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Abstract This paper presents a multiscale corner detec-
tion method in planar shapes, which applies an undecimated
Mexican hat wavelet decomposition of the angulation sig-
nal to identify significant points on a shape contour. The
advantage of using this wavelet is that it is well suited for
detecting singularities as corners and contours due to its ex-
cellent selectivity in position. Thus, this wavelet plays an
important role in our approach because it identifies changes
in non-stationary angulation signals, and it can be extended
to multidimensional approaches in an efficient way when ap-
proximating this wavelet by difference of Gaussians. The
proposed algorithm detects peaks on a correlation signal
which is generated from different wavelet scales and re-
tains relevant points on the decomposed angulation signal
while discards poor information. Our approach assumes that
only peaks which persist through several scales correspond
to corners. Furthermore, we introduce a novel procedure to
tune parameters for the corner detection algorithms that cor-
responds to the best relation between Precision and Recall
measures. This technique guides the parameter adjustment
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of the algorithms according to the image database and it
improves their performance with regard to true corner de-
tection. Concerning the performance assessment of the al-
gorithms, we compare the proposed one to other corner de-
tectors by using Precision and Recall measures which are
based on ground-truth information. Tests were carried out
using more than a hundred images from a non-homogenous
database that contains noisy and non-noisy binary shapes.

Keywords Corner detection · High curvature points
(HCP) · Mexican hat wavelet · Curvature space-scale

1 Introduction

According to Mokhtarian and Mohanna [19], corners are
important features in images and more relevant than other
points on a shape. Also known as high curvature points
(HCP), they are useful for shape description and furthermore
represent an object in a compact manner, invariant to rota-
tion and translation [24, 30].

Shape analysis and recognition tasks can benefit of al-
gorithms to detect corners and dominant points, which can
be used to represent objects [7, 21, 33]. Applications that
rely on corners include scene analysis, polygonal approxi-
mation, feature matching, robot navigation, shape similar-
ity and object tracking, among many others. One important
class of corner detection models often supposes that the in-
terest points correspond to the high curvature ones of an ob-
ject profile. High curvature points from shapes can generally
be associated to salience, indicating the presence of relevant
landmarks for reconstruction of shapes. A large number of
corner detectors have been proposed in the literature [3, 8,
10, 20]. The current techniques can be broadly categorized
into two groups named as intensity-based [3, 8, 29, 31] and

mailto:ialis@ufc.br
mailto:fsombra@ufc.br
mailto:nivando@ifce.edu.br
mailto:dushizima@lbl.gov


252 J Math Imaging Vis (2013) 45:251–263

contour-based detection [8, 14, 34, 35] methods. The for-
mer includes algorithms that indicate the presence of a cor-
ner directly from the image gray values. The latter consists
of the methods that recover image contours, followed by the
search for curvature maxima or inflection points along these
contours [19]. The proposed method belongs to the latter
group since our database consists of shapes with previously
extracted contours. Corner detectors can also be classified
into two approaches: single-scale detectors [9] and multi-
scale detectors [3, 14, 21]. Single-scale detectors work well
only if the image has similar size features; otherwise ei-
ther fine or coarse scale features are poorly detected. Multi-
scale corner detectors based on the classical scale-space the-
ory [17] have been proposed to improve the effectiveness in
the more general situation of relevant features with various
sizes. Rattarangsi and Chin [25], Mokhtarian and Suomela
[20], and Mokhtarian and Mohanna [19] introduced the cur-
vature scale space (CSS) technique to detect corners. De-
velopments of this technique with minor modifications have
been proposed as the Direct Curvature Scale Space (DCSS)
and a hybrid version to overcome the sensitivity of DCSS
to noise [36]. The hybrid CSS/DCSS can help trace a cor-
ner back to the finest scale so that the corner can be located
as precisely as possible [36]. In addition, compared to CSS,
DCSS is much cheaper in terms of computational cost.

