
J Math Imaging Vis (2012) 44:52–64
DOI 10.1007/s10851-011-0310-2

Time-Scale Similarities for Robust Image De-noising

Vittoria Bruni · Domenico Vitulano

Published online: 16 August 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper presents a novel image denoising algo-
rithm, namely Atomic Non Local Means (ANL-means), that
looks for similarities in the time-scale domain. To this aim,
wavelet details are approximated by linear combinations of
predefined atoms, whose centers of mass trace trajectories in
the time-scale plane (from fine to coarse scales). These tra-
jectories depend on the mutual distance between not isolated
singularities, their different decay along scales and their
amplitude ratio. These three parameters have proved to be
useful in catching image self-similarities and in the imple-
mentation of a robust NL-means based denoising algorithm.
ANL-means is able to reach and often outperform the most
powerful and recent NL-means based de-noising schemes in
terms of both mean square error and visual quality.

Keywords Image denoising · NL-means · Wavelets ·
Atomic approximation · Time-scale analysis

1 Introduction

De-noising is a fascinating and widely investigated topic
of image processing, as proved by the significant related
literature—see [1–18] and references therein. It is often
used as an essential preprocessing step in many applications,
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since it aims at recovering a signal f from its corrupted ver-
sion g, that is supposed to be

g(t) = f (t) + υ(t), t ∈ R, (1)

with υ additive zero mean Gaussian noise with variance σ 2.
The solution of this problem often requires the definition

of models for the original image that are able to emphasize
its spatial and frequency correlations, that are opposite to
the uncorrelated nature of the noise. The big effort devoted
to define more or less sophisticated regularization methods
(anisotropic smoothing, variational models [13, 15, 19], etc.)
and the construction of effective expansion bases (yielding a
sparse image representation) [9, 20–22] provided very inter-
esting and impressive denoising results. Nonetheless, those
methods only depend on local spatial variations of the sig-
nal, at the same or at different resolutions [12, 16, 17].

The new trend is to exploit not only the local spatial
and frequency redundancy, but also the non local image self
similarities. Similar objects may not be necessarily spatially
close, but they can occupy different locations in the image.
Thus, a more promising solution for denoising is the use of
this correlated redundant information in contrast with the
random nature of the noise. This is what Buades, Coll and
Morel [4] proposed in their work: each pixel is cleaned by
means of a weighted average that involves all image pix-
els; the weights account for the similarity between lumi-
nance values—the more similar these values, the higher the
weight. Pixel similarity is measured in terms of l2 norm of
their neighborhood luminance values: the closer their neigh-
borhood, the more similar the pixels. This method (called
Non Local Means, or simply NL-means), improves classi-
cal denoising approaches by using the Lebesgue measure in
conjunction with the Riemannian one, as formally proved
in [18]. However, its main drawbacks are a prohibitive com-
puting time, the lack of denoising whenever similarities are
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not found and the choice of the best domain for catching
similarities. In order to overcome these limits, various at-
tempts have been proposed in the literature. For example,
some works make NL-means faster by reducing the search
domain eliminating insignificant pixels or by optimizing the
computation of the similarity measure [1, 13, 23, 24]. Most
of them also use a different domain where to catch sim-
ilarities. In fact, the simple l2 norm of the neighborhood
vectors may not be adequate while more proper neighbor-
hood features assure a more reliable similarity measure.
For instance, Coupé et al. implemented a block version of
NL-means by mixing wavelet subbands [25], Wang et al.
[26] proposed a fast computation of similarities through
the fast Fourier transform, Mahmoudi et al. [27] used a
pre-classification of pixels neighborhood, Azzabou et al. in
[1] applied NL-means by computing an adapted dictionary
while Kervrann et al. in [13] introduced local dictionaries as
well as a Bayesian distance measure (Bayesian NL-means).
On the other hand, in order to improve denoising perfor-
mance, Foi et al. [6] used block matching to find similari-
ties and a 3D transform to clean the found correlated blocks,
Tasdizen [28] used the Principal Component Analysis to de-
fine a subspace where to catch pixel similarities, Chatterjee
et al. [29] modeled the NL-means as a 0th order kernel re-
gression method, Brox et al. [30] embedded NL-means in a
variational formulation oriented to texture restoration, Van
De Ville et al. [31] derived the SURE expression for NL-
means algorithm, while Goossens et al. [32] proved that the
use of measures different from the simple l2 norm (Leclerc
measure) provides better results even in case of correlated
noise.

