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Abstract The problem of image restoration from blur and
noise is studied. A solution of the problem is understood as
the minimum of an energy function composed by two terms.
The first is the data fidelity term, while the latter is related to
the smoothness constraints. The discontinuities of the ideal
image are unknown and must be estimated. In particular, the
involved images are supposed to be piecewise continuous
and with thin and continuous edges. In this paper we as-
sume that the smoothness constraints can be either of the
first order, or the second order, or the third order. The energy
function that implicitly refers to discontinuities is called
dual energy function. To minimize the non-convex dual en-
ergy, a GNC (Graduated Non-Convexity) technique is used.
The GNC algorithm proposed in this paper is indicated as
CATILED, short for Convex Approximation Technique for
Interacting Line Elements Deblurring. We also prove in the
Appendix the new duality Theorem 3 stated in Sect. 3. The-
orem 3 shows that the first convex approximation defined
in CATILED has good qualities for the reconstruction. The
experimental results, given in Sect. 10, confirm the applica-
bility of the technique.
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1 Introduction

Techniques for restoring digital images have applications
in several scientific fields, like biomedicine, astronomy,
robotics, and so on. Indeed, in these branches the image is a
fundamental tool of investigation. However, sometimes the
bad quality of the available images does not allow us to use
them immediately. In these cases it is necessary to proceed
to a restoration of the involved image, in order to eliminate
the presence of noise and the effects of the blur. In this paper
the problem of defining suitable models and efficient algo-
rithms for restoring piecewise continuous regular images is
investigated. The problem of restoring images deals with es-
timating the original image, by starting from the observed
image and by the characteristic of the blur. In this situation
we assume to know the blur mask, while when the mask is
unknown the problem is called blind restoration. Techniques
to solve the blind problem [13, 17, 18] have to refer to the
algorithms for the unblind case.

The restoration problem is ill-posed in the sense of
Hadamard (cf. [6, 12]), that is, in some cases, the solution
neither exists, nor is unique, nor can be stable in presence
of noise. Thus, regularization techniques (cf. [5, 6, 11, 12,
20, 21]) are useful tools to transform this problem in a well-
posed one. The solution is the minimum of a suitable energy
function, which is called primal energy function and is the
sum of two terms. The first measures the data consistency
and the latter the faithfulness to the regularity properties of
the solution. In particular, concerning the data consistency
we use models based on Euclidean norms and the Gaussian
regularization.

In order to obtain more realistic restored images, we have
to take into account the discontinuities which appear in the
intensity field. Edges of the objects arising in the image pro-
duce parts of these discontinuities.
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Many authors consider just constraints of order one im-
posing that the solution has to be locally constant. In such
a way the restored image looses many characteristics of the
original scene. These characteristics could be better recov-
ered imposing smoothness constraints of order two or three
for either locally planar or quadric images. In [15] Geman
and Reynolds introduced a model with higher order con-
straints, with solution defined as the minimum of an ap-
propriate energy function. The minimization of this function
was performed by a stochastic relaxation algorithm. More-
over they proposed the following strategy to find a more pre-
cise solution: starting from the data we first obtain a restora-
tion by the first order model; then we use this image as the
starting point for obtaining a restoration by the second or-
der model; finally we use the second order restoration as the
starting point for obtaining a reconstruction by the third or-
der model. In [22] Li first uses planar surfaces to model im-
ages. Recently, this technique has been successfully adopted
also in [19] in the biological comet assay problem. In [19,
22] the smoothness constraints are imposed on the param-
eters related to the surfaces, in order to obtain local planar
results.

In this paper we suppose that the solution satisfies some
special constraints, which describe the geometry of the dis-
continuities. In particular, we assume that adjacent disconti-
nuities cannot be parallel or, alternatively, that lines should
be continuous (see Sect. 4).

The energy function which treats implicitly discontinu-
ities is called dual energy function. Duality theorems in the
literature (cf. [1, 11, 15]) cannot be applied to some proto-
types of dual energy functions of interest in applications. For
this reason in this paper we present a new duality theorem,
see Theorem 3 in Sect. 3.

In general, the dual energy function is not convex and to
compute its minimum in [2, 4, 7, 8, 23, 25] the GNC (Grad-
uated Non-Convexity) algorithm is used. According to the
scheme of this technique, the energy function Ẽd is approx-
imated by a sequence of functions which converges to Ẽd .
Each approximation is minimized by a classical NL-SOR
algorithm (that is, Non-Linear Successive Over Relaxation
algorithm given in [10]), using as starting point the min-
imum found in the previous approximation. The final re-
sult is a good approximation of the global minimum and the
choice of the first convex approximation of the sequence is
crucial. Nikolova in [23] gives a GNC technique to restore
blurred images corrupted by noise, while Bedini, Gerace and
Tonazzini in [2] use a GNC technique to restore images cor-
rupted only by noise, taking into account the geometry of
the discontinuities. In this paper we present a new family of
approximating functions to restore images both corrupted by
noise and degraded by blur, and we also take into account the
constraints of the geometry of discontinuities. This makes
the analysis more delicate, but improves the quality of the

restored image. The GNC algorithm proposed here is called
CATILED (Convex Approximation Technique for Interact-
ing Line Elements Deblurring). Moreover, from Theorem 3
it is easily seen that even the first convex approximation of
the dual energy function is almost “optimal” in order to re-
construct the original image, since it preserves the disconti-
nuities.

The quality of the reconstruction is also apparent from
a quantitative point of view, given by the mean squared
errors—MSE—between the reconstructed image and the
ideal image, cf. Tables 1–3 of Sect. 10.

In Sect. 2 the problem of the image restoration is pre-
sented. In Sect. 3 we define the dual energy and prove the
duality theorem. In Sect. 4 we deal with the interactions be-
tween line variables. In Sect. 5 the relations between pri-
mal and dual energy functions are investigated under suit-
able constraints on the geometry of the discontinuities. In
Sect. 6 the GNC technique is explained, while in Sect. 7 the
CATILED algorithm is defined. In Sect. 8 we present the de-
scent algorithm used in the new GNC technique. In Sect. 9
we find the primal energy function of the first convex ap-
proximation in CATILED. In Sect. 10 some experimental
results are presented, which illustrate how the CATILED al-
gorithm works in the reconstruction of noise and noiseless
images. Concluding remarks are given in Sect. 11, while in
the Appendix the proof of the main Theorem 3 is displayed.