Shape contour can be represented in terms of edge gradi-
ent direction, as defined in [15, 28]. Lee et al. introduced in
[14] a framework for wavelet-based corner detection using
different scales, followed by several articles that enlarged
the scope of this work [10, 29, 32]. Lee et al. reported an
analysis based on the threshold Corner Ratio (CR) which
is set according to the image database. The authors suggest
distinct values for that parameter depending on the image to
be processed. In general, parameter setting in corner detec-
tors is not an easy task since these parameter values are not
usually valid for all images of a database [23]. Regarding
the wavelet decomposition, the algorithm uses the wavelet
transform modulus maxima that often adopts a Gaussian or
Mexican hat mother wavelet.

More recently, Pedrosa and Barcelos [23] devised a mul-
tiscale corner detector more robust to noise and simple
in terms of computational complexity. According to this
scheme, the only parameter to be set is the number of itera-
tions for the anisotropic filtering function regardless the im-
age database. The anisotropic filtering eliminates the influ-
ence of noise and removes irrelevant details on the curvature
signal of shapes but it requires higher computational effort,
especially as the number of iterations increases. Pedrosa and
Barcelos’ method presents some advantages over other cor-
ner detectors, particularly it embodies a filtering process that
prevents false corner detection. Moreover, the method de-
pends on a single parameter corresponds to the number of
iterations in anisotropic filtering. The authors report that the

algorithm achieves good results after 500 iterations in the
filtering step. Nevertheless, it is necessary to determine the
best number of iterations in the smoothing step and it seems
to be as difficult as to determine the suitable parameter κ

to compute the curvature. In fact, both parameters are sen-
sitive to resolution, rotation and contour noise. The authors
assessed the algorithm by using binary images from MPEG7
Part B [13] database and ground-truth based measures. The
ground truth corners of these binary images were manually
marked and used to assess the simulation results.

In this paper, we present a multiscale algorithm for cor-
ner detection that is the follow up to the work presented at
the 24th Conference on Graphics, Patterns and Images (Sib-
grapi 2011) [22]. The main focus of this prior publication
was to detect corners over redundant scales of the angulation
signal decomposition, aimed at achieving a suitable recon-
struction of the original contour. Similarly, the proposed al-
gorithm also decomposes the angulation signal of the shape
contour into multiple scales to obtain both local maxima
and minima of consecutive scales of this function through
an undecimated wavelet decomposition [8, 10, 14] to iden-
tify the shape dominant points. Moreover, we introduce a
novel procedure that searches for multiscale algorithm pa-
rameters, in a particular database, and combine it to the idea
underlying inter-scale correlation to detect dominant points
in planar shapes. The proposed method is also assessed and
compared with three methods [14, 20, 23] including the well
known curvature scale-space (CSS). Furthermore, the per-
formance evaluation of the algorithms relies on ground-truth
based measures.

The outline of the paper is as follows: in the next section,
we present a brief review of the related works. Section 3
describes the proposed corner detection technique. Section
4 discusses the computational complexity of the proposed
method and the related ones. Section 5 reports and discusses
the experimental results and Sect. 6 concludes this paper.

2 Related Methods

In this section, we present three methods available in the lit-
erature, known as Pedrosa and Barcelos’ method [23], CSS
[17] and Lee et al. method [14]. The main reason for choos-
ing these methods in this study is their multiscale nature, so
that we can fairly assess the proposed corner detector.

2.1 Pedrosa and Barcelos’ Technique

Pedrosa and Barcelos [23] introduced a method based on the
detection of high curvature points along the contour to iden-
tify corners. Each curvature point pi is considered to be the
curve or the line segments connecting pi to the points pi−κ

and pi+κ in the contour, where the value κ is a smoothing
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parameter. According to the authors, the ideal parametriza-
tion is a difficult task to achieve as it may depend on various
factors such as shape resolution and orientation. This ap-
proach defined κ = 1, leading to a detailed curvature signal,
that is also highly sensitive to noise. This curvature signal
is then smoothed by a nonlinear anisotropic filter that elimi-
nates most of the high curvature points unrelated to corners.
The number of iterations of this filtering process also con-
trols signal details and therefore as this parameter increases
relevant corner points can be suppressed. After this smooth-
ing step, the actual corner detection is achieved by the anal-
ysis of local maxima and minima of the smoothed curvature.
However, not all remaining maxima and minima points con-
stitute real corners.

