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Abstract In this paper we establish the convergence of a
general primal–dual method for nonsmooth convex opti-
mization problems whose structure is typical in the imag-
ing framework, as, for example, in the Total Variation im-
age restoration problems. When the steplength parameters
are a priori selected sequences, the convergence of the
scheme is proved by showing that it can be considered as
an ε-subgradient method on the primal formulation of the
variational problem. Our scheme includes as special case
the method recently proposed by Zhu and Chan for Total
Variation image restoration from data degraded by Gaussian
noise. Furthermore, the convergence hypotheses enable us to
apply the same scheme also to other restoration problems, as
the denoising and deblurring of images corrupted by Poisson
noise, where the data fidelity function is defined as the gen-
eralized Kullback–Leibler divergence or the edge preserving
removal of impulse noise. The numerical experience shows
that the proposed scheme with a suitable choice of the step-
length sequences performs well with respect to state-of-the-
art methods, especially for Poisson denoising problems, and
it exhibits fast initial and asymptotic convergence.
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1 Introduction

Image restoration is an inverse problem that consists in find-
ing an approximation of the original object x̃ ∈ Rn from a set
g ∈ Rm of detected data. In a discrete framework, we assume
that each component of the data gi is the realization of a ran-
dom variable whose mean is (H x̃ + b)i , where H ∈ Rm×n

represents the distortion due to the acquisition system and
b ∈ R

m is a nonnegative constant background term. We as-
sume that H is known and, in particular, when H = I we
have a denoising problem while, in the other cases, we deal
with a deblurring problem.

In the Bayesian framework [17, 27], an approximation of
the original object x̃ is obtained by solving a minimization
problem where the objective function is the combination of
two terms: the first one is a nonnegative functional mea-
suring the data discrepancy, to be chosen according to the
noise statistics, while the second one is a regularization term
weighted by a positive parameter balancing the two terms.
Some physical constraint can be added, such as non negativ-
ity and flux conservation. When the goal is preserving sharp
discontinuities while removing noise and blur, we can use as
regularization term the Total Variation (TV) functional (in-
troduced first in [25]), which, in the discrete framework, is
defined as

n∑

k=1

∥∥(∇x)k
∥∥ (1)

where (∇x)k denotes a discrete approximation of the gradi-
ent of x at the pixel k.
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For Gaussian noise, the fit-to-data term is given by the
following quadratic function

1

2
‖Hx + b − g‖2 (2)

and the variational model combining (2) and (1) has been ex-
tensively studied; its primal and dual formulations have been
deeply investigated in order to design algorithms specifically
tailored for image processing applications. The large size of
these problems requires schemes with a low computational
cost per iteration (typically only a matrix–vector product per
iteration) and a fast initial convergence that enables to ob-
tain medium accurate and visually satisfactory results in a
short time. In the class of first order methods, requiring only
function and gradient evaluations, popular methods for TV
minimization include the time-marching method [25], split
Bregman [19, 22], Chambolle’s [4, 8, 9], gradient projection
[29, 32], Nesterov-type methods [2, 14]. For the most part
of these algorithms, Matlab codes are available in the public
domain (see [14] for references).

We mention also second-order methods proposed in
[11, 18]. These can be quadratically convergent, but they
require the solution of a system at each iteration and infor-
mation about the Hessian matrix.

Another approach is based on the primal–dual formula-
tion of (3) as saddle point problem. In [31], Zhu and Chan
propose a first-order method named Primal–Dual Hybrid
Gradient (PDHG) method, where at any iteration both pri-
mal and dual variables are updated by descent and ascent
gradient projection steps respectively. Furthermore, the au-
thors propose to let the steplength parameters varying trough
the iterations and to choose them as prefixed sequences. The
twofold aim is to avoid the difficulties that arise when work-
ing only on the primal or dual formulation and to obtain a
very efficient scheme, well suited also for large scale prob-
lems.

The convergence of PDHG has been investigated in [16],
where the algorithm with variable stepsizes is interpreted as
a projected averaged gradient method on the dual formu-
lation, while in [10] the convergence of PDHG with fixed
stepsizes is discussed (see also [2]). Numerical experiments
[10, 16, 31] show that the method exhibits fast convergence
for some special choices of the steplength sequences, but,
at the best of our knowledge, a theoretical justification of
the convergence of the PDHG scheme with these a priori
choices is still missing.

A recent development on the primal–dual methods can
be found also in [10] as a special case of a primal–dual
algorithm for the minimization of a convex relaxation of
the Mumford-Shah functional. This last algorithm gener-
alizes the classical Arrow-Hurwicz algorithm [1] and con-
verges for constant steplength parameters. Furthermore, for
uniformly convex objective functions, a convenient strategy

to devise adaptive step sizes is theoretically obtained and it
seems to be numerically effective.

The aim of this paper is to define a robust conver-
gence framework for primal–dual methods with variable
steplength parameters which apply to optimization problems
of the form

min
x∈X

f0(x) + f1(Ax) (3)

where f0 and f1 are convex proper lower semicontinuous
functions, over R

n and R
m respectively, not necessarily dif-

ferentiable, A ∈ R
m×n and X represents the domain of the

objective function or a subset of it expressing physical fea-
tures. The key point of our analysis is to consider the primal–
dual method as an ε-subgradient method [13, 20, 23] on the
primal formulation (3). Then, the two main contributions of
this paper are the following:

– we establish the convergence proof of a primal–dual me-
thod where the steplength are chosen as a priori sequen-
ces; this analysis provides also, as a special case, the
convergence proof of the PDHG method [31] with the
steplength choices suggested by the authors as the best
performing one on the variational problem (2)–(1);

– we design a general algorithm which can be applied to
general TV restoration problems such as
– the denoising or deblurring of images corrupted by

Poisson noise, where the data discrepancy is expressed
by the generalized Kullback–Leibler (KL) divergence:

f0(x) =
∑

k

{
gk ln

gk

(Hx + b)k
+ (Hx + b)k − gk

}
(4)

with gk lngk = 0 if gk = 0;
– the edge preserving removal of impulse noise, where a

suitable fit-to-data term is the �1 norm

f0(x) = ‖x − g‖1

The paper is organized as follows: in Sect. 2 some basic def-
initions and results about ε-subgradient and ε-subgradient
methods are restated. In Sect. 3 we introduce the primal–
dual scheme and the connections with ε-subgradient meth-
ods are investigated. In particular, we provide the conver-
gence analysis for primal-explicit and primal-implicit sche-
mes. In Sect. 4 some applications of our results are de-
scribed. The numerical experiments in Sect. 5 show that the
proposed scheme, with a suitable choice of the steplength
sequences, can be a very effective tool for TV image restora-
tion also in presence of Poisson and impulse noise.

2 Definitions and Preliminary Results

We denote by R
n the usual n-dimensional Euclidean space,

by 〈x, y〉 = xT y the inner product of two vectors of R
n and

by ‖ · ‖ the l2 norm.
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The domain of a function f : R
n →]−∞,+∞] is

dom(f ) = {x ∈ R
n : f (x) < +∞}. A function f is said

proper if dom(f ) 	= ∅. The diameter of a set X is defined as
diam(X) = maxx,z∈X ‖x − z‖.

Let PΩ(z) denote the orthogonal projection of the point
z ∈ R

n onto the nonempty, close, convex set Ω ⊆ R
n,

PΩ(z) = arg minu∈Ω
1
2‖u − z‖2.

