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Abstract Many computer vision algorithms rely on the as-
sumptions of the pinhole camera model, but lens distortion
with off-the-shelf cameras is usually significant enough to
violate this assumption. Many methods for radial distortion
estimation have been proposed, but they all have limitations.
Robust automatic radial distortion estimation from a sin-
gle natural image would be extremely useful for many ap-
plications, particularly those in human-made environments
containing abundant lines. For example, it could be used
in place of an extensive calibration procedure to get a mo-
bile robot or quadrotor experiment up and running quickly
in an indoor environment. We propose a new method for
automatic radial distortion estimation based on the plumb-
line approach. The method works from a single image and
does not require a special calibration pattern. It is based
on Fitzgibbon’s division model, robust estimation of circu-
lar arcs, and robust estimation of distortion parameters. We
perform an extensive empirical study of the method on syn-
thetic images. We include a comparative statistical analysis
of how different circle fitting methods contribute to accurate
distortion parameter estimation. We finally provide qualita-
tive results on a wide variety of challenging real images. The
experiments demonstrate the method’s ability to accurately
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1 Introduction

Most computer vision algorithms, particularly structure
from motion algorithms, rely critically on the assumption
of a linear pinhole camera model. However, most commer-
cially available cameras introduce sufficiently severe opti-
cal distortion that the pinhole assumption is invalid, making
distortion correction a must. Radial distortion is the most
significant type of distortion in today’s cameras [28, 43, 54].
It is most evident in images produced with low-cost, wide-
angle lenses [23]. Such lenses are being widely deployed,
for example, in automotive driver assistance applications
[22, 26]. But radial distortion is also significant enough in
higher-quality cameras to introduce error into 3D recon-
struction processes. Radial distortion bends straight lines
into circular arcs [43, 50], violating the main invariance pre-
served in the pinhole camera model, that straight lines in
the world map to straight lines in the image plane [17, 25].
Radial distortion may appear as barrel distortion, usually
arising at short focal lengths, or pincushion distortion, usu-
ally arising at longer focal lengths. Besides radial distortion,
another type of distortion is tangential distortion. We do not
have experience with real cameras that introduce significant
tangential distortion, so like most previous work [2, 28, 38,
43, 47, 54], we ignore tangential distortion.
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Methods for radial distortion estimation fall into three
major categories: point correspondence [7, 49, 54], multi-
ple view autocalibration [4, 21, 24, 36, 42], and plumb-line
[2, 8, 9, 17, 43, 44, 47, 50].

Point correspondence based methods [7, 49, 54] are ideal
for distortion estimation during pre-calibration of a camera
with a fixed focal length. They identify image points with
known 3D positions in multiple images using a known pat-
tern such as a chessboard and then estimate the parame-
ters of an undistortion function. The parameterized undis-
tortion function can then be used to undistort specific im-
ages or point positions. These point correspondence meth-
ods are highly reliable and accurate; radial distortion esti-
mation and removal is a solved problem for cameras that are
pre-calibrated at a fixed focal length.

Manual camera calibration, however, is a tedious process
that is not always possible, for example, when we want to
process an existing image sequence acquired with an un-
known camera, when we want to change the focal length
dynamically during image sequence acquisition, or when
we want to get a mobile robot experiment up and running
quickly.

Multiple view auto-calibration is an active area of com-
puter vision research that aims to extract camera parameters
automatically from natural images. Auto-calibration meth-
ods use a sequence of arbitrary natural images without any
special pattern or information about the scene. Although
many auto-calibration methods assume a pinhole camera,
others do attempt to simultaneously estimate radial distor-
tion parameters and pinhole parameters [21, 24, 28, 36, 42].

Auto-calibration is a mature area of research, but the
main limitation of this class of methods is that it requires
multiple images under camera motion. For fixed cameras
and for situations where immediate online estimation is de-
sirable, multiple view methods are inappropriate.

In view of the limitations of the point correspondence and
auto-calibration methods, robust automatic distortion esti-
mation and removal from a single natural image would be
extremely useful for many applications, particular those in
human-made environments containing abundant lines. For
example, it could be used in place of an extensive calibration
procedure to get a mobile robot or quadrotor experiment up
and running quickly in an indoor environment. Plumb-line
methods are the most promising for robust distortion esti-
mation from a single image or a small number of images.
Rather than using a known pattern or sequence of images
under camera motion, they estimate distortion parameters
directly from distorted straight lines in one or more images.
Straight lines are frequent enough in most human-made en-
vironments to make distortion estimation from a single im-
age possible [43, 47, 50].

The main limitations of this class of methods are that
straight lines must be visible in the image and that images of

actual curved lines may disrupt estimation. Some methods
address these issues simply by utilizing human supervision
to select the lines (see, e.g., [2, 9, 44]). But when human su-
pervision is not used, plumb-line methods depend critically
on the robustness and accuracy of the line detection algo-
rithms. Some plumb-line approaches do not use all available
lines for distortion estimation despite the fact that additional
lines could minimize estimation error [43, 47, 50], or as-
sume the distortion center as the center of the image [2, 8,
21, 28, 43], which is in contrast to some researchers’ rec-
ommendations [24, 46]. The Devernay and Faugeras [17]
method is the only existing method that overcomes all of
these limitations. However, it requires a complex process of
polygonal approximation of the distorted lines. As we shall
see, the distorted line detection process can be dramatically
simplified by using an alternative distortion model.