2 The Problem of Image Restoration

The problem of image restoration consists in reconstructing
the original image from an image blurred and/or corrupted
by noise. In the sequel we assume that all intensities of our
involved pixels are put into one column, with the rule that
(i, j) < (i′, j ′) if and only if i < i′ or i = i′ and j < j ′. The
direct problem can be formulated as follows:

y = Ax + n,

where the vectors x, y, of dimension n2, are respectively
the original image and the observed one. In particular, the
elements of these vectors indicate the luminosity intensity
of pixels in the corresponding image. The vector n, of
dimension n2, is the additive noise on the image, which
we assume to be independent and identically distributed
(i.i.d.) Gaussian, with zero mean and known variance. The
n2 × n2 matrix A is a linear operator, which represents
the translation invariant blur acting on the image. To ob-
tain a blurred image, each pixel of original image is set to
a weighted average of its neighbors. Given a positive ma-
trix M ∈ R

(2h+1)×(2h+1), called blur mask, the entries of the
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matrix A can be defined by:

a(i,j),(i+w,j+v) =

⎧
⎪⎨

⎪⎩

mh+1+w,h+1+v

νi,j
, if |w|, |v| ≤ h,

0, otherwise,

where νi,j = ∑η
i=κ

∑δ
j=� mi,j , κ = max{1, i − 2h + 1},

η = min{n, i + 2h + 1}, � = max{1, j − 2h + 1} and δ =
min{n, j + 2h + 1}. Here, in lexicographic notation, the
generic index ((i, j), (h, l)) of matrix A is supposed to be
equal to ((j − 1)n + i, (l − 1)n + h).

The image restoration problem is the problem of find-
ing an estimation x of the unknown original image given
the blurred image y, the matrix A and the variance of
the noise σ 2. This is an ill-posed inverse problem in the
Hadamard sense.

Let a clique c of order k be the subset of points of a square
gride on which the k-th order finite difference is defined. We
indicate with the symbol Ck the set of all cliques of order k.

More precisely, we consider, for k = 1,

C1 = {c = {(i, j), (h, l)} : i = h, j = l + 1 or
i = h + 1, j = l},

for k = 2,

C2 = {c = {(i, j), (h, l), (r, q)} :
i = h = r, j = l + 1 = q + 2, or
i = h + 1 = r + 2, j = l = q},

and k = 3,

C3 = {c = {(i, j), (h, l), (r, q), (w, z)} :
i = h = r = w,j = l + 1 = q + 2 = z + 3, or

i = h + 1 = r + 2 = w + 3, j = l = q = z}.
We denote the k-th order finite difference operator of the

vector x associated with the clique c by Dk
c x. Namely, if

c = {(i, j), (h, l)} ∈ C1, then

D1
c x = xi,j − xh,l,

if c = {(i, j), (h, l), (r, q)} ∈ C2, then

D2
c x = xi,j − 2xh,l + xr,q,

and if c = {(i, j), (h, l), (r, q), (w, z} ∈ C3, then

D3
c x = xi,j − 3xh,l + 3xr,q − xw,q .

Let us now introduce the auxiliary variables associated
with the discontinuities of the image x. A good estimate of
the discontinuities improves the quality of restored image
(cf. [5, 8, 14]). Such variables have the role of eliminating

the regularity constraint, where discontinuities should ap-
pear.

To every clique c we associate a non-negative weight bc,
called line variable; in particular, the zero value corresponds
to a discontinuity in the involved image in c. The vector b
is the set of all line variables bc. Thus, the original image
is considered as a pair (x,b), where x is the vector of the
grey intensity of pixels and b is the vector of the set of all
components bc, c ∈ Ck , with fixed k ∈ {1,2,3}; x and b are
called intensity process and line process respectively.

A regularized solution of restoration problem is obtained
as the minimum of the following function, called primal en-
ergy function:

E(x,b) = ‖y − Ax‖2 +
∑

c∈Ck

[
λ2(Dk

c x)2bc + β(bc)
]
, (1)

where the first term measures faithfulness of the solution
to data and the second one is a regularization term, which
imposes a smoothness condition on x. The parameter λ2 re-
flects the confidence that we have in the data. In particular,
if λ2 tends to zero, we get the perfect confidence in the data;
while, if λ2 tends to ∞, the perfect confidence in the a pri-
ori information is obtained. The function β is assumed to
be strictly decreasing on its domain B , to avoid having too
many discontinuities in the restored image.

Throughout this paper, we often refer to the following
case (cf. also [2, 5, 7, 8, 14]):

B = {0,1}, β(b) = α(1 − b), (2)

where α is a suitable positive parameter.

3 Dual Energy Function

To find the minimum of the primal energy function (1), first
we minimize with respect to the line process b. The dual
energy function Ed(x) can be defined as (cf. [8, 11, 15]):

Ed(x) = inf
b∈B |Ck |

E(x,b),

where the symbol |Ck| denotes the cardinality of the set Ck .
Namely Ed is of the form:

Ed(x) = ‖y − Ax‖2 +
∑

c∈Ck

g(Dk
c x), (3)

where

g(t) = inf
b∈B

{λ2bt2 + β(b)},

called interaction function, associates a cost to every value
of the gradient of the image and does not depend on the
clique.
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For example, consider the expression of the dual energy
function given in (3) when β is defined by (2); in this case,
the interaction function has the following form:

g(t) = min
b∈{0,1}{λ

2bt2 + α(1 − b)},

that is

g(t) = min{λ2t2, α}

=

⎧
⎪⎨

⎪⎩

λ2t2, if |t | <
√

α

λ
,

α, otherwise.

(4)

The quantity s = √
α/λ has the meaning of a threshold

for creating a discontinuity (see [8, 24]).
Geman and Reynolds [15] and Charbonnier et al. [11]

established two different versions of the duality theorem.
These sufficient criteria give a correspondence between the
primal and dual energy functions, and we report them here
for the convenience of the reader.

Theorem 1 (Geman and Reynolds, [15]) Fix λ ∈ R, λ �= 0.
Let g : R → R be a function, satisfying the following prop-
erties:

(1) g(0) = 0,
(2) f (t) = g(

√
t) is concave,

(3) limt→∞ g(t) = α, with α > 0.

Then there exists a function β , defined in a suitable interval
[0, bM ], such that:

g(t) = inf
0≤b≤bM

{λ2 bt2 + β(b)},

and:

(4) β(0) = α,
(5) β is strictly decreasing,
(6) β(bM) = 0.

Note that assumption (3) of Theorem 1 is not always sat-
isfied in examples of interest in applications. In particular,
the well-known Huber function g∗ defined in Sect. 7 does
not verify (3). Moreover, Geman and Reynolds did not give
any regularity condition on the functions g and β . The func-
tion g(t) = min{λ2 |t |, α}, where α > 0 and λ > 0 are fixed
parameters, satisfies all the assumptions of Theorem 1, but
an easy calculation shows that

β(b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α − b α2

λ2 , if b ∈ [0, λ2/2α),

λ2

4b
, if b ∈ [λ2/2α,∞),

0, if b = ∞.

Namely, using the notation of Theorem 1, we have bM = ∞.

Theorem 2 (Charbonnier, Blanc–Féraud, Aubert and Bar-
laud, [11]) Fix λ ∈ R, λ �= 0. Let g : R → R be an even func-
tion, satisfying the following conditions:

(i) g(t) ≥ 0, ∀t; g(0) = 0,
(ii) g is of class C1(R),

(iii) g′ ≥ 0 in R
+
0 ,

(iv) g′(t)
2t

is continuous and strictly decreasing in R
+,

(v) limt→∞ g′(t)
2t

= 0,

(vi) limt→0+ g′(t)
2t

= bM , with 0 < bM < ∞.