We recall that for a convex function f , the resolvent op-
erator (I + θ∂f )−1 is defined as

(I + θ∂f )−1(z) = arg minf (x) + 1

2θ
‖x − z‖2

where ∂f is the subdifferential mapping and θ is a positive
parameter.

Definition 1 [24, Sect. 23] Let f a proper convex function
on R

n.
The ε-subdifferential of f at x ∈ dom(f ), defined for

ε ∈ R, ε ≥ 0, is the set

∂εf (x) = {w ∈ R
n : f (z) ≥ f (x)+〈w,z−x〉−ε, ∀z ∈ R

n
}

For ε = 0 the definition of subdifferential is recovered
while for ε > 0 we have a larger set; furthermore, for ε1 >

ε2 > 0, we have ∂ε1f (x) ⊇ ∂ε2f (x) ⊇ ∂f (x). Every element
of ∂εf (x) is an ε-subgradient of f at x. In the following we
will make use of the linearity property of the ε-subgradient,
which, for sake of completeness, is restated below.

Property 1 If f (x) = ∑n
i=1 αifi(x), where αi ≥ 0, wi ∈

∂εi
fi(x) and x ∈⋂n

i=1 dom(fi), then
∑n

i=1 αiwi ∈ ∂εf (x),
where ε =∑n

i=1 εi .

Proof By Definition 1, we have

fi(z) − fi(x) ≥ 〈wi, z − x〉 − εi, i = 1, . . . , n

Then, the claim follows by multiplying the previous inequal-
ities by αi and summing up for i = 1, . . . , n. �

Definition 2 [24, Sect. 12] The conjugate of a convex func-
tion f is the function f ∗ defined by

f ∗(y) = sup
x

〈x, y〉 − f (x)

If f (x) is lower semicontinuous and proper, then f ∗ is
lower semicontinuous and f ∗∗ = f .

Proposition 1 Let f (x) a proper lower semicontinuous
convex function. Then, for every x ∈ dom(f ) and y ∈
dom(f ∗) we have y ∈ ∂εf (x), with ε = f (x) − (〈y, x〉 −
f ∗(y)).

Proof Let x, z ∈ R
n and y ∈ dom(f ∗). Then, we can write

f (x) + 〈y, z − x〉
= f (x) − (〈y, x〉 − f ∗(y)

)+ 〈y, z〉 − f ∗(y)

≤ f (x) − (〈y, x〉 − f ∗(y)
)+ sup

y
〈y, z〉 − f ∗(y)

= f (x) − (〈y, x〉 − f ∗(y)
)

︸ ︷︷ ︸
=ε

+f (z)

Since f (x) = supx〈y, x〉 − f ∗(y), then ε ≥ 0; thus, Defini-
tion 1 is fulfilled. �

We remark that ε = 0 (that is y ∈ ∂f (x)) if and only if
f (x) = 〈y, x〉 − f ∗(y). Now we state the following corol-
lary, which is useful for the subsequent analysis; its proof
can be carried out by employing similar arguments as in the
previous proposition.

Corollary 1 Let f a proper lower semicontinuous convex
function and let A be a linear operator. Consider the com-
position (f ◦ A)(x)=f (Ax): then, for every x∈dom(f ◦A)

and y ∈ dom(f ∗) we have AT y ∈ ∂ε(f ◦ A)(x), with ε =
f (Ax) − (〈y,Ax〉 − f ∗(y)).

An important property of the ε-subgradients is their
boundedness over compactly contained subsets of
int dom(f ), as we prove in the following proposition.

Proposition 2 Assume that S is a compactly contained
bounded subset of int dom(f ). Then, the set

⋃
x∈S ∂εf (x)

is nonempty, closed and bounded.

Proof Let λ > 0 be such that S + Bλ ⊆ int dom(f ), where
Bλ is the ball of R

n with radius λ and S + Bλ = {u ∈ R
n :

‖u − x‖ ≤ λ,x ∈ S}. By Theorem 6.2 in [15] it follows that⋃
x∈S ∂εf (x) ⊆⋃x∈S+Bλ ∂f (x) + B

ε
λ . The last term in the

previous inclusion is nonempty, closed and bounded (see
[24, Theorem 24.7]); thus the theorem follows. �

Proposition 3 Let x, x̄ ∈ domf and g ∈ ∂f (x); then,
g ∈ ∂εf (x̄) with ε = Df (x̄, x), where Df (x̄, x) = f (x̄) −
f (x)−〈g, x̄ −x〉 is the Bregman divergence associated with
f at x.

Proof Since g ∈ ∂f (x), for all z we have

f (z) ≥ f (x) + 〈g, z − x〉
= f (x̄) + 〈g, z − x̄〉 − (f (x̄) − f (x) − 〈g, x̄ − x〉)

︸ ︷︷ ︸
ε

where ε ≥ 0 by the hypothesis on g. �
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2.1 The ε-Subgradient Projection Method

Consider the constrained minimization problem

min
x∈X

f (x), (5)

where f is a convex, proper, lower semicontinuous function;
the ε-subgradient projection method is defined as follows

x(k+1) = PX

(
x(k) − θkw

(k)
)
, w(k) ∈ ∂εkf

(
x(k)
)

(6)

given the steplength sequence {θk} and subgradient residuals
{εk} (see for example [13, 20, 23] and reference therein).

The convergence properties of a subgradient method
strongly depends on the steplength choice, and different
selection strategies can be devised in the literature (see
[5, Chap. 6.8] for a recent review). In this paper we focus
on the diminishing divergent series stepsize rule, that con-
sists in choosing any sequence of positive steplength θk > 0
such that

A1 lim
k→∞ θk = 0

A2
∞∑

k=0

θk = ∞.

The convergence of the ε-subgradient projection method can
be stated as in [20, Theorem 3]. For sake of completeness we
report the statement below.

Theorem 1 Let {x(k)} be the sequence generated by the me-
thod (6) and assume that the set X∗ of the solutions of (5) is
bounded. Under the Assumptions A1–A2, if w(k) is bounded
and limk εk = 0, then {f (x(k))} converges to a minimum of
f (x) over X and dist(x(k),X∗) → 0.

Remark When problem (5) has a unique solution x∗, the
previous theorem assures the convergence of the sequence
{x(k)} to the minimum point x∗.

3 The Primal–Dual Scheme

We consider the minimization of

f (x) ≡ f0(x) + f1(Ax)

where f0(x) and f1(x) are convex, proper, lower semicon-
tinuous functions, not necessarily differentiable, and such
that

diam
(
dom

(
f ∗

1

))= D < +∞ (7)

We consider problems of the form (5) where the constraint
set X is a closed convex subset X of dom(f ); otherwise,

for the unconstrained case, we set X = dom(f ). We assume
also that the set of the minimum points X∗ is bounded.

We remark that, the boundedness of X∗ together with (7),
ensures that the min–max theorem [24, p. 397] holds. As a
consequence of this, the minimization problem (5) is equiv-
alent to the saddle point problem

min
x∈X

max
y

F (x, y) ≡ f0(x) + 〈y,Ax〉 − f ∗
1 (y) (8)

Indeed, by definition, the pair (x∗, y∗) is a saddle point of
(8) when

F
(
x∗, y

)≤ F
(
x∗, y∗)≤ F

(
x, y∗) ∀x ∈ X (9)

and (9) holds if and only if AT y∗ ∈ ∂f1(x
∗) and x∗ ∈ X∗.