We propose a new method based on the plumb-line ap-
proach that addresses the aforementioned limitations. The
method works from a single image if the image contains a
sufficient number of distorted straight lines. It does not re-
quire a calibration pattern or human intervention. We use
Fitzgibbon’s division model of radial distortion [21] with a
single parameter. Our estimator is similar to that of Strand
and Hayman [43] and Wang et al. [50] in that we estimate
the parameters of the distortion model from the parameters
of circular arcs identified in the distorted image, based on
the fact that distorted straight lines can be modeled as circu-
lar under the division model [4, 43, 50]. Our contribution is
to make the process fully automatic and robust to outliers us-
ing a two-step random sampling process. For the first step,
we introduce a sampling algorithm to search the input im-
age for subsequences of contour pixels that can be modeled
as circular arcs. For the second step, we introduce a sam-
pling algorithm that finds the distortion parameters consis-
tent with the largest number of arcs. Based on these parame-
ters, we undistort the input image. Some preliminary results
from our method have previously appeared in a conference
paper [11].

In this paper, to evaluate the new algorithm, we per-
form a comprehensive quantitative study of its performance
on distorted synthetic images and provide extensive exam-
ples of its ability to remove distortion from a large, chal-
lenging set of real images taken from Web sites and pre-
vious papers on distortion estimation. We find that the al-
gorithm performs very well, with excellent reconstruction
of the original synthetic images even under severe barrel
distortion and pincushion distortion. We also find that the
method is able to eliminate nearly all of the visible distor-
tion in the real images, including those acquired with wide
angle and fish-eye lenses. Finally, we perform a direct com-
parison of our method with that of Alvarez et al. [2], the
only researchers who have provided a publicly accessible
implementation of their method, on synthetic images. The
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Alvarez et al. method exploits user assistance in identify-
ing points on straight lines, but we nevertheless find that our
fully automatic method provides superior reconstruction of
the original undistorted image. Our method is thus a prac-
tical solution to the important problem of radial distortion
estimation and removal.

2 Mathematical Model

In this section, we outline the mathematical model of radial
distortion assumed in the rest of the paper and show how to
estimate the parameters of this model.

2.1 Distortion Model

The most commonly used radial distortion model is the
even-order polynomial model

xu = xd

(
1 + λ1r

2
d + λ2r

4
d + λ3r

6
d + · · · )

yu = yd

(
1 + λ1r

2
d + λ2r

4
d + λ3r

6
d + · · · ),

(1)

where (xu, yu) and (xd, yd) are the corresponding coordi-
nates of an undistorted point and a distorted point, respec-
tively. rd is the Euclidean distance of the distorted point to
the distortion center. If the distortion center is the origin of
the distorted image, we can simply write

r2
d = x2

d + y2
d . (2)

However, if (x0, y0) is the center of distortion (in the dis-
torted image), we write

r2
d = (xd − x0)

2 + (yd − y0)
2 (3)

and replace xd and yd in Eq. (1) with (xd − x0) and (yd −
y0), respectively. In the model, x0, y0, λ1, λ2, λ3, . . . are the
distortion parameters, which must be estimated from image
measurements.

There have been objections to the even-order polynomial
model. According to Wang et al. [50], the model performs
well for small distortion, but for severe distortion, a pro-
hibitively large number of non-zero distortion parameters
are required.

Fitzgibbon [21] proposes an alternative model, the divi-
sion model, as a more accurate approximation to the typical
camera’s true undistortion function:

xu = xd

1 + λ1r
2
d + λ2r

4
d + · · ·

yu = yd

1 + λ1r
2
d + λ2r

4
d + · · · .

The division model is preferred over the polynomial model
because it requires fewer terms than the polynomial model

in case of severe distortion [50]. It is also slightly eas-
ier to work with; inverting the single-parameter division
model, for example, requires solution of a polynomial of
degree two, whereas inverting the single-parameter polyno-
mial model leads to a polynomial of degree three. In our
work, we use the single-parameter division model (fixing
λ2 = · · · = 0), because for most cameras, a single term is
sufficient [17, 21, 50, 51]. When the center of distortion is
not the origin, we can write the single-parameter division
model in the form

xu = x0 + xd − x0

1 + λr2
d

yu = y0 + yd − y0

1 + λr2
d

(4)

with r2
d defined according to Eq. (3). Strand and Hay-

man [43] find that for the typical case of relatively small
barrel distortion (small negative values for λ), the single-
parameter division model is highly correlated with the
single-parameter polynomial model.