2.2 The Curvature Space-Scale Technique

One of the most popular multiscale curvature representation
of 2D curves is the curvature scale-space [17], which has
been improved and applied in different works [1, 3, 11, 18–
20, 26, 35–37].

The CSS technique is suitable for recovering invariant ge-
ometric features, curvature zero-crossing points [17] and/or
extreme [36], of a planar curve at multiple scales. To com-
pute it, the curve Γ is first parameterized by the contour
point t :

Γ (t) = (
x(t), y(t)

)
, (1)

where x(t) and y(t) refer to contour point coordinates. The
multiscale version of Γ is defined by [18] as:

Γσ = (
X(t, σ ),Y (t, σ )

)
, (2)

where

X(t, σ ) = x(t) ⊗ g(t, σ ); Y(t, σ ) = y(t) ⊗ g(t, σ ). (3)

The symbol ⊗ refers to the convolution operator and
g(t, σ ) denotes a Gaussian of width σ . Note that σ describes
the scale parameter. The process of generating scaled ver-
sions of Γ as σ increases from zero to infinity (∞) denotes
the evolution of Γ . In order to find curvature zero-crossings
or extreme from scaled versions of the input curve, it is nec-
essary to accurately compute curvature, K , on an scaled ver-
sion Γσ . Curvature K on Γσ is given by [18]:

K(t, σ ) = Ẋ(t, σ )Ÿ (t, σ ) − Ẍ(t, σ )Ẏ (t, σ )

3
√

(Ẋ(t, σ )2 + Ẏ (t, σ )2)
, (4)

where

Ẋ(t, σ ) = ∂

∂t

(
x(t) ⊗ g(t, σ )

) = x(t) ⊗ ġ(t, σ ), (5)

Ẍ(t, σ ) = ∂2

∂t2

(
x(t) ⊗ g(t, σ )

) = x(t) ⊗ g̈(t, σ ). (6)

Similarly, Ẏ (t, σ ) and Ÿ (t, σ ) can be defined by follow-
ing the expressions in Eqs. (5) and (6). This algorithm de-
signed by Mokhtarian and Suomela [20] requires the Canny
edge operator applied to the gray level image to obtain a bi-
nary edge image.

2.3 Lee et al. Technique

This method encloses the angulation function, φ(t), which
is obtained by

φ(t) = tan−1
(

yt+q − yt−q

xt+q − xt−q

)
(7)

where the parameter q is called smoothing parameter. Ac-
cording to Lee et al., the determination of the parameter q in
Eq. (7) depends on the orientation resolution and the corner
discrimination ability.

Previous works in digital curves analysis and represen-
tation [27, 28] have pioneered the use of edge gradient di-
rection to represent shape contour. Rosenfeld and Johnston
[27] argumented that the choice of the smoothing parameter
q can be challenging, and they suggested q > 1 to provide
a smoothed slope measurement in the corner profile repre-
sented by the angulation signal. However, we have observed
that the best choice depends on the scale of interest. Follow-
ing these observations, Lee et al. [14] computed the angula-
tion signal by using q = 3 such that this choice caused the
orientation profile of a corner to be displayed as a ramp-like
profile.

Furthermore, the next section describes the proposed ap-
proach, including a description of key steps from [14] that
were incorporated to our algorithm.

3 The Multiscale Corner Detector

Corners appear as local features on the contour and wavelets
are suitable to evaluate significant features that persist over
several scales of smoothed contours. Attempting to identify
corner candidates, inter-scale correlation by using Mexican
hat wavelet decomposition searches for candidates which
occur where there are maxima and minima in detail coef-
ficients at several adjacent scales. Mexican hat has an excel-
lent selectivity in position: it is quite efficient for a point-
wise analysis, in particular the detection of local singulari-
ties (contours, corners) [2]. Moreover, the wavelet properties
of the Mexican hat can be exploited to detect features at dif-
ferent scales [12]. Our approach considers this wavelet be-
cause it identifies changes in non-stationary angulation sig-
nals and it can be extended to multidimensional approaches
in an efficient way when approximating this wavelet by dif-
ference of Gaussian functions.
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Fig. 1 The methodology for the
proposed corner detector