Then there exists a strictly convex decreasing function
β : (0, bM ] → [0, α), where

α = lim
t→∞

[

g(t) − 1

2
t g′(t)

]

,

such that

g(t) = inf
0<b≤bM

{λ2 bt2 + β(b)}.

The function g, given in (4) see also Fig. 1, does not sat-
isfy the assumptions of Theorem 2. Hence, an alternative
version of the duality theorem is required in our context.
Furthermore, the duality result given in the next theorem is
a sufficient and necessary criterion.

Theorem 3 Fixed λ ∈ R with λ �= 0, assume that:

(a) B = ⋃m
j=1 Ij is a subset of R

+
0 , consisting of the union

of bounded intervals or singletons, such that Ih ∩ Ij = ∅
for all h �= j ;

(b) β : B → R is a continuous function, bounded from be-
low, strictly decreasing in B and strictly convex on each
interval Ij .

Fig. 1 The function g in (4) with α = 10 and λ = 1



172 J Math Imaging Vis (2012) 44:168–184

Put

g(t) = inf
b∈B

{λ2bt2 + β(b)}, t ∈ R. (5)

Then

(c) g is even, non-decreasing on R
+
0 and of class Liploc(R);

(d) the function f (t) = g(
√

t), t ≥ 0, is continuous, non-
decreasing, concave in R

+
0 , not differentiable at most

in a finite set of points of R
+. The derivative f ′ on its

domain is a continuous and non-increasing function.

Moreover

f (0) = lim
b→supB

β(b). (6)

Conversely, if g : R → R and f : R
+
0 → R are two func-

tions, satisfying (c), (d) respectively, then there exist a set
B ⊂ R

+
0 and a function β , satisfying (a), (b), (5) and (6).

The proof of Theorem 3 is presented in the Appendix of
the paper.

4 Interaction Between Line Variables

To consider the possible geometry features between close
line variables, in the expression of the energy function (1)
we add a term Q(b), that represents our a priori knowledge
about the structure of discontinuities. Thus (1) becomes

E(x,b) = ‖y − Ax‖2

+
∑

c∈Ck

[
λ2(Dk

c x)2bc + β(bc)
] + Q(b). (7)

In particular, two possible cases occur: when Q(b) con-
sists in a constraint which guarantees the continuation of the
line elements in the restored image and when Q(b) avoids
adjacent parallel line elements, which arise from the blur.
The first case is very important, since the discontinuities
of an image are often closed curves, that is no gaps occur;
the latter is also relevant, since the restored blurred image
should not present parallel lines, which arise from the blur
and not from the ideal image. At the moment we are not able
to overcome both problems at once, so that, according to a
possible a priori acknowledgement, we choice the constraint
to adopt taking a special form of Q(b).

For instance, if we impose the continuation of the line
elements in the restored image, in order to define an appro-
priate Q(b) we take the total orders �1, �2 and �3 on C1,
C2 and C3 defined by

{(i, j), (i − 1, j)} �1 {(i, h), (i − 1, h)}
⇔ j ≤ h,

{(i, j), (i, j − 1)} �1 {(h, j), (h, j − 1)}
⇔ i ≤ h,

{(i, j), (i − 1, j), (i − 2, j)}
�2 {(i, h), (i − 1, h), (i − 2, h)}
⇔ j ≤ h,

{(i, j), (i, j − 1), (i, j − 2)}
�2 {(h, j), (h, j − 1), (h, j − 2)}
⇔ i ≤ h,

{(i, j), (i − 1, j), (i − 2, j), (i − 3, j)}
�3 {(i, h), (i − 1, h), (i − 2, h), (i − 3, h)}
⇔ j ≤ h,

{(i, j), (i, j − 1), (i, j − 2), (i, j − 3)}
�3 {(h, j), (h, j − 1), (h, j − 2), (h, j − 3)}
⇔ i ≤ h.

By c − 1 we denote the maximal clique that precedes
c ∈ Ck in the order �k , that is

c − 1 = sup{c̃ ∈ Ck : c̃ �k c}.
We use the convention that if c − 1 does not exist then
bc−1 = 0. In this case a possible expression for Q is given
by

Q(b) =
∑

c∈Ck

ρ(bc, bc−1), (8)

where ρ = ρ(u, v) is a regular function on its natural do-
main � ⊃ B2, non-increasing in both u and v, and such that
∂2
u,vρ(ũ, ṽ) �= 0 at some point (ũ, ṽ).

A good choice of ρ, when β in (7) is as in (2), is given
for (u, v) ∈ B2 = {0,1} × {0,1}
ρ(u, v) = ε(1 − u) (1 − v), (9)

where ε ∈ (−α,0), and α > 0 is the constant in (2).
Similarly, we proceed to avoid adjacent parallel lines. For

this aim we introduce the total orders �1, �2 and �3, de-
fined on C1, C2 and C3, respectively, by

{(i, j), (i − 1, j)} �1 {(h, j), (h − 1, j)}
⇔ i ≤ h,

{(i, j), (i, j − 1)} �1 {(i, h), (i, h − 1)}
⇔ j ≤ h,

{(i, j), (i − 1, j), (i − 2, j)}
�2 {(h, j), (h − 1, j), (h − 2, j)}
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⇔ i ≤ h,

{(i, j), (i, j − 1), (i, j − 2)} �2 {(i, h), (i, h − 1), (i, h − 2)}
⇔ j ≤ h,

{(i, j), (i − 1, j), (i − 2, j), (i − 3, j)}
�3 {(h, j), (h − 1, j), (h − 2, j), (h − 3, j)}
⇔ i ≤ h,

{(i, j), (i, j − 1), (i, j − 2), (i, j − 3)}
�3 {(i, h), (i, h − 1), (i, h − 2), (i, h − 3)}
⇔ j ≤ h.

Again c − 1 is the maximal clique that precedes c ∈ Ck

but now in the order �k , so that c − k is the maximal clique
that precedes c − (k − 1) in the sense of �k . Again if c − k

does not exist then bc−k = 0. A useful form of Q is here
given by

Q(b) =
∑

c∈Ck

ρ(bc, bc−k), (10)

where ρ = ρ(u, v) is a regular function on its natural do-
main � ⊃ B2, non-decreasing in both u and v, and such that
∂2
u,vρ(ũ, ṽ) �= 0 at some point (ũ, ṽ). For instance, when β

in (7) is as in (2), then � can be defined in B2 as in (9), with
now ε > 0.

Note that in a second order reconstruction we inhibit
of closed triple parallel discontinuities. Indeed, differently
from the first order reconstruction, in this case double par-
allel edges have not to be inhibit. In fact, in many cases, a
double second order edge corresponds just to a simple first
order discontinuity. similarly in a third order reconstruction
we inhibit the presence of four adjacent parallel discontinu-
ities.