3.1 Primal-Explicit Scheme

We consider the following algorithm.

Algorithm 1 Primal-explicit scheme

Choose the starting point x(0) ∈ X, y(0) ∈ dom(f ∗
1 )

FOR k = 0,1,2, . . . DO THE FOLLOWING STEPS:

STEP 1. Choose positive steplength parameters τk

and θk ;
STEP 2. Compute

y(k+1) ← (
I + τk∂f

∗
1

)−1(
y(k) + τkAx(k)

)

(10)

x(k+1) ← PX(x(k) − θk

(
g(k) + AT y(k+1)

)

with g(k) ∈ ∂δk
f0
(
x(k)
)
, δk ≥ 0 (11)

STEP 3. Terminate if a stopping criterion is satisfied:
otherwise, go to step 1.

END

In order to prove the convergence of Algorithm 1, we
make the following assumptions on the parameters τk

and δk :

A3 lim
k→∞ τk = ∞;

A4 lim
k→∞ δk = 0;

Lemma 1 Let x(k) any sequence in dom(f ) and assume
that (7) holds. Under the Assumptions A1 and A3, we have
that AT y(k+1) ∈ ∂εk (f1 ◦ A)(x(k)) with limk→∞ εk = 0.

Proof Corollary 1 guarantees that

AT y(k+1) ∈ ∂εk (f1 ◦ A)
(
Ax(k)

)

with εk = f1(Ax(k)) + f ∗
1 (y(k+1)) − 〈y(k+1),Ax(k)〉.
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By (10) it follows that

y(k+1) = arg min
y

f ∗
1 (y) + 1

2τk

∥∥y − (y(k) + τkAx(k)
)∥∥2

= arg min
y

f ∗
1 (y) − 〈y,Ax(k)

〉+ 1

2τk

∥∥y − y(k)
∥∥2

We have

f ∗
1

(
y(k+1)

)− 〈y(k+1),Ax(k)
〉

≤ f ∗
1

(
y(k+1)

)− 〈y(k+1),Ax(k)
〉+ 1

2τk

∥∥y(k+1) − y(k)
∥∥2

= min
y

f ∗
1 (y) − 〈y,Ax(k)

〉+ 1

2τk

∥∥y − y(k)
∥∥2

≤ min
y

f ∗
1 (y) − 〈y,Ax(k)

〉+ 1

2τk

D2

≤ −f1
(
Ax(k)

)+ 1

2τk

D2

which results in

εk = f ∗
1

(
y(k+1)

)− 〈y(k+1),Ax(k)
〉+ f1

(
Ax(k)

)

≤ 1

2τk

D2

Since τk → +∞ and εk ≥ 0 ∀k, then εk → 0. �

We are now ready to state the following convergence re-
sult for Algorithm 1, which directly follows from Theorem 1
and Lemma 1.

Theorem 2 We assume X∗ bounded. Let {x(k)} be the
sequence generated by Algorithm 1. Under the Assump-
tions A1–A4, if {g(k)} is bounded, then {f (x(k))} converges
to a minimum of f (x) over X and dist(x(k),X∗) → 0.

One of the main advantages of Algorithm 1 is its gener-
ality, and different algorithms can be defined according to
the strategy chosen to compute the approximate subgradi-
ent g(k).

In particular, when the function f0(x) is differentiable,
we may set

g(k) = ∇f0
(
x(k)
)
,

so that we have δk = 0 for all k.

3.2 Primal-Implicit Scheme

We observe that the constrained problem (5) can be formu-
lated also as

min
x∈Rn

f X
0 (x) + f1(Ax)

where f X
0 (x) = f0(x) + ιX(x) and ιX(x) is the indicator

function of the set X, defined as

ιX(x) =
{

0 if x ∈ X

+∞ if x /∈ X

We consider the following implicit version of Algorithm 1.

Algorithm 2 Primal-implicit scheme

Choose the starting point x(0) ∈ X, y(0) ∈ dom(f ∗
1 )

FOR k = 0,1,2, . . . DO THE FOLLOWING STEPS:

STEP 1. Choose positive steplength parameters τk

and θk ;
STEP 2. Compute

y(k+1) ← (
I + τk∂f

∗
1

)−1(
y(k) + τkAx(k)

)

(12)

x(k+1) ← (
I + θk∂f

X
0

)−1(
x(k) − θkA

T y(k+1)
)

(13)

STEP 3. Terminate if a stopping criterion is satisfied:
otherwise, go to step 1.

END

Then, the new point x(k+1) is defined also as

x(k+1) = arg min
x∈X

f0(x) + 1

2θk

∥∥x − x(k) + θkA
T y(k+1)

∥∥2

and, thus, the updating step (13) implies that

x(k) − x(k+1)

θk

− AT y(k+1) ∈ ∂f X
0

(
x(k+1)

)
(14)

In particular, we have that x(k+1) ∈ dom(f X
0 ) and

x(k+1) = x(k) − θk

(
g(k) + AT y(k+1)

)
(15)

where g(k) ∈ ∂f X
0 (x(k+1)). From Proposition 3, it follows

that

g(k) ∈ ∂δk
f X

0

(
x(k)
)

with

δk = f X
0

(
x(k)
)− f X

0

(
x(k+1)

)− 〈g(k), x(k) − x(k+1)
〉

(16)

Thus, Algorithm 2 can be considered an ε-subgradient me-
thod and the convergence analysis previously developed still
applies, as we show in the following. However, this semi-
implicit version has stronger convergence properties: in par-
ticular, we are able to prove the boundedness of the iterates
{x(k)}.
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Lemma 2 Assume that

∞∑

k=0

θk

τk

< +∞ and
∞∑

k=0

θ2
k < +∞ (17)

Then, the sequence {x(k)} generated by Algorithm 2 is boun-
ded.

Proof Let (x∗, y∗) a saddle point of (8). From (14) and from
the definition of the subgradient, we obtain

f X
0

(
x∗) ≥ f X

0

(
x(k+1)

)+ 1

θ k

〈
x(k) − x(k+1), x∗ − x(k+1)

〉

− 〈A(x∗ − x(k+1)
)
, y(k+1)

〉

where

〈
x(k) − x(k+1), x∗ − x(k+1)

〉

= ‖x(k+1) − x∗‖2

2
+ ‖x(k+1) − x(k)‖2

2
− ‖x(k) − x∗‖2

2

which gives

‖x(k+1) − x∗‖2

2θk

≤ ‖x(k) − x∗‖2

2θk

− ‖x(k+1) − x(k)‖2

2θk

+ f X
0

(
x∗)− f X

0

(
x(k+1)

)

+ 〈AT y(k+1), x∗ − x(k+1)
〉

(18)

Similarly, from (13) we obtain

‖y(k+1) − y∗‖2

2τk

≤ ‖y(k) − y∗‖2

2τk

− ‖y(k+1) − y(k)‖2

2τk

+ f ∗
1

(
y∗)− f ∗

1

(
y(k+1)

)

+ 〈Ax(k), y(k+1) − y∗〉 (19)

We observe that, if we define

FX(x, y) = f X
0 (x) + 〈x,AT y〉 − f ∗

1 (y)

we have

f ∗
1 (y∗) − f ∗

1 (y(k+1)) + 〈Ax(k), y(k+1) − y∗〉

+ f X
0 (x∗) − f X

0 (x(k+1)) + 〈AT y(k+1), x∗ − x(k+1)
〉

= FX(x∗, y(k+1)) − FX(x(k+1), y∗)

+ 〈A(x(k) − x(k+1)), y(k+1) − y∗〉

≤ 〈x(k) − x(k+1),AT (y(k+1) − y∗)
〉

where the last inequality follows from the saddle point prop-
erty (9) of the pair (x∗, y∗).