Figure 1 summarizes the proposed methodology for mul-
tiscale corner detection. The contour signal is acquired in
the contour extraction of a segmented shape. As there are
various ways of representing a shape contour by signals, we
generate the contour signal which follows the 4-directional
chain code [7]: such method starts from an initial point of
contour and follows it in a clockwise manner. For each point,
the chain-code retrieves the location of the actual point and
describes the direction to be followed in the contour in order
to find the next point. Its output must be parameterized and
the result is executed in a corner detector like an 1-D an-
gulation [14] signal. The main differences between our ap-
proach and the Lee et al. method are: (a) the adopted mother
wavelet, here the Mexican hat function [16], the candidate
evaluation phase, the methodology to search for algorithm
parameters and additional comparisons among more recent
papers.

The input of the corner detector is the angulation function
of the shape contour. This one-dimensional signal is gen-
erated according to Eq. (7) and it corresponds to step 2 of
the proposed methodology (see Fig. 1). In the next step, the
angulation signal is convolved with a scaled version of the
mother wavelet at scales

cs(t) = φ(t) ⊗ ψs(t), (8)

where the symbol ⊗ denotes the convolution operation,
cs(t) corresponds to the smoothed version of the angulation
signal at scale s and ψs(t) is a scaled version of the mother
wavelet. The function ψs(t) is such that

ψs(t) = 1√
s
ψ

(
t

s

)
(9)

and the mother wavelet ψ(t) is the second derivative of a
Gaussian, i.e. a normalized Mexican hat function [16] given
by

ψ(t) = 2

π1/4(
√

3σ)

(
t2

σ 2
− 1

)
exp

(−t2

2σ 2

)
(10)

where σ refers to the standard deviation.
Thus, by applying Eq. (8) to the angulation signal it

yields the approximation wavelet coefficients (smoothed
signal) in each scale s. Hence, the difference between two
successive smoothed signals generates the detail wavelet co-
efficients, ws(t), as Eq. (11) summarizes

ws(t) = cs−1(t) − cs(t), s ≥ 1 (11)

where c0(t) corresponds to the original angulation signal.
The proposed methodology states that corners occur

where there are extreme values, i.e. maxima and minima
values in the non-orthogonal wavelet coefficients ws(t) at
two or more adjacent scales. The novelty of this multiscale
framework consists in inspecting these peak values by using
correlation signals obtained from the redundant scales of the
wavelet decomposed signal without the usage of a threshold.
Thus, different redundant scales are generated and later cor-
related to detect persistent peaks which are likely to be can-
didate corners in the decomposed signals. Our experimental
findings indicate that the multiscale correlation analysis at
the first three scales is able to reveal redundant information
that remains over scales and it is likely to be a candidate cor-
ner. The spatial correlation corrs(t) between adjacent scales
s and s + 1 at the contour point t is given by

corrs(t) =
s+1∏

i=s

wi(t), s ≥ 1. (12)

In this paper, the angulation signal is decomposed into
three spatial scales to be correlated and thus check redun-
dant information between scales for corner detection. Ac-
cording to the tests, this redundancy can be investigated for
more levels of decomposition. In fact, the number of scales
in which the true corners are preserved varies with the im-
age. Moreover, we have observed that for smooth contour
regions candidate corners do not persist over many decom-
position scales while candidate corners associated to high
curvature points do.
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Fig. 2 Correlation analysis between wavelet coefficients of different
scales of a shape contour

Our approach is synthesized in Fig. 2, where it depicts
that real corners have large amplitude over many wavelet
scales, while magnitude of false corners decays with in-

creasing scale. The circles in Fig. 2 illustrate the selected
candidate corners in the array. The angulation signal is de-
composed into several scales: a detail coefficient is com-
pared to the one in the next level. This result shows that cor-
ners correspond to the largest amplitude values which persist
on the correlation signal over many wavelet scales.