2.2 Distortion of a Line Under the Single-Parameter
Division Model

Wang et al. [50] show that under the single-parameter di-
vision model, the distorted image of a straight line is a cir-
cular arc. However, they use the slope-y-intercept form of
the equation of a line, which we avoid due to its inability
to model vertical lines and its undesirable numerical proper-
ties. However, it is also easy to show that the general line

axu + byu + c = 0 (5)

is also imaged as a circular arc under the single parameter
division model. To avoid the degenerate case a = b = 0, we
impose the constraint that a2 + b2 > 0. (When convenient
we will further assume the line parameters are normalized
so that a2 + b2 = 1.) By substituting the image coordinates
from Eq. (4) into Eq. (5), replacing r2

d by its definition from
Eq. (3), and simplifying, we obtain the circle

x2
d + y2

d + exd + fyd + g = 0, (6)

where

e = a

cλ
− 2x0

f = b

cλ
− 2y0 (7)

g = x2
0 + y2

0 − a

cλ
x0 − b

cλ
y0 + 1

λ
.

It is also possible to come to the conclusion that straight
lines are imaged as circles using the parametric form of a
straight line [43].
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2.3 Inverse Mapping

When undistorting an image, it is necessary to compute, for
each pixel in the output undistorted image, the correspond-
ing pixel position in the distorted image then perform in-
terpolation to determine the actual pixel color or intensity
in the output undistorted image (we use simple bilinear in-
terpolation in all of the experiments reported on in this pa-
per). However, while every distorted image point (xd, yd)

is mapped to a unique undistorted image point (xu, yu) by
Eq. (4), the reverse is not true. To invert Eq. (4) and find the
value of xd and yd as a function of xu and yu, we first square
and add the individual equations to obtain

(xu − x0)
2 + (yu − y0)

2

= 1

(1 + λr2
d )2

(
(xd − x0)

2 + (yd − y0)
2). (8)

We then let ru be the distance of (xu, yu) to the distortion
center:

r2
u = (xu − x0)

2 + (yu − y0)
2. (9)

This lets us simplify Eq. (8) to

r2
d − 1

λru
rd + 1

λ
= 0. (10)

For positive λ (pincushion distortion), given 0 < r2
u < 1

4λ
,

Eq. (10) has two positive real roots. We use the smaller of
the two. For negative λ (barrel distortion), given any r2

u > 0,
there are always two real solutions, but one is negative. We
use the positive solution. After solving for rd in terms of
ru, the distorted image coordinates corresponding to (xu, yu)

can be obtained as

xd = x0 +
(

rd

ru

)
(xu − x0)

yd = y0 +
(

rd

ru

)
(yu − y0).

(11)

2.4 Estimating Distortion Parameters from Circular Arcs

Strand and Hayman [43] and Wang et al. [50] show that it is
possible to estimate λ from the parameters of circular arcs
identified in an image. Wang et al. [50] further show how
both λ and the distortion center (if not assumed to be the
center of the image) can be estimated from the parameters
of three circular arcs identified in an image. We use their
formulation. In Eq. (7), multiplying the equation for e by
x0, the equation for f by y0, and adding the equations for
ex0, fy0, and g, we obtain

x2
0 + y2

0 + ex0 + fy0 + g − 1

λ
= 0. (12)

For each of the three arcs i ∈ {1,2,3}, we use Eq. (12) to
obtain coefficients ei , fi , and gi , then the distortion center
can be estimated by solving the linear system

(e1 − e2)x0 + (f1 − f2)y0 + (g1 − g2) = 0

(e1 − e3)x0 + (f1 − f3)y0 + (g1 − g3) = 0,
(13)

and an estimate of λ can be obtained from

1

λ
= x2

0 + y2
0 + ex0 + fy0 + g (14)

using any of the three arcs’ parameters in place of e, f ,
and g. See Wang et al. [50] for details.

3 Robust Radial Distortion Estimation

In this section, we provide a detailed algorithm for estimat-
ing the parameters of the mathematical model introduced in
Sect. 2.

3.1 Identifying Circular Arcs

The first step in our method is to robustly identify as many
non-overlapping circular arcs as possible in the distorted in-
put image. Each arc is identified by a circle center, circle ra-
dius, and the contiguous sequence of pixels consistent with
that circle.

To find arcs, we first extract edges and link adjacent edge
pixels remaining contours. We discard any contour whose
length is less than lmin pixels (we use lmin = 10 pixels) and
then we attempt to find long pixel subsequences within each
contour that can be fit by circular arcs. Our method is based
on random sampling and inspired by RANSAC [20], but,
rather than finding a single model for all the data, we pre-
serve all models (candidate circular arcs) not overlapping
with other arcs in the same contour that have more support.
The termination criterion is to stop once the probability that
an arc of minimal length has not yet been found is small.

In Algorithm 1, we provide the details of the method. To
determine the number of sampling iterations required, the
algorithm uses a function f (l, n), which gives the number
of trials required to ensure that the probability of not sam-
pling three of l inliers from a set of n points is small. This
ensures that we sample a sufficient number of times to find,
with high probability, all arcs with sufficient length in each
contour.

3.2 Refining Circular Arc Estimates

After the initial arc identification process is complete, each
resulting arc, whose parameters have been calculated di-
rectly from the minimum sample of three points, is refined
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Input: Contours C1,C2, . . .