The last term can be further estimated as in [10, Sect. 3.2],
by observing that for any t ∈ (0,1] we have

∥∥∥∥

√
t

θk

(
x(k+1) − x(k)

)+
√

θk

t
AT
(
y(k+1) − y∗)

∥∥∥∥
2

≥ 0

which yields

〈
x(k) − x(k+1),AT (y(k+1) − y∗)

〉

≤ t

2θk

∥∥x(k+1) − x(k)
∥∥2 + θk

2t
L2
∥∥y(k+1) − y∗∥∥2

where L = ‖A‖. Thus, summing up (19) and (18) yields

‖x(k+1) − x∗‖2

2θk

+ ‖y(k+1) − y∗‖2

2τk

≤ ‖x(k) − x∗‖2

2θk

+ ‖y(k) − y∗‖2

2τk

− (1 − t)
‖x(k+1) − x(k)‖2

2θk

− ‖y(k+1) − y(k)‖2

2τk

+ θk

2t
L2
∥∥y(k+1) − y∗∥∥2 (20)

In particular, recalling (7), the inequality (20) results in

‖x(k+1) − x∗‖2

2θk

≤ ‖x(k) − x∗‖2

2θk

+ D2

2τk

+ θk

2t
L2D2

By multiplying both sides of the previous inequality by 2θk

and summing up for k = 0, . . . ,N − 1 we obtain

∥∥x(N) − x∗∥∥2 ≤ ∥∥x(0) − x∗∥∥2 + D2
N−1∑

k=0

θk

τk

+ L2D2

t

N−1∑

k=0

θ2
k

Then, the boundedness of {x(k)} is ensured by the hypothesis
(17). �

Thanks to the previous lemma, the boundedness of the
subgradients g(k) is assured.

Theorem 3 Assume that f0(x) is locally Lipschitz in its do-
main. If the steplength sequences {θk} and {τk} satisfy the
conditions A1–A3 and (17), then {f (x(k))} converges to a
minimum of f (x) over X and dist(x(k),X∗) converges to
zero.

Proof From the previous lemma and by Proposition 2,
the sequence of subgradients g(k) is bounded, thus, from
(15) and A1, we have ‖x(k) − x(k+1)‖ → 0 as k → ∞. If
f0(x) is locally Lipschitz continuous, then for every com-
pact subset K ⊂ dom(f X

0 ), there exists a positive con-
stant MK such that ‖f0(z) − f0(x)‖ ≤ MK‖z − x‖ for all
x, z ∈ K . Thus, since all the iterates are contained in a
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suitable compact subset of dom(f X
0 ), we have |f X

0 (x(k)) −
f X

0 (x(k+1))| → 0 as k → ∞. As consequence, the sequence
{δk} defined in (16) converges to zero as k diverges. Then,
we can invoke Theorem 2 to conclude that {f (x(k))} con-
verges to a minimum of f (x) over X and, furthermore,
limk→∞ dist(x(k),X∗) = 0. �

Remark If X∗ = {x∗}, Theorems 2 and 3 state the conver-
gence of the sequences {x(k)} generated by the Algorithms 1
and 2 to the unique solution x∗ of the problem (5).

In the following section we discuss the implementation
of Algorithms 1 and 2 for the TV restoration of images.

4 Applications to Total Variation Image Restoration
Problems

In this section we consider problem (5) where the objec-
tive function is the combination of a convex, proper, lower
semicontinuous function measuring the data fidelity with the
discrete TV function (1).

In this case we define the function f1 on R
2n such that

f1(y) = β

n∑

i=1

‖yi‖, y =
⎛

⎜⎝
y1
...

yn

⎞

⎟⎠ , yi ∈ R
2, i = 1, . . . , n

where β > 0 is the regularization parameter. We denote by
Ai ∈ R2×n the discrete approximation of the gradient of x at
the pixel i and by A ∈ R

2n×n the following block matrix

A =

⎛

⎜⎜⎜⎝

A1

A2
...

An

⎞

⎟⎟⎟⎠

Then, we have

f1(Ax) = β

n∑

i=1

‖Aix‖ (21)

The conjugate of f1 is f ∗
1 (y) = ιY (y), namely the indicator

function of the set Y ⊂ R
2n defined as follows

Y =

⎧
⎪⎨

⎪⎩
y ∈ R

2n, y =
⎛

⎜⎝
y1
...

yn

⎞

⎟⎠ , yi ∈ R
2 : ‖yi‖ ≤ 1,

i = 1, . . . , n

⎫
⎪⎬

⎪⎭
(22)

As a consequence of this, dom(f ∗
1 ) = Y satisfies (7) and we

can write

f1(Ax) = max
y∈Y

β〈y,Ax〉

We remark that the updating rules (10) and (12) for the vari-
able y reduce to the orthogonal projection onto the set Y ,
which is defined by the following closed formula

y
(k+1)
i = y

(k)
i + βτkAix

(k)

max{1,‖y(k)
i + βτkAix(k)‖}

, i = 1, . . . , n (23)

4.1 Gaussian Noise

We notice that the PDHG algorithms proposed in [31] are
special cases of Algorithm 2 for f0(x) = 1

2‖Hx − g‖2,
X = R

n. In this case, denoting by N (A) and N (H) the null
spaces of A and H , under the usual assumption that

N (A) ∩ N (H) = {0}, (24)

the solution of the minimization problem (3) is unique.
Thus, Theorem 3 establishes the convergence to this unique
solution.

In particular, we stress that the steplength choices indi-
cated by the authors in [31] and employed for the numeri-
cal experiments also in [10, 16] guarantee the convergence,
according to Theorem 3. Indeed, the proposed steplength
choices are

τk = 0.2 + 0.08k

θk = λk

1 − λk

with λk =
(

0.5 − 5

15 + k

)/
τk

(25)

for denoising problems, while

θk = 0.5/τk (26)

for deblurring problems. Both these choices satisfy the hy-
potheses of Theorem 3, which provides the theoretical foun-
dation to the convergence that, so far, was experimentally
observed.

An explicit variant of PDHG can be derived from Algo-
rithm 1, by setting g(k) = HT (Hx(k) +b−g). For denoising
problems, in order to define a bounded set X containing the
solution x∗, we recall the following result.

Lemma 3 Let x∗ be the unique minimum point of f (x) ≡
f0(x) + f1(Ax), where f0(x) = 1

2‖x − g‖2 and f1(Ax) is
the TV function (21). Then we have

gmin ≡ min
j

gj ≤ x∗
i ≤ gmax ≡ max

j
gj
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Proof See for example [7]. �

We observe that the previous result can be adapted also
for constrained problems of the form minx≥η f (x). In this
case, the lower bound of the solution becomes max{η,gmin},
where the maximum is intended componentwise. In sum-
mary, if we define

X = {x ∈ R
n : max{η,gmin} ≤ x ≤ gmax

}

Algorithm 1 with g(k) = x(k) −g is convergent to the unique
solution x∗ of minx≥η f (x), thanks to Theorem 1.