Following the statement that false corners die out swiftly
with increasing scale, the algorithm identifies on the corre-
lation signal whether a candidate corner is true or false by
testing the inequality:
∣∣corrs(t)

∣∣ >
∣∣ws(t)

∣∣, s ≥ 1 (13)

where | · | stands for the absolute value. When Eq. (13) is
confirmed (for scale s and all n contour points) it means
that large spatial correlation values between two consecutive
scales points to real corners. Afterwards, these points consti-
tute an array of probable corners. The algorithm investigates
whether the candidate corner presents the largest value in the
neighborhood where the correlation is high in order to differ
a high curvature point from a sharp correlated false corner.
The absence of corners or other significant features in the
neighborhood of a contour region allows the false corners to
be removed from the array.

Correlation detected points are highlighted in Fig. 3,
which are overlaid to the detail wavelet coefficient signal.
Figure 3(c) magnifies a portion of Fig. 3(b) to show the ab-
solute values of the correlation and the wavelet coefficient.
We show that Eq. (13) holds when the corner is identified
only at locations where the correlation magnitude is higher
than the absolute value of the decomposition coefficient.

4 Temporal Computational Complexity

The algorithm steps related to the contour parametrization
and angulation signal extraction are less critical in terms of
computational complexity than the decomposition scheme.
While the preprocessing step performs at a run-time com-
plexity of order Θ(n) (steps 1 and 2 in Fig. 1), the mod-
ule related to the Mexican hat wavelet decomposition per-
forms at a higher complexity of Θ(n2) (steps 3, 4 and 5). In-
deed, the current convolution implementation could be im-
proved by reformulating the algorithm to be executed in the
frequency domain. However, the remaining procedure con-
cerning the multiscale correlation accomplishes a complex-
ity Θ(n2). Thus, the overall computational complexity of
the algorithm is: Θ(n) + Θ(n2) + Θ(n2) = Θ(n2), where
n is the number of shape contour points. In this paper, the
angulation signal is decomposed across only a fixed num-
ber of three scales and hence it does not impact the overall
asymptotic complexity of the algorithm.

Despite the multiscale nature of the developed algorithm,
we do not define a range of scales (minimum and maximum)
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Fig. 3 Effects of correlation between wavelet coefficients of consecu-
tive scales from shape in Fig. 2(a)

to perform the correlation step of the corner detector. In fact,
this scale range would affect the computational complexity
of the algorithm as another variable to be enrolled in the
algorithm.

The corner detection method introduced by Pedrosa
and Barcelos [23] consists of three steps which include
shape representation through K-curvature signal, nonlinear
anisotropic filtering and corner detection on the filtered cur-
vature signal. The overall computational complexity of this
method is reported as O(nm), where n is the number of
shape contour points and m corresponds to the number of it-
erations in the smoothing step using a nonlinear anisotropic
diffusion filter. Thus, the larger the image database and the
greater the number of iterations, the longer will be the corner
detection processing.

The CSS approach presents a computational complexity
higher than the proposed method. This is due to the Gaussian
filtering to be applied to the shape outline several times and
its respective standard deviation changes in each iteration,
as defined in [17, 20]. This process is performed to gener-
ate the space-scale map from the original method and then

Table 1 Temporal computational complexity of the methods

Method Complexity

Proposed Θ(n2)

Pedrosa and Barcelos O(nm)

CSS O(n3)

Lee et al. O(n2)

run the corner detector with the Gaussian parameter equal to
σhigh [20]. This method achieves a computational complex-
ity O(n3), where n is the number of points on a contour.

Lee et al. corner detector performs similarly to our
method, but with different mother function at the wavelet
decomposition step. Another difference refers to the cor-
ner location since Lee et al. method only evaluates a spe-
cific scale and searches for maximum and minimum values
according to a threshold. Its computational complexity is
characterized by O(n2), where n is the number of points on
a shape contour. An overall view about the computational
complexity of all methods is displayed in Table 1.

5 Simulation Results

This section presents the experiments and performance eval-
uation of the proposed technique for dominant point de-
tection in comparison with other contour-based methods
as shape salience point detection [23], curvature space-
scale analysis [20], and wavelet transform modulus maxima
[14] approaches. The results were obtained by running the
methods for a set of shapes of different sizes and rough-
ness, which belong to a dataset of 104 binary images from
MPEG7 Part B [13]. Notice that 10 % of the images from the
dataset present contours with an amount of spurious varia-
tion.