Output: A is the output arc set
A ← ∅
foreach contour Ci do

if |Ci | ≥ lmin then
N ← f (lmin, |Ci |)
for n ← 1 to N do

Sample three points x1,x2,x3 from Ci .
if x1,x2,x3 are not collinear then

Calculate xc, yc, r from x1,x2,x3

Anew ← arc for longest subsequence of
Ci consistent with xc, yc, r

if |Anew| ≥ lmin then
if Anew does not overlap with any
arc in A then

A ← A ∪ {Anew}
end
else if Anew is longer than every
overlapping arc in A then

Remove arcs overlapping with
Anew from A

A ← A ∪ {Anew}
end

end
end

end
end

end
Algorithm 1: Robust arc identification

using the inlier pixel contour subsegment supporting that
model. The gold standard objective function for circle fit-
ting is

Ω(xc, yc, r) =
N∑

i=1

d(xi, yi, xc, yc, r)
2, (15)

where (xc, yc) is the center of the circle, r is its radius, and
d(x, y, xc, yc, r) is the orthogonal distance of the measured
point (x, y) to the hypothetical circle. N is the number of
pixels in a inlier contour. Since there is no closed-form solu-
tion for minimizing this objective function [1], we use an
initial guess and the Levenberg-Marquardt (LM) iterative
nonlinear least squares method to find a local minimum. To
obtain the initial guess, we use a variety of methods as de-
tailed in the next section.

3.2.1 Algebraic Circle Fitting Methods

As the initial estimate of the circle’s parameters, we use
either the parameters calculated during the sampling pro-
cedure or one of three circle fitting methods, Pratt [35],
Taubin [45], and Kukush-Markovsky-van-Huffel (KMvH)

[29], based on algebraic error minimization. Both Pratt and
Taubin use four parameters to specify a circle:

a
(
x2 + y2) + bx + cy + d = 0, (16)

with a �= 0. The center of the circle is (− b
2a

,− c
2a

) and the

radius is given by r =
√

(− b
2a

)2 + (− c
2a

)2 − d
a

. The Pratt
method minimizes the objective function

Ω(a,b, c, d) =
N∑

i=1

a
(
x2
i + y2

i

) + bxi + cyi + d
2
, (17)

subject to the constraint that b2 + c2 − 4ad = 1, to en-
sure that the parameterized equation represents an actual
circle. The Taubin method minimizes the same objective
function as the Pratt method, but imposes the constraint
4a2z + 4abx + 4acy + b2 + c2 = 1, where x is the mean
of the sample points’ x coordinates, y is the mean of the
sample points’ y coordinates, and z = 1

N

∑N
i=1(x

2
i + y2

i ).
The additional constraint improves the convergence of the
optimization [15].

We use one other algebraic method, the Kukush-Markovs-
ky-van-Huffel (KMvH) consistent conic fitting method [29],
which minimizes the objective function Ω(a,b, c, d) =
AT MA, where A = [a b c d]T and M is an unbiased esti-
mate of the data covariance matrix. The method guarantees
convergence to the true parameters as the number of sam-
pled points approaches infinity.

3.2.2 Geometric Circle Fitting methods

Researchers have proposed several circle-specific parame-
ter refinement methods based on LM. In addition to generic
LM, in this paper, we also experiment with Trust-Region-
LM, Chernov and Lesort LM (Chernov-LM), and Reduced-
LM.

In the Reduced-LM method [15], only two parameters
are adjusted; i.e., xc and yc (the coordinates of the center of
the circle). The method minimizes the objective function

Ω(xc, yc) =
N∑

i=1

[
r −

√
(xi − xc)2 + (yi − yc)2

]2
,

where r = 1
N

∑N
i=1

√
(xi − xc)2 + (yi − yc)2.

The Chernov and Lesort LM method [16] guarantees
convergence to a minimum of the objective function from
any initial guess. They redefine the circle parameters with
respect to Eq. (16) as A = − b

2a
,B = − c

2a
, and R2 =

b2+c2−4ad

4a2 . Their objective function is

Ω(a,b, c, d) = 2
Pi

1 + √
1 + 4aPi

,

where Pi = a(x2
i + y2

i ) + bxi + ci + d .
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The Trust-Region-LM method [32] guarantees proper
initialization of LM’s learning rate or control parameter λ

and also provides an efficient rule for updating λ’s value.
We coded all the geometric and algebraic circle fitting

methods in C++ using OpenCV [6], with reference to Cher-
nov’s [14] MATLAB implementations.

3.3 Experimental Design for Circular Arc Estimation
Methods

We have found that different circle fitting methods provide
very different performance in terms of radial distortion es-
timation. In the experimental evaluation (Sect. 4), we there-
fore perform a comprehensive study of the effect the cir-
cle fitting algorithm has on radial distortion correction. We
use 10 different variations of the fitting methods described
in the previous section. For a comparative summary of the
different circle fitting algorithms, refer to Table 1, and for
more detailed discussion of the methods, refer to Cher-
nov [15].