5 Correspondence Between Primal and Dual Energy
Functions with Q �≡ 0

Let us consider the energy function given as in (7). In par-
ticular, let Q be as either in (8) or in (10). In both cases,
it is difficult to compute explicitly the dual energy function,
and so we consider an approximation ξc−j (x) of the variable
bc−j , defined as

ξc−j (x) = argc−j min
b∈B |Ck |

E(x,b)

= arg min
b∈B

{λ2(Dk
c−j (x))2b + β(b)},

where E is as in (1), and either c−j = c−1 if Q is as in (8),
or c − j = c − k if Q is as in (10). Of course, ξc−j depends
only on Dk

c−j (x), so, without loss of generality, we can write

ξc−j (x) = μ(Dk
c−j (x)). Hence we approximate the primal

energy in (7) as follows

Ẽ(x,b) =‖y − Ax‖2 +
∑

c∈Ck

[
λ2(Dk

c x)2bc + β(bc)

+ ρ(bc,μ(Dk
c−j (x)))

]
,

with the convention that, if c − j does not exist, then
ρ(bc,μ(Dk

c−j (x))) = 0. Note that now Ẽd deals only with
non-interacting line elements. The corresponding dual en-
ergy is

Ẽd(x) =‖y − Ax‖2

+
∑

c∈Ck

ψ(Dk
c (x),Dk

c−j (x)),
(11)

where

ψ(u,v) = inf
b∈B

{λ2bu2 + β(b) + ρ(b,μ(v))}.

In the particular case in which B , β are as in (2), and ρ is as
in (9), with either ε ∈ (−α,0) if Q is as in (8), or ε > 0 if Q

is as in (10), we have that

μ(v) =
{

1, if |v| < s =
√

α

λ
,

0, otherwise.

Hence we get

ψ(u,v) =
{

g(u) = g(u,0), if |v| < s,

gε(u) = g(u, ε), if |v| ≥ s,
(12)

where g : R × (−α,∞) → R
+
0 is defined by

g(u, v) =
{

λ2u2, if |u| < √
α + v/λ,

α + v, if |u| ≥ √
α + v/λ.

The function ψ is given in Fig. 2(c).

6 GNC Algorithms

In this section we present an algorithm to minimize the dual
energy Ẽd . In general, Ẽd is not convex. The solution of
the algorithms for minimizing a non-convex function de-
pends on the choice of the starting point. To give an adequate
choice of the initial point, a standard technique is to find a
finite family of approximating functions {Ẽ(p)

d }p , such that
the first one is convex and the last one is the original dual
energy function (cf. [2, 4, 7, 8, 23, 25]), and then to apply
the following algorithm:
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initialize x;
while Ẽ

(p)
d �= Ẽd do

• find the minimum of the function Ẽ
(p)
d

starting from the initial point x;
• x = arg min Ẽ

(p)
d ;

• update the parameter p.

The algorithm above is called GNC (Graduated Non-
Convexity) algorithm. The first GNC algorithm was pro-
posed by Blake and Zisserman [7, 8], who approximate the
dual energy in (3) where the function g is defined in (4), with
A = I , the identity matrix. Bedini, Gerace and Tonazzini [2]
proposed an extension of GNC algorithm, called E-GNC
(Extended Graduated Non-Convexity), for the dual energy
given in (11), ψ in (12) and A = I , which takes alterna-
tively into account the constraint of non-parallelism or the
line continuation constraint, in accord with the choice of
Q(b) either in (8) or in (10). Moreover, Nikolova [23] stud-
ied the dual energy in (3), where g is given as in (4), but A is
an arbitrary blur matrix, not necessarily equal to the identity
matrix.

7 The CATILED Algorithm

Here, we focus our attention on finding a family of approx-
imating functions of the dual energy function (11). In this
function we choose ψ as in (12), in such a way that, differ-
ently from Nikolova [23], it is possible to consider geome-
try of discontinuities. Moreover, differently from Blake and
Zissermann [7, 8] and Bedini, Gerace and Tonazzini [2], A

is taken to be as an arbitrary matrix.
Thus we deal with the problem of deblurring, which takes

into account the constraints of the geometry of discontinu-
ities. The Hessian matrix associated with faithfulness to the
data in (11), namely to the first term ‖y − Ax‖2, is

� = 2AT A, (13)

which is positive semidefinite.
Now we deal with the problem of finding a convex ap-

proximation of the regularization term in (11). Let us first
find a C1(R2)-approximation of the function ψ in (12): the
discontinuity points of the derivative of the function g(u)

in (12) are located in u = ±s. Thus, we interpolate in this
function two quadratic arcs in such a way to eliminate these
discontinuities. In the same way it is possible to construct
a C1(R2)-approximation of the function gε(u) in (12). To
eliminate the discontinuities in the function ψ in (12) and
in its derivatives in v = ±s, we interpolate two quadratic
arcs between g(u) and gε(u) in v = s, and two other arcs in

v = −s. Namely, for p ∈ (0,1],

ψ(p)(u, v)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(p)(u,0), if | v |≤ s,

a(p)(u)(| v | −s)2 + g(p)(u,0),

if s <| v |≤ ϕ(p)+s
2 ,

−a(p)(u)[ | v | −ϕ(p)]2 + g(p)(u, ε),

if ϕ(p)+s
2 <| v |< ϕ(p),

g(p)(u, ε), otherwise,

(14)

where ϕ(p) = s + pz, with z > 0 arbitrary, and s = √
α/λ.

The function g(p)(u, v) is

g(p)(u, v)

=

⎧
⎪⎨

⎪⎩

λ2u2 if |u| < qp(v),

α − τ (p)

2

[|u| − rp(v)
]2 ifqp(v) ≤ |u| ≤ rp(v),

α if |u| > rp(v),

where

qp(v) =
√

α + v

λ2

(
2

τ (p)
+ 1

λ2

)−1/2

, (15)

with τ (p) = τ ∗/p, where τ ∗ is an arbitrary positive real con-
stant, and

rp(v) = α + v

λ2 qp(v)
. (16)

The function a(p)(u) is given by:

a(p)(u) = 2
g(p)(u, ε) − g(p)(u,0)

[ϕ(p) − s]2
.

Any approximation ψ(p) with p ∈ (0,1] is a C1(R2)-
approximation of ψ in (12).

Let ψ∗ be a first convex approximation of ψ of class
C1(R2). In this paper, we take

ψ∗(u, v) = g∗(u) (17)

for all (u, v) ∈ R
2, where

g∗(u) =
{

λ2u2, if | u |< q1(0),

2λ2q1(0) |u| − λ2q2
1 (0), if | u |≥ q1(0)

for all u ∈ R. This function g∗(u) is well known as the Hu-
ber function [9].

For p = 0 we put ψ(0) ≡ ψ . For p ∈ [1,2], the approxi-
mating functions are defined as follows:

ψ(p) = (p − 1)ψ∗ + (2 − p)ψ(1), (18)
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where ψ∗ and ψ(1) are given in (17) and (14) respectively.
In our GNC algorithm the parameter p varies linearly from 2
to 0. In Figs. 2(a), 2(b) and 2(c), the graphs of the functions
ψ(2) ≡ ψ∗, ψ(1) and ψ(0) ≡ ψ are given respectively. We
note that, thanks to the presence of z and τ ∗, the approximat-
ing functions ψ(p) are of class C1(R2) for each p ∈ (0,2],
as required in the numerical algorithm. The GNC algorithm
proposed in this paper is indicated as CATILED, short for
Convex Approximation Technique for Interacting Line Ele-
ments Deblurring.

