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Abstract In this paper, we study a new type of competi-
tive learning scheme realized on large-scale networks. The
model consists of several agents walking within the network
and competing with each other to occupy as many nodes
as possible, while attempting to reject intruder agents. In
the end of the process, each agent dominates a commu-
nity (a strongly connected subnetwork). Here, the model is
described by a stochastic dynamical system. In this paper,
a mathematical analysis for uncovering the system’s proper-
ties is presented. In addition, the model is applied to solve
handwritten digits and letters clustering problems. An inter-
esting feature is that the model is able to group the same
digits or letters even with considerable distortions into the
same cluster. Computer simulations reveal that the proposed
technique presents high precision of cluster detections, as
well as low computational complexity.

Keywords Stochastic competitive learning · Clustering ·
Handwritten recognition · Interacting agents

1 Introduction

Data clustering is an unsupervised learning task that aims at
discovering a natural grouping of a set of patterns, points,
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or objects by means of a similarity measure [11, 16].
Each cluster is a collection of data items which are similar
between themselves and are dissimilar to the objects be-
longing to other clusters. Data clustering is vital in several
exploratory pattern-analysis, decision-making, and machine-
learning situations. Some of them include data mining, doc-
ument retrieval, image segmentation, bioinformatics, and
pattern classification [5, 8, 15–17]. Unfortunately, in the
majority of such tasks, little prior information is available
about the data. In this way, advances in the methodology to
automatically understand, process, and summarize the data
are required. Nowadays, this becomes even more critical by
virtue of the exponential increase in both the volume and
the variety of data [16]. In this scenario, the decision-maker
must perform as few assumptions about the data as possi-
ble. It is under these practical restrictions that the clustering
procedure is especially appropriate for the exploration of
inter-relationships among the data points to make an assess-
ment (perhaps preliminary) of their structure [16, 17]. Data
clustering algorithms are generally divided in two types: hi-
erarchical or partitional [2, 8, 16]. The former finds succes-
sive clusters using previously established clusters, whereas
the latter determines all clusters at once. Hierarchical al-
gorithms can be agglomerative (“bottom-up”) or divisive
(“top-down”). Agglomerative algorithms begin with each el-
ement as a separate cluster and merge them into successively
larger clusters. Divisive algorithms begin with the whole set
and proceed to divide it into successively smaller clusters.
Two-way clustering, co-clustering or bi-clustering are the
names for clusterings where not only the objects are clus-
tered but also the features of the objects, i.e., if the data is
represented in a data matrix, the row and columns are clus-
tered simultaneously [11].

One of the recent approaches of data clustering is based
on graphs (networks). In this context, a network is firstly
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constructed from the original data set; then, the network is
partitioned into modular subnetworks, also called commu-
nities, producing data clusters. The notion of community in
networks is straightforward: each community is defined as
a sub-graph whose nodes are densely connected within it-
self, but sparsely connected with the rest of the network.
Community detection in networks has turned out to be an
important topic in graph mining and data mining [6, 9, 25].
In graph theory, community detection corresponds to graph
partition, which has been shown to be a NP-complete prob-
lem [9]. For this reason, a lot of efforts has been spent to
develop efficient but suboptimal solutions, such as the spec-
tral methods [26], the technique based on the “betweenness”
measure [25], modularity optimization [24], community de-
tection based on the Potts model [30], synchronization [1],
information theory [10], and random walks [36]. For a re-
cent review of this topic, see [9]. The main motivation of
graph theory research is the ability to describe the topologi-
cal structure of the original system. In the machine learning
domain, it has been shown that the topological structure is
quite useful to detect clusters of arbitrary forms in data clus-
tering [9, 19], in contrast to the widely used data clustering
technique—K-Means, where only spherical-shaped clusters
can be identified.

Handwriting recognition is the ability of a computer to
receive and interpret intelligible handwritten input from
sources such as paper documents, photographs, touch-
screens, data sets, and other devices [20, 34]. Ideally, the
handwriting recognition systems should be able to read
and understand any handwriting [3]. Handwriting recog-
nition has been one of the most fascinating and challeng-
ing research areas in the field of image processing and
pattern recognition in the recent years [27]. It contributes
immensely to the advancement of an automation process
and can improve the interface between man and machine
in numerous applications [3, 34]. In general, handwritten
recognition is classified into off-line or on-line. In the first
case, the writing is obtained by an electronic device and
the captured writing is completely available as an image to
the handwritten recognition method. In the second case, the
coordinates of successive points are available by means of
a function dependent on time, i.e., the complete image is
not given [27, 34]. In summary, several research works have
been proposed [13, 23, 27] in an attempt to reduce the pro-
cessing time of both off-line and on-line methods, while, at
the same time, providing higher recognition accuracy. Due
to the high complexity that this topic offers, it still has a
wide range of problems to be addressed, such as the effi-
cient recognition of images that are distorted or suffered a
non-linear transformation [3, 8, 34]. Pattern clustering is a
fundamental step in a pattern recognition system. The recog-
nition performance is strongly dependent on the quality of
pattern grouping and labeling.

In this paper, we study handwritten data clustering by us-
ing a new type of competitive learning mechanism [28, 32,
33]. Consider a large-scale graph (network), where several
agents walk in the network and compete with each other to
occupy as many nodes as possible, while attempting to reject
intruder agents. Each agent can perform a random walk by
choosing any neighbor to visit, a preferential walk by choos-
ing the node with the highest domination to visit, or a combi-
nation of both. Straightforward applications are community
detection and data clustering. The competitive walking pro-
cess reaches a dynamic equilibrium when each community
or data cluster is dominated by a single agent.

The agent competition model was originally proposed in
[28, 32, 33], where only a procedure of agent competition is
introduced and no mathematical analysis is presented. In the
present work, we study the agent competition model repre-
sented by a nonlinear stochastic dynamical system. More-
over, a mathematical analysis for uncovering the proper-
ties of the dynamical system is provided. In particular, we
show that the competitive dynamical system reduces to mul-
tiple independent random walks when the parameters, which
characterize the competition and reanimation features, are
turned off. Since the models of several interactive walking
processes correspond to many natural and artificial systems,
and due to the lack of theory for such models, our approach
is an important step to understand such systems. It is worth
mentioning that the underlying network is constructed di-
rectly from the input data set; therefore, the correspondence
between the input data and the processing result (the final
network) is maintained. Besides this, we apply the com-
petitive learning model to solve handwritten data clustering
problems. An interesting feature is that the model is able to
group the same digits or letters even with considerable dis-
tortions into the same cluster.