For general deblurring problems, convergence of Algo-
rithm 1 is ensured under the hypothesis that the generated
sequence is bounded.

4.2 Poisson Noise

Algorithms 1 and 2 can be applied to the denoising or de-
blurring of images corrupted by Poisson noise, where the
data discrepancy is expressed by the generalized KL diver-
gence (4) and X is a subset of the domain of f0(x). It is well
known that f0(x) is a proper, convex and lower semicon-
tinuous function. Under the hypothesis (24), the solution of
the minimization problem (3) on X exists and it is unique.
Since f0(x) is a differentiable function, an explicit ver-
sion of Algorithm 1 can be implemented by setting g(k) =
∇f0(x

(k)) = HT e−HT Z(x(k))−1g, where e is the n-vector
with all entries equal to one and Z(x) = diag(Hx + b).

For deblurring problems, in order to state the conver-
gence of Algorithm 1 using Theorem 1, we need to assume
that the sequence of the iterates stays bounded.

In case of a denoising problem (H = I ), the conver-
gence of Algorithm 1 is ensured by defining X as a suitable
bounded set containing the unique solution, as suggested in
the following Lemma.

Lemma 4 Let x∗ be the unique solution of the problem

min
x≥0

f (x) ≡ f0(x) + f1(Ax), (27)

where f0(x) =∑i gi log gi

xi
+ xi − gi , with gi loggi = 0 if

gi = 0, and f1(Ax) is the TV function (21). Then, for all i

such that gi > 0 we have

gmin ≡ min{gj : gj > 0} ≤ x∗
i ≤ gmax ≡ max

j
gj

Proof See [6]. �

Consequently, for denoising problems from data cor-
rupted by Poisson noise, if we define

X = {x ∈ R
n : gmin ≤ xi ≤ gmax for gi > 0,

0 ≤ xi ≤ gmax otherwise
}

then, the unique solution x∗ of (27) belongs to X and the
sequence generated by Algorithm 1 converges to x∗.

Furthermore, it is easy to see that the i-th component of
(I + θ∂f0)

−1(p) is given by

(I + θ∂f0)
−1(p)i = 1

2

(
pi − θ +

√
(θ − pi)2 + 4θgi

)

which can be exploited for the computation of the step (13)
in Algorithm 2.

For the deblurring problems, a closed form formula for
(13) is not available, thus Algorithm 2 can be difficult to
implement in this case.

4.3 Impulse Noise

When the noise affecting the data contains strong outliers
(e.g. impulse or salt & pepper noise), a well suited data dis-
crepancy function is the non-smooth L1 norm:

f0(x) = ‖x − g‖1 =
n∑

k=1

|xi − gi | (28)

The resolvent operator of f0 is given by the pointwise
shrinkage operations:

(I + θ∂f0)
−1(p)i =

⎧
⎪⎨

⎪⎩

pi − θ if pi − gi > θ

pi + θ if pi − gi < −θ

gi if |pi − gi | ≤ θ

(29)

This closed-form representation of the resolvent operator
(I + θ∂f0)

−1 enables us to apply Algorithm 2 to the min-
imization of the L1-TV model (28)–(21).

4.4 Smoothed Total Variation

In many papers (see, for example, [2, 3, 11, 30]), the discrete
TV (21) is replaced by the following smoothed approxima-
tion

f1(Ax) = β

n∑

i=1

∥∥∥∥

(
Aix

ρ

)∥∥∥∥ (30)

where ρ is a small positive parameter. This variant has been
considered also in a general edge-preserving regularization
framework as Hypersurface (HS) potential [12]. When the
smoothed TV regularization (30) is used, if f0(x) is a differ-
entiable function, the minimization of f (x) can be obtained
by efficient differentiable optimization methods. In this sec-
tion we show that Algorithms 1 and 2 can also be applied
with minor modifications.
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In this case the conjugate is the indicator function of the
following set

Y =

⎧
⎪⎨

⎪⎩
y ∈ R

3n, y =
⎛

⎜⎝
ỹ1
...

ỹn

⎞

⎟⎠ , ỹi ∈ R
3 : ‖ỹi‖ ≤ 1,

i = 1, . . . , n

⎫
⎪⎬

⎪⎭

In particular, setting ỹi = ( yi

zi

)
, with yi ∈ R

2, Algorithms 1
and 2 can be adapted to the smoothed TV model by modify-
ing the projection at the steps (10) and (12), detailed in (23),
as follows:

y
(k+1)
i = y

(k)
i + βτkAix

(k)

d
(k)
i

, z
(k+1)
i = z

(k)
i + βτkρ

d
(k)
i

for i = 1, . . . , n, where

d
(k)
i = max

{
1,

∥∥∥∥∥

(
y

(k)
i + βτkAix

(k)

z
(k)
i + βτkρ

)∥∥∥∥∥

}

As observed in [6], numerical methods which are not based
on the differentiability of (30) can be convenient for the
smoothed TV minimization, especially when the smoothing
parameter ρ is very small.

5 Numerical Experience

The steplength selection is a crucial issue for the practical
performance of many algorithms. In particular, as pointed
out in [31], some choices yield a fast initial convergence, but
they are less suited to achieve fast asymptotic convergence
and vice versa. One of the main strength of the proposed
method is that variable steplength parameters are allowed,
and this can help to achieve both fast initial and asymptotic
convergence. In the case of the quadratic data fidelity func-
tion (2), Algorithm 2 with the choices (25)–(26) is equiv-
alent to the PDHG method and its performances has been
experimentally evaluated in [10, 16, 31], showing that con-
venient steplength sequences lead to a very appealing effi-
ciency with respect to the state-of-the-art methods.

This section is devoted to numerically evaluate the effec-
tiveness of Algorithm 1 for TV restoration of images cor-
rupted by Poisson noise. Algorithm 1 and 2 can be used also
for other imaging problems. At the end of the section, we
show as Algorithm 2 can be applied for solving an image
denoising problem with impulse noise.

The numerical experiments described in this section have
been performed in MATLAB environment, on a server with
a dual Intel Xeon QuadCore E5620 processor at 2.40 GHz,
12 Mb cache and 18 Gb of RAM.

5.1 Poisson Noise

We compare Algorithm 1 with two methods, especially tai-
lored for the TV restoration in presence of data corrupted by
Poisson noise. The first one is the PIDSplit+ algorithm [26],
based on a very efficient alternating split Bregman tech-
nique. The algorithm guarantees that the approximate solu-
tion satisfies the constraints and it depends only on a positive
parameter γ . The second one is the Alternating Extragradi-
ent Method (AEM) [6], that solves the primal–dual formu-
lation of the problem (3) by a successive updating of dual
and primal iterates in an alternating, or Gauss-Seidel, way.
Algorithm 1 and AEM are very similar, but AEM requires
an additional ascent (extragradient) step at any iteration and
it employs the same adaptively computed steplength in the
three steps. Furthermore, in the denoising experiments, we
include in the comparison also the algorithm in [10, Algo-
rithm 1, p. 122], with θ = 1, that in the following is denoted
by CP. This general primal–dual algorithm requires that the
resolvent operators of f0 and f ∗

1 have a closed-form rep-
resentation. As observed in Sect. 4.2, the resolvent of the
Kullback–Leibler divergence is easy to compute only for the
denoising case. The CP method depends on two parameters
σ, τ , which should be chosen such that στL2 = 1, where
β‖A‖ ≤ L.