When ε = 0, the family of approximations (14) and (18)
reduces exactly to the one considered in [23] by Nikolova in
the case of non-strictly convex data fidelity term and trun-
cated quadratic stabilizer.

8 Descent Algorithms

To minimize the different approximations, the NL-SOR
(Non-Linear Successive Over Relaxation) algorithm [10] is
used. In this algorithm, the mth iteration is defined for all
i, j = 1, . . . , n by

xi,j
(m+1) = xi,j

(m) − ω
∂xi,j

Ẽ
(p)
d (x)

Ti,j

,

where 0 < ω < 2 is the NL-SOR parameter, that influences
the speed of convergence, and Ti,j is an upper bound on the
second derivative, i.e:

Ti,j ≥ ∂2
x2
i,j

Ẽ
(p)
d (x), i, j = 1, . . . , n.

The same algorithm was later used by Blake and Zisserman
[8] and Bedini, Gerace and Tonazzini [2]. The convergence
of the first convex approximation, that is when p = 2, has
been proved by Brewster and Kannan in [10] in an interval
smaller than (0,2) for ω. We have experimentally noted that
the speed of convergence of the successive approximations
depends of the quality of the minimum found in the first
approximation. Thus, to have an efficient GNC algorithm,
both in the sense of computational costs and in the quality
of restoration, it is necessary to choose a suitable first convex
approximation. In the next section we show that this approx-
imation works for our purposes, since it satisfies the duality
Theorem 3. In passing we also recall that in [25] an inte-
rior point method is adopted in a GNC algorithm in order to
minimize a functional possibly not convex.

9 Primal Energy Function of the First Convex
Approximation

Let g∗ be the first convex approximation function given in
(17) and f ∗(t) = g∗(

√
t) for all t ≥ 0. Hence, by a direct

Fig. 2 (a) Function ψ(2) ≡ ψ∗; (b) function ψ(1); (c) function
ψ(0) ≡ ψ . They are obtained with α = 1, λ = 0.1 and ε = 1
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Fig. 3 (a) Function g∗; (b) function f ∗; (c) function β∗. They are
obtained with λ = 1 and q = 1

calculation, f ∗ and g∗ satisfy the conditions (c) and (d) of
Theorem 3, so that they are adequate to deal with implicit
discontinuities. We can construct the set B∗ and the function
β∗ satisfying (a), (b) and (5) of Theorem 3. Indeed, follow-
ing the proof of this theorem, we put B∗ = {ζ/λ2 : ζ ∈ �},
where � is the set of the values attained by f ∗′, namely
B∗ = (0,1]. The function β∗(b), b ∈ B∗, is the y-coordinate
of the intersection point between the y-axis and any tangent
line to the graph of f ∗ whose angular coefficient is λ2 b. The
function β∗ is well-defined by

β∗(b) = λ2 q2
1 (0)

(
1

b
− 1

)

∀b ∈ B∗.

In Figs. 3(a), 3(b) and 3(c), there are the graphs of the func-
tions g∗, f ∗, β∗ respectively. However, the first approxima-
tion g∗ does not take into account of the interaction between
discontinuities.

10 Experimental Results

In this section we first show, by some experimental results,
how the CATILED algorithm can inhibit the formation of
double lines or can favor the line continuation. Then we
present concrete examples which illustrate how the use of
higher order differential operators Dk

c x, k = 2,3, improves
the quality of the reconstructed image x.

To evaluate properly the quality of the reconstructed im-
ages, we initially start from an ideal image, that is, we first
blur it and then, using CATILED algorithm, we try to recon-
struct the original image. Even if this could seem artificial,
on the other hand this allow us to evaluate the error in the
reconstruction. In any case, to avoid any misunderstanding,
we present the reconstruction also of an image not blurred
artificially.

In the first set of examples below the choice of the in-
volved free parameters α, λ and ε is taken to show the dif-
ferent quality of the reconstructed images and how relevant
is the fact that ε can be taken different from 0. In the second
set of examples below the parameters α and λ are chosen
by an algorithm proposed in [16], while the parameter ε is
either α or −α depending of the involved constraint. We re-
call in passing that there are several algorithms available in
literature for this aim, see e.g. [3, 20, 21, 26].

Let us first examine the adjacent parallel lines inhibition
constraint. In Fig. 4(a) the first considered image of dimen-
sion 128 × 128 (Synthetic1) appears. In Fig. 4(b) there is the
image Synthetic1 blurred by the following blur mask:

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

. (19)
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Fig. 4 (a) Image Synthetic1; (b) image Synthetic1 blurred by mask
(19); (c) restoration obtained by Nikolova’s algorithm (λ = 0.5 and
α = 10) and (d) its line elements; (e) restoration obtained by the
CATILED algorithm with the non-parallelism constraint (λ = 0.5,
α = 10 and ε = 150) and (f) its line elements

Fig. 5 Image in Fig. 4(b)
restored by CATILED (λ = 0.5,
α = 10) after the minimization
of the first approximation

Figures 4(c) and 4(e) exhibit the restorations of the image
in Fig. 4(b) by Nikolova’s algorithm and by the CATILED
algorithm, respectively. The parameters used for these two
algorithms are λ = 0.5 and α = 10, and moreover ε = 150

Fig. 6 (a) Image Synthetic2; (b) image Synthetic2 blurred by mask
(19); (c) restoration obtained by Nikolova’s algorithm (λ = 1 and
α = 200) and (d) its line elements; (e) restoration obtained by
the CATILED algorithm with the non-parallelism constraint (λ = 1,
α = 200 and ε = 1200) and (f) its line elements

in the CATILED algorithm. As we have seen in Sect. 7,
the algorithm given by Nikolova in [23] is the subcase of
CATILED when ε = 0.

Note that the role of ε > 0 in (9) is crucial in the
CATILED algorithm, in order to get better restored images.
Indeed, the line elements in Figs. 4(d) and 4(f) show how
the CATILED algorithm inhibits parallel lines.

In Fig. 5 we present the reconstruction of the image in
Fig. 4(b) obtained by the CATILED algorithm after the min-
imization of first convex approximation of the dual energy.
The mean squared error with respect to original equal is to
14.7. This fact confirms what we have shown in Sect. 9, that
is even the first approximation has already good properties
of reconstruction.
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Fig. 7 (a) Image Synthetic3; (b) image Synthetic3 blurred by mask
(19) and corrupted by noise (σ 2 = 49); (c) restoration obtained by
Nikolova’s algorithm (λ = 4 and α = 2000) and (d) its line elements;
(e) restoration obtained by the CATILED algorithm with the line con-
tinuation constraint (λ = 4, α = 2000 and ε = −900) and (f) its line
elements.