The remainder of the paper is organized as follows. The
competitive model is reviewed in Sect. 2. In Sect. 3, a math-
ematical analysis is provided. Section 4 presents an applica-
tion of the competitive model in handwritten data clustering.
Finally, Sect. 5 concludes the paper.

2 Model Description

In this section, we review the competitive learning tech-
nique.

2.1 The Competitive Transition Matrix

Consider a graph G = 〈V , E 〉, where V = {v1, . . . , vV } is the
set of vertices (or nodes) and E = {e1, . . . , eL} ⊂ V × V is
the set of links (or edges). In the proposed competitive learn-
ing model, a set of agents K = {1, . . . ,K} is inserted into
the vertices of the network in a random manner. Each agent



266 J Math Imaging Vis (2013) 45:264–276

can be conceptualized as a flag carrier with its main objec-
tive being to conquer new vertices, while defending its cur-
rent dominated vertices. In this case, a competition process
will naturally take place amongst the agents. When an agent
visits an arbitrary vertex, it strengthens its own domination
level on that vertex and, simultaneously, weakens the domi-
nation levels of all other rival agents on the same vertex. At
the end, each agent dominates a community.

In this model, each agent k ∈ K can perform two distinct
types of movements: (i) a random movement term, mod-
eled by the matrix P

(k)
rand, which permits the agent to venture

throughout the network, without accounting for the defense
of the previously dominated vertices; and (ii) a preferential

movement term, modeled by the matrix P
(k)
pref, which is re-

sponsible for inducing the agent to reinforce the vertices
that are owned by itself, i.e., the agent prefers visiting its
dominated vertices, instead of a randomly selected one. In
order to model such dynamics, consider the stochastic vec-
tor p(t) = [p(1)(t),p(2)(t), . . . , p(K)(t)], which denotes the
localization of the set of K agents presented to the network.
Its kth-entry, p(k)(t), indicates the location of agent k in the
network at time t , i.e., p(k)(t) ∈ V ,∀k ∈ K. It is desirable to
find a transition matrix that governs the probability distribu-
tion of the movement of the agents to the immediate future
state: p(t + 1) = [p(1)(t + 1),p(2)(t + 1), . . . , p(K)(t + 1)].

With the intent of keeping track of the current states of all
agents, we introduce the following stochastic vector: S(t) =
[S(1)(t), . . . , S(K)(t)], where the kth-entry, S(k)(t) ∈ {0,1},
indicates whether the agent k is active (S(k)(t) = 0) or ex-
hausted (S(k)(t) = 1) at time t . When it is active, the move-
ment policy consists of a combined behavior of randomness
and preferential movements. When it is exhausted, the agent
switches its movement policy to a new transition matrix,
here referred to as P

(k)
rean(t). This matrix is responsible for

taking the agent back to its dominated territory, in order to
reanimate the corresponding agent by recharging its energy.
We call this the reanimation procedure. After the energy has
been properly recharged, the agent can again perform the
combined random-preferential movement in the network.
With all this information in mind, we are able to define the
transition matrix associated to the agent k as:

P
(k)
transition(t) �

(
1 − S(k)(t)

)[
λP

(k)
pref(t) + (1 − λ)P

(k)
rand

]

+ S(k)(t)P(k)
rean(t), (1)

where λ ∈ [0,1] indicates the desired fraction of preferen-
tial movement that all agents in the network will perform.
Specifically, P

(k)
transition(i, j, t) indicates the probability that

agent k performs a transition from vertex i to j at time t .
We now define each matrix that appears in (1) in a detailed
manner.

The random movement matrix only depends on the ad-
jacency matrix of the graph. In this way, each entry (i, j) ∈

V × V of the matrix P
(k)
rand is given by:

P
(k)
rand(i, j) � ai,j

∑V
u=1 ai,u

, (2)

where ai,j denotes the (i, j)th-entry of the adjacency matrix

A of the graph. Note that matrix P
(k)
rand is time invariant and

it is the same for every agent in the network; therefore, we
drop the superscript k. In short, the probability of an adja-
cent neighbor j to be visited from vertex i is proportional to
the edge weight linking these two vertices.

In order to assist in the derivation of the matrix associated
to the preferential movement term, P

(k)
pref(t), for a given agent

k ∈ K, we introduce the following stochastic vector:

Ni(t) �
[
N

(1)
i (t),N

(2)
i (t), . . . ,N

(K)
i (t)

]T
, (3)

where dim(Ni(t)) = K × 1, T denotes the transpose oper-
ator, and Ni(t) stands for the number of visits received by
vertex i up to time t by all agents scattered throughout the
network. Then, the matrix that contains the number of vis-
its made by every agent in the network to all the vertices is
defined as:

N(t) �
[
N1(t),N2(t), . . . ,NV (t)

]T
, (4)

where dim(N(t)) = V × K . Let us also formally define the
domination level vector of vertex i, N̄i(t), according to the
following stochastic vector:

N̄i(t) �
[
N̄

(1)
i (t), N̄

(2)
i (t), . . . , N̄

(K)
i (t)

]T
, (5)

where dim(N̄i(t)) = K × 1 and N̄i(t) denotes the relative
frequency of visits of all agents in the network to vertex i

at time t . Similarly to the previous case, this notation is ex-
tended to all vertices in the network by defining the dom-
ination level matrix that sustains all the domination levels
imposed by every agent in the network to all the vertices as:

N̄(t) �
[
N̄1(t), N̄2(t), . . . , N̄V (t)

]T
, (6)

where dim(N̄(t)) = V × K . Mathematically, each entry of
N̄

(k)
i (t) is defined as:

N̄
(k)
i (t) �

N
(k)
i (t)

∑K
u=1 N

(u)
i (t)

. (7)

In view of this, we can define P
(k)
pref(i, j, t), which is the prob-

ability of a single agent k to perform a transition from vertex
i to j at time t , using solely the preferential movement term,
as follows:

P
(k)
pref(i, j, t) �

ai,j N̄
(k)
j (t)

∑V
u=1 ai,uN̄

(k)
u (t)

. (8)
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From (8), it can be observed that each agent has a differ-
ent transition matrix associated to its preferential movement
and that, unlike the matrix related to the random movement,
it is time-variant with dependence on the domination levels
of all the vertices (N̄(t)) in the network at time t . It is worth
mentioning that the approach taken here to characterize the
preferential movement of the agents is defined as the vis-
iting frequency of each agent to a specific vertex, meaning
as more visits are performed by a specific agent to an arbi-
trary vertex, there will be a higher chance for the same agent
to repeatedly visit the same vertex. The consequence of this
behavior is two-fold: (i) the visiting agent strengthens its the
domination level on a vertex and (ii) weakens the domina-
tion levels of all other agents on the same vertex. This is
made possible because of the normalization process that is
conservative.