5.1 Performance Evaluation Methodology

Visual inspection is helpful in assessing the accuracy of
corner-detection methods, but it is a tedious and often sub-
jective task. Also, the points of high curvature do not neces-
sarily correspond to visually significant ones [4, 7, 19, 20].
These reasons motivate the use of quantitative measures that
can relate detected points to ground-truth information to as-
sess the performance of the corner detectors.

Moreover, performance assessment of corner-detection
methods can also be evaluated in terms of reconstruction er-
ror and compacting ratio [22].

This section compares the proposed method to the three
other corner detectors: the Pedrosa and Barcelos’, standard
CSS and Lee et al. methods, which are based on the mul-
tiscale analysis and therefore provide suitable comparisons
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with the developed corner detector. The performance assess-
ment methodology considers ground-truth based measures
namely Precision and Recall.

Precision measures the ability of the multiscale detec-
tors to retrieve corners that are relevant to represent a shape
while Recall measures the relevant corners that are actu-
ally detected. These relevant corners correspond to the shape
ground-truth. In fact, these measures are defined as:

Precision = #({relevant corners} ∩ {detected corners})
#({detected corners}) ,

(14)

Recall = #({relevant corners} ∩ {detected corners})
#({relevant corners}) (15)

where #(•) is the cardinality of the set • and ∩ denotes inter-
section of sets. When false corners are not detected, Preci-
sion returns a value equal to 1.0. Despite this, if all detected
corners correspond to the true ones then Recall is achieved
to 1.0.

5.2 Experiment I—Parameter Adjustments

In this section, we introduce a procedure to search for the
best parameter values for multiscale methods that relies on
ground-truth corners of an image database. The aim of this
procedure is to maximize Precision and Recall for a partic-
ular database in terms of a cost function.

Here, we introduce the cost function Q as the sum of
Precision and Recall obtained when the parameters p1 and
p2 of the multiscale corner detectors are searched over an
image database I , in accordance with:

Q(p1,p2) =
∑

∀i∈I

Precision(p1,p2, i) + Recall(p1,p2, i).

(16)

The function Q is higher when the parameters produce
high Precision and Recall values. Thus, the best results are
achieved when Q is maximized, and finally the function
argmaxQ(p1,p2) returns the best pair of parameters. In the
following we describe the whole parameter adjustment al-
gorithm. First, we define a range for parameters p1 and p2.
Then, we apply a brute force optimization scheme where the
corner detector runs for all pairs of parameter values in the
range p1 = [p1min ..p1max ] and p2 = [p2min ..p2max ] and for all
images in the database. Finally, the best pair of parameter
values is chosen. With regard to our proposed method, the
pair (p1,p2) consists of the parameters q and σ .

This experiment considered qmin = 2, qmax = 15 and
σmin = 1, σmax = 15, therefore the proposed algorithm exe-
cuted 210 times for each shape from the MPEG7 database.

Moreover, Precision = 1 and Recall = 1 were accom-
plished for different pairs of (q, σ ) and occurrences within
the range, i.e. from (qmin, σmin) = (2,2) to the maximum
(qmax, σmax) = (15,15). The result of this experiment was
the pair (q, σ ) = (8,4).

To perform the tests, we have applied the proposed func-
tion Q to CSS and Lee et al. methods. Both multiscale detec-
tors encompass parameters suggested by the authors regard-
less the applied database. However, our experiments showed
that better results are accomplished when adjusting these pa-
rameters according to the database. In particular, Mokhtar-
ian and Suomela [20] suggested σhigh = 4 for tracking cor-
ners and a threshold h = 0.02 for removing false corners
in the CSS approach while Lee et al. [14] conducted ex-
periments with q = 3. In this paper, we have reproduced
the original Lee et al. method by applying the Mexican hat
wavelet function with σ = 3 to the angulation signal ex-
tracted with q = 3, as suggested by the authors.