In our experiments, the “Ransac” method means we sim-
ply accept the circular arc model computed from three sam-
ple points, without any refinement after calculating inliers.
“Ransac-Taubin”, “Ransac-Pratt”, and “Ransac-KMvH” are
the results of using the Taubin, Pratt, or KMvH meth-
ods to refine the arc models computed from three sam-
ple points. The names “Ransac-LM”, “Ransac-TR-LM”,
“Ransac-Chernov-LM”, and “Ransac-Reduced-LM” denote
the application of general LM, Trust Region LM, Chernov’s
LM, or the Reduced LM methods previously described di-
rectly to the models computed from three sample points. Un-
der the hypothesis that starting LM from the sample-based
estimate might not work as well as an initial estimate closer
to the optimum, we also performed two series of experi-
ments in which we first applied either the Taubin or the Pratt
methods to the sample-based models then applied general
LM to the Taubin or the Pratt estimates respectively. The re-
sults from these methods are shown as “Ransac-Taubin-LM”
and “Ransac-Pratt-LM”.

3.4 Estimating Distortion Parameters

Once we have obtained a set of circular arcs as candidate
distorted straight lines, we use the estimator of Eqs. (13)
and (14) and a RANSAC procedure to find the set of distor-
tion parameters with maximal support. However, we use a
modified notion of support; rather than counting the num-
ber of arcs fit by a particular model, we count the sum
of the lengths (in pixels) of the arcs. Longer arcs provide
much more accurate parameter estimates than shorter arcs.
The weighted support strategy emphasizes models that fit as
many long arcs as possible rather than models that fit many

Input: Arc set A

Output: λ∗, x∗
0 , y∗

0 are the output distortion parameters
begin

(λ∗, x∗
0 , y∗

0 ) ← (∅,∅,∅)

if |A| ≥ 3 then
n ← 0
s∗ ← 0
while true do

n ← n + 1
Sample three distinct arcs A1,A2,A3 with
probability proportional to lengths |Ai |.
Estimate (λ, x0, y0) from A1,A2,A3 per
Eqs. (13) and (14)
s ← support (in pixels) for (λ, x0, y0)

if s > s∗ then
s∗ ← s

(λ∗, x∗
0 , y∗

0 ) ← (λ, x0, y0)

end

if n ≥ f (s,
∑|A|

i=1 |Ai |) then
break

end
end
Reestimate (λ∗, x∗

0 , y∗
0 ) using inlier arcs.

end
end
Algorithm 2: Robust distortion parameter estimation

small arcs. In the sampling loop, we sample three arcs, cal-
culate the model, then classify each arc as an inlier if, after
undistortion, the arc’s pixels fit a straight line.

The details are presented in Algorithm 2. In the sampling
loop, we use adaptive calculation of the number of iterations
required based on the highest number of pixels in inlier arcs
seen so far. The termination criterion uses the same func-
tion f (l, n) previously introduced to determine the number
of trials required to ensure that the probability of never sam-
pling three arcs from a consensus set of size (in pixels) at
least the size of the current support set is small.

To judge whether an arc is an inlier for distortion param-
eters (λ, x0, y0), we first perform orthogonal regression to
determine the line best fitting the pixels of the arc before
and after undistortion using the candidate parameters. We
use two criteria: the undistorted arc should be very close
to the straight line in terms of RMSE, and the RMSE for
the undistorted arc should be smaller than that of the orig-
inal distorted arc. The second criterion is necessary to han-
dle arcs that are already very close to straight lines in the
original distorted image. We require that these arcs should
not only be nearly straight after undistortion, but that they
should also be more straight than they were before undis-
tortion. This avoids situations in which incorrect distortion
parameters make nearly straight contours less straight but
still close enough to straight to be counted as inliers.
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Once the required number of iterations have been per-
formed, we obtain a final least squares estimate of the dis-
tortion parameters based on all inlier arcs and Eqs. (13)
and (14). From each possible pair of inlier arcs, we form
the linear system described by Eq. (13) and find the least-
squares solution for the distortion center (x0, y0). After es-
timating the distortion center, we estimate λ using Eq. (14)
and all inlier arcs.

3.5 Undistortion

The last step in our procedure is to undistort the input im-
age. We use the optimal distortion parameters computed per
the previous section and the inverse of the distortion model
in Eq. (11) with bilinear interpolation and appropriate trans-
lation and scale factors to produce the output undistorted
image.

4 Quantitative Results on Synthetic Images

In this section, we describe a detailed quantitative study of
the performance of our method on synthetic images. A sam-
ple of the synthetic images we use with results is shown in
Fig. 1. We used the same original image (Fig. 1(a)) for all
synthetic image experiments. In each experiment, we distort
the original image using particular ground truth values for
λ,x0, and y0 (Fig. 1(b)), extract Canny edges (Fig. 1(c)),
link the edge pixels into contours (Fig. 1(d)), identify circu-
lar arcs among the contours (Fig. 1(e)), estimate the distor-
tion parameters, and then use those parameters to undistort
the image.

To evaluate the quality of reconstruction of the original
synthetic image, we use root mean-squared error (RMSE)
and peak signal-to-noise ratio (PNSR), the most commonly
used image quality metrics for cases in which the original
undistorted image is available for comparison.

4.1 Synthetic Images

We performed two series of experiments with synthetic im-
ages. For edge extraction, we modified OpenCV’s Canny
edge detector to automatically select a low gradient thresh-
old and a high gradient threshold based on a cumulative his-
togram of magnitudes, similar to the Matlab implementation
of Canny’s method [31].

4.1.1 Experiment 1 (Varying λ)

In a first series of runs, we varied λ while keeping the dis-
tortion center fixed at (x0, y0) = (320,240) but estimated all
three parameters. For each level of λ, we compare 10 meth-
ods for circular arc estimation.