Now we define each entry of P
(k)
rean(t). Suppose that agent

k is visiting vertex i when its energy is completely depleted.
In this situation, the agent must regress to an arbitrary ver-
tex j of its possession at time t , according to the following
expression:

P
(k)
rean(i, j, t) �

1{
arg maxm∈K(N̄

(m)
j (t))=k

}

∑V
u=1 1{

arg maxm∈K(N̄
(m)
u (t))=k

} , (9)

where 1{.} is the indicator function that yields 1 if the ar-
gument is logically true and 0, otherwise. The operator
arg maxm∈K(·) returns an index M , where N̄

(M)
u (t) is the

maximal value among all N̄
(m)
u (t) for m ∈ K. A careful

analysis of the expression in (9) reveals that the probabil-
ity of returning to an arbitrary vertex j that is dominated by
the agent k follows a uniform distribution. In other words,
(9) only results in non-zero transition probabilities for ver-
tices j that are being dominated by agent k at time t , regard-
less of the existence of a connection between i and j in the
adjacency matrix.

Once defined the collection of matrices associated to each
agent, we couple all of them into a single representative tran-
sition matrix denominated Ptransition(t) which models the
transition of p(t) to p(t + 1). Given X(t), one can see that
p(k)(t + 1) and p(u)(t + 1) are independent for every pair
(k,u) ∈ K × K, k �= u. In this way, Ptransition(t) can be writ-
ten as:

Ptransition(t) = P
(1)
transition(t) ⊗ · · · ⊗ P

(K)
transition(t), (10)

where ⊗ denotes the Kronecker tensor product operator. In
this way, (10) completely specifies the transition distribution
matrix for all the agents in the network.

Essentially, when K ≥ 2, p(t) will be a vector and we
would no longer be able to conventionally define the row
p(t) of matrix Ptransition(t). Owing to this, we define an in-
vertible mapping f : V K 
→ N. The function f simply maps

the input vector to a scalar number that reflects the natu-
ral ordering of the tuples in the input vector. For example,
p(t) = [1,1, . . . ,1,1] (all agents at vertex 1) denotes the
first state; p(t) = [1,1, . . . ,1,2] (all agents at vertex 1, ex-
cept the last agent, which is at vertex 2) is the second state;
and so on, up to the scalar state V K . Therefore, with this
tool, we can fully manipulate the matrix Ptransition(t).

2.2 The Unsupervised Competitive Learning Model

In light of the results obtained in the previous section, the
internal state of the dynamical system, X(t), is given by:

X(t) =

⎡

⎢⎢
⎣

p(t)

N(t)

E(t)

S(t)

⎤

⎥⎥
⎦ , (11)

and the proposed competitive dynamical system is given by:

φ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
(j)
i (t + 1) = N

(j)
i (t) + 1{p(j)(t+1)=i},

E(j)(t + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(ωmax,E
(j)(t) + �),

if owner(j, t),

max(ωmin,E
(j)(t) − �),

if ∼ owner(j, t),
S(j)(t + 1) = 1{E(j)(t+1)=ωmin}.

(12)

An important characteristic of system φ, which will be
extensively used later, is its Markovian property (see Propo-
sition 1). In the following, we present the meaning of the 3
expressions shown in the competitive dynamical system φ:

• Update Rule of the Number of Visits (1st Expression): In
this update rule, for every agent k ∈ K in the model, the
vertex i that is being visited by agent k has its number
of visits associated to that agent, N

(k)
i (t), added by 1. If

agent k does not visit vertex i at time t , then its num-
ber of visits remains unaltered. This two-fold behavior
is achieved by the indicator function in the right-hand
side of the first expression in φ. Specifically, when agent
k visits vertex i, the argument in the indicator function
returns true, and the expression becomes N

(k)
i (t + 1) =

N
(k)
i (t) + 1. Conversely, if agent k does not visit ver-

tex i, then the argument in the indicator function yields
false and the update rule of the number of visits reduces
to N

(k)
i (t + 1) = N

(k)
i (t).

• Update Rule of the Agent’s Energy (2nd Expression):
Here, we introduce the stochastic vector: E(t) = [E(1)(t),

. . . ,E(K)(t)], where the kth-entry, E(k)(t) ∈ [ωmin,ωmax],
ωmax ≥ ωmin, denotes the energy level of agent k at time t .
In the second expression of system φ, owner(k, t) =
(arg maxm∈K(N̄

(m)

p(k)(t)
(t)) = k) is a logical expression that

essentially yields true if the vertex that agent k visits at
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time t (i.e., vertex p(k)(t)) is being dominated by it, but
yields false otherwise. In the same expression, � > 0
symbolizes the increment or decrement of energy that
each agent receives at time t . The first case represents the
increment of the agent’s energy and it occurs when agent
k visits a vertex p(k)(t) which is dominated by itself, i.e.,

arg maxm∈K(N̄
(m)

p(k)(t)
(t)) = k. Similarly, the second case

indicates the decrement of the agent’s energy that hap-
pens when it visits a vertex dominated by rival agents.
Therefore, in this model, agents will be given a penalty
if they are wandering in rival territory, so as to minimize
aimless navigation of the agents in the network.

• Update Rule of the Agent’s State (3rd Expression): Here,
the update rule that governs S(t) is given. As we have
stated, an arbitrary agent k will be transported back to
its domain only if its energy drops to a threshold ωmin.
With that in mind, it is natural that each entry of S(k)(t)

must monitor the current energy value of its correspond-
ing agent k. If this energy ever drops to the given thresh-
old, the switch must be enabled. Analogously, if the agent
still has an energy value greater than this threshold, then
the switch should be disabled. This behavior is exactly
expressed in the third expression of the competitive sys-
tem φ.

Observe that p(t + 1) has no closed form because it
is qualified as a distribution with dependence on p(t) and
N(t), therefore its acquisition is merely by random number
generation. Specifically, the random numbers are generated
respecting the probability distribution given in (1).

Finally, we will define the competitive system in a matrix
form. This will be specially useful in the theoretical deriva-
tions that will be performed in the next section. Specifically,
system φ can be written as:

φ′ :
⎧
⎨

⎩

N(t + 1) = fN(N(t),p(t + 1))

E(t + 1) = fE(N(t + 1),p(t + 1))

S(t + 1) = fS(E(t + 1)),

(13)

where fN(.), fE(.), and fS(.) are suitable stochastic matrix
functions as defined term by term in (12).