Following the proposed parameter-adjustment function
Q, we seek the best pair (p1, p2) for each method, with
(σhigh, h) in the CSS approach and (q, σ ) to the Lee et al.
method. With regard to the CSS parameters, we have tested
the values σhigh = [1..15], hmin = 0.01, hmax = 15.0, with
an increasing step of 0.01 for h. Accordingly, the function
Q is maximized with the pair (σhigh, h) = (6,10). Likewise,
the experiment with Lee et al. method achieved the pair
(q, σ ) = (4,3) within the range q = [2..15] and σ = [1..15].

Figure 4 exhibits the number of corners detected by the
discussed methods. In fact, these results were achieved with
the aforementioned database and by using different values
for σ . We have observed for all multiscale methods, that
the number of corners decreases as σ increases. Moreover, a
small value of this parameter retrieved more corners, includ-
ing many false ones. After reaching a certain σ value, i.e.
σ equal to 3, the number of corners remained steady inde-
pendent of increasing this parameter value. Our simulation
results also showed that q values close to 1 implied a great
amount of details on the angulation signal and therefore the
algorithms detected more corners, including false corners.
On the other hand, higher values of q implied a great amount
of detail reduction which resulted in missing true corners.

Notice that our comparative analysis excluded Pedrosa
and Barcelos’ method since its multiscale parameters lack
correspondence to the parameters σ and q , adopted in the
proposed comparison.

5.3 Experiment II—Performance Assessment

This section presents the experiments performed with pa-
rameters generated by the methodology introduced in
Sect. 5.2. Figures 5 and 6 show that the novel parameter-
adjustment algorithm achieved better results for CSS and
Lee et al. methods. Also, the multiscale proposed method,



258 J Math Imaging Vis (2013) 45:251–263

Fig. 4 Comparative analysis of
methods for different standard
deviation values and number of
HCPs. (a), (b), (e), (f) binary
shapes and (c), (d), (g), (h) their
respective comparative analysis

Pedrosa and Barcelos’ and modified CSS produced slightly
similar results when applied to a shape of smooth contour
(see Fig. 5). In fact, our method detected all true corners
without retrieving any false corner while Pedrosa and Barce-
los’ method missed two true corners and produced two false
positives for this particular image sample. The modified Lee
et al. method reached an intermediate Precision that is pe-
nalized by a higher number of false corners. The original
CSS and Lee et al. methods produced a large amount of
false corners and the worse results obtained for this shape.

Figure 6 presents the result of applying each corner de-
tector to a noisy sample from the dataset. Only the pro-
posed method detected all the corners which compose the
ground-truth image. The filtering step of Pedrosa and Barce-
los’ method achieved fewer false corner detection, however
this step implies loss of true corners. The other methods
performed similarly to the proposed one for this noisy im-
age.

Concerning the performance assessment, the average val-
ues of Precision and Recall measures were calculated for
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Fig. 5 Corners detected (circle
marks) from a sample shape
with 1328 contour points and
12 true corners

Table 2 Comparative measures among the methods

Method Precision Recall

Mean Std Mean Std

Proposed 0.87 0.29 0.97 0.08

Pedrosa and Barcelos 0.87 0.19 0.68 0.18

CSS 0.72 0.33 0.61 0.18

Modified CSS 0.84 0.29 0.78 0.22

Lee et al. 0.51 0.33 0.71 0.36

Modified Lee et al. 0.61 0.31 0.75 0.35

all methods and Table 2 summarizes the quantitative re-
sults. Pedrosa and Barcelos’ and the proposed approaches
achieved the best Precision, and consequently fewer detec-
tion of false corners. CSS and Lee et al. modified versions
have reached higher values for this measure. Regarding Re-

call measure, Pedrosa and Barcelos’ method possibly out-
performed the others due to the filtering process. Conversely,
the proposed approach achieved the best detection rate con-
cerning this measure, with Recall = 0.97. From these re-
sults, we have concluded that the performance of the modi-
fied corner detectors was improved by the proposed param-
eter setting and Recall measures confirm it.