Fig. 1 Example experiment with synthetic image size 640 × 480.
(a) Original image. (b) Distorted image with λ = −10−6 and
(x0, y0) = (320,240) (the image center). (c) Canny edges (d) Extracted
contours. (e) Estimated arcs. (f) Undistorted image using estimated val-
ues of λ = −1.00419e−6, x0 = 319.352, and y0 = 238.009. Using true
parameters RMSE = 3.27813 and PNSR = 37.8183 dB; Using esti-
mated parameters RMSE = 3.86511 and PNSR = 36.3876 dB

Figure 2 shows the distorted image and a sample undis-
torted result for each level of λ using the “Ransac-LM”
method. For the extreme case of λ = 10−5, undistorted im-
age points map to multiple valid distorted image points, so
we only map the points for which r2

d < λ, resulting in a cir-
cular valid region around the image center.

To precisely quantify the performance of each algorithm,
for each level of λ and each circle fitting method, we per-
formed 10 runs with different random seeds and collected
three measurements in each case: the absolute relative es-
timation error for λ, i.e., |(λest − λtrue)/λtrue|, RMSE, and
PNSR. For the extreme case of λ = 10−5, we only calcu-
lated RMSE and PNSR over the circular valid region shown
in Fig. 2. The mean measurements with 95 % confidence
intervals are shown in Fig. 3(a)–(c).

The results in terms of relative estimation error for λ in
Fig. 3(a) show quite clearly that our method is extremely
accurate at estimating λ for moderate (λ = ±10−6) or ex-
treme (λ = ±10−5) distortion but quite inaccurate for very
small levels of distortion. The inaccuracy with small distor-
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Fig. 2 Undistortion of synthetic images. Image size is 640 × 480 and distortion center is (320,240). First row: distorted images at different levels
of λ. Second row: corresponding undistorted images using parameters estimated by the “Ransac-LM” circle fitting method

tion levels reflects two factors. First, since the ground truth
value is extremely small in the first place, small deviations
between estimated and ground truth parameter values give
large relative errors. Second, when our algorithm fails to
find a sufficient number of contours that can be modeled
as circular arcs, it defaults to an estimate of λ = 0, which
leads to a relative error of 1. Fortunately, as the RMSE and
PNSR comparisons show, this relative inaccuracy for small
λ does not affect our method’s ability to reconstruct the orig-
inal undistorted image.

Since the RMSE and PNSR results shown in Fig. 3(b)–(c)
are difficult to interpret, we performed a series of statistical
analyses. As the dependent variables, we used pixel intensity
RMSE and PNSR. As the independent variables, we used
the algorithm and the different levels of λ.

For both RMSE and PNSR, a two-way analysis of vari-
ance (ANOVA) revealed main effects for both predictor vari-
ables and an interaction. To understand the main effect of
differing ability of each algorithm to reconstruct the original
image, we performed a post-hoc analysis using the Tukey
correction for all pairwise comparisons among the 10 differ-
ent algorithms.

For both RMSE and PNSR, the best numerical results
were obtained with Ransac-Pratt, but statistically, accord-
ing to both measures, four algorithms, namely Ransac-
Pratt, Ransac-Pratt-LM, Ransac-LM, Ransac-Reduced-LM,
Ransac-Taubin, and Ransac-Taubin-LM are equivalent to
and better than the remaining four algorithms (we use a
familywise α = 0.05 for all significance tests). Next are
Ransac-KMvH, Ransac-Chernov-LM, and Ransac-TR-LM.
These three algorithms are statistically equivalent. The last
method, Ransac, is statistically worse than all the other al-
gorithms.

4.1.2 Experiment 2 (Varying Distortion Center)

In a second series of runs, we kept the distortion fixed at a
moderate level of barrel distortion (λ = −10−6) while vary-
ing the distortion center, then we estimated all three param-
eters of the distortion model. We used the same 10 circle

fitting methods as in the first series of experiments manip-
ulating λ. For each run, we measured the Euclidean dis-
tance between the estimated and ground truth distortion cen-
ter as well as RMSE and PNSR. The results are shown in
Fig. 3(d)–(f).

To further understand the results, we performed statis-
tical analyses with all three dependent measures. As the
independent variables, we used the algorithm and the dif-
ferent levels of distortion center. To simplify the presen-
tation, we name the distortion center levels as DC1 = 0.0
(distortion center (320,240)), DC2 = 14.1 (distortion cen-
ter (330,250)), DC3 = 28.3 (distortion center (340,260)),
DC4 = 42.4 (distortion center (350,270)), DC5 = 56.6
(distortion center (360,280)), DC6 = 70.7 (distortion cen-
ter (370,290)), DC7 = 84.9 (distortion center (380,300)),
DC8 = 99.0 (distortion center (390,310)).

For all three dependent measures, two-way analyses of
variance (ANOVAs) revealed main effects for both predic-
tor variables and an interaction. We then performed post-
hoc Tukey comparisons among the different algorithms and
among the different distortion center distances.