In Fig. 6(a) the next considered image, Synthetic2, of di-
mensions 128 × 128 appears. Figure 6(b) shows the image
Synthetic2 blurred by the mask (19).

The restorations of the image in Fig. 6(b) by Nikolova’s
and by the CATILED algorithm are presented in Fig. 6(c)
and 6(e), respectively. The parameters used for these two al-
gorithms are λ = 1 and α = 200, and moreover ε = 1200 for
the CATILED algorithm. The line elements of the images in
Figs. 6(c) and 6(e) are presented in Figs. 6(d) and 6(f).

Let us now consider the line continuation constraint.
In Fig. 7(a) the 160 × 160 image Synthetic3 appears. In
Fig. 7(b) there is the image Synthetic3 blurred by the mask
M1 in (19) and corrupted by i.i.d. Gaussian noise of variance
σ 2 = 49.

Fig. 8 (a) Image Lena; (b) Image Peppers; (c) Image Monalisa

Table 1 MSEs between images restored by difference operators of
order k = 1 and either ε = 0 or ε �= 0

image ε = 0 ε �= 0

Synthetic1 12.5 8.3

Synthetic2 11.2 7.9

Synthetic3 11.7 8.6

Figures 7(c) and 7(e) exhibit the restorations of the image
in Fig. 7(b) by Nikolova’s algorithm and by the CATILED
algorithm, respectively. The parameters used for these two
algorithms are λ = 4 and α = 2000, and moreover ε = −900
in the CATILED algorithm.

In this case the role of ε < 0 in (9) is essential in the
CATILED algorithm, in order to favor the line continuation
as it is possible to see in Figs. 7(d) and 7(f).

In particular, the fact that ε could be taken not equal zero
is essential in order to produce a low MSE (Mean Squared
Error) between the reconstructed and the original images.
The MSEs of the images for Figs. 4, 6 and 7 are given in
Table 1 below.

Next we consider three different images of dimension
256 × 256: Lena, Peppers and Monalisa (see Fig. 8). These
three images have been blurred using alternatively the blur
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Table 2 MSEs between images restored by operators of order k = 1,2,3 and the original ones

image blur noise k = 1 k = 2 k = 3

Lena M1 no 10.96 7.17 7.02

Lena M1 yes 11.94 9.96 10.05

Lena M2 no 10.46 6.56 6.36

Lena M2 yes 11.66 8.76 8.24

Peppers M1 no 9.55 5.35 5.47

Peppers M1 yes 11.21 8.71 8.52

Peppers M2 no 8.67 5.03 4.79

Peppers M2 yes 10.40 7.41 6.74

Monalisa M1 no 7.77 3.98 3.97

Monalisa M1 yes 9.53 6.47 6.07

Monalisa M2 no 6.97 2.92 2.78

Monalisa M2 yes 8.97 5.19 4.71

Fig. 9 (a) Image Lena blurred by mask M1; (b) reconstruction using
first order finite difference operators; (c) reconstruction using second
order finite difference operators; (d) reconstruction using third order
finite difference operators

masks M1 given in (19) and

M2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 5 10 5 0
5 25 50 25 5
10 50 50 50 10
5 25 50 25 5
0 5 10 5 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Moreover, we have also considered, as data, the blurred im-
ages corrupted by i.i.d. Gaussian noise with zero mean and

Fig. 10 (a) Image Peppers blurred by mask M1; (b) reconstruction
using first order finite difference operators; (c) reconstruction using
second order finite difference operators; (d) reconstruction using third
order finite difference operators

variance σ 2 = 25. However, here we present the figures only
of experimental results obtained with mask M1 and without
noise. Of course the final Table 2 summarizes all the results
also in a quantitative objective manner.

In Fig. 9(a) there is Lena blurred by mask M1. The re-
stored image using first order finite difference operators,
with λ = 0.61 and α = ε = 22.1, is shown in Fig. 9(b).
The image obtained by using second order operators with
λ = 0.43 and α = ε = 0.72 is given in Fig. 9(c). The third
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order restoration using λ = 0.34 and α = ε = 0.88 is pre-
sented in Fig. 9(d).

The blurred image of Peppers is presented in Fig. 10(a).
The first order reconstruction is obtained by using λ = 0.47
and α = ε = 17.2 and is shown in Fig. 10(b). The image
obtained by using second order operators, with λ = 0.33 and
α = ε = 0.51, is given in Fig. 10(c), while the third order

Fig. 11 (a) Image Monalisa blurred by mask M1; (b) reconstruction
using first order finite difference operators; (c) reconstruction using
second order finite difference operators; (d) reconstruction using third
order finite difference operators

restoration, with λ = 0.52 and α = ε = 0.77, is presented in
Fig. 10(d).

In Fig. 11(a) appears Monalisa blurred by mask M1. The
first order reconstruction, with λ = 0.61 and α = ε = 12.6,
is shown in Fig. 11(b), the second order image reconstruc-
tion, with λ = 0.43 and α = ε = 0.67, is given in Fig. 11(c),
and the third order one, with λ = 0.51 and α = 0.73, is pre-
sented in Fig. 11(d).

In Table 2 we report the MSE between the images re-
stored by the CATILED algorithm, using alternatively finite
difference operators of order k = 1, k = 2 and k = 3, and the
original ones. Note that the MSEs obtained by CATILED
with finite difference operators of order three in almost all
these cases are the lowest.

The computational cost of the CATILED algorithm is
proportional to the order of the finite difference operator
used. Thus, sometimes the improvement of the quality ob-
tained by using operators of order three, instead of those
of order two, could not justify the increase of the compu-
tational cost. Indeed, the main difference appears from the
case k = 1 and k = 2.

From the above argument and Table 2, we produce ex-
perimental results in the most interesting case k = 2, with
ε ∈ {−α,0, α}, considering alternately the non-parallelism
and the continuation constraints. These results show how
relevant is to take ε �= 0 in order to minimize the MSEs.
This phenomenon is illustrated in the next Table 3.

The final experiment is real, in the sense that we use a real
photo taken during a sport action and not artificially blurred
by us, see Figs. 12(a) and 12(c). The blur estimation is per-
formed by the algorithm proposed in [17], while the pa-
rameter estimation is obtained by the technique introduced
in [16]. The reconstructed images are given in Figs. 12(b)
and 12(d), respectively.