In the experiments we consider a set of test problems,
where the Poisson noise has been simulated by the im-
noise function in the Matlab Image Processing Toolbox.
The considered test problems are described in the following.

Denoising Test Problems

– LCR phantom: the original image is the phantom de-
scribed in [21]; it is an array 256 × 256, consisting in
concentric circles of intensities 70, 135 and 200, enclosed
by a square frame of intensity 10, all on a background
of intensity 5 (LCR-1). We can simulate a different noise
level by multiplying the LCR phantom by a factor 10
(LCR-10) and 0.2 (LCR-0.2) and generating the corre-
sponding noisy images. The relative difference in l2 norm
between the noisy and the original images is 0.095318,
0.030266, 0.21273 respectively.

– Airplane (AIR): the original image is an array 256 × 256
(downloadable from http://sipi.usc.edu/database/), with
values in the range [0,232]; the relative difference in
l2 norm between the noisy and noise-free images is
0.070668.

– Dental Radiography (DR): the original image [30] is an
array 512×512, with values in the range [0,255]; for this
test problem, simulating a radiographic image obtained
by a lower dose, the relative difference in l2 norm between
the noisy and the noise-free images is 0.17866.

http://sipi.usc.edu/database/
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Table 1 Denoising problems: comparison between Algorithm 1, AEM and PIDSplit+

Method μ = 10−2 μ = 10−3 μ = 10−4 μ = 5 × 10−6

it (time) erec it (time) erec it (time) erec it (time) erec

LCR-1, β = 0.25

Algorithm 1 43 (1.8) 0.02635 137 (5.2) 0.02488 377 (13.2) 0.02497 1239 (43.0) 0.02498

AEM 63 (3.3) 0.02306 312 (17.5) 0.02468 604 (32.8) 0.02495 * *

PIDSplit+ γ = 5
β

26 (1.5) 0.02505 99 (6.1) 0.02502 1022 (60.7) 0.02499 * *

PIDSplit+ γ = 1
β

81 (4.9) 0.02282 301 (17.9) 0.02460 593 (35.6) 0.02496 1477 (88.7) 0.02498

PIDSplit+ γ = 0.5
β

157 (9.4) 0.02270 601 (35.7) 0.02459 1182 (70.5) 0.02496 2185 (130.6) 0.02498

CP τ = 5 37 (1.5) 0.026031 173 (7.2) 0.025021 1917 (80.7) 0.024985 * *

CP τ = 2 43 (1.7) 0.023419 246 (10.5) 0.024722 654 (27.9) 0.024981 * *

CP τ = 0.8 90 (3.7) 0.022565 570 (24.8) 0.024643 1118 (48.2) 0.024947 2099 (89.8) 0.024983

Method μ = 10−2 μ = 10−3 μ = 10−4 μ = 10−6

it (time) erec it (time) erec it (time) erec it (time) erec

LCR-10, β = 0.05

Algorithm 1 6 (0.2) 0.01219 69 (2.6) 0.008464 194 (6.9) 0.008386 1254 (49.3) 0.008383

AEM 91 (5.0) 0.01188 326 (17.4) 0.008073 815 (42.2) 0.008357 1942 (98.1) 0.008383

PIDSplit+ γ = 50
β

4 (0.3) 0.01106 61 (3.4) 0.008502 539 (30.6) 0.008386 * *

PIDSplit+ γ = 5
β

23 (1.3) 0.01199 113 (6.0) 0.007928 319 (17.4) 0.008338 2150 (117.8) 0.008383

PIDSplit+ γ = 1
β

115 (6.5) 0.01192 556 (30.6) 0.007915 1591 (89.2) 0.008338 * *

CP τ = 20 21 (0.8) 0.012146 123 (5.2) 0.008129 327 (14.0) 0.008361 2948 (128.7) 0.008383

CP τ = 10 41 (1.7) 0.012084 229 (9.3) 0.008078 629 (26.1) 0.008357 1646 (68.9) 0.008383

CP τ = 1 408 (17.8) 0.011906 2238 (96.6) 0.008062 * * * *

Method μ = 10−2 μ = 10−3 μ = 10−4 μ = 5 × 10−5

it (time) erec it (time) erec it (time) erec it (time) erec

LCR-0.2, β = 0.575

Algorithm 1 58 (1.7) 0.04442 189 (5.4) 0.04453 706 (20.2) 0.04476 1881 (54.0) 0.04477

AEM 101 (5.5) 0.04413 279 (14.8) 0.04466 2103 (108.8) 0.04477 2870 (147.9 0.04477

PIDSplit+ γ = 5
β

59 (3.1) 0.04660 355 (20.0) 0.04483 * * * *

PIDSplit+ γ = 1
β

67 (3.8) 0.04389 174 (10.0) 0.04466 695 (39.6) 0.04477 931 (53.1) 0.04477

PIDSplit+ γ = 0.5
β

118 (6.7) 0.04322 317 (18.0) 0.04458 605 (34.2) 0.04477 743 (42.2) 0.04477

CP τ = 10 577 (24.2) 0.046580 * * * * * *

CP τ = 1 102 (4.2) 0.045886 * * * * * *

CP τ = 0.1 461 (19.2) 0.043074 * * * * * *

Method μ = 10−2 μ = 10−3 μ = 10−4 μ = 10−6

it (time) erec it (time) erec it (time) erec it (time) erec

AIR, β = 0.05

Algorithm 1 4 (0.1) 0.02440 36 (1.0) 0.02138 122 (3.4) 0.02137 1521 (40.7) 0.02137

AEM 67 (3.2) 0.02589 133 (6.0) 0.02168 191 (8.6) 0.02140 1448 (72.4) 0.02137

PIDSplit+ γ = 50
β

6 (0.3) 0.02271 60 (3.1) 0.02141 450 (24.2) 0.02137 * *

PIDSplit+ γ = 5
β

17 (0.9) 0.02529 39 (2.0) 0.02158 74 (3.9) 0.02138 * *

PIDSplit+ γ = 0.5
β

162 (8.6) 0.02587 378 (20.5) 0.02163 645 (35.1) 0.02139 1299 (70.7) 0.02137

CP τ = 20 16 (0.7) 0.026173 41 (1.8) 0.021622 96 (4.4) 0.021372 * *

CP τ = 10 30 (1.4) 0.026222 76 (3.5) 0.021685 127 (5.7) 0.021400 2361 (103.1) 0.021374

CP τ = 1 288 (12.2) 0.026105 732 (31.8) 0.021698 1223 (53.7) 0.021403 2268 (99.4) 0.021374
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Table 1 (Continued)

Method μ = 10−2 μ = 10−3 μ = 10−4 μ = 5 × 10−6

it (time) erec it (time) erec it (time) erec it (time) erec

DR, β = 0.27

Algorithm 1 25 (3.4) 0.02900 121 (17.5) 0.02961 312 (43.8) 0.02965 1258 (173.7) 0.02966

AEM 42 (9.7) 0.02753 121 (29.3) 0.02949 480 (111.2) 0.02966 * *

PIDSplit+ γ = 5
β

18 (3.8) 0.02813 141 (30.2) 0.02956 920 (199.3) 0.02965 * *

PIDSplit+ γ = 1
β

46 (10.1) 0.02880 106 (24.0) 0.02952 233 (52.4) 0.02966 2566 (566.7) 0.02966

PIDSplit+ γ = 0.5
β

89 (19.6) 0.02915 202 (45.0) 0.02953 377 (83.1) 0.02966 1130 (249.8) 0.02966

PC τ = 10 45 (7.0) 0.027906 518 (81.7) 0.029568 * * * *

CP τ = 1 45 (6.8) 0.027506 148 (23.2) 0.029435 402 (63.0) 0.029655 * *

CP τ = 0.1 386 (62.4) 0.028091 1294 (209.3) 0.029385 2453 (399.7) 0.029639 * *

Deblurring Test Problems

– micro: the original image is the confocal microscopy
phantom of size 128 × 128 described in [28]; its values
are in the range [0,70] and the total flux is 2.9461 × 105;
the background term b in (4) is set to zero.

