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Abstract Affine covariant local image features are a power-
ful tool for many applications, including matching and cal-
ibrating wide baseline images. Local feature extractors that
use a saliency map to locate features require adaptation pro-
cesses in order to extract affine covariant features. The most
effective extractors make use of the second moment matrix
(SMM) to iteratively estimate the affine shape of local im-
age regions. This paper shows that the Hessian matrix can
be used to estimate local affine shape in a similar fashion
to the SMM. The Hessian matrix requires significantly less
computation effort than the SMM, allowing more efficient
affine adaptation. Experimental results indicate that using
the Hessian matrix in conjunction with a feature extractor
that selects features in regions with high second order gradi-
ents delivers equivalent quality correspondences in less than
17% of the processing time, compared to the same extractor
using the SMM.
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1 Introduction

Local image features are patterns in an image that are de-
fined in limited image areas and are distinguishable from
the surrounding image in some way. Such features may be
extracted from each view of a scene independently and then
matched to find sets of correspondences between views. The
correspondences are commonly used for a large variety of
tasks, including automatic camera calibration [1], 3D recon-
struction [2, 3], mosaicking [4], object recognition and clas-
sification [5] and arranging image databases [6]. The various
applications have different requirements in terms of feature
robustness. In surveillance environments cameras are almost
invariably distributed very sparsely (wide baseline). Cali-
brating cameras for intelligent surveillance environments [7]
therefore requires features that are highly robust to view
change. A comprehensive review of local image feature ex-
tractors may be found in [8].

This paper focuses on derivative-based feature extractors.
These extractors make use of adaptation processes to pro-
duce features that are robust to affine deformations. The
most successful affine adaptation algorithms make use of
the second moment matrix (SMM) to estimate local fea-
ture shape. The purpose of this paper is to show theoretically
and experimentally that the Hessian of image intensities may
also be used for estimating local affine shape. The Hessian is
simpler to compute than the SMM and may enable a reduc-
tion in computation time. It may also be more convenient
to compute, for example, when using the determinant of
Hessian extractor. Results indicate that a blob detector with
Hessian shape adaptation requires on average 17% of the
processing time of an equivalent detector with SMM based
adaptation, while achieving marginally better repeatability
and producing more correspondences. Conditions where the
Hessian does not provide a useful shape measure have also
been identified and are discussed in this paper.
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2 Background and Notation

Among the various types of feature extractors is a class of
extractor that locates features in an image by computing
a saliency map of the image using partial derivatives. The
saliency map shows the regions of the image that have high
curvature. Feature points are selected by finding maxima in
the saliency map. The partial derivative operators are inher-
ently sensitive to changes in view point and do not produce
view covariant features directly. One possible approach to
extracting affine covariant features is to expand the image
space to a five dimensional affine space by applying various
degrees of affine scaling. This is computationally intractable
for most applications, as demonstrated by the salient region
detector [9] and the performance figures in [10]. Though the
method of [9] uses entropy to evaluate saliency, the prob-
lem of complexity due to dimensionality applies to partial
derivative-based methods. More efficient methods have been
developed to adapt salient features to be affine covariant, but
this adaptation process remains computationally expensive.

Other feature extractors have been demonstrated that are
less computationally demanding, however these do not share
the same strengths as the affine adapted saliency based ex-
tractors. The MSER extractor [11] for example produces
affine covariant features using a process similar to the water-
shed algorithm. It is less computationally demanding, but it
delivers far fewer features than the saliency-based methods
[10]. Saliency-based methods have been shown to perform
better than MSER when scene objects do not consist of pre-
dominantly flat surfaces [12]. Even faster extractors exist,
such as SURF [13] and FAST [14]; however, these do not
generate affine covariant features and are ineffective in wide
baseline scenarios.

Local features may be defined in terms of an affine trans-
formation of x € R2, expressed as,
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These components are referred to as the position, t, scale, &,
shape, A and orientation, R, of a feature. A transformation
of the above form may be interpreted as a mapping from a
unit circle centred at the origin to an ellipse circumscribing
a feature and can be used to normalise a feature.

The saliency map approach can be used to extract the
position of features (t) at a given scale, but does not pro-
vide a method for extracting regions that are covariant with

changes in viewpoint. Example saliency operators include
the Harris & Stephens operator [15], the determinant of Hes-
sian operator [16] and the Laplacian of Gaussian and Differ-
ence of Gaussians operators [17]. Methods have been de-
veloped to adapt saliency features such that the resulting
features are affine covariant. Many methods adapt different
components or parameters of the affine transformation sepa-
rately (examples are given in the following discussion). The
following subsections discuss the development of adaptation
methods for scale, shape and rotation adaptation.

2.1 Scale Adaptation

A saliency map only reveals features that are of the scale or
resolution at which the map is computed. In order to find
features with a wide range of sizes in an image, a multi-
scale analysis of the image is required. This is achieved by
defining a scale space for images and applying the saliency
operator and maxima extraction over a range of scales. In
the feature extraction literature, the most commonly used
definition for image scale space is based on the Gaussian
smoothing operator. Other definitions are also available. See
[18] for a detailed discussion on scale space theory.

The Gaussian scale space operator is defined as,

%, 0) = — (‘XTX) ®)
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where o is referred to as the scale parameter. The scale space
of image / (x) is generated by convolution with this operator,
yielding a three-dimensional space denoted I (X, o), where
the third dimension corresponds to the scale parameter of
the Gaussian operator.

A well established method of producing scale invariant
features is to select characteristic scale features. In [19] it
is proposed that some combination of gamma normalised
derivatives computed in the vicinity of an image structure
will assume a local maximum at the scale corresponding
to the structure size. Normalised derivatives of a Gaussian
scale space image are defined as,

8”
. — gV
Ilﬂ(X,U)—(T al’nl(X,U)’

where i is any dimension of 7 (x).

The simplest method of characteristic scale selection is
to locate scale-space maxima—points that represent local
maxima of the saliency map in the spatial and scale dimen-
sions. Example implementations have been published de-
scribing scale-space non-maximum suppression using the
Laplacian [19], Difference of Gaussians [20] and determi-
nant of Hessian [13] functions, for example.

The scale space maxima approach was extended in [21]
by locating points that are local maxima of the Harris func-
tion in the spatial dimensions and maxima of the scale nor-
malised Laplacian in the scale dimension. While functions
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such as the Harris and determinant of Hessian provide good
spatial localisation, it was found that the Laplacian is more
effective for scale selection. An iterative version of this al-
gorithm is proposed in [21], which offers higher accuracy
scale selection than simple 3D non-maximum suppression.
In [22, 23] a method is presented for composing a graph
(termed the scale-space feature sketch) of multi-scale fea-
tures such that the graph is a discrete representation of
the loci of features in scale-space. Characteristic scale fea-
tures can be selected by evaluating a scale response func-
tion (such as the normalised Laplacian) at each feature and
finding local maxima in the graph. This method yields su-
perior results to 3D non-maximum suppression, while en-
abling greater computational efficiency compared to both
3D non-maximum suppression and iterative scale selection.

2.2 Shape Adaptation

Extending the three parameter scale covariant feature extrac-
tion problem to a five parameter affine problem results in
a parameter space that is too large to search exhaustively.
Affine adaptation is therefore initialised either with a set of
multi-scale features or a set of characteristic scale features.

The majority of modern shape estimation methods derive
from [24], which uses the second moment matrix (SMM) to
iteratively measure local shape. In [24], the Gaussian scale
space is extended to affine Gaussian scale space. The affine
Gaussian operator is of the form,

1 1Tyl
X, X)=-——e X 2 X 3
g(x, X) ] (3)
where X is the covariance matrix and |X| is the deter-
minant of ¥. Affine scale space is then constructed as,
I1(x, ¥)=g(x, X) I (x). The second moment matrix com-
puted in affine scale space is defined as,

ma(X, Xp, Xp) =X plg(X, 1) *Da,
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with ¥ p and X differing only in scale. The SMM is es-
sentially a local estimate of the covariance matrix of image
gradients.

Affine adaptation is performed by iteratively computing
the SMM as,

M; =mo (X, kpM;_1, kfM;_1),

where i is the iteration number, kp is chosen to maximise
the value of the Laplacian at x, k7 is chosen so that the min-
imum eigenvalue of k;M remains constant during iterations
and My = I (the identity matrix). It is shown that if M is
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computed as above, then it converges such that, for suffi-
ciently large n,

mZ(Xa kDM}’la k[Mn) ~ Mna

and that the resulting matrix, M, is covariant under affine
transformations of the image. This method effectively adapts
the scale and shape components while the feature position is
kept fixed at its initial position.

The method presented in [25] applies a normalising affine
transformation to a local image region, instead of adapt-
ing the parameters of affine scale space. The integration
scale and differentiation scale of the SMM operator are set
proportional to the scale at which the feature is detected.
At each iteration of the algorithm, the local image region
around the selected feature is transformed using the inverse
square root of the SMM computed during the previous it-
eration (initially I). The SMM is then computed again from
the normalised image region using radially symmetric Gaus-
sian kernels and is normalised to have a determinant of 1.
This continues until the measured normalised SMM is suf-
ficiently close to the identity matrix. The final shape trans-
formation is the composition of all the normalisation trans-
formations applied during adaptation. The method of [25] is
more easily implemented and more efficient than the method
of [24], but only adapts the shape component while leaving
the scale and position fixed. This method is also applied to
both Harris and Determinant of Hessian features in [10].

A more complete algorithm is presented in [21] that up-
dates the integration scale, differentiation scale and feature
location at each iteration, before computing the SMM. A
measure of local shape eccentricity is defined as the ratio
of the smallest eigenvalue, Ay and the largest eigenvalue,
Amax Of the SMM,

Amin (M)

O = D

“
Adaptation concludes when Q is sufficiently close to 1
(symmetric). This is a more computationally expensive al-
gorithm than the method of [25]. It is the only algorithm
that allows for a change in scale and position as the shape
is adapted. In the evaluation presented in [10], the authors
chose to use a method most similar to [25], and the method
in [21] was not evaluated. The performance of this algo-
rithm is therefore unknown, however the preference for the
method in [25] indicates that perhaps the method in [21]
does not produce superior results. The authors’ own evalua-
tions of a complete iterative scale, position and shape adap-
tation algorithm show a great increase in computational cost
and negligable change in repeatability performance. For this
reason, a shape adaptation only framework is used in this

paper.
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Other methods for measuring the affine shape of each
feature include Edge-Based Regions (EBR) and Intensity-
Based Regions (IBR) [26-28]. EBR is designed for cor-
ner features extracted using the Harris detector and uses the
edges emanating from the corner to fit a parallelogram fea-
ture. IBR is designed for features selected at the local image
intensity extrema. It finds the edges of the feature region
by finding the maxima of a cost function evaluated along
rays emanating from the feature centre and fits an ellipse to
these edge points. The salient region detector [9] evaluates
the entropy of a three parameter family of ellipses at each
pixel (essentially generating a 5D saliency map) and selects
maxima of this map as candidates. The top P regions with
highest magnitude of the derivative of the pdf with respect
to scale are retained. This method is computationally im-
practical and performs poorly. The evaluations in [12, 29]
show that SMM adapted Hessian features and MSER fea-
tures most consistently achieve good performance.

2.3 Orientation Selection

The affine covariant extractors found in the literature do not
assign an orientation to features and the evaluations [12, 29]
do not include orientation in computing feature error. The
most popular method for selecting feature orientation is in-
cluded in the Scale Invariant Feature Transform (SIFT) de-
scriptor [17]. This method selects orientations correspond-
ing to the dominant first order gradient directions in the fea-
ture area.

3 Hessian-Based Affine Adaptation

The SMM has to date been the most effective affine shape
estimator used in affine adaptation of local image features.
This section explores the novel approach of using the Hes-
sian matrix as an affine shape measure for affine adaptation.
The Hessian of an image is defined as the matrix of second
order partial derivatives of the image intensity with respect
to coordinates,

82 92
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The main motivations for using the Hessian matrix, instead
of the SMM, is that the Hessian is simpler to implement and
requires less computational effort (see Sect. 3.3). The Hes-
sian is already used to compute the Determinant of Hessian
saliency operator and the trace of the Hessian matrix is the
Laplacian, which is used for scale selection. Using the Hes-
sian for shape adaptation as well can therefore result in an
affine covariant feature extractor that employs a single oper-
ator at its core. There are, however, some limitations to how
the Hessian matrix can be used.

3.1 Symmetric Local Hessian

The following discussion considers continuous signals. Sec-
tion 3.2 discusses the implications of working with discrete
images.

Let the property of second-order symmetry be defined as
follows:

Definition 1 A function f(x) is symmetric in terms of the
Hessian, around coordinates x;, if the eigenvalues of the
Hessian of f(x), evaluated at x = x;, are equal and hence
the Hessian (always a symmetric matrix) is a scalar matrix.

Symmetry, by this definition, has several properties:

1. Symmetry is a local property, defined at a particular set
of coordinates.

2. Symmetry is shift covariant due to the shift covariance
of the Hessian matrix—if f(x) is symmetric around x;,
then f(x 4 d) is symmetric around x; — d.

3. Symmetry is rotation covariant due to the rotation covari-
ance of the Hessian matrix—if f(x) is symmetric around
X;, then f(Rx) is symmetric around R'x;.

4. Symmetry is invariant to a scalar transformation of
coordinates—if f(x) is symmetric around x;, then f (kx)
is symmetric around k~'x;. Isotropic scaling of a scalar
matrix yields a scalar matrix.

5. Symmetry is ill-defined when the magnitude of the eigen-
values of the Hessian approach zero.

In the following it will be shown that the Hessian is affine
covariant, that it can be used to measure the shape of a func-
tion at a point and to compute a transformation mapping a
function to a Hessian symmetric function. Let function i (x)
be an arbitrary function that is symmetric around x = x;. Let
f(x) be related to i (x) by an affine transformation,

fx) =i(Ux+1t),

where U is of the form, U = kRA (components defined
in (1)). The Hessian of f(x) is,

97 f(x) 0% (Ux+t)

axox! ~ 9xdx!
T iy (Ux+1t) iy (Ux+t)
=5 iy Ux+t iy (Ux+b) |

Evaluating this equation at x = x; =U"'(x; — t) (the new
location of the symmetric point in i (x)) gives,

32 f(x) _uT l:xx(Xi) l:yx(xi) -
x=x] Ixy (x;) lyy (x;)

axox T
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Since i(x) is defined to be symmetric around x = X;, the
derivative matrix in the above equation is a scalar matrix of
unknown scalar a, simplifying the equation to,

82
ﬁ —aUTU
XX | _y

= ak’ATR(—-0)R(H)A
= ak?AZ. ©)

The Hessian therefore measures ak?>A? and is covariant with
A. A may be computed by normalising the Hessian such
that it has determinant one and positive diagonal elements
and then taking the square root. The centre point, X;, of the
function must be known in order to measure its shape. The
angle of rotation, 6, is not measured and the scale, k, of the
original U cannot be recovered from the Hessian due to the
presence of unknown scale factor, @ (an unknown parameter
of i(x)). Applying the inverse of A to f(x) gives,

f(A'x) =i(UA"'x +t)
= i(kR(OAA™'x +t)
=i (kR(O)x +t),

which is symmetric around x = kK IRT(0)(x; — t), because
i(x) is symmetric around X = x; and symmetry is scale, ro-
tation and translation covariant.

3.2 Application to Image Data in Scale-Space

The above method of measuring the affine shape of a func-
tion using the Hessian effectively fits a second order surface
to f(x) at the shape centre point (and ignores the lower order
components). Fitting a second order surface to a real image
by evaluating the Hessian at a single point is not of prac-
tical use. The image features of interest are rarely smooth,
second order functions and are contaminated by noise. The
Hessian response will be dominated by noise and the finer
scale frequency components of the feature. It is necessary
to first isolate the feature of interest by removing finer scale
information and noise. Furthermore the feature centre point
must be known and must be chosen such that the shape is
well defined (the eigenvalues of the Hessian must be signifi-
cantly large). Characteristic scale feature selection in Gaus-
sian scale space (Sect. 2.1) addresses these issues. Scale se-
lection provides the feature size information and a feature
detector such as the Determinant of Hessian detector auto-
matically selects features with significant second order cur-
vature. Note a possible confusion of terms: second order
symmetry is invariant to scaling of the coordinate system
(see the preceding section), but is not invariant to the ap-
plication of the scale space operator, i.e. convolution with a
Gaussian.

@ Springer
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Fig. 1 Second order function approximation of an image feature in
Gaussian scale space. (a) An example feature. (b) Characteristic scale
image of (a). (¢) A second order function approximating (b). (d) The
difference between (b) and (c) (black equals zero). The approximation
is a good local fit to the characteristic scale image of the feature

Let a scale-space function, i(x,0) = g(x,0) * i(x), be
symmetric at coordinates (0, o;). Translation, scaling and
rotation are omitted from this argument, since it is assumed
that the point of interest can be located by means of feature
extraction. While seeking to recover the affine shape, it is
not practical to model a distorted version of this function as,

fa(x,0) =i(AX,0) = g(AX, 0) *i(AX). (6)

because the distorted Gaussian, g(Ax, o), cannot be pro-
duced without knowing A. Instead, a distorted version of
i(x) may be observed in scale-space as,

fi(x,0) =g(x,0) *i(AX). 7)

Convolving the function of interest with a Gaussian re-
sults in a function that is smoother. A good local approxi-
mation of f; (X, o) can be obtained by fitting a second order
function, as is illustrated in Fig. 1. The second order param-
eters of the approximation can be obtained using the Hessian
and the shape may be normalised as shown in Sect. 3.1. How
this approach to shape estimation relates to the true shape of
fi(x,0) is determined by how the Gaussian convolution af-
fects the shape measurement using the Hessian.

The Hessian can be used to measure the covariance ma-
trix of an affine Gaussian as shown briefly here and in more
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detail in [30, 31]. Given a 2D affine Gaussian function with
arbitrary gain k,
k —x! 3 Ix

ke(x.5) = — ~
8 2) = 5 ®)

’

the covariance matrix may be expressed as,

’ Oxx Oxy
Y =0, =0y s
Oxy Oyy

with det(X ,) = 1. The second order partial derivatives, the
Hessian, of this function are,

+ aig(xzayzy — 2xyoyyoxy + yzaxzy)>’
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Evaluating the Hessian at the origin gives,

32 a2

352 Oxy o | =0y Ox
w0 ke )| =kot| T T,
52 x=0 Oxy —Oxx

which is the negative inverse of the covariance matrix mul-
tiplied by an unknown scalar. This derivation is consistent
with that in Sect. 3.1, since the Hessian evaluated at the cen-
tre of an isotropic Gaussian is a scalar matrix. Note that the
scalar may be negative if the image intensity is negated. The
sign of the eigenvalues do not have geometrical meaning and
the measured Hessian should be normalised to have positive
eigenvalues by multiplying the matrix with —1. The eccen-
tricity measure defined in (4) can be redefined to ignore sign:

_ ol

M) = 2,
o =

(®)
where |Ag| is the smallest magnitude eigenvalue of 2 x 2
matrix M and |X1]| is the largest magnitude eigenvalue.

An approximation to the characteristic scale observa-
tion, f; (X, o), of function i (Ax) may therefore be computed
by setting the covariance matrix of an affine Gaussian to
X, = azHo_l, where Hy is the Hessian evaluated at x =0
with determinant normalised to 1. Since f;(x, o) was pro-
duced from i (Ax) by convolving with an isotropic Gaussian,

the shape measured using the Hessian is due to A. However,
convolution with a Gaussian has a significant effect on the
shape measurement, which must be accounted for. The sec-
ond central moment of f;(x, o) is the sum of that of i (Ax)
and g(x,0),

na(fi(x.0)) = ua i (A%) + oL

The second central moment (and the covariance matrix, %)
of the affine Gaussian approximation computed using the
Hessian is affected in the same way. Comparing the eccen-
tricities of A and the Hessian of f;(x, o), it is clear that,

0(%2) > 0(A)
QX)) =04)=1

The combination of the Gaussian operator and the Hessian
may therefore be seen as a local estimator of the covariance
of the image intensity function (not the intensity distribu-
tion) that consistently underestimates the eccentricity of the
covariance. The amount by which the eccentricity is under-
estimated decreases as the true eccentricity approaches sym-
metry.

These properties lend the problem to an iterative solu-
tion. The property that the error in the eccentricity measure
decreases as eccentricity decreases guarantees convergence;
The property that the eccentricity is consistently underesti-
mated results in stability.

It is assumed that the coordinate frame is translated so
that the point of interest is at the coordinate origin and scale,
o, has been selected. The proposed iterative algorithm re-
peats the following steps at each iteration,

for Q(i(Ax)) < 1,
forA=1.

fi(%) < g(x,0) *i(AAx), 9)
9% f;
Ji , (10)
9x0x ' |,
M O T
A VT < eig(H), 11
[ 0 M} g(H) (11
[Aol
PR (12)
[A1]
d < /Ao * A1, (13)
1
A 4
A < (|d—°|) , (14)
Ao < A7, (15)
r O
Au<—V|: 0 ]VT, (16)
0 X
Aj+l <—AuAjAu. (17)
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Fig. 2 Four iterations of the
Hessian-based affine adaptation
process applied to simple
shapes. The left column displays
the original asymmetric shapes.
Each following column shows
the shapes after another iteration
of shape measurement and
normalisation. These simple
shapes approach a symmetric
form after only three iterations

Here i (Ax) is the given image function, A is the unknown
affine shape (distortion) of symmetric function i(x, o) and
A ; 1s the estimated inverse shape or normalisation transfor-
mation at iteration j (initially the identity matrix). Equa-
tion (9) transforms i(Ax) by A ; and applies the scale
space operator. Equation (10) measures the Hessian at the
point of interest, which gives an estimate of the inverse
shape squared. The Hessian is decomposed into a symmet-
ric eigensystem in (11). The eccentricity of the measurement
is computed in (12). The process is completed when ¢ is
sufficiently close to 1. Equations (13) to (15) normalise the
eigenvalues to be positive, the determinant to be 1 and com-
putes the inverse fourth order root (the inverse square root of
the Hessian is the shape estimate and the square root of the
resulting matrix is required for equation 17). The update ma-
trix is recomposed in (16). Equation (17) updates the shape
estimate by composing it with the measured shape in the
form of a quadric transformation.

Figure 2 shows the Hessian affine adaptation process ap-
plied to simple example shapes (left). The shape centre and
scale were found automatically using a Determinant of Hes-
sian feature extractor. After only a few iterations the shapes
are normalised to be symmetric (right).

3.3 Comparison of the Complexity of the Hessian and
Second Moment Operators

Both the Hessian matrix and the Second Moment matrix can
be computed from an image by applying a series of filters to

@ Springer
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Fig. 3 Image derivative kernels

the image. The scale space operator and windowed integra-
tion operation can be implemented as rotationally symmet-
ric Gaussian filters. These are most efficiently realised as
separable recursive filters [32, 33]. The separable recursive
filter complexity is linear in the number of image pixels and
independent of the Gaussian scale. The differentiation oper-
ations can be implemented as 3 x 3 finite difference kernel
filters shown in Fig. 3. Although it is possible to simplify the
derivative kernels to 1 x 3 kernels, this would result in the ro-
tational invariance of the operators being lost. The complex-
ity of the derivative filters is linear in the number of image
pixels. The main difference between computing the Hessian
matrix and the Second Moment matrix is the arrangement of
the filters.

The Hessian operator consists of the following process-
ing steps:
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1. Filter to the feature scale, o, with a Gaussian filter.
2. Compute second order partial derivatives (three finite dif-
ference filters).

The Second Moment operator consists of the following
processing steps:

1. Filter to differentiation scale op with a Gaussian filter.

2. Compute the first order partial derivative images, L, and
Ly, using finite difference filters.

3. Multiply the derivative images to produce images L)zc, L§
and Ly Ly.

4. Filter each derivative product image with a Gaussian with
scale o7 to compute windowed integration.

The SMM requires four applications of a Gaussian filter
in two stages, where the Hessian only requires one appli-
cation. The other differences in computational cost are rel-
atively insignificant. The Hessian is therefore expected to
require no more than a quarter of the computation cost of
the SMM, given similar convergence characteristics.

4 Experimental Evaluation

In this section the Hessian and SMM are compared in terms
of their effectiveness and efficiency in affine adaptation of
local image features. Results for the MSER feature extractor
are included for reference, since MSER is the most attractive
alternative affine feature extractor.

4.1 Feature Extraction Framework

A modular affine feature extraction algorithm was imple-
mented with interchangeable modules for computing the
saliency map, feature scale response, affine shape adapta-
tion and orientation selection. The algorithm is presented in
Algorithm 1. Subroutines are labelled using Roman capi-
tal letters. The algorithm follows the common approach of
multi-scale feature extraction, followed by scale selection
and finally affine adaptation. This framework allows com-
paring alternative methods for affine shape estimation in a
common feature extraction algorithm.

The first stage of the algorithm, in lines 1.3—-1.8, extracts
a set of multi-scale features by applying the saliency op-
erator, T, to a discrete scale-space pyramid. The subrou-
tine, f < MAXIMA(I (x, o), 0), finds local maxima in im-
age I (x, o) and produces feature vector, f = {o, x1, y1, 0,
X2, ¥2,...,0, X, yu}. The scale response of each feature is
computed in lines 1.9—1.12 by evaluating the scale response
operator, S, at the coordinates of each feature.

Line 1.13 applies the scale selection method of [22, 23],
by means of the subroutine, f4 <— SSFSS(f,,). The result-
ing set of features, f4, is the subset of f;, that are character-
istic scale features.

11 fa < EXTRACT (; (x), T, S, A, R, ng, Q1, On)
Input:
I; (x)—An image.
I; (x) < T (I; (x))—The saliency operator.
s < S(Is, (x), X, 07)—The scale response operator.
{Ay, g} < A (I, (x))—The affine shape estimator,
producing the update transformation, A, and the
eccentricity measure, g, according to equation 8.
6 < R (I, (x))—The orientation selector.
n,—Affine adaptation iteration limit.
Q;—Affine adaptation eccentricity lower limit.
Qp—Affine adaptation eccentricity convergence limit.
Output:

fa =1{po,P1, - - ., Po}—A vector of o features with
p=1{k.0,q9,¢.x,y}.

12 begin

13 op < 2k where k is a linear series with smallest

value greater than 1.

14 foreach o € o, do

15 Iy (X,0) < g(x,0) x I; (X).

1.6 I;(x,0) < T, (x,0)).

17 S < {fimn, MAXIMA (I; (x,0),0)}.

18 end

19 | foreach f ={os,xf,ys} € fiu do

110 sp<—S(Ip(x,07),xp,07).

111 f<—{0f,xf,yf,Sf}.

1.12 end

113 fa < SSESS (fn).-

114 foreach f ={of,xs,ys, 57} € fa do

115 g < 1.

1.16 A<1L

117 qu < 0.5.

118 j<0.

L.19 while (j <ny)-(qu < On)-(§ > Qi) do

1.20 j<Jj+1L

a1t I (X) < I; (H (1,0,@,$,xf,yf,x)).

122 I (X) < g (x,07) * I (%).

1.23 {Au, qu} < A, ().

1.24 A<~ AMAA,,.

. {2.47".6} < EI1G(A).

1.26 end

. I (X) < I; (H (1,o,é,$,xf,yf,x)).

1.28 6 <~ R (I, (x)).

1.29 < A{307.0,qm.om. xp. yr}.

130 end

131 end

Algorithm 1: Generalised Feature Extraction Algorithm
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Affine adaptation is performed in lines 1.14-1.30.
Line 1.19 implements the loop termination conditions. The
threshold Qj, is the convergence threshold, Q; is used to
reject excessively eccentric features (like those mistakenly
detected on straight edges) and the number of iterations is
limited to n,. The inner loop is essentially the algorithm in
(9) to (17), with (10) to (16) replaced by the generic affine
update function, A. A normalised image is computed in
lines 1.21 and 1.22 (H is defined in (1)). The shape is mea-
sured and the update transformation computed in line 1.22.
The update is applied to the normalisation transformation in
line 1.23. {e, €2, ¢} < EIG(M) computes the eigenvalues,
e1 and ey, and the angle, ¢, of the first eigenvector of 2 x 2
matrix M. Because A has determinant one, its eigenvalues
are reciprocally related.

4.2 Evaluation Method

Four feature extractors were implemented using the frame-
work defined in Sect. 4.1, each using a different combina-
tion of estimation functions. These extractors are listed in

Table 1 Test feature extractor configurations

Label T S A

Hey Det. Hessian Det. Hessian Hessian
Heg Det. Hessian Det. Hessian SMM
Hay Harris Laplacian Hessian
Hag Harris Laplacian SMM

Table 1. Figure 4 shows the output of the four extractors
on corresponding sections of a pair of images. Note that
the Hessian and second moment matrices produce different
shapes for the same feature, but that the shape is none the
less covariant between images. The MSER extractor [11]
was also included in the evaluation. All extractors used the
orientation selection method (R) and SIFT descriptor de-
scribed in [20]. The adaptation iteration limit was set to
ng, = 8, since it was found that a higher value does not sig-
nificantly improve repeatability, but increased computation
time. The eccentricity thresholds were set to Q; = 0.97 and
0, =0.05.

Two evaluation methods are employed to compare the
above extractors. The first is the affine covariant regions
performance evaluation and data described in [10]. The sec-
ond evaluation method is the epipolar geometry computation
task described in [34].

4.2.1 Affine Covariant Regions Performance Evaluation

The data and software for this evaluation are available
from http://www.robots.ox.ac.uk/ vgg/research/affine/. The
following metrics are measured:

Repeatability.
Correspondence count.
Match score.

Number of correct matches.
Efficiency.

ARl

Hepn He,

Fig. 4 Image sections showing the output of the evaluated extractors. Each ellipse indicates a feature. The feature normalisation transformation

maps a unit circle to this ellipse
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Fig. 5 Affine covariant regions
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The repeatability test functions by projecting features de-
tected in a set of test image to a base image using ground
truth homographies. If the overlap error between the pro-
jected feature and a feature in the base image is below
40%, the feature is considered repeated. The correspondence
count is the number of features with overlap error below
40% and the repeatability score is the ratio of correspon-
dences to the total number of features in the common image
area. Features are matched using their descriptors and one-
to-one nearest neighbour matching. Matches are deemed
correct if the overlap error of a given match is below 40%.
The matching score is the number of correct matches di-
vided by the minimum number of features in the common

part of the two images. The efficiency metric (not included
in [10]) is expressed in terms of the rate at which matches
are produced, r = ¢;/ (t; + tp), where ¢; is the number of
correct matches between image 0 and test image i, and ¢;
and #( are the times taken to extract features from image i
and 0, respectively.

4.2.2 Epipolar Geometry Computation Task
Computing the epipolar geometry is the first stage in many
calibration algorithms. It can be used to constrain the search

for further correspondences and can be used to generate a
reconstruction of the scene and cameras with projective am-
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Fig. 6 Affine covariant regions
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biguity [1]. The epipolar geometry computation task evalu-
ates how likely it is that a particular correspondence extrac-
tion technique will generate an epipolar geometry estimate
that is sufficiently accurate to be used for practical applica-
tions.

Test data was acquired using a pair of digital cameras ar-
ranged to view a scene from widely separated views. Each
set consists of images taken with the cameras in fixed po-
sition. The camera positions were varied between sets. The
contents of the scene were altered for each pair of test im-
ages. Images were captured at high resolution (4.1 and 10
million pixel cameras were used) to compute the ground
truth geometry. Test images were generated by scaling the

@ Springer
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original images to 640 x 480 pixel resolution. Scale factors
were recorded for relating the test image geometry back to
ground truth geometry. Scaling images to a low resolution
removes a large proportion of the features from the images,
ensuring that the task of computing the geometry of these
test images is challenging.

The ground truth data consists of a large set of accurate
point correspondences for each dataset. The error in a given
estimate of the epipolar geometry is measured by computing
the error of the set of ground truth correspondences when
compared against the estimated geometry. The ground truth
data was generated automatically from the high resolution
images in the dataset and then mapped to the coordinates of
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Fig. 7 Affine covariant regions
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the test images. The following procedure was used to gener-
ate the ground truth data for each dataset:

1. Extract and match features across each high resolution

image pair using the MSER feature extractor. The corre-
spondences for all the image pairs in a dataset are col-
lected into one large set of correspondences.

. Compute an initial estimate of the epipolar geometry us-
ing RANSAC [35] and the normalised eight point algo-
rithm [1, 36].

. Match features again, this time using the initial geome-
try estimate to constrain matching so that all correspon-
dences are inliers.

. Apply the correspondence extraction algorithms defined

in [34] to expand the inlier correspondences to a large
number of dense, highly accurate correspondences and
few outliers.

. Compute a more accurate estimate of the epipolar ge-

ometry using RANSAC. The dense correspondences col-
lected from the entire dataset are used.

. The set of 10000 inlier correspondences with the lowest

reprojection error are scaled to match the resolution of
the test images and are kept as ground truth data.

The test procedure is designed to measure the success

rates of different correspondence extraction systems when
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Fig. 8 Affine covariant regions Repeatability
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applied to the task of estimating the epipolar geometry. Each The three thresholds are used to represent the precision
test trial proceeds as follows: requirements of three hypothetical users of the geometry
1. Extract correspondences between one pair of images estimate.

from the dataset using a particular extraction system.

2. Estimate the epipolar geometry of the image pair from  One hundred trials are run for each extractor and image
the correspondences, using RANSAC and the normalised  pair combination and the average success rate is computed
eight point method. to compensate for the variability in the RANSAC method.

3. Compute the error of the epipolar geometry estimate as
the Sampson distance [1] and the ground truth correspon-
dences.

Results are presented in terms of the average success rate
for each dataset and for all datasets combined. Only the two

4. Compare the error to three thresholds, #; = 4, t, = 16, datasets from [34] with the simplest geometry (nos. 3 and 4)

t3 = 64 pixels squared. If the error is below a thresh- ~ Wwere used for this test, because the other datasets are so chal-
old, the model is considered sufficiently accurate for that  lenging that they do not give useful results for the set of ex-
threshold category and the trial is considered a success. tractors tested here.
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Fig. 9 Affine covariant regions
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4.3 Results Table 2 Mean repeatability results of Hey, Heg, the mean ratio and

Results of the affine covariant regions performance evalua-
tion are presented in Figs. 5 to 10. Note that the efficiency
plots have been scaled to highlight the relative performance
of the gradient-based feature extractors that use affine adap-
tation. The efficiency of the MSER extractor is often out of
scale as a result. Previous evaluations have shown that the
MSER extractor can be more efficient than gradient-based
extractors by as much as an order of magnitude.

A pair-wise comparison of the performance of the Hes-
sian and SMM as shape estimators is presented in Table 2
(using the determinant of Hessian extractors) and Table 3
(using Harris extractors). Each table lists four columns of

the Paired T-test result

Hey Heg Hey/Heg p
Repeatability (%) 58.67 57.99 1.01 0.0680
Correspondences 1711.93 1564.13 1.12 0.0000
Matching score (%) 20.90 21.94 0.95 0.0295
Correct matches 492.67 467.80 1.05 0.0002
Efficiency (n/s) 95.93 16.34 5.92 0.0000

data. The first two list the mean scores for each extractor;
The third lists the mean of the ratio between paired scores;
The last column lists the results of a paired T-test.
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Fig. 10 Affine covariant
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Table 3 Mean repeatability results of Hay, Hag, the mean ratio and
the Paired T-test result

Hay Hag Hapy/Hag p
Repeatability (%) 38.30 47.53 0.79 0.0000
Correspondences 528.83 937.13 0.53 0.0000
Matching score (%) 14.98 17.33 0.87 0.0001
Correct matches 178.03 293.30 0.58 0.0000
Efficiency (n/s) 27.10 12.93 2.08 0.0000

Table 4 lists the results for the epipolar geometry com-
putation task with the error threshold set to + = 16 pixels
squared. The table lists the average number of successful

@ Springer

epipolar geometry computation trials for each extractor in
each dataset, as well as the average success rate over all
datasets. Figure 11 shows the average success rate over all
datasets at each of the tree error thresholds t =4, t = 16 and
t =064.

4.4 Discussion

In terms of repeatability, matching score and the number of
correct matches, the two determinant of Hessian extractors
differ by 5% or less on average. Though the difference is
statistically significant, it is practically small. The extractor
using the Hessian to estimate affine shape (Hey) produces
approximately 10% more correspondences on average than
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Table 4 Results for the epipolar geometry computation task. The av-
erage number of successful epipolar geometry computation trials with
error threshold ¢ = 16 are listed

Set ny Hag Hay Heg Hey MSER
5 46 16.14 5.26 10.09 14.61 12.31
6 41 12.52 4.38 12.1 18.76 16.89
total 87 28.66 9.64 22.19 33.37 29.30
% 32.94 11.08 25.51 38.36 33.56

70

-
60/ |IMt=16

Success rate, %

He

MSER

"
Extractor

Fig. 11 Average success rates for the epipolar geometry computation
task

the extractor using the SMM (Heg). This is likely due to the
fact that the SMM is not necessarily well defined wherever
the Hessian is well defined, so that the SMM-based adap-
tation of Hessian features fails to converge more often than
Hessian-based adaptation of Hessian features. In terms of
efficiency, Hey consistently outperforms Heg by a factor as
high as 6.6 times and 5.9 times on average. The improve-
ment in efficiency is higher than what is predicted by the
operator complexity alone, and indicate that Hessian based
adaptation converges more quickly than SMM based adap-
tation. The difference in performance between the two ex-
tractors is consistent across all types of tests. In the epipolar
geometry estimation task, correspondences generated using
Hep are successfully used to compute the epipolar geometry
in approximately one and a half as many cases as correspon-
dences generated using Heg. This indicates that the Hessian
based shape adaptation is more likely to produce useful re-
sults in practical problems than the SMM based method.
These two Harris-based extractors produced significantly
different results. The extractor using the Hessian to estimate
affine shape (Hap) consistently achieved lower repeatability
scores (19% reduction), matching scores (14% reduction)
and produced approximately half the number of correspon-
dences and correct matches on average. Despite lagging in
the other metrics, the Hay extractor is on average twice as

efficient at producing correct matches as the Hag extractor.
In the epipolar geometry estimation task, using Hap pro-
duces useful results in only a third as many cases as Hag.

This poor performance of Hessian-based affine adapta-
tion applied to Harris features may be attributed to the fact
that the Harris operator is based on first order gradients—
it does not guarantee that the second order gradients at the
feature location are sufficiently strong for the Hessian based
shape measure to be well defined (see property 5 in Sec-
tion 3.1). The determinant of Hessian extractor, on the other
hand, only selects points where the second order gradients
(and hence the determinant of the Hessian) are large. The
results indicate that the Hessian matrix is very effective and
efficient in affine adaptation of determinant of Hessian fea-
tures, but is much less effective for extractors that do not
ensure high second order gradients.

The combination of the Hessian shape measure and De-
terminant of Hessian extractor produces a extractor supe-
rior to other gradient-based extractors, especially in terms
of efficiency. The MSER extractor is still significantly more
efficient than the Hessian-based extractor and is the bet-
ter choice for very wide baseline matching problems. The
Hessian-based extractor is a good choice when large num-
bers of correspondences are required.

5 Conclusion

In this paper it is shown theoretically and experimentally
that the Hessian matrix can be used to estimate the affine
shape of local image features using an iterative approach,
similar to how the second moment matrix is commonly used.
The Hessian is much more efficient in terms of processing
time, compared to the SMM, and can lead to marginally im-
proved feature quality and correspondence counts in combi-
nation with a suitable feature extractor.

A determinant of Hessian extractor that makes use of the
Hessian matrix to estimate feature shape requires on average
5.9 times less processing time than the same extractor using
the SMM, while exhibiting the equal or marginally superior
performance in terms of repeatability, matching score and
the number of correspondences and correct matches. The
reduction in computation time is primarily attributed to the
fact that fewer filter stages are required to compute the Hes-
sian matrix. The Hessian matrix based method also leads to
useful epipolar geometry estimates in 1.5 times the number
of cases, compared to the SMM based method.

Using the Hessian for affine adaptation in combination
with the Harris corner extractor resulted in a 19% reduction
in repeatability, 47% fewer correspondences, 14% fewer
correct matches and 22% fewer useful epipolar geometry
estimates compared to the SMM. Despite the reduction in
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correspondence counts, using the Hessian matrix still pro-
duced correspondences approximately twice as efficiently as
the SMM.

It was found that the Hessian matrix provides is a useful
and efficient method for measuring affine shape as long as
it is applied to regions where high second order gradients
are found, such as Determinant of Hessian features. Where
second order gradients are not significantly strong, the Hes-
sian cannot measure a well defined shape. The Harris cor-
ner detector, for example, selects points with high first order
gradients, but does not ensure high second order gradients.
Using the Hessian shape measure with this detector yields
poor results.
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