For distortion center estimation error, Ransac-LM was
numerically best but Ransac-LM, Ransac-Reduced-LM,
Ransac-Pratt, Ransac-Taubin-LM, Ransac-KMvH, and
Ransac-Pratt-LM were statistically equivalent and better
than the other four algorithms. Distortion center estimation
error was also affected by the distance between the distor-
tion center from the image center. The results for DC1 were
significantly better than those for DC2, and DC7 was better
than DC8. However, DC6 happened to be as easy as DC4

and easier than either DC5 or DC7. Inspection of Fig. 3(d)
indicates that the increasing trend is driven by just two or
three algorithms.

For pixel intensity RMSE, Ransac-LM was numerically
best but statistically equivalent to Ransac-Pratt. The next
set was Ransac-Reduced-LM, Ransac-Taubin-LM, Ransac-
Pratt-LM, Ransac-KMvH, and Ransac-Taubin. Statistically,
these algorithms were equivalent to each other and better
than the remaining three algorithms. There was also an ef-
fect of distortion center distance on RMSE; the results for
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Fig. 3 Results of experiment 1 and experiment 2 using synthetic im-
ages. (a)–(c) Represent results with varying λ, with distortion center
fixed at the image center. (d)–(f) Represent results with varying dis-
tance of the distortion center to the center of the image. λ Is fixed at
−10−6. All graphs show averages over 10 runs with error bars show-

ing 95 % confidence intervals on the mean. (a) True versus estimated
λ. (b) Average RMSE. (c) Average PNSR. (d) True versus estimated
distance of the distortion center from the image center. (e) Average
RMSE. (f) Average PNSR
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Fig. 4 Example results on real image. (a) Original image. (b) Detected edges. (c) Extracted contours. (d) Identified arcs. (e) Undistorted image
using parameters estimated via the “Ransac-LM” circle fitting method. The distorted image is taken from Ociepka [33]

DC1, DC2, DC3, and DC4 were statistically equivalent but
the results for DC6, DC7, DC4, and DC8 were all signifi-
cantly different with respectively increasing RMSE.

Finally, the ordering in terms of increasing PNSR was
Ransac-LM, Ransac-Pratt, Ransac-Reduced-LM, Ransac-
Taubin-LM, Ransac-Pratt-LM, Ransac-KMvH, Ransac-
Taubin, Ransac-TR-LM, Ransac, Ransac-Chernov-LM. All
differences were significant except among Ransac-Pratt-
LM, Ransac-KM-vH, and Ransac-Taubin, which were sta-
tistically equivalent. Distortion center distance also had
some effect, with DC1, DC2, and DC3 yielding the best
PNSR. These levels were significantly better than the oth-
ers, for which the trend was DC6, DC4, DC7, DC5, DC8,
with significantly increasing PNSR, respectively.

4.1.3 Discussion of Synthetic Image Experiments

Over the two series of runs, we observe that with moder-
ate or extreme distortion, our method readily identifies the
parameters of the distortion model and is successful at re-
constructing the original undistorted image with high accu-
racy. For lower levels of distortion, the model parameters
are more difficult to estimate accurately, but this inaccuracy
does not affect the reconstruction results by much: Ransac-
LM introduces at most only 2.5 times the reconstruction er-
ror of bilinear interpolation with the ground truth parame-
ters.

Although some sensitivity to distortion center distance is
observed, we can see readily from the data that this is only
for some algorithms. The best algorithms such as Ransac-
LM and Ransac-Pratt are clearly not affected by this factor.
This is an improvement over other work [2, 8, 21, 28, 43].

Statistically, Ransac-LM and Ransac-Pratt are the win-
ning algorithms. It is difficult to choose between the two
since they both yield excellent performance. Ransac-Pratt is
more computationally efficient. Ransac-LM provides signif-
icantly better PNSR over varying distortion center distances,
and it has a somewhat lower maximum RMSE over varying
levels of distortion. For these reasons, we have a slight pref-
erence for Ransac-LM.

Our method selects the distortion model consistent with
the largest possible number of arcs found in the image. It

could certainly be fooled by a synthetic image contain a
group of real world curves that happen to be consistent with
each other, leading to incorrect distortion parameter estima-
tion. However such egregious cases are extremely unlikely
to arise in practice. So long as there are several distorted
straight lines, our algorithm will find them and estimate a
distortion model to undistort those lines ignoring the curves
or outliers.

5 Qualitative Results on Real Images

Next, we present a qualitative evaluation of the proposed
method’s ability to identify distortion parameters in several
challenging real images from the Web and other papers on
radial distortion estimation. The set contains images with se-
vere barrel and pincushion distortion, showing the effects of
fisheye lenses and wide angle lenses. Figure 4 shows step-
by-step results for one of the images, from Ociepka [33].
Note that some contours in Fig. 4(c) cannot be modeled
as circular arcs. The algorithm discards contours due to (1)
our criteria for circular arc selection is that a contiguous se-
quence of pixels must be consistent with a circle, (2) the
radius of an identified circular arc should be less than the
five times the image width, in order to discard long straight
lines in the distorted image, and (3) we discard any contour
whose length is less than 10 pixels, as small arcs tend to give
suboptimal estimates of the distortion parameters. Figure 5
summarizes the results for all of the images from the Web
and previous papers on distortion estimation [3–5, 10, 12,
13, 18, 19, 27, 30, 34, 37–41, 44, 47, 48, 52, 53]. These re-
sults indicate the robustness and accuracy of our procedure.
Many are difficult due to severe fisheye distortion and circu-
lar arcs that are not straight lines in the real world. Despite
these challenges, our robust arc selection method is able to
find consensus sets corresponding to distorted straight lines
and is successful at removing most of the radial distortion
from the images.