– cameraman: following [26], the simulated data are ob-
tained by convolving the image 256 × 256 with a Gaus-
sian psf with standard deviation σ = 1.3, then adding
Poisson noise; the values of the original image are in the
range [0,1000]; the background term b in (4) is set to
zero.

In the first set of experiments we compare the numerical be-
havior of Algorithm 1, AEM, PIDSplit+ and CP on the de-
noising test problems described above. In order to compare
the convergence rate from the optimization point of view, we
compute the ideal solution x∗ of the minimization problem,
by running 100000 iterations of AEM. Then, we evaluate the
progress toward the ideal solution at each iteration in terms
of the l2 relative error

ek = ‖x(k) − x∗‖
‖x∗‖

It is noticed that computing the ideal solution with AEM
makes a small bias in favour of AEM itself. However the ob-
tained results are sufficiently convincing to forget this bias.

In Table 1 for any test problem we report the number of
iterations it and, in brackets, the computational time in sec-
onds needed to satisfy the inequality

ek ≤ μ, (31)

for different values of the tolerance μ. We report also the l2
relative reconstruction error

erec = ‖xμ − x̃‖
‖x̃‖

Table 2 Steplength sequences chosen for Algorithm 1

Test problem τk θk

LCR-1 0.4 + 0.01k 1
0.0015k+0.15

LCR-10 0.4 + 0.01k 1
10−4k+0.01

LCR-0.2 0.9 + 0.009k 1
0.009k+0.7344

AIR 0.9 + 0.01k 1
5 10−5k+0.01

DR 0.5 + 0.01k 1
0.0015k+0.15

micro 0.9 + 0.01k 1
2 10−4k+0.33

cameraman 0.9 + 0.01k 1
10−5k+0.04

where x̃ is the original image and xμ is the reconstruction
corresponding to the tolerance μ. The symbol ∗ denotes
that 3000 iterations have been performed without satisfying
the inequality (31). All methods have been initialized with
x(0) = max{η,g}, where the maximum is intended compo-
nentwise and ηi = 0 for gi = 0, ηi = gmin otherwise, and the
constraint set X is defined as in Sect. 4.2. In Algorithm 1,
AEM and CP, the initial guess for the dual variable y(0) has
been set to zero. For the initial setting of the others variables
involved in PIDSplit+ see [26]; the value of γ used for the
different runs of PIDSplit+ is detailed in Table 1. The value
of γ suggested by the authors in [26] is 50

β
. In Table 1 we

report also the value of τ used for the different runs of CP.
In Table 2 we report the sequences chosen for the steplength
parameters in Algorithm 1, which have been optimized for
the different test problems.

Figure 1 shows the convergence speed of the considered
methods for each test problem: we plot, in log-scale, the l2
relative error ek with respect to the computational time. In
Tables 3 and 4 we report some results obtained by running
each method for 3000 iterations. In particular, Table 3 shows
the l2 norm of the relative error and corresponding compu-
tational time after 3000 iterations. We report also, for any
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Fig. 1 Denoising problems: convergence speed of Algorithm 1, AEM, PIDSplit+ (with different values of γ ) and CP (with τ = 10 in all test
problems except (a) where τ = 5): plot of l2 norm of the relative error ek with respect to the ideal solution of the minimization problem versus the
computational time. All the methods run for 3000 iterations

test-problem, the relative reconstruction error and the value
of the objective function f (x(3000)). In order to show the
quality of the restored images, in Fig. 2 we report the super-
position of the row 128 of the original image LCR-0.2 and
the related noisy image; besides, we show the same row of
the reconstruction corresponding to μ = 10−4, obtained by
Algorithm 1.

In Figs. 3 and 4 we report the original, noisy and recon-
structed images related to test problems AIR and DR. Since
at the tolerance μ = 10−4 all the restored images are visu-
ally the same, we report only the one provided by the two
fastest algorithms.

The results of this numerical experimentation on denois-
ing problems suggests the following considerations.



248 J Math Imaging Vis (2012) 44:236–253

Table 3 Denoising problems: l2 norm of the relative error and computational time after 3000 iterations

Optimal values Algorithm 1 AEM PIDSplit+ CP

erec f (x(3000)) e3000 time e3000 time γ e3000 time γ e3000 time τ e3000 time

LCR-1
β = 0.25

0.02498 54848.8 6.1 × 10−7 102.8 6.4 × 10−6 170.3 1
β

2.4 × 10−6 179.9 0.5
β

1.2 × 10−6 178.5 0.8 3.3 × 10−6 127.1

LCR-10
β = 0.05

0.008383 76457.2 1.4 × 10−7 114.3 2.2 × 10−7 151.0 5
β

7.4 × 10−7 164.1 1
β

5.9 × 10−6 182.6 10 4.1 × 10−7 126

LCR-0.2
β = 0.575

0.004477 44434.1 4.6 × 10−5 84.5 4.4 × 10−5 154.4 1
β

1.8 × 10−5 169.6 0.5
β

2.8 × 10−5 169.9 10 7.2 × 10−3 124.6

AIR
β = 0.05

0.02137 43482.3 2.5 × 10−7 81.1 4.7 × 10−7 151.8 1
β

2.0 × 10−7 162.6 0.5
β

9.1 × 10−8 164.2 1 8.6 × 10−8 131.3

DR
β = 0.27

0.02966 146803 4.3 × 10−7 415.4 1.1 × 10−5 699.1 1
β

4.2 × 10−6 661.7 0.5
β

1.6 × 10−6 663.6 1 9.2 × 10−6 481.1

Table 4 Deblurring problems:
l2 norm of the relative error and
computational time after 3000
iterations of the considered
methods

Test Method time e3000 erec f (x(3000))

micro Algorithm 1 51.1 0.01207 0.09138 11112.4

AEM 74.7 0.01161 0.09156 11112.0

PIDSplit+ γ = 50/β 85.5 0.0008703 0.09227 11113.4

PIDSplit+ γ = 5/β 89.2 0.001661 0.09227 11111.9

PIDSplit+ γ = 1/β 90.8 0.008793 0.09212 11111.9

cameraman Algorithm 1 177.7 1.023 × 10−3 0.08744 9949.2

AEM 240.1 1.046 × 10−3 0.08744 9948.8

PIDSplit+ γ = 50/β 310.2 1.308 × 10−4 0.08751 9948.9

PIDSplit+ γ = 5/β 306.3 9.733 × 10−7 0.08751 9948.8

PIDSplit+ γ = 1/β 306.0 1.793 × 10−4 0.08751 9948.8

Fig. 2 Reconstructions at the level μ = 10−4: lineouts of row 128 of the image LCR-0.2. Left panel: superposition of the row 128 of the original
image and of the noisy image. Right panel: reconstruction by Algorithm 1 (706 it and time = 20.2 seconds)

– For denoising problems, Algorithm 1 performs well with
respect to the other methods; indeed for careful choices
of the steplength parameters, the method exhibits a fast
initial convergence and this good behavior is preserved
also asymptotically; furthermore a single iteration is fas-
ter than in the other methods.