Table 3 MSEs between the images restored using ε ∈ {−α,0, α} and the original ones

image blur noise ε = 0 ε = α ε = −α

Lena M1 no 9.27 7.17 7.01

Lena M1 yes 10.2 9.96 9.78

Lena M2 no 6.98 6.56 6.78

Lena M2 yes 10.56 8.76 8.88

Peppers M1 no 10.34 5.35 5.33

Peppers M1 yes 9.27 8.71 8.67

Peppers M2 no 7.11 5.03 4.91

Peppers M2 yes 8.22 7.41 6.98

Monalisa M1 no 5.21 3.98 4.12

Monalisa M1 yes 7.78 6.47 6.12

Monalisa M2 no 5.45 2.92 2.98

Monalisa M2 yes 8.11 5.19 5.21
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Fig. 12 (a) Original image of Bettega; (b) reconstruction using the
second order finite difference operator; (c) a detail of the original image
of Bettega; (d) the same detail reconstructed using the second order
finite difference operator

11 Conclusions

In this paper, we addressed the problem of restoring a
blurred and noisy image. The solution is defined as a min-
imum of a suitable energy function. Such a function is the
weighted sum of two terms: the former gives the faithful-
ness to data, the latter imposes regularity constraints on the
solution. In particular we assumed that the ideal image is
piecewise regular and must have thin or continuous edges.
To minimize the energy function that implicitly refer to dis-
continuities, a new GNC type algorithm was proposed. The
experimental results show how non-parallelism and the con-
tinuation constraints of the discontinuities are very impor-
tant. Indeed, the images reconstructed by CATILED do not
present double or discontinuous edges and this improves the
quality of reconstructions. In particular, we showed that the
first approximation of the dual energy, used in CATILED, is
adequate, since it is possible to prove that it implicitly refers
to discontinuities, by means of the duality Theorem 3. The
technique does not use special matrix A, so that can be ap-
plied to several other related problems, as the reconstruction
images in tomography. Even the blur is not required to be
translation invariant. In Table 2 in Sect. 10 we reported the
MSE between the original images and those restored, us-
ing alternatively differential operators of order k = 1,2,3.
The main improvements arise from the cases k = 2 and
k = 3.

Proof of Theorem 3

Let B and β satisfy (a) and (b) respectively. Using (5), we
shall show that g verifies (c). Observe that it is possible to
extend uniquely β to a continuous function β : B → R̃ :=
R ∪ {∞}. We have:

g(t) = inf
b∈B

{λ2 b t2 + β(b)}

= min
b∈B

{λ2 b t2 + β(b)} (20)

for all t ∈ R.
Clearly, g is even. To prove that g ∈ Liploc(R), fix 0 ≤

K1 < K2, and choose t1, t2 ∈ [K1,K2]. From (20) there are
b1, b2 ∈ B such that

g(t1) = λ2 b1 t2
1 + β(b1),

g(t2) = λ2 b2 t2
2 + β(b2),

(21)

hence λ2 b1 t2
1 + β(b1) ≤ λ2 b2 t2

1 + β(b2), and λ2 b2 t2
2 +

β(b2) ≤ λ2 b1 t2
2 + β(b1). Thus

g(t1) − g(t2) ≤ λ2 b2 t2
1 + β(b2) − λ2 b2 t2

2 − β(b2)

= λ2 b2 (t1 + t2) (t1 − t2)

≤ 2λ2 · sup B · K2 |t1 − t2|;
and similarly g(t2)−g(t1) ≤ 2λ2 · sup B ·K2 |t1 − t2|. Con-
sequently

|g(t1) − g(t2)| ≤ 2λ2 · sup B · K2 |t1 − t2|,
in other words g ∈ Liploc(R).

To see that g is non-decreasing in R
+
0 , fix t1, t2 ∈ R

+
0 with

t1 > t2 ≥ 0, and let b1, b2 be as in (21). Then

g(t1) = λ2 b1 t2
1 + β(b1) ≥ λ2 b1 t2

2 + β(b1)

≥ λ2 b2 t2
2 + β(b2) = g(t2),

and the claim follows.
Let us show that f (t) = g(

√
t) satisfies (d) and (6). First

of all, note that, by (b) and (20),

f (0) = inf
b∈B

β(b) = lim
b→supB

β(b).

Hence (6) holds.
Clearly, since we have already shown that g satisfies (c),

then it follows immediately that f is non-decreasing and
continuous on R

+
0 .

We now prove that f is concave in R
+
0 . Given t0 ∈ R

+
0

and the line r0(t) = λ2 b∗ t + β(b∗), where b∗ ∈ B is an ele-
ment of B attaining the minimum in (20) at t = t0, that is

g(
√

t0) = f (t0) = min
b∈B

{λ2bt0 + β(b)}

= λ2b∗t0 + β(b∗),
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we get r0(t) ≥ f (t) in R
+
0 .

Note that f is the lower envelope of a family of lines,
whose equations are given by

r(t) = λ2 b t + β(b), b ∈ B.

These lines are tangent to the graph of f at the points in
which f is differentiable.

The function f is concave and continuous, and thus f ′
is non-increasing on its domain. The curve y = f (x) admits
the right tangent line at the point (0, f (0)). Indeed, by con-
tradiction, if its angular coefficient were λ2 b = ∞, then it
should follow that B is not bounded, which contradicts as-
sumption (a). Thus, f is differentiable at t = 0.

We shall show next that the set of points at which f is
not differentiable is at most finite. To this aim, we observe
that, if b1 > b2 > b3 ∈ B belong to the same interval Ij , and
if (t0, y0) is the point of intersection of the lines

r1(t) = λ2 b1 t + β(b1), r3(t) = λ2 b3 t + β(b3)

and y2 is the y-coordinate of the point of the line r2(t) =
λ2 b2 t + β(b2) whose x-coordinate is t0, then we have
y2 < y0. Indeed, let τ ∈ (0,1) be such that b2 = τ b1 + (1 −
τ) b3. By virtue of strict convexity of β in Ij , we get

y2 − λ2 b2 t0 = β(b2)

< τ β(b1) + (1 − τ)β(b3)

= τ y0 − τ λ2 b1 t0

+ (1 − τ)y0 − (1 − τ)λ2b3t0

= y0 − λ2 b2 t0, (22)

and thus y2 < y0. Let now t ∈ R
+ be a point of non-

differentiability of f , and let us denote by λ2 bs and λ2 bd

the values of left and right derivative of f in t respectively:
we have bs > bd , by virtue of concavity of f . Let us now
suppose that bs and bd belong to the same interval Ij0 ,
whose union forms the set B . We note that in this case, since
f is concave, then all lines having angular coefficient λ2 b̂

between λ2 bd and λ2 bs are support lines for f in (t, f (t)).
From (22) applied to b1 = bs , b2 = b̂, b3 = bd , it follows
that (t, f (t)) is not the intersection point of the lines

rs(t) = λ2 bs t + β(bs), rd(t) = λ2 bd t + β(bd).

Thus, every interval Ij contains at most two values of B cor-
responding to two different points of non-differentiability
of f . From this and the fact that B is the union of a finite
number of intervals or singletons it follows that f is differ-
entiable up to the complement of a finite number of points.

Moreover, we note that every concave function, defined
on an interval or halfline contained in R

+
0 , whose derivative

f ′ exists in 0 and up to the complement of a finite set, has the

property that f ′ is continuous on its domain. Indeed, in this
case, this domain is the union of a halfline and eventually
of open intervals; f ′ is non-increasing on each of these sets,
and thus there either f ′ is continuous or f ′ admits points of
discontinuity of the first kind: this last case is impossible, by
virtue of the Darboux theorem. Thus f ′ is continuous on its
domain.