Pedrosa and Barcelos’ method detected a number of cor-
ners closer to the ground-truth of the already mentioned
shapes. However, the spatial coordinates of the detected cor-
ners did not match the true corner ones and it is confirmed by
the lowest value of Recall. As this corner detector performs
an anisotropic iterative denoising over the noisy and non-
noisy images, probably the fixed number of iterations caused
undesirable smoothing effects over the non-noisy contours.
It is important to mention that these two classes of images
may require different number of iterations.
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Fig. 6 Detected corners (circle
marks) from a sample shape
with 1193 contour points and
03 true corners

The modified CSS method achieved a lower number of
missed corners, i.e. high Recall values while Lee et al. de-
tector attained increasing values of Precision in its modified
version.

Regarding the proposed method, we have observed that it
has accomplished the lowest number of false corners and the
highest number of true corners among the discussed meth-
ods. Another important advantage of our method is that it
requires only three scales of wavelet decomposition to ex-
tract relevant information from the correlation between sub-
sequent scales. Moreover, the angulation function did not
affect the correct location of the true corners, as Recall mea-
sure indicates. For each level of wavelet decomposition, the
algorithm discards irrelevant information of the contour rep-
resentation signal and retains only dominant points, which
are candidate corners.

According to Fig. 7(a), all histograms are asymmetrically
distributed, and depart from a normal distribution. Regard-
ing the Precision measure, the proposed method presents a
higher occurrence of values close to 1. However, all meth-

ods show more than one mode in their histograms, except
the Pedrosa and Barcelos’ method, which hit the higher val-
ues of Precision by finding fewer false corners due to its
anisotropic filtering.

We also performed tests with the proposed method in
non-synthetic images. Figure 8 displays an image under
light and shadow effects. The object shape is segmented with
Canny method [5, 6] and the proposed corner detector iden-
tified all the high curvature points, correctly.

6 Conclusions

In this paper, we have introduced an approach for corner
detection that uses correlation between redundant scales
of a normalized Mexican hat wavelet decomposition. This
wavelet is often efficient for local singularities detection
as corners, and the properties of this wavelet can be ex-
ploited to detect features at different scales. Addition-
ally, this wavelet can be extended to multidimensional ap-
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Fig. 7 Frequencies of
(a) precision and (b) recall
values in database

Fig. 8 Proposed corner detector
in a non-synthetic image:
(a) original image and
(b) detected corners (gray
circles) in the shape obtained
from the Canny method [6]

proaches in an efficient way when approximating it by dif-
ference of Gaussian functions. Our wavelet approach iden-
tifies changes in non-stationary angulation signals for mul-
tiscale corner detection, and it evaluates the multiscale rep-
resentation of candidate corners to select the ones which
persist on the correlation signal over different scales of the
angulation signal decomposition. Thus, it discards false cor-
ners that die out swiftly throughout the scales. We con-

cluded that successive decomposition of the angulation sig-
nal can identify and retain relevant features, i.e. corner can-
didates, without distorting the true location of them on the
shape contour. Moreover, we have also observed that the
correlation process between scales succeeded in retrieving
candidate corners up to the first three scales. In fact, sub-
sequent scales did not encompass enough information for
corner candidate detection and furthermore the algorithm
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discarded poorly correlated information across these scales.
Regarding computational complexity, the proposed method
achieved a lower computational complexity comparable to
CSS and Lee et al. approaches whereas Pedrosa and Barce-
los’ method reached the lowest computational complexity
particularly, when the number of contour points is greater
than the number of iterations of the anisotropic filtering.
A relevant contribution of this paper concerns the novel
search for parameters of multiscale corner detection algo-
rithms that relies on ground-truth information and Precision
and Recall measures. This parameter tuning procedure im-
proved the performance of two multiscale methods which
were designed to work with constant parameters regardless
the database. This improvement was achieved when param-
eters were tuned according to the image database. Addi-
tionally, we concluded from the experiments that our cor-
ner detector and Pedrosa and Barcelos’ method performed
similarly concerning Precision. With regard to Recall mea-
sure, the proposed corner detector outperformed the oth-
ers, consequently it efficient on retrieving true corners and
discarding false ones. Finally, we believe that the proposed
methodology introduces a feasible alternative to search and
tune parameters of corner detection algorithms that is highly
adaptable to image database but relies on ground-truth based
measures.
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