6 Comparison with Alvarez et al.’s [2] Method

How do the results presented thus far compare to previous
work? Since there is no standardized database with ground
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Fig. 5 Undistortion of real images. Column 1, column 3, and column 5
represent original images. Column 2, column 4, and column 6 represent
undistorted images using parameters estimated via the “Ransac-LM”

circle fitting method. The distorted images are taken from several
sources [3–5, 10, 12, 13, 18, 19, 27, 30, 34, 37–41, 44, 47, 48, 52, 53]
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Table 2 Comparison with Alvarez et al. [2]. Image size is 640 × 480

Method Distortion center RMSE (pixel intensity) PNSR (dB) Cpu time (s) Total number of arcs

Alvarez et al. [2] 320 × 240 4.6274 34.8241 1.219a 81

390 × 310 8.5204 29.5216 1.307a 73

Our method 320 × 240 3.86525 36.3872 6.0463b 81

390 × 310 3.91738 36.2709 5.2171b 73

aIncludes network latency but does not include time to manually select contours
bIncludes time to perform edge processing, automatically select circular contours, and estimate arcs

Fig. 6 Synthetic images used for comparison with Alvarez et al. [2].
(a) Distortion center is the image center (320,240). (b) Distortion cen-
ter is at (390,310). Image size is 640 × 480 and λ = −10−6

truth for radial distortion correction, it is difficult to say.
However, Alvarez et al. [2] have deployed an excellent demo
Web site for their method that allow users to submit an im-
age for undistortion after manually selecting distorted lines
from it. The method is also plumb-line based, with source
code available online. We selected two synthetic images as
shown in Fig. 6(a) and Fig. 6(b) for comparison with their
method. In the first image, the distortion center is (320,240)

and λ = −10−6; in the second image we moved the distor-
tion center to (390,310) but kept λ fixed. For fair compar-
ison, before submission, we selected the same number of
lines while comparing our method with their method. To
achieve this, we ran our algorithm to determined how many
arcs are extracted by our method, then based on that we se-
lected the same number of distorted lines, and as much as
possible number of pixels for the Alvarez et al. method, and
after obtaining the results, we manually scaled and trans-
lated the resulting images to be in the best possible align-
ment with the original undistorted image. Table 2 presents
the results. When the image center is the distortion cen-
ter, the Canny edge execution time is 0.6539 s, arc detec-
tion takes 1.5945 s, distortion parameter estimation time is
3.7980 s, and the total execution time is 6.0463 s. When
the image center is not the distortion center, the Canny edge
execution time is 0.6542 s, arc detection takes 1.6309 s, dis-
tortion parameter estimation time is 2.9320 s, and the total
execution time is 5.2171 s. The Alvarez et al. method runs
faster, even taking the Web service’s network latency into

account, but requires manual intervention to select distorted
straight lines. It took us around 1 hour to select 81 con-
tours using their Web demo. When the image center is the
distortion center, the Alvarez et al. method performs well,
with a moderate 19.718 % increase in RMSE and 1.5 dB
decrease in PNSR compared to our method. When the dis-
tortion center is not the image center, our method degrades
only slightly, but the Alvarez et al. method degrades substan-
tially. This is expected because the Alvarez et al. method is
not designed to handle distortion centers that are not the im-
age center. But our method still performs slightly better than
the Alvarez et al. method even when the image center is the
distortion center, even though our algorithm is estimating
rather than assuming the location of the image center and
even though the method is fully automatic with no user in-
tervention.

7 Conclusion

In this paper, we have introduced a new algorithm for au-
tomatic radial distortion estimation and removal using the
plumb-line approach. The method works from a single im-
age and does not require a special calibration pattern. It is
based on Fitzgibbon’s division model, robust estimation of
circular arcs, and robust estimation of distortion parameters.
As our method is based on circles, we also provide a detailed
study of circle fitting methods and have found that two circle
fitting methods, namely “Ransac-LM” and “Ransac-Pratt”
perform better than the remaining 8 algorithms. “Ransac-
Pratt” is a non-iterative circle fitting method and performs
nearly as well as “Ransac-LM”. Since “Ransac-Pratt” is
computationally cheaper than “Ransac-LM”, it may be rec-
ommended for applications in which runtime is important.
Robust automatic radial distortion estimation from a single
natural image would be extremely useful for many appli-
cations, particular those in human-made environments con-
taining abundant lines. For example, it could be used to
get a mobile robot or quadrotor experiment up and running
quickly in an indoor environment. In a series of experiments
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on synthetic and challenging real images, we have demon-
strated the method’s ability to accurately identify distortion
parameters and remove distortion from images. Data and
source code based on OpenCV [6] is available online1 for
researchers interested in evaluating or extending our proce-
dure.
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