The neighborhood size in an NL-means based algorithm,
the smoothing percentage parameter as well as the setting
of the best subspace for a quick search of similarities are
strictly linked to the multiscale information of the analyzed
image. For that reason, we employ a time-scale representa-
tion of the image for gathering a proper set of parameters
(features) to use in the evaluation of image similarities. In
particular, we aim at characterizing the multiscale behav-
ior of different points in the image to assess pixel similar-
ity. It is equivalent to simultaneously using neighborhoods
with different size. Moreover, the transformed domain also
emphasizes the relation of each pixel with its neighbor-
hood. Wavelet time-scale representation has been adopted
in this paper due to its ability in characterizing the regu-
larity of edge points through the decay of the amplitude of
the corresponding wavelet coefficients along scales [14, 33].
In particular, the properties of the atomic approximation in
[34] are very appropriate for the final task. The latter ap-
proximates wavelet details through interacting atoms (i.e.
groups of adjacent coefficients) that define interesting ge-
ometric objects in the time scale plane. They are the tra-
jectories of atoms modulus maxima. These trajectories ac-

count for the location and amplitude of significant coef-
ficients in the time scale plane that correspond to signif-
icant structures of the image under study. Hence, similar
objects in the image provide similar atoms trajectories in
the time-scale plane, namely points belonging to the same
edge and points belonging to the same type of edge but lo-
cated in a different area of the image. Such an approach,
called ANL-means (Atomic Non Local means), automati-
cally sets the block size in which to find the similarity pa-
rameters: it corresponds to the atoms support at each level of
resolution. Moreover, it provides denoising even if similar-
ities are missing, thanks to the atomic approximation prop-
erties. Finally, it gives the second dimension to the mono-
dimensional atomic representation (close points of the same
edge are similar with respect to the employed measure). Ex-
tensive experimental results and comparative studies show
the effectiveness of the proposed denoiser from both objec-
tive (PSNR) and subjective (visual quality) point of view.

The outline of the paper is the following. Section 2 briefly
presents the properties of the atomic approximation and pro-
vides a similarity measure for wavelet coefficients belonging
to the same or similar edge, as well as its use for image de-
noising. Finally, comparative studies, discussions and exper-
imental results are offered in Sect. 3.

2 Time-Scale Similarities

The aim of this section is to characterize the neighborhood
of each pixel through its multiscale behavior in a wavelet
decomposition. The goal is to define specific features of the
neighborhood to use for the evaluation of proper similarity
measures.

Let us consider two step functions characterized by dif-
ferent gray values but the same step amplitude. The com-
parison of the gray levels of the neighborhood of the two
discontinuity points characterizes them as different singu-
larities. On the contrary, their neighborhoods result the same
with respect to the first derivative of the two step functions
(or equivalently their decomposition in a wavelet basis).
This simple example shows that a successful comparison be-
tween different objects requires a proper features space. Let
us now consider the two signals in Fig. 1. They are two dis-
tinct piecewise linear signals having the same wavelet detail
coefficients. In particular, the locations of significant mod-
ulus maxima of their wavelet transform belong to the same
curves in the time scale plane. These signals have differ-
ent low-pass component while the same details (high-pass
component). Therefore, it is more convenient to find simi-
larities among wavelet coefficients and then to apply them
NL-means filter.

In the following section the wavelet transform of a signal
is written as superposition of traveling simple waves in the
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Fig. 1 (Top) Two different piecewise linear signals. (Bottom) Their continuous wavelet transform computed at selected scales

time-scale (u, s) plane, that will be called basic atoms. Each
atom corresponds to a singularity in the time domain. The
trajectories in the time-scale plane of atoms global maxima
describe the interaction between neighboring singularities.
Thus, similar edges are those providing the same modulus
maxima curves in the time scale plane.

2.1 Atoms Trajectories in the Time Scale Plane

The wavelet transform w(u, s) of a function f can be ap-
proximated through a linear combination of predefined
atoms [34] as follows

w(u, s) ∼
N∑

k=1

αks
γk−1F(tk, u, s), u ∈ R, s ∈ R+, (2)

with

w(u, s) = 1√
s

∫ +∞
tk−u

s

f (t)ψ

(
tk − u

s

)
dt,

F (tk, u, s) = s
√

s

{∫ +∞
tk−u

s

tψ(t)dt

−
(

tk − u

s

) ∫ +∞

−∞
ψ(t)dt

}
, (3)

αk = 〈F(tk, u, s),w(u, s)〉
sγk−1‖F(tk, u, s)‖2

, (4)

and ψ is a symmetric and compactly supported wavelet with
support [−C,C]. F(tk, u, s) is called basic atom and it is
depicted in Fig. 2. It corresponds to the wavelet transform of
a linear ramp signal with unitary slope, whose first derivative
is discontinuous at tk . Each atom has an extremum point at
tk that corresponds to its center of mass. For this point it is
possible to build the trajectory in the time-scale plane (u, s).
The following proposition proves that it is possible to derive
the trajectories u = u(s) in the (u, s) plane of the extrema of
w(u, s).
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Fig. 2 Wavelet transform of a
linear ramp signal having a
singularity point at tk , computed
at a fixed scale s using a 3/9
spline biorthogonal wavelet. It is
the basic atom in (3)

Proposition 1 The trajectories u = u(s) of the extrema of
w(u, s) in (2) are the solutions of the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = − tk−u
s

− ( 1
s

∑N
h=1 αhs

γhdkhψ(
th−u

s
))

/
∑N

h=1 αhs
γhψ(

th−u
s

)

− (
∑N

h=1 αhγhs
γh

∫ +∞
(

th−u

s
)
ψ(y)dy)

/
∑N

h=1 αhs
γhψ(

th−u
s

),

u(s1) = tk, k = 1, . . . ,N

(5)

where dkh = th − tk and s1 is the initial scale point.

Proof The key point of the proof is the evolution law for
w(u, s) in the (u, s) plane and its restriction over w’s
extrema. w(u, s) in (2) can be rewritten as w(u, s) =∑N

k=1 w(k)(u, s), where w(k)(u, s) = αks
γ−1F(tk, u, s).

A direct comparison between the first order partial deriva-
tives of w with respect to the variables u and s, respectively
wu(u, s) and ws(u, s), provides

ws = tk − u

s
wu + 1 + 2

∑N
h=1 γh

2s
w

+ 1

s

N∑

h=1

dkhw
(h)
u + 1

s

N∑

h=1

γhw
(h), (6)

where dkh = th − tk .
Let now u = u(s) be a maxima curve in the (u, s)-plane,

then wu(u, s) = 0 and

(
(w(s,u(s))u

)
s
= 0,

that is

wsu + wuuu̇ = 0, (7)

where u̇ is the derivative of u(s) with respect to s. On the
other hand, the partial derivative of both members of (6) in

correspondence to u = u(s) gives

wsu = tk − u

s
wuu + 1

s

N∑

h=1

dkhw
(h)
uu + 1

s

N∑

h=1

γkw
(h)
u , (8)

where

w(h)
u = αhs

γh− 1
2

∫ +∞
th−u

s

ψ(y)dy,

w(h)
uu = αhs

γh− 3
2 ψ

(
th − u

s

)
.

Equation (5) derives from a direct comparison between (8)
and (7). �

Let Ωh = {u : |u − th| ≤ Cs} be the cone of influence of
the singularity at th, ∀h. Then, if the atom at tk is isolated,
i.e. Ωk ∩ Ωh = ∅ ∀h 
= k at each scale s, the last two terms
of the second member of (5) are zero since ψ(

tk−u(s)
s

) 
=
0 ⇔ u : |u − tk| ≤ Cs. Thus, u(s) = tk , ∀s i.e., the ex-
tremum point in tk does not move from its original location.
Whenever the cones of influence of two atoms intersect, the
location of their corresponding global maxima changes ac-
cording to the quantity

∑2
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γhdkhψ(
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s
)
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)
.

More precisely, if α1 is the smallest atom, its shift is regu-
lated by the quantity

α2s
γ2d12ψ( t2−u

s
)

∑2
h=1 αhsγhψ(

th−u
s

)
+

α2γ2s
γ2

∫ +∞
(

t2−u

s
)
ψ(y)dy

∑2
h=1 αhsγhψ(

th−u
s

)
,

whose numerator is regulated by the largest one α2, and vice
versa. Then, the atom with the smallest slope and slower
decay moves from its original location more quickly than the
atom with the largest amplitude. In particular, if α1 and α2

have different sign, the two interfering atoms are subjected
to a repulsive effect, otherwise there is attraction.
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Fig. 3 Wavelet transform at selected scales of a signal composed of
five atoms. The 2nd and 3rd atoms have the same sign, the last two have
opposite sign (left). The first pair shows attraction while the last one

repulsion (right). In both cases the smaller atom moves more quickly
from its original location, according to (5)

Figure 3 depicts the trajectories of a signal composed
of five atoms. The second and third ones have the same
sign and the smaller one converges to the largest one till
they create a single atom. At higher scales it is attracted
by the isolated atom in the left side (same sign) while it
is repulsed by the first atom in the right side (opposite
sign). The latter is, in its turn, repulsed by the rightmost
atom.

Hence, for a fixed k, atom’s trajectory is influenced by
atom’s neighborhood that is composed of interfering atoms
th such that Ωk ∩ Ωh 
= ∅ for some set of subsequent scales.
This is the neighborhood with respect to measure image
similarities, while atoms slopes αk are the quantities to be
cleaned, according to (2).

2.2 Denoising Using Self-similarities

Equation (5) attempts to formalize inter- and intra-scale de-
pendencies of wavelet coefficients by properly representing
them. Those dependencies regulate the interaction between
time-scale atoms. For a fixed k, by dividing both the numer-
ator and the denominator of the last two terms of the second
member of (5) by the quantity αks

γk we have:

⎧
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− (
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s
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/
∑N
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αhsγh−γk

αk
ψ(
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s

)

− (
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αhγhsγh−γk

αk

∫ +∞
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s

ψ(y)dy)

/
∑N

h=1
αhsγh−γk

αk
ψ(

th−u
s

),

u(s1) = tk, k = 1, . . . ,N.

(9)

Hence, the trajectory in the time-scale plane of the atom
in tk depends on its distance dkh from neighboring atoms,

the ratio between their amplitudes αh

αk
and the difference

of their decay γh − γk . These three parameters are the
atom’s context to be used for assessing atoms similarities
in the whole image domain. Figure 4 depicts a simple piece-
wise smooth signal. Its wavelet transform is composed of
7 atoms. The ones in t1 and t6 have the same context, since
they correspond to the same type of singularity. On the con-
trary, the atom in t7 has a different context that is closer to
the one in t4. More formally, let {Ak}1≤k≤N be the set of the
estimated atoms at scale s = s1. Each Ak is characterized by
the three parameters tk, αk,s1 and γk , i.e. location, amplitude
and decay.

Definition 1 The neighborhood Nk of each atom Ak is
composed of

{Ak−n, . . . , Ak−1, Ak+1, . . . , Ak+m},

where n,m are such that |tk−n − tk| ≤ Cs1 and |tk+m − tk| ≤
Cs1.

The elements belonging to Nk are the atoms that inter-
fere with Ak from scale s1 on. Hence, the distance between
two atoms Ak and Al is the distance between their neigh-
borhood, i.e.

‖Nk − Nl‖2
2.

Let Vk and Vl be the feature vectors of Nk and Nl ; then,
neighborhood distance can be replaced by the distance be-
tween their feature vectors i.e.,

Dkl = ‖Vk − Vl‖2
2. (10)



J Math Imaging Vis (2012) 44:52–64 57

Atom Location Amplitude Decay

A1 31 −2 0.009
A2 33 2 0.008
A3 64 0.08 1.42
A4 99 0.08 1.16
A5 127 2.02 0.007
A6 129 −2.02 0.0008
A7 192 0.57 1.34

N1 = {A2} = {(33,2,0.008)}
N2 = {A1} = {(31,−2,0.009)}
N3 = N4 = N7 = {∅}
N5 = {A6} = {(129,−2.02,0.008)}
N6 = {A5} = {(127,2.02,0.007)}

Fig. 4 (Topleft) Piecewise regular signal and its wavelet transform at
a fixed scale s1. It is composed of seven atoms. (Topright) The wavelet
transform of the same signal at scales larger than s1. (Bottom) The table

contains the parameters (location, amplitude and decay) and neighbor-
hood of each atom

Specifically, Vk and Vl are the matrices whose elements de-
fine atom’s context i.e.,

Vk =

⎛

⎜⎜⎝

αk−n,s1
αk,s1

γk − γk−n dk,k−n

...
...

...
αk+m,s1
αk,s1

γk − γk+m dk,k+m

⎞

⎟⎟⎠ (11)

and Vl is defined in the same manner. Vk and Vl contain
the initial conditions for (9), that describes the trajectories
of the atoms Ak and Al for some k, l ∈ {1,2, . . . ,N} in the
time-scale plane.

The distance in (10) using feature matrices in (11) mea-
sures image similarities.1 It combines the information con-
tained at different resolutions through the decays γk , the set
of interfering atoms (whose cardinality can change as the
scale increases) and an adaptive neighborhood, that corre-
sponds to atom support at the considered scales. Moreover,

1If the neighborhoods of Ak and Al have different cardinality, the
smaller is zero-padded. Notice that the neighborhood of each atom is
defined starting from the atom location and then symmetrically mov-
ing away from it toward the left and the right side. It is worth noticing
that the different cardinality of the two neighborhoods could be due
to a different local image content around the analyzed atoms or to a
different influence of the noise (the same kind of singularity but with
different amplitude).

each slope αk,s already embeds the relations between neigh-
boring spatial pixels. It is a weighted average of the wavelet
coefficients belonging to the cone of influence of the ana-
lyzed atom (see (4)).

In the presence of noise, the distances in (10) are suitable
weights to use in the regularization of atoms slopes of the
wavelet transform of the noisy data g. More precisely, the
estimated slopes {αk,s}1≤k≤N at scale s can be corrected as
follows

αk,s = 1
∑N

l=1 ωkl

N∑

l=1

ωklαl,s , ∀k = 1, . . . ,N (12)

with

ωkl = e−Dkl . (13)

The smaller the distance Dkl the larger the weight ωkl (it
approaches 1). In this way, the coefficients corresponding
to the same class of singularities greatly contribute to the
weighted average in (12). On the contrary, since wavelet co-
efficients corresponding to noise provide negative γk , they
are discarded from the set of admissible initial conditions.
Figure 5 depicts a simple signal corrupted with Gaussian
noise. As it can be observed, singularity similarities are pre-
served even for increasing noise variance.
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Without noise With noise (σ = .1) With noise (σ = .3)

ω1,5 .8687 .7912 .7201
ω1,6 .9077 .8533 .8013
ω1,4 .0001 .0075 .0083
ω1,7 .0001 .0011 .0010
ω3,4 .9182 .7701 .6558
ω4,7 .4434 .3922 .3201

Fig. 5 (Topleft) Piecewise regular signal in Fig. 4 corrupted by zero-
mean Gaussian noise with standard deviation σ = .1 and its wavelet
transform at a fixed scale s1. (Topright) The wavelet transform of the

same signal at scales greater than s1. As the table of weights shows,
the similarity between atoms is preserved in the presence of noise

Fig. 6 Atoms distribution inside two regions (white blocks) of Lena image containing edge curves. The topmost mesh is relative to the largest
block, while the bottommost mesh corresponds to the smallest block

It is worth noticing that if the initial scale point in (9)

is updated, the distance in (10) can be evaluated just for a

limited subset of scales, Is = [s1, sf ]. It turns out that the

degree of similarity between two regions of an image can

be measured at different resolutions. In other words, some

image structures can be similar just in a portion of the time-

scale plane, while they do not necessarily are the same in the

whole plane.

The atomic approximation is a 1D model, then it can be

independently applied to image rows and columns. Nonethe-
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Table 1 512 × 512 × 8 bits Lena, Barbara, Peppers and Boats images. Comparisons (PSNR) between ANL-means and the denoising approaches
in [5, 6, 12, 13, 28, 31, 32, 34], using different noise standard deviations

Image Method Noise StD σ

5 10 15 20 25 50

Lena ANL-means 39.00 36.33 34.89 33.65 32.45 28.97

Atomic model [34] 38.81 35.97 34.26 33.16 31.89 28.59

BM-3D DFT [6] 38.72 35.93 34.27 33.05 32.08 28.86

Bayes. NL means [13] 37.98 35.25 33.68 32.63 31.55 27.51

NL means-W non iter [32] – 35.55 – – 31.70 28.26

NL means-W with iter [32] – 35.53 – – 31.74 28.64

PCA based NL means [28] – 34.77 – – 31.31 28.42

SAWT [5] – 35.10 33.37 32.08 31.07 –

SURE-NLM [31] – 35.1 33.2 – 30.7 –

FSP-2LA [12] 38.55 35.66 33.96 32.71 31.72 28.61

Barbara ANL-means 38.45 34.96 32.99 31.51 30.50 26.80

Atomic model 38.03 34.38 32.08 30.80 29.50 25.29

BM-3D DFT 38.31 34.98 33.11 31.78 30.72 27.17

Bayes. NL means 36.93 33.82 32.21 30.88 29.77 24.91

NL means-W non iter – 35.01 – – 30.56 26.57

NL means-W with iter – 34.91 – – 30.59 26.99

PCA based NL means – 33.15 – – 28.83 25.72

SAWT – 33.39 31.10 29.50 28.30 –

SURE-NLM – 33.2 31.0 – 28.1 –

FSP-2LA 38.19 34.60 32.49 30.94 29.76 26.04

Peppers ANL-means 37.94 34.65 32.91 31.30 30.11 26.90

Atomic model 37.78 34.22 32.43 30.86 29.60 26.35

BM-3D DFT 38.12 34.68 32.70 31.29 30.16 26.41

Bayes. NL means 37.13 33.87 32.06 30.75 29.77 23.84

PCA based NL means – 33.76 – – 29.37 26.10

FSP-2LA 37.72 34.24 32.18 30.67 29.50 26.11

Boats ANL-means 37.90 34.45 32.87 31.50 30.10 26.95

Atomic model 37.68 34.12 32.40 30.96 29.70 26.65

BM-3D DFT 37.28 33.92 32.14 30.88 29.91 26.64

Bayes. NL means 36.14 33.09 31.44 30.12 29.20 25.93

PCA based NL means – 32.43 – – 28.95 26.16

FSP-2LA 37.27 33.90 32.05 30.68 29.57 26.61

less, the similarity measure in (10) gives it the second di-

mension, since it is able to detect edges as connected curves

composed of neighboring and similar time-scale atoms.

An example is shown in Fig. 6 where atoms along two edge

curves of Lena image have been considered. Pixels belong-

ing to the same edge exhibit the same atoms distribution in

the time-scale plane. Hence, each of them contributes with a

unitary weight in the denoising of the others without intro-

ducing constraints on image smoothness or edge shape, as

in [20–22].

2.3 Parameters Estimation

To estimate atoms locations tk and slopes αk,s1 at a fixed
scale s1, a matching pursuit strategy is adopted [3] using
(4): the atom with the greatest energy that best fits the data
w(u, s1) in the cone of influence of an extremum point at tk

is selected at each step. Then, it is subtracted from the ana-
lyzed data and the algorithm is repeated on the residual sig-
nal. It is worth observing that the dictionary of the matching
pursuit algorithm is just composed of the basic atoms in (3).
On the contrary, by defining αk,s = αk,s1s

γk−1 the decays
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Table 2 512 × 512 × 8 bits Lena and Barbara images. Comparisons (PSNR) between ANL-means and the denoising approaches in [10, 35–37],
using different noise standard deviations

Image Method Noise StD σ

5 10 15 20 25 50

Lena ANL-means 39.00 36.33 34.89 33.65 32.45 28.97

BLS-GSM [35] 38.49 35.61 33.90 32.66 31.69 28.61

SA-DCT [36] 38.54 35.58 33.86 32.62 31.66 28.60

Learned Dict. [10] 38.60 35.47 33.70 32.38 – 27.79

SURE [37] 38.29 35.08 – 32.00 – 28.03

Barbara ANL-means 38.45 34.96 32.99 31.51 30.50 26.80

BLS-GSM 37.79 34.03 31.86 30.32 29.13 25.48

SA-DCT 37.47 33.48 31.37 30.00 28.95 25.44

Learned Dict. 38.08 34.42 32.37 30.83 29.60 25.47

SURE 37.69 33.90 31.71 30.16 28.96 25.32

γks are derived by comparing the slopes of corresponding
atoms at two (or more) successive scales as follows

γk = 1

|Is |
∑

s∈Is

(
logs

αk,s

αk,s1

)
+ 1, (14)

where Is = [s1, sf ] is a proper scale interval that is small
enough to preserve atom location.

To predict wavelet details at dyadic scales from not
dyadic ones the same similarity criterion of previous section
can be used: the atomic approximation at a fixed scale of
a generic signal is “similar” to the wavelet transform com-
puted at the same scale of a piecewise linear signal.

In other words, if αk,s = αk,s1s
γk−1 are atoms slopes

at a fixed scale s, then w(u, s) = ∑
k αk,sF (tk, u, s) is the

wavelet transform at scale s of a piecewise linear signal p(t)

defined as follows

p(t) =
N∑

k=1

((
k∑

h=1

αh,s

)
(t − th−1) + βh

)
χ[tk−1,tk](t), (15)

where βh = ∑k−1
h=1 αh,s(tk − th), χ[.](t) is the unitary function

in the range [.], while αh,s = αhs
γh−1. The equality in (15)

can be derived if each basic atom F(tk, u, s) is written as
the wavelet transform of ramp signals, whose equation is
rk(t) = (t − tk)χ[tk ,+∞]—see [34] for details.

In order to make the algorithm more robust to noise
and to bad parameters estimation, in a dyadic wavelet de-
composition, each dyadic band s = 2j , j = 1,2, . . . , can
be independently processed using the scale interval I2j =
[2j − Δs,2j + Δs], where Δs can be set equal to 2j−1.

2.4 ANL-Means Algorithm

– Perform the undecimated discrete wavelet transform
(UDWT) of the noisy signal g up to J th scale level. For
each detail band dj at scale level j :

1. Estimate the slopes αk,s and the relative locations tk

of the atