coefficient measures the agreement
of the segmentations, taking into account the probability of
random agreement. The overlap metric is defined as the per-
centage of voxels classified as corpus callosum by both the
method and the standard with respect to the number of vox-
els classified as corpus callosum by at least one of them.

Other metrics, such as accuracy and specificity, were not
used to compare the obtained segmentations because their
values take into account the voxels labeled as background by
both the method and the standard. As the background area
is significantly larger than the corpus callosum, high values
do not necessarily reflect good performance of the proposed
method.

5 Results

5.1 Segmentation Experiments

An example of a real diffusion tensor image is presented
in Fig. 1. The original image is a DT image of the brain.
The eigenvalues from the DTI (λ1, λ2 and λ3) are shown
in Figs. 1(a)–(c), the principal eigenvector direction (PED)
(color-coded map) in Fig. 1(d) and the manual segmentation
in Fig. 1(e).

Fig. 1 DTI of the corpus callosum—each eigenvalue (λ1, λ2 and λ3)
shown separately, the principal eigenvector direction (PED) and the
result of manual segmentation. Small λ2 and λ3 and uniform color of
the PED confirm that the corpus callosum is a highly oriented structure

Although the original image is volumetric (33 × 44 × 21
voxels), only one slice is presented, in order to facilitate
visualization. All scalar measures cited in Sect. 2 were com-
puted for the original DT image and presented in Figs. 2,
3, and 4. Intravoxel measures can be seen in Figs. 2(a)–
(d), intervoxel measures based on the morphological gra-
dient (max – min) of intravoxel measures are presented in
Figs. 2(e)–(h) and their respective segmentation by the hi-
erarchical watershed in Figs. 2(i)–(l). Figures 3(a)–(e) and
3(k)–(l) show the tensorial morphological gradients based
on intervoxel measures (Jdiv, TDP, FN, Riem, LogE, DP and
AN

dd ) and Figs. 3(f)–(j) and 3(m)–(n) present their respec-
tive watershed-based segmentation. Finally, Figs. 4(a)–(b)
present neighborhood anisotropy measures based on av-
erage, CI and Add , and Figs. 4(c)–(d) their respective
watershed-based segmentation.

In the example shown in Fig. 2, it is possible to confirm
that transitions between regions of low and high anisotropy
are smooth in the FA map (Fig. 2(b)) and more abrupt in
the VF map (Fig. 2(c)), due to its lack of sensitivity in less
anisotropic regions. The corpus callosum, therefore, seems
bigger in the FA map than in the VF map and different seg-
mentations result (Figs. 2(j) and 2(k)). On the other hand,
although the MG-FA from Fig. 2(f) is much more noisy out-
side the corpus callosum than the MG-VF from Fig. 2(g),
the segmentation result did not suffer distortions due to this
noise and looks more similar to the ground truth (Fig. 1(e)).

By using the same intervoxel measures from Sect. 2 in the
TMG computation, it is possible to verify the adequacy of a
scalar map to detect borders of the corpus callosum. The DP
and the TDP, unable to detect differences between distinct
tensors with the same orientation, were able to preserve im-
portant borders in the corpus callosum experiment, as shown
in Figs. 3(k) and 3(b). The FN, which is not affine invariant,
also provided a useful scalar map (Fig. 3(c)), when used to
compute the TMG.
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Fig. 2 Intravoxel
measures—MD, FA, VF and
sRA, respective morphological
gradient (MG) and resulting
watershed segmentation. The
MGs were computed using a
6-connected neighborhood as
structuring element

Fig. 3 TMGs computed using each intervoxel measure presented in Sect. 2.2.1 and the respective obtained watershed-based segmentation

The gradients based on Jdiv (Fig. 3(a)), on TDP (Fig. 3(b))
and on Riem (Fig. 3(d)) presented smoother borders, and
consequently the segmentation result provided by them are
inferior (Figs. 3(f), 3(g) and 3(i)). The borders in the TMG
using FN (Fig. 3(c)), LogE (Fig. 3(e)) and Add (Fig. 3(l))
were sharper and provide better results in the application
of the watershed technique. Although the TMG using DP
(Fig. 3(k)) presents strong borders, its obtained segmenta-

tion was not good due to the discontinuity in its upper bor-
der.

The neighborhood intervoxel measures presented in
Figs. 4(a) and 4(b) seem able to preserve the borders of cor-
pus callosum, especially the Add . However, its counterpart,
presented in Figs. 3(k) and 3(l), accomplish the segmen-
tation task with superiority when compared to the ground
truth, thanks not only to the replacement of the mean by the
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Fig. 4 Neighborhood anisotropy measures computed for the corpus
callosum region

Fig. 5 Comparison of the coherence index (CI) and the CI-TMG com-
puted using the dot product as similarity measure. Both were obtained
using a 6-connected three-dimensional neighborhood and are showed
only in the detail marked by the rectangle in the original image

maximum (see Eqs. 11 and 17, for example), but also due to
the neighborhood being considered in their computation.

Figure 5(a) shows the principal eigenvector direction
(PED) of the corpus callosum, with a detail selected on it.
A better solution to help the scalar map CI to preserve bor-
ders would be to use a 3D neighborhood in its computation.
But even when a 3D neighborhood (6-connected neighbors)
is considered instead of a 2D neighborhood (8-connected
neighbors), the CI result (Fig. 5(b)) is considerably inferior,
when compared to the TMG (Fig. 5(c)). Similar conclusions
can be drawn about Add , since the neighbors used in its com-
putation are, by definition, also from a single plane.

Not all scalar maps presented similar segmentation per-
formance for all 15 subjects. For some subjects, the TMGs
were able to segment the corpus callosum as a single con-
nected component (Figs. 6(a) and 6(b)), even for a small
number of regions (n = 25). For other subjects, in which the
corpus callosum presented a thinner profile, the TMGs were
not able to distinguish it from the background (Figs. 6(c)
and Fig. 6(d)), even for a large number of regions (n = 100).
Some morphological gradients, MG-sRA and MG-VF, were
not able to segment only one connected component repre-
senting the corpus callosum for some subjects, no matter the

Fig. 6 Watershed segmentation results based on the TMG-FN for two
subjects. For the first subject, where the watershed was able to seg-
ment the corpus callosum, the chosen number of regions n was 25. For
the second subject, even with n = 100, the watershed was not able to
segment the corpus callosum

Fig. 7 Segmentation using MG-VF computed for the corpus callosum
region, varying the number of regions (10, 20, 50 and 100)

Fig. 8 Segmentation using MG-FA computed for the corpus callosum
region, varying the number of regions (10, 20 and 50)

value assigned for n (Fig. 7). Other scalar maps, such as the
MG-FA, the Add and the TMG-Add(max), were able to seg-
ment all datasets, depending only on a good choice of the
number n of regions (Fig. 8).

The summary of segmentation results can be seen in
Fig. 9. While the MG-FA, Add e TMG-Add(max) were able
to segment all 15 subjects, the MG-sRA and the MG-VF suc-
ceeded for 14 subject and failed to segment the corpus cal-
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Fig. 9 Number of successful
and unsuccessful segmentations
within the dataset using several
scalar measures: correctly
segmented (green); the corpus
callosum as 2 connected
components (yellow) and
missing borders of the corpus
callosum (red) (Color figure
online)

Fig. 10 Overlap of manual and
automatic segmentation results
compared to the gold standard
for all 15 subjects

losum as one connected component for only 1 subject. The
TMG-FN and the TMG-LogE failed to detect all the corpus
callosum borders for 9 and 11 subjects, respectively.

The scalar maps which were able to segment the corpus
callosum as one connected component for all fifteen sets of
real data had their segmentation results quantitatively as-
sessed. The minimum, maximum and mean overlap of the
manual segmentation versus the standard were computed
separately for each subject (Fig. 10). Also the overlap of
the watershed segmentation using all three measures in each
subject were calculated and plotted (Fig. 10).

The segmentation obtained using the morphological gra-
dient of FA (MG-FA) presented higher overlap and kappa
coefficients, when compared to the other two measures, Add

and TMG-Add(max). And although it was inferior to the
overlap and kappa coefficients of the mean of the man-
ual segmentation, it presented lower variation. The TMG-
Add(max) segmentation performed better then the Add ,
when compared to the standard (Table 3).

The volumetric segmentation of the corpus callosum can
also be visualized and compared to the manual segmenta-
tion. The segmentation result shown in Fig. 11 (red) was ob-
tained using the MG-FA, which has shown the best quanti-
tative results, and overlaid to the manual segmentation done
by a specialist (green). Most of the voxels assigned as corpus
callosum by the specialist are also identified as corpus callo-
sum using the proposed method. As the volumetric bound-

Fig. 11 Automatic (red) segmentation result obtained by the water-
shed transform and the MG-FA overlaid on manual (green) segmenta-
tion (Color figure online)

aries of the corpus callosum are not well defined, as they
are in the midsagittal slice, the watershed segmentation can
go beyond the specialist segmentation because it is difficult,
even for a specialist, to tell exactly where the corpus callo-
sum ends.
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Table 3 Mean overlap and kappa metrics with their respective standard deviations, computed for segmentation results of all subjects (manual
segmentation, watershed segmentation using MG-FA, Add and TMG-Add(max))

Overlap Kappa Accuracy

Mean Std Mean Std Mean Std

MG-FA 85.96 3.73 92.29 2.22 99.74 0.06

Add 76.98 4.85 86.76 3.12 99.59 0.10

TMG-Add(max) 83.79 2.45 91.02 1.46 99.69 0.05

Manual 93.86 7.61 96.60 4.30 99.89 0.13

6 Discussion

DTI is an important MRI technique that allows the investi-
gation and characterization of brain connectivity, and some
DTI-based segmentation methods have been studied in the
last decade, mostly analyzing white matter structures, due
to its high anisotropy [3, 25, 29].

In previous work, a DTI-based segmentation method us-
ing the watershed transform and a tensorial morphological
gradient was proposed and applied to segment brain struc-
tures [35]. Since a crucial step in the proposed method is the
computation of the gradient, the present study analyzes the
existing diffusion scalar maps as gradient candidates for the
watershed method.

Several diffusion scalar maps have been proposed and
used mostly in clinical studies, to infer microstructural char-
acteristics of normal tissue and pathological changes in tis-
sue microstructure [5]. This work is the first time that several
diffusion scalar maps are analyzed in the context of water-
shed segmentation.

The visualization of intervoxel maps of the corpus callo-
sum showed that, although it has a mean diffusivity and an
anisotropy very similar to its neighbor (the cingulum bun-
dle), all morphological gradients (MGs) computed based on
the intervoxel DAIs preserved the borders. The watershed
transform based on any of the computed morphological gra-
dients, except the MG-MD, was able to segment the corpus
callosum. It is separable because of a strip of artifactually
low anisotropy between it and the cingulum bundle, due to
partial volume averaging of fibres from these two pathways.

Since the diffusion tensors in the corpus callosum are
strongly oriented and their orientation differs considerably
from that of their neighbors, measures that take into account
tensor orientation also performed well in detecting its bor-
ders.

Segmentation experiments using the watershed transform
showed that the segmentation of the corpus callosum is pos-
sible using almost all discussed scalar maps. Nevertheless,
when dealing with the variety of shapes and sizes contained
within the dataset, only a few measures are able to recover
the borders of the corpus callosum.

The scalar maps can be divided in three groups, in terms
of the segmentation results obtained. The first group is com-
posed by measures that are not able to segment success-
fully any data: MG-MD, TMG-DP, TMG-TDP and TMG-
Riem. The second group is composed by measures that are
not able to segment the whole dataset, but only a subset of
it. These measures are the morphological gradients, MG-
sRA and MG-VF and both tensorial morphological gradi-
ents, TMG-FN and TMG-LogE. They fail in segmenting
thin profiles, where voxels from the corpus callosum and
from the background are used simultaneously in the TMG
computation of a single voxel. In such cases, these metrics
would obtain a better segmentation if computed in interpo-
lated images.

Comparing the TMGs with the DAIs and with the MGs,
it is evident that the TMGs are richer in detail, since they
take into account much more information. The DAIs are the
most simple measures, taking into account only the eigen-
values of each voxel. The MGs are an intervoxel version of
the intravoxel DAIs.

Despite being simpler, the MGs were the only ones to
segment correctly the entire dataset. The neighborhood is
also included in the computation of the tensorial morpho-
logical gradients (TMGs), but while the MGs are based on
intravoxel measures (i.e., consider only the eigenvalues), the
TMGs are based on intervoxel measures, and therefore in-
clude information from the eigenvectors in addition to the
eigenvalues. Because the eigenvalues carry the most relevant
difference between the corpus callosum and the background,
measures that take into account the eigenvectors only di-
lute the important information and result in gradients with
weaker borders.

Even though the best segmentation results were obtained
by using the MGs, segmentation resulting from the water-
shed combined with the MG-sRA and the MG-VF were not
satisfactory. Such scalar maps tend to make thin white mat-
ter structures even thinner, thanks to their decreased sensi-
tivity in the high anisotropy range. Therefore, even using the
external morphological gradient and a high number of re-
gions n, the corpus callosum was not obtained as one single
connected component for all subjects.
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The comparison of the segmentation results obtained
from the watershed with the gold standard constructed from
the manual segmentation showed that the MG-FA was able
to segment two thirds of the dataset as well as the special-
ists. When looking at the volumetric segmentation results,
the MG-FA was also the scalar map that performed best. But
since the majority of the voxels considered as corpus callo-
sum by the specialist do not present a significant change in
the direction of the fibers, the result could be enhanced if the
fractional anisotropy map were weighted by the component
of the main eigenvector in the most common direction ob-
served. The choice of markers to represent specifically the
corpus callosum and the background, not the local minima
of the image, could help to reduce the leak of the watershed
regions and to perform the segmentation automatically.

7 Conclusions

In this work, tensor-derived maps, usually used in quantita-
tive analysis of DTI, were studied in the context of segmen-
tation. Existing intravoxel and intervoxel maps were dis-
cussed, and new scalar maps were proposed, based on con-
cepts of mathematical morphology. All scalar maps were
used together with the watershed transform to segment the
corpus callosum. The MG-FA, the Add and TMG-Add(max)

preserve relevant information from diffusion tensor images
useful for the segmentation task, and therefore are able to
segment successfully the corpus callosum for all 15 subjects
of the dataset. Other studied scalar maps, such the tensorial
morphological gradients TMG-FN and TMG-LogE and the
morphological gradients MG-VF and MG-sRA), have some
difficulty to detect thin structures and, therefore, segmented
the corpus callosum as a single connected component only
for some subjects. The remaining scalar maps were not able
to successfully segment the corpus callosum for any subject.
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