Conversely, we prove that, if g and f satisfy (c) and (d)
respectively, then there exist a set B and a function β for
which (a) and (b) hold. Let � be the set of all angular coef-
ficients of the lines tangent to the graph of f at the points
(t0, f (t0)) of differentiability of f . Let B = {ζ/λ2 : ζ ∈ �}.
Since f is differentiable in 0 and f ′ is non-increasing and
non-negative on its domain, then B is bounded and is con-
tained in R

+
0 , with

f ′(0) = λ2 · sup B. (23)

Moreover, since f ′ is defined in the union of a finite number
of intervals or halflines, by applying the Darboux theorem
to each of them we get that B is a finite union of intervals
or singletons, which we denote by Ij , j = 1, . . . ,m. The
sets Ij are nonoverlapping, since f ′ is non-increasing on its
domain, namely Ij ∩ Il = ∅∀ j �= l. Indeed, if there exists a
point t0 ∈ R

+ at which f is not differentiable, then the left
derivative of f at t0 is strictly greater than its left derivative.

Given b ∈ B , define β(b) as the intersection point be-
tween the y-axis and any line, tangent to the graph of f ,
whose angular coefficient is λ2b. The function β is well-
defined: indeed, if we consider two tangent lines to the
curve y = f (x) at the points (t0, f (t0)) and (t1, f (t1)) with
t0 < t1, then the intersection with the y-axis consists on a
unique point, since, by virtue of concavity of f , the graph
of this function between the points (t0, f (t0)) and (t1, f (t1))

is a segment.
Let b0, b1 ∈ B , with b0 < b1, and

r0(t) = λ2 b0 t + β(b0), r1(t) = λ2 b1 t + β(b1) (24)

two lines, tangent to the curve y = f (x) at the points
(t0, f (t0)) and (t1, f (t1)) respectively. Hence 0 ≤ t1 < t0,
since f is concave. The lines in (24) are not parallel, and,
denoting by (t2, y2) their intersection point, we have:

r0(t) > r1(t) in [0, t2),

and so β(b0) = r0(0) > r1(0) = β(b1); in other words β is
strictly decreasing on B .

We now prove that β is strictly convex on each inter-
val Ij . Let b1 > b2 > b3 ∈ Ij , where

b2 = τb1 + (1 − τ)b3, (25)

with 0 < τ < 1. Let (t0, y0), with t0 ∈ R
+
0 , be the intersec-

tion point of the lines r1, r2 tangent to the graph of f , whose
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angular coefficients are λ2 b1, λ2 b2 respectively. The line
r3 tangent to the graph of f , whose angular coefficient is
λ2 b3, intersects r1 and r2 in the points (t1, y1) and (t2, y2)

respectively. There are three cases: t0 < t1 < t2, t2 < t1 < t0,
t1 = t2 = t0. The last two cases cannot occur: otherwise the
line r2 would not belong to the lower envelope of f . Hence
t0 < t1 < t2 and so

β(b1) = y0 − λ2 b1 t0, β(b2) = y0 − λ2 b2 t0,

β(b3) > y0 − λ2 b3 t0.

From this and (25) it follows that

β(b2) = τy0 + (1 − τ)y0 − τλ2 b1 t0 − (1 − τ)λ2 b3 t0

< τ β(b1) + (1 − τ)β(b3).

This proves that β is strictly convex on each Ij .
Note that β is continuous at the interior points of each

Ij , since β is strictly convex in Ij . Let us show that β is
continuous at the left endpoints, say for simplicity b0, of
these intervals Ij , with b0 ∈ Ij . To each b0 put

T0 = {t ∈ R
+
0 : f ′(t) = λ2 b0}.

By construction of B , we get that T0 �= ∅.
Let t0 = infT0, and consider first the case t0 = 0. Then,

clearly 0 = min T0; and from this it follows that

λ2b0 = f ′(0) = λ2 · sup B,

by (23). Thus, by definition of b0, we get that j = m and
Im = {b0}, and thus β is continuous at b0.

We now consider the case t0 > 0: first of all, we note that
t0 belongs to the topological closure of T0.

Let us prove that t0 �∈ T0: otherwise t0 = minT0 and t0

is a point of differentiability of f . From this and from the
hypotheses it follows that there exists a neighborhood V of
t0, such that f ′ is continuous and strictly decreasing on V :
thus the function f ′/λ2 attains all values belonging to a suit-
able neighborhood containing b0. This is impossible, since
b0 does not belong to the interior of Ij . Thus t0 is a limit
point for T0, and from monotonicity of f ′ it follows that
T0 contains a right neighborhood of t0, with the exception
of the point t0. By virtue of the L’Hospital theorem we get
that f ′

d(t0) = λ2 b0. If t0 is a point of non-differentiability of
f , then f ′

s (t0) > f ′
d(t0), and thus there exists b1 > b0 such

that (b0, b1) ⊂ R \ B . From this it follows that Ij = {b0},
and hence β is continuous at b0. Let now t0 be a differ-
entiability point of f : if there exists t∗ ∈ (0, t0) such that
f ′(t∗) = λ2 b0, then t0 is not the infimum of the set T0,
which is impossible. From this and assumption (d) it follows
that there exists a left neighborhood U of t0, such that f ′ is

continuous and strictly decreasing on U . Thus f ′ has the in-
verse function ω, defined in a suitable interval V , whose left
endpoint is b0, and continuous on V . We have:

β(b) = f (ω(b)) − λ2 bω(b), ∀b ∈ V.

From this it follows that β is continuous at b0.
We now prove that β is continuous at the right endpoints,

which in general we denote by b1, of the intervals Ij , with
b1 ∈ Ij . If β is not continuous in b1, then from strict con-
vexity it follows

lim
x→b−

1

β(b1) − β(x)

b1 − x
= ∞,

and hence β(b1) > β(x) for each x belonging to a suitable
left neighborhood of b1, that is β is not strictly decreasing.
This is impossible by what was proved above.

We next prove that β is bounded from below. Since f ′
attains its maximum at t = 0, the formula (23) holds, and
since the intersection between the tangent line at 0 and the
y-axis is f (0), then

inf
b∈B

β(b) = lim
b→supB

β(b) = lim
b→f ′(0)/λ2

β(b) = f (0).

Thus β is bounded from below by f (0), and (6) holds.
Finally we prove that β satisfies (5). For every b ∈ B , the

line r0(t) = λ2 b t +β(b) is tangent to the curve y = f (x) at
the point (t0, f (t0)), and b = f ′(t0)/λ2. Since f is concave,
we have, ∀ t ∈ R

+
0 , ∀b ∈ B:

f (t) ≤ λ2 b t + β(b).

Taking the infimum with respect to b ∈ B , we get:

f (t) ≤ inf
b∈B

{λ2 b t + β(b)} ∀ t ∈ R
+
0 . (26)

Moreover, from the definition of β and of tangent line, we
get

inf
b∈B

{λ2 b t + β(b)} ≤ f ′(t) t + β

(
f ′(t)
λ2

)

= f (t), (27)

and thus, from (26) and (27), we obtain

f (t) = inf
b∈B

{λ2 b t + β(b)},

that is β satisfies condition (5). This completes the proof of
Theorem 3.
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