2.3 Computational Complexity

The competitive model reviewed in Sect. 2 has been shown
to run in O(KV ) time for community detection tasks (sparse
graph) and in O(V 2) time for data clustering tasks (cf. [33]).
It is worth noting that, based on [33, Table 1], we can visu-
alize that the community detection technique has the low-
est computational complexity order compared to all other
techniques developed so far. With respect to data clustering
tasks, if we look at [33, Table II], it has a reasonable com-
plexity order (it is not the lowest one), mainly by virtue of
the network formation step, which is time-demanding basi-
cally because of the distance matrix calculation method.

3 Theoretical Results

In this section, a mathematical analysis of the competitive
system is supplied. Also, we show that the competitive sys-
tem reviewed in the previous section reduces to multiple in-
dependent random walks when a special situation occurs.

3.1 Mathematical Analysis

As the initial step, the transition probability function of sys-
tem φ, i.e., P(X(t + 1) | X(t)), is going to be derived. Note
that the marginal probability of the system’s state P(X(t))

can be written in terms of a joint probability of each of
the components of the system’s state, meaning P(X(t)) =
P(N(t),p(t),E(t), S(t)). Using this fact and applying the
Product Rule, one has:

P
(
X(t + 1) | X(t)

) = Pp(t+1)PN(t+1)PE(t+1)PS(t+1), (14)

where:

PS(t+1) = P
(
S(t + 1) | N(t + 1),p(t + 1),E(t + 1),X(t)

)
,

(15)

PE(t+1) = P
(
E(t + 1) | N(t + 1),p(t + 1),X(t)

)
, (16)

PN(t+1) = P
(
N(t + 1) | p(t + 1),X(t)

)
, (17)

Pp(t+1) = P
(
p(t + 1) | X(t)

)
. (18)

Next, the algebraic derivation of these four quantities is
given in a detailed manner.

3.1.1 Obtaining Pp(t+1)

Noting that the stochastic vector p(t + 1) is directly evalu-
ated from Ptransition(t) given in (10), which in turn only re-
quires p(t) and N(t) to be constructed (X(t) is given), then
the following equivalence holds:

Pp(t+1) = P
(
p(t + 1) | X(t)

) = Ptransition
(
N(t),p(t)

)
.

(19)

Here, we have used Ptransition(N(t),p(t)) to emphasize the
dependence of the transition matrix on N(t) and p(t).

3.1.2 Obtaining PN(t+1)

In this case, the system’s state X(t) and p(t + 1) are given.
Observing that the determination of N(t + 1) only depends
on N(t) and p(t + 1) (see first expression in system φ), it
follows that P(N(t + 1)) can be completely evaluated. In
view of this, the following expression holds:

PN(t+1) = P
(
N(t + 1) | p(t + 1),X(t)

)

= 1{N(t+1)=N(t)+QN(p(t+1))}, (20)
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where QN(p(t + 1)) is a matrix with dim(QN) = V × K

and dependent on p(t + 1), whose (i, j)th-entry is given by:

QN

(
p(t + 1)

)
(i, k) = 1{p(k)(t+1)=i}. (21)

The argument in the indicator function shown in (20) is
essentially the first expression of system φ, but with a ma-
trix notation. In brief, (20) will result in 1 if the computation
of N(t + 1) is correct, given p(t + 1) and N(t), i.e., it is in
compliance with the dynamical system rules; and 0, other-
wise.

3.1.3 Obtaining PE(t+1)

Here, the system’s state X(t), p(t + 1), and N(t + 1) are
given. By inspecting (7), one can see that the calculation of
N̄(t) only depends on N(t). As a result, one can consider
N̄(t) as given variable too. Due to this fact, together with
the second expression in φ, one can see that E(t + 1) can be
completely determined since E(t), p(t + 1), and N̄(t + 1)

are known quantities. On account of that, PE(t+1) is given
by:

PE(t+1) = P
(
E(t + 1) | N(t + 1),p(t + 1),X(t)

)

= 1{E(t+1)=E(t)+�×QE(p(t+1),N(t+1))}, (22)

where QE(p(t + 1),N(t + 1)) is a matrix with dim(QE) =
1 × K and dependence on N(t + 1) and p(t + 1). The kth-
entry, k ∈ K, of such matrix is calculated as:

Q
(k)
E

(
p(t + 1),N(t + 1)

)

= 1{owner(k,t+1)} − 1{∼owner(k,t+1)}. (23)

Note that the argument of the indicator function in (23) is
essentially the second expression of φ in a compact matrix
form. Indicator functions were employed to describe the two
types of behaviors that this variable can have: an increment
or decrement of the agent’s energy. Suppose that agent k ∈ K
is visiting a vertex that is being owned by itself, then only
the first indicator function in (23) will be enabled; hence,
Q

(k)
E (p(t + 1),N(t + 1)) = 1. Similarly, if agent k is vis-

iting a vertex that is being owned by a rival agent, then the
second indicator function is enabled, yielding Q

(k)
E (p(t +1),

N(t + 1)) = −1. This behavior together with (22) is exactly
the second expression of φ in a compact matrix form.

3.1.4 Obtaining PS(t+1)

Now, the system’s state X(t), E(t + 1), N(t + 1), and
p(t + 1) are given. By analyzing the third expression in φ,
one can verify that S(t +1) can be determined once E(t +1)

is known. In this way, one can surely evaluate PS(t+1) in this
scenario as follows:

PS(t+1) = P
(
S(t + 1) | E(t + 1),N(t + 1),p(t + 1),X(t)

)

= 1{S(t+1)=QS(E(t+1))}, (24)

where QS(E(t + 1)) is a matrix with dim(QS) = 1 × K

and dependence on E(t + 1). The kth-entry, k ∈ K, of such
matrix is calculated as:

Q
(k)
S

(
E(t + 1)

) = 1{E(k)(t+1)=ωmin}. (25)

3.1.5 The Transition Probability Function

Substituting (19), (20), (22), and (24) into (14), the transition
probability function of the competitive dynamical system is
given as follows:

P
(
X(t + 1) | X(t)

) = 1{N(t+1)=N(t)+QN(p(t+1))}
× 1{S(t+1)=QS(E(t+1))}
× 1{E(t+1)=E(t)+�QE(p(t+1),N(t+1))}
× Ptransition

(
N(t),p(t)

)

= 1{Compliance(t)}Ptransition
(
N(t),p(t)

)
,

(26)

where Compliance(t) is a logical expression given by:

Compliance(t)

= [
N(t + 1) = N(t) + QN

(
p(t + 1)

)]

∧ [
S(t + 1) = QS

(
E(t + 1)

)]

∧ [
E(t + 1) = E(t) + �QE

(
p(t + 1),N(t + 1)

)]
,

(27)

i.e., Compliance(t) encompasses all the rules that have to be
satisfied in order to the indicator functions in (26) produce 1.
It is worth mentioning that non-zero transition probabilities
will only happen when these rules are satisfied.