– About PIDSplit+, depending on the value of the param-
eter γ , we can observe either an initial or an asymptotic
fast convergence, but we unlikely obtain both the behav-
iors. Furthermore, any iteration involves the solution of
a linear system. Although this operation is performed by
fast transforms, the computational complexity of each it-
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Fig. 3 Test problem AIR,
β = 0.05, μ = 10−4. Upper left
panel: original image. Upper
right panel: noisy image.
Bottom left panel: Algorithm 1
reconstruction. Bottom right
panel: PIDSplit+ reconstruction
with γ = 5

β

Fig. 4 Test problem DR
β = 0.27, μ = 10−4. Upper left
panel: original image. Upper
right panel: noisy image.
Bottom left panel: Algorithm 1
reconstruction. Bottom right
panel: PIDSplit+ reconstruction,
γ = 0.5

β
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Fig. 5 Deblurring problems:
convergence speed of Algorithm
PDHG, AEM, PIDSplit+ (with
different value of γ ): plot of l2
norm of the relative error ek

with respect to the ideal solution
of the minimization problem
versus the computational time.
All the methods run for 3000
iterations

Fig. 6 Test problem micro,
β = 0.09, 3000 iterations.
Upper left panel: original
image. Upper right panel: noisy
blurred image. Bottom left
panel: Algorithm 1
reconstruction. (time = 51.1
seconds). Bottom right panel:
PIDSplit+ reconstruction,
γ = 50

β
(time = 85.5 seconds)

eration of PIDSplit+ is greater than in the other meth-
ods, where only matrix–vector products and simple pro-
jections are performed.

– The choice of the steplength sequences is crucial for the
effectiveness of Algorithm 1, as well as the choice of γ

for PIDSplit+ and of τ for CP. The numerical experience
shows that Algorithm 1 is more sensible to the choice of
the sequence {θk} rather than {τk}; this can be explained
by observing that the projection over the domain Y , due

to its special structure (22), may overcome the effect of a
too large steplength. Furthermore, about the choice of θk ,
if we set θk = 1

ak+b
, we observe that b affects the initial

rate of convergence while the asymptotic behavior of the
method is governed by the value of a.

The second set of experiments concerns the deblurring
test problems micro and cameraman. We compare Algo-
rithm 1, AEM and PIDSplit+, considering as ideal solu-
tion x∗ the image obtained by running 100000 iterations of
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Fig. 7 Test problem
cameraman, β = 0.005, 3000
iterations. Upper left panel:
original image. Upper right
noisy blurred image. Bottom left
panel: Algorithm 1
reconstruction (time = 177.7
seconds). Bottom right panel:
PIDSplit+ reconstruction,
γ = 5

β
(time = 306.3 seconds)

Fig. 8 Image denoising in the case of impulse noise: test problem boat, β = 0.65, 2000 iterations. Left panel: original image. Central panel: noisy
image. Left panel: Algorithm 2 reconstruction (time = 193 seconds)

AEM. We consider the same initial setting used for the de-
noising test problems, except for the primal variable: since
for deblurring the constraints are x ≥ 0, then we set x(0) =
max{0, g}. In Table 4 for each method we report the compu-
tational time and the relative error e3000 with respect to the
ideal solution after 3000 iterations. We report also the mini-
mum value f (x(3000)) and the l2 norm of relative reconstruc-

tion error erec (since all methods produce the same optimal
values, we report them only once). In Fig. 5 we compare
the convergence rate of the considered methods for each test
problem, by plotting in log-scale the l2 relative error ek with
respect to the computational time. In Figs. 6 and 7 we show
the restored images obtained after 3000 iterations by Algo-
rithm 1 and PIDSplit+ with the more effective choice of γ .
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Table 5 Image denoising problems in the case of impulse noise: test
problem boat, β = 0.65; comparison between Algorithm 2 and CP

Method μ = 10−4 μ = 10−5

it (time) it (time)

Algorithm 2 370 (38.87) 884 (93.98)

CP 186 (23.8) 340 (43.60)

For deblurring problems, the PIDSplit+ method exhibits
a very fast convergence. Indeed, the operator H could be se-
verely ill conditioned, and in this case the implicit step in
PIDSplit+ may help to improve the convergence rate. We
observe also that for deblurring problems, the complexity of
a single iteration of the three methods is similar, since the
matrix–vector products involving the matrix H require the
same fast transforms employed to compute the implicit step
in PIDSplit+.

5.2 Impulse Noise

In this section we apply Algorithm 2 to the L1-TV problem
described in Sect. 4.3. The 512 × 512 original image boat
(downloadable from http://sipi.usc.edu/database/) has been
corrupted by 25% salt&pepper noise (after adding noise, the
image was rescaled so that its value are between 0 and 1).
The original and the noisy images are shown in Fig. 8,
together with the restoration provided by Algorithm 2 af-
ter 2000 iterations. For this test problem we set β = 0.65
and the sequences for the steplength parameters are τk =
0.1 + 0.1k and θk = 1

0.05k+0.1 . Table 5 shows the results of a
comparison between Algorithm 2 and CP (θ = 1, τ = 0.02).
Since the solution of the minimization problem (28)–(21)
is in general not unique, we evaluate the normalized error

on the primal objective function Ek = f (x(k))−f (x∗)
f (x∗) , where

x∗ is computed by running 100000 iterations of CP. In Ta-
ble 5 we report the number of iterations it and the CPU time
in seconds needed to drop the normalized error Ek below
the tolerance μ. Figure 9 shows the convergence speed of
Algorithm 2 and CP for the test problem boat: we plot in
log-scale the normalized error Ek with respect to the com-
putational time.

6 Conclusions

The main contribution of this paper is the analysis of a
class primal–dual algorithms for convex optimization prob-
lems, providing the related convergence proof based on the
ε-subgradient techniques. The developed analysis applies,
as a special case, to the PDHG method [31], but allows
further generalizations. Indeed, as immediate consequence,

Fig. 9 Image denoising in the case of impulse noise: test problem
boat. Convergence speed of Algorithm 2 and PC (τ = 0.02): plot of
normalized error Ek versus the computational time. All the methods
run for 2000 iterations

new methods for solving TV denoising and deblurring prob-
lems can be derived from the basic scheme. These meth-
ods can be applied also to other imaging problems based on
convex regularization terms and data discrepancy functions
with simple resolvent operator (see [10] for some examples
of applications).

The crucial point to obtain fast convergence is the selec-
tion of a priori steplength sequences: numerical experiments
show that there exists clever choices leading to very appeal-
ing performances (at the initial iterations and also asymptot-
ically), comparable to other state-of-the-art methods.

The numerical experimentation highlights also the im-
portance of the parameters choice for the convergence be-
haviour of all the considered methods.

For image denoising problems, where the relationship be-
tween image and object is simpler, the proposed scheme
seems very efficient in terms of accuracy and computational
complexity, although the choice of convenient steplength se-
quences is a difficult problem.

Future work will concern the design of an adaptive rule
for generating the steplength sequences, following a strategy
similar to that suggested in [5] for the subgradient method.
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