3.1.6 Obtaining P(N(t))

With the transition probability function derived in the pre-
vious section, we now turn our attention to determining the
marginal distribution P(N(t)) for a sufficient large t . First,
the Markovian property of system φ is demonstrated as fol-
lows.

Proposition 1 {X(t) : t ≥ 0} is a Markovian process.

Proof We seek to infer that system φ is completely charac-
terized by only the acquaintance of the present state, i.e., it
is independent of all the past states. Having that in mind,
the probability expression to make a transition to a specific
event Xt+1 (a set with an element representing an arbitrary
next state) in time t + 1, given the complete history of the
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state trajectory, is denoted by:

P
(
X(t + 1) ∈ Xt+1 | X(t), . . . ,X(0)

)

= P

⎛

⎝pt+1 :
⎡

⎣
fN(N(t),pt+1)

fE(N(t + 1),pt+1)

fS(E(t + 1))

⎤

⎦ ∈ Xt+1

| X(t), . . . ,X(0)

⎞

⎠ . (28)

Noting that the determination of pt+1 only depends on
N(t) and p(t), then:

P

⎛

⎝pt+1 :
⎡

⎣
fN(N(t),pt+1)

fE(N(t + 1),pt+1)

fS(E(t + 1))

⎤

⎦ ∈ Xt+1 | X(t), . . . ,X(0)

⎞

⎠

= P

⎛

⎝pt+1 :
⎡

⎣
fN(N(t),pt+1)

fE(N(t + 1),pt+1)

fS(E(t + 1))

⎤

⎦ ∈ Xt+1 | X(t)

⎞

⎠

= P
(
X(t + 1) ∈ Xt+1 | X(t)

)
. (29)

Therefore, in view of (29), {X(t) : t ≥ 0} is a Markovian
process, since it only depends on the present state to specify
the next state and, hence, the past history of the system’s
trajectory is irrelevant. �

The strategy to calculate the distribution P(N(t)) is to
marginalize the joint distribution of the system’s states, i.e.,
P(X(0), . . . ,X(t)), with respect to N(t) (a component of
X(t)). Mathematically, using Proposition 1 on this joint dis-
tribution P(X(0), . . . ,X(t)), we get:

P
(
X(0), . . . ,X(t)

) =P
(
X(t) | X(t − 1)

)

× P
(
X(t − 1) | X(t − 2)

)

× · · · × P
(
X(1) | X(0)

)
P

(
X(0)

)
.

(30)

Using the transition function that governs system φ, as
illustrated in (26), to each shifted term in (30), we get:

P
(
X(0), . . . ,X(t)

) =P
(
X(0)

) t−1∏

u=1

[
1{Compliance(u)}

× Ptransition
(
N(u),p(u)

)]
, (31)

where P(X(0)) = P(N(0),p(0),E(0), S(0)). Observing
now that P(X(0), . . . ,X(t)) = P(N(0),p(0),E(0), S(0),

. . . ,N(t),p(t),E(t), S(t)), we marginalize this joint distri-
bution with respect to N(t) as follows:

P
(
N(t)

) =
∑

∼N(t)

P
(
X(0), . . . ,X(t)

)
(32)

where ∼ N(t) means that we sum over all the possible
values of X(0), . . . ,X(t), except for N(t) which is inside
X(t) = [N(t) p(t) E(t) S(t)]T . Using (31) in (32), we are
able to obtain P(N(t)) as follows:

P
(
N(t)

) =
∑

∼N(t)

{

P
(
X(0)

) t−1∏

u=1

[
1{Compliance(u)}

× Ptrans
(
N(u),p(u)

)]
}

. (33)

3.1.7 Obtaining P(N̄(t))

The distribution of the domination level matrix N̄(t) is the
fundamental information needed to label the unlabeled ver-
tices. First, one can observe that positive integer multiples
of N(t) compose the same N̄(t). Therefore, the mapping
N(t) → N̄(t) is not injective; hence, not invertible. Below,
an illustrative example shows this property.

Example 1 Consider a network with 3 agents and 2 vertices.
At time t , suppose that the stochastic process is able to pro-
duce two distinct configurations for N(t), as follows:

N(t) =
[

1 1 1
1 2 3

]
,

N ′(t) =
[

2 2 2
2 4 6

]
.

(34)

Then, the setups in (34) applied to (7) make clear that
both configurations yield the same N̄(t) given by:

N̄(t) =
[

1
3

1
3

1
3

1
6

1
3

1
2

]

. (35)

In view of this, the mapping N(t) → N̄(t) cannot be in-
jective nor invertible.

Following the aforementioned strategy, P(N̄(t)) can be
calculated by summing over all multiples of uN(t), u ∈
{1, . . . , t} such that f (uN(t)) = N̄(t), where f is the nor-
malization function defined in (7). On account of this, we
have:

P
(
N̄(t) = U : U ∈ V × K

) =
t∑

u=1

P
(
f

(
uN(t)

) = U
)
. (36)

As t → ∞, P(N̄(t)) provides enough information for
classifying the unlabeled vertices. In this case, they are la-
beled accordingly to the team of agents that is imposing the
highest domination level. Since the domination level is a
continuous stochastic variable, the output of this model is
fuzzy.
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3.2 The Proposed Competitive System Generalizes
Multiple Independent Random Walks

In this section, we will demonstrate the following interest-
ing property: when λ = 0 and � = 0, the competitive mech-
anism among the agents and the reanimation feature are
turned off, and the system reduces to multiple independent
random walkers [4]. Conversely, when λ > 0, the competi-
tive mechanism among the agents is enabled and the com-
bination of random-preferential interacting walks occurs. In
this case, the reanimation feature is presented depending on
the choice of �.

Proposition 2 If λ = 0 and � = 0, then system φ reduces
to the case of multiple independent random walks.

Proof It is noteworthy to state that, when λ = 0, the in-
fluence of the matrix denoting the preferential movement,
Ppref(t), is taken away. Indeed, when λ = 0, the coupling
between N(t) and p(t) ceases to exist, because the calcu-
lation step of Ppref(t) (responsible for the coupling) can be
skipped. Moreover, if � = 0, then the agents can never get
exhausted. In view of these characteristics, the dynamical
system φ can be easily described by a traditional Markovian
process given by:

p(t + 1) = p(t)Ptransition (37)

where Ptransition = Prand ⊗ Prand ⊗ · · · ⊗ Prand and p(t) is an
enumerated state encompassing all the agents, as described
before. Here, the independence among the agents is demon-
strated by showing that the generated N(t) by system φ

is exactly the same as the one produced by the potential
matrix of the Markov Chains Theory [4]. In other words,
N(t) can be implicitly calculated from the stochastic pro-
cess {p(t) : t ≥ 0}.

First, it is useful to find a closed expression for N(t) in
terms of N(0). This can be easily done if we iterate the ma-
trix equation N(t + 1) = N(t) + Q, where Q is as given in
(21). In doing so, we get:

N(t) =

⎡

⎢⎢⎢
⎣

1 · · · 1
1 · · · 1
...

. . .
...

1 · · · 1

⎤

⎥⎥⎥
⎦

+
t∑

i=0

⎡

⎢⎢⎢
⎣

1{p(1)(i)=1} · · · 1{p(K)(i)=1}
1{p(1)(i)=2} · · · 1{p(K)(i)=2}

...
. . .

...

1{p(1)(i)=|V |} · · · 1{p(K)(i)=|V |}

⎤

⎥⎥⎥
⎦

. (38)

Since this process is stochastic, it is worth determin-
ing the expectation of the number of visits N(t) given the

agent’s initial location p(0). Noting that E[1{A}] = P(A),
we have:

E
[
N(t) | p(0)

]

=

⎡

⎢⎢
⎢
⎣

1 · · · 1
1 · · · 1
...

. . .
...

1 · · · 1

⎤

⎥⎥
⎥
⎦

+
t∑

i=0

⎡

⎢⎢⎢
⎣

P i(p1(0),1) · · · P i(pK(0),1)

P i(p1(0),2) · · · P i(pK(0),2)
...

. . .
...

P i(p1(0), |V |) · · · P i(pK(0), |V |)

⎤

⎥⎥⎥
⎦

,

(39)

where P i(pj (0),1) denotes the (pj (0),1)-entry of Ptransition

to the i-power. But, from the Markov Chains Theory, we
have that the so-called truncated potential matrix [4] is given
by:

Rt(v, k) �
t∑

i=0

P
i
transition(v, k). (40)

By virtue of (40), each entry of the matrix equation in
(39) can be rewritten as:

E
[
N

(j)
i (t) | p(0)

] = 1 + Rt

(
pj (0), i

)
. (41)

From (41), we can infer that each agent does perform
an independent random walk according to a Markov Chain.
Thus, we are able to conclude that, for λ = 0 and � = 0,
all the states of system φ follow a traditional Markov Chain
process, except for a constant, as demonstrated in (41). �

The Proposition 2 states that system φ reduces to the case
of multiple random walks when λ = 0 and � = 0, i.e., we
could think that there is a blind competition among the par-
ticipants. Alternatively, when 0 < λ ≤ 1, some orientation
is given to the participants, in the sense of defending their
territory and not only keep adventuring through the network
with no strategy at all. In either case, the reanimation proce-
dure is enabled depending on the choice of �.

4 Application: Handwritten Digits and Letters
Recognition

In this section, we provide an application of data clustering
for the competitive method for three real-world data sets.
Specifically, in Sect. 4.1, we derive a dissimilarity measure
that we will use in the network formation step; in Sect. 4.2,
we supply a brief description of the data sets; in Sect. 4.3,
we show a method for determining the optimal number of
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agents to be inserted into the network; and Sect. 4.4 reveals
the data clustering results that we have obtained from our
algorithm applied to the USPS, MNIST, and Letter Recog-
nition data sets.

It is worth noting that in all simulations in this section,
since the parameters ωmin, ωmax, and � are not sensitive to
the model performance, we usually fix � as being 5% of the
interval ωmax −ωmin. Therefore, we set � = 0.05, ωmin = 0,
and ωmax = 1.

4.1 The Network Formation Technique

In a graph-based data representation, the images (data items)
are represented by the vertices, while the relationships be-
tween them are given by the links. A link connecting two
vertices (images) holds a weight that numerically trans-
lates the similarity between them. Each image can be rep-
resented by a “square” matrix η × η. For rectangle images,
a pre-processing is required to transform it into a square im-
age. We conventionally set the pixels’ values range to lie
within the interval [0,1] by normalization. Thus, an arbi-
trary data item (image) xi can be seen as a matrix with di-
mensions η × η, where each pixel xi

(u,j) ∈ [0,1],∀(u, j) ∈
{1, . . . , η} × {1, . . . , η}.

In order to construct the network, we are required to es-
tablish a similarity measure. The traditional pixel-per-pixel
distance is rather insufficient in terms of reliably represent-
ing data, since such measure is very sensitive to rotations
and scale modifications. With the purpose of overcoming
this difficulty, we propose a measure based on the eigen-
values that each image inherently carries with it. First of
all, we remove the mean associated to each data item (im-
age), so that we have a common basis of comparison. After
that, we calculate the φ greatest eigenvalues of the image.
Efficient methods have been developed for finding the lead-
ing eigenvalues of real-valued asymmetric matrices [12, 35].
The magnitudes of the eigenvalues are related to the varia-
tions that the image possesses; hence, it is a natural carrier
of information [18]. The greater its value, more information
about the image it conveys. By virtue of that, a good choice
is to only extract the greatest φ < η eigenvalues and drop the
smaller values, since these do not transport too much infor-
mation about the image. Also, in order to give more empha-
sis to the largest eigenvalues, a weight is associated to each
one so that the larger an eigenvalue is, the larger will be its
associated weight.

Consider that we are to compare the similarity between
two images, say xi and xj , in relation to the φ largest eigen-
values. We firstly sort the φ eigenvalues of each image
as: |λ(1)

i | ≥ |λ(2)
i | ≥ · · · ≥ |λ(φ)

i | and |λ(1)
j | ≥ |λ(2)

j | ≥ · · · ≥
|λ(φ)

j |, where |λ(k)
i | marks the kth eigenvalue of the ith data

item. In this case, the dissimilarity ρ (or, equivalently, the

similarity 1 − ρ) between image i and j is given by:

ρ(i, j) = 1

ρmax

φ∑

k=1

β(k)
[|λ(k)

i | − |λ(k)
j |]2

, (42)

where ρ ∈ [0,1], ρmax > 0 is a normalization constant,
β : N

∗ → (0,∞) indicates a monotonically decreasing func-
tion that can be arbitrary chosen by the user.

4.2 Brief Information of the Handwritten Digit and Letter
Data Sets

The data sets in which the proposed model will be tested
against are given in the following:

• USPS Data Set: Comprised of 9298 images of hand-
written digits. The digits 0 to 9 have 1553, 1269, 929,
824, 852, 716, 834, 792, 708, and 821 samples respec-
tively. The USPS digits data were gathered at the Cen-
ter of Excellence in Document Analysis and Recognition
(CEDAR) at SUNY Buffalo, as part of a project spon-
sored by the US postal Service. For more details about
this data set, refer to [14]. Each image has dimensions of
16×16 pixels, with 256 grey levels per pixel. We will em-
ploy the weighted eigenvalue similarity measure as stud-
ied before. Instead of using 16 eigenvalues, we will only
work with the 4 greatest ones. In this case, the β function,
as shown in (42), will be fixed as an exponential decreas-
ing function with a time constant fixed at τ = 3 and a scal-
ing factor given by 16, i.e., β(x) = 16 exp( x

3 ). Since, this
function is mapped into the interval (0,∞) and is a mono-
tonically decreasing function, it follows that this β func-
tion meets all the aforementioned requirements. Specif-
ically in this situation, we have that the weights associ-
ated to each eigenvalue are: β(1) = 11.46, β(2) = 8.21,
β(3) = 5.89, and β(4) = 4.22.

• MNIST Data Set: Originally composed of images with di-
mensions 28 × 28. We will only use the public set com-
posed of 10 000 vertices. Moreover, we will make use of
the dissimilarity measure based on the first 4 eigenvalues
of each image out of 28 eigenvalues. The same β function
employed in the USPS data set will be used here.

• Letter Recognition Data Set: Composed of characteristic
vectors with 16 entries. There are 20000 vertices.

Since none of these data sets are in a networked form,
the methodology is divided into two general steps: the net-
work formation and the data clustering tasks. In the first,
we use the k-nearest neighbor network formation technique
with k = 3 after we apply a pre-processing step. In this pre-
processing, we standardize the data such as to have zero
mean and unitary standard deviation. As for the distance
measure, we either use the proposed weighted eigenvalue
dissimilarity (for the first two data sets above) or the recipro-
cal of the Euclidean similarity (for the last one). The reason
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Fig. 1 Determination of the optimal number of agents K (the optimal
number of clusters) in real-world data sets. The number of classes that
each data set originally possesses are: (a) The USPS data set has 10
clusters (each cluster corresponding to a number from “0” to “9”);
(b) The MNIST data set has 10 clusters (each cluster corresponding

to a number from “0” to “9”); and (c) The Letter Recognition data set
has 26 clusters (each cluster corresponding to a letter from the English
alphabet (“A” to “Z”). 20 independent runs are performed and the av-
erage value is reported

behind not using the weighted eigenvalue on the third data
set is because the samples are not provided as images, but
as image descriptors. Since the latter is formed by merely
scalars, we cannot apply the proposed dissimilarity mea-
sure. In the second step, the data clustering algorithm based
on particle competition is applied. As we are dealing with
unsupervised learning, we do not use any external informa-
tion, such as labels or exogenous knowledge. Instead, we
limit ourselves to discovering explicit or implicit relation-
ships among the data by the particle competition mecha-
nism.

4.3 Determining the Optimal Number of Agents and
Clusters

Remembering that our technique is sensitive to the parame-
ter K , we need to identify the correct number of agents. In
order to overcome this problem, we utilize the method pro-
posed in [33] for determining the optimal number of agents
to be inserted into the network. Such a method makes use of
a useful network measure denominated average maximum
domination level 〈R(t)〉 as follows:

〈
R(t)

〉 = 1

V

V∑

u=1

max
m∈K

(
N̄ (m)

u (t)
)
, (43)

where 〈R(t)〉 ∈ [0,1]. When 〈R(t)〉 is near 1, we can infer
that the competition in the network for vertices has ceased
and, thus, the vertices’ ownerships have been properly de-
fined. In other words, the maximum domination level of any
vertex is a number near 1, showing that this vertex is being
completely dominated by a single agent. This suggests that
the clusters have been properly discovered and dominated.
On the other hand, when 〈R(t)〉 approximates 0, we have
that an intense competition is taking place in the network. In

other words, the domination levels imposed by each agent
in any arbitrary vertex are similar. With these considerations
in mind, a good suggestion for the optimal K in a given net-
work is exactly when 〈R(t)〉 reaches its maximum value.

Figures 1(a), 1(b), and 1(c) show the determination of the
optimal K for the USPS, MNIST, and Letter Recognition
data sets, respectively. One can verify that 〈R(t)〉 is max-
imized exactly when the number of agents is equal to the
number of clusters in the network, confirming the effective-
ness of such heuristic.

4.4 Handwritten Data Clustering

Here, we report the cluster detection accuracy reached by
our algorithm in detail, along with the data clustering accu-
racy of a selected set of competing techniques. For the calcu-
lation of the cluster detection accuracy, we set that the ideal
result is that each cluster represents a “digit” (in the USPS
and MNIST data set) or a “letter” (in the Letter Recognition
data set). Particularly, Table 1 supplies details about the al-
gorithms that we have chosen for comparison matters. We
have used the genetic algorithm available in the Global Op-
timization Toolbox of MATLAB with its default parameters
in order to optimize the parameters of our algorithm. In our

Table 1 Description of the competing state-of-art data clustering tech-
niques.

Technique Reference

Gaussian Mixture Model (GMM) [3]

K-Means [22]

Locally Consistent Gaussian Mixture Model (LCGMM) [21]

Spectral clustering algorithm with normalized cut (Ncut) [31]

Ncut Embedding All (NcutEmbAll) [29]

Ncut Embedding Maximum (NcutEmbMax) [29]
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Table 2 Data clustering accuracy reached by the proposed technique
and the competing methods listed in Table 1. For the stochastic meth-
ods, such as the particle competition method, thirty independent runs
were performed and the corresponding mean is provided

USPS MNIST Letter recognition Avg. rank

LCGMM 73.83 73.60 93.03 2.33

GMM 67.30 66.60 91.24 5.33

K-Means 69.80 53.10 87.94 6.33

NCut 69.34 68.80 88.72 5.67

NCutEmbAll 72.72 75.10 90.07 3.67

NCutEmbMax 72.97 75.63 90.59 2.67

Proposed technique 80.46 74.53 91.37 2.00

case, we have optimized λ over the range 0.2 ≤ λ ≤ 0.8.
This optimization process is conducted in a way to choose
the best λ for which the data accuracy reaches its maximum
value. By doing this, we get that the optimal values of λ for
the USPS, MNIST, and Letter Recognition data sets to be
0.58, 0.60, 0.60, respectively. The number of agents to be
inserted is determined accordingly to the previously analy-
sis that we have shown, i.e., with the aid of the 〈R(t)〉 mea-
sure. We choose the number of agents that maximizes this
quantity. By looking at Figs. 1(a) (USPS), 1(b) (MNIST),
and 1(c) (Letter Recognition), we are able to conclude that
the maximum value of 〈R(t)〉 is attained when the number
of agents is 10, 10, and 26, respectively.

Table 2 reports the data clustering accuracy reached by
our method and the aforementioned competing algorithms.
Some of these results are readily extracted from [29] and
[21]. For more information about the parameters used in the
competing techniques, see the aforementioned references.
Within this table, we have provided the Average Rank of
each algorithm, which is calculated as follows: (i) for each
data set we rank the algorithms according to their aver-
age performance (average data clustering accuracy), i.e.,
the best algorithm is ranked as 1, the second best one is
ranked as 2, and so on; (ii) for each algorithm, the Aver-
age Rank is given by the average value of its rank achieved
in all the data sets. As we can verify by looking at the Av-
erage Rank column, our algorithm has reached one of the
best positions, showing the effectiveness of the proposed
technique. In order to examine the results in a statistical
manner, we utilize an adaptation of [7] for clustering mat-
ters. The methodology described therein assigns a rank to
each algorithm on each data set according to its final accu-
racy reached. After this step, the average rank of each al-
gorithm is then evaluated and a Friedman Test is applied
to the resulting average rank values of each algorithm. The
Friedman Test is used to check whether the measured aver-
age ranks are significantly distinct from the mean rank, in
this case 4.0, because there are seven data clustering tech-
niques. The null-hypothesis considered here is that all the

algorithms are equivalent, so their ranks should be equal.
Hereon, for all the future tests, we fix a significance level
of 0.10. For our experiments, according to [7], we have
that N = 3 and k = 7, resulting in a critical value given by
F(6,12) = 2.33, where the two arguments are derived from
the degrees of freedom defined as k − 1 and (N − 1)(k − 1),
respectively. In our case, we get a value FF ≈ 4.00 that is
higher than the critical value, so the null-hypothesis is re-
jected at a 10% significance level. Thus, we conclude that
the algorithms at hand present statistical difference, i.e., they
are statistically different from the mean rank. Nonetheless,
one can see that our algorithm has obtained the best average
rank in relation to the other algorithms for these three data
sets.

As the null hypothesis is rejected, we are able to advance
to post-hoc tests which aim at verifying the performance of
our algorithm in relation to others. For this task, we opt to
use the Bonferroni-Dunn Test, with the proposed technique
fixed as the control algorithm. According to [7], one should
not make pairwise comparisons when we test whether a spe-
cific method is better than others. Basically, the Bonferroni-
Dunn Test quantifies whether the performance between an
arbitrary algorithm and the reference is significantly differ-
ent. This is done by verifying whether the corresponding
average ranks of these algorithms differ by at least a criti-
cal difference (CD). If they do differ that much, then it is
said that the better ranked algorithm is statistically superior
to the worse ranked one. Otherwise, they do not present a
significant difference for the problem at hands. Thus, if we
perform the evaluation of the CD for our problem, we en-
counter CD = 4.22 when the significance level is 10%. The
average rank of the proposed method is 2.00. By virtue of
that, if any rank does lie in the interval 2.00 ± 4.22, the con-
trol algorithm and the compared algorithms are statistically
equivalent. We conclude that our algorithm is superior to
K-Means for this set of databases. However, the other pair-
wise comparisons to the control algorithm do not surpass
the CD, meaning that the differences among them are sta-
tistically insignificant. Nonetheless, the proposed technique
has obtained the best performance (the best average rank) in
relation to the other techniques and also presents reasonable
computational complexity as we have previously addressed.

In order to further verify the robustness of the proposed
technique, we inspect the samples that compose a same clus-
ter. Specifically, Figs. 2, 3, 4, and 5 show some samples of
the clusters representing the pattern “2”, “5”, “6”, and “8”,
respectively, of the MNIST data set. These samples are cap-
tured using the following strategy: we compute the vertices
that compose the maximum geodesic distance of the cluster
representing each pattern (cluster diameter). Now, we select
a representative subset of vertices composing the cluster di-
ameter trajectory for illustrative purposes. In these figures,
samples that are adjacent are more similar than those distant
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Fig. 2 A broad set of samples of that were classified as being mem-
ber of the cluster representing the pattern “2”. Note that samples that
are adjacent are similar with regards to the weighted eigenvalue dis-
similarity function. The transitions from the sample (a) to (g) were

captured from the maximum geodesic distance between two vertices
in the cluster representing pattern 2. In this case, the diameter of such
cluster is 17. We have only provided 7 representative samples above

Fig. 3 A broad set of samples of that were classified as being member of the cluster representing the pattern “5”. Likewise the previous figure,
adjacent samples are more similar to each other than distance samples. The methodology for construction (geodesic path) is the same

Fig. 4 A broad set of samples of that were classified as being member of the cluster representing the pattern “6”. Likewise the previous figure,
adjacent samples are more similar to each other than distance samples. The methodology for construction (geodesic path) is the same

Fig. 5 A broad set of samples of that were classified as being member of the cluster representing the pattern “8”. Likewise the previous figure,
adjacent samples are more similar to each other than distance samples. The methodology for construction (geodesic path) is the same

from one to another. On the basis of this analysis, we con-
clude that the graph representation has successfully captured
several variations of the these number patterns each of which
in a single representative cluster, showing the robustness of
the proposed model.

5 Conclusions

This paper studies a new model for competitive learning
in networks, biologically inspired by the competition pro-
cess taking place in many nature and social systems. In this
model, several agents navigate in the network to explore
their territory and, at the same time, attempt to defend their
territory from rival agents. If an agent frequently visits a spe-

cific vertex, it occurs that the domination level of the visit-
ing agent to this vertex is strengthened; simultaneously, the
domination levels of all the other agents on the same vertex
are weakened. Finally, each agent is confined in a commu-
nity of the network.

The competitive model is nonlinear and stochastic. In
addition, we show that it generalizes the process of multi-
ple independent random walks when a special case occurs.
Such generalization is realized by changing the values of
the parameters λ and � of the system. If λ = 0 and � = 0,
the proposed model reduces to multiple independent random
walks. Conversely, when λ > 0, the competition mechanism
is turned on. In this case, the reanimation procedure is en-
abled depending on the parameter �. Moreover, here we
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provide a mathematical analysis of the unsupervised com-
petitive model.

Simulations are carried out with the purpose of quantify-
ing the robustness of the proposed technique on handwritten
data clustering. Computer simulations show that the com-
petitive model works well for detecting digits or letters even
with considerable distortion in the same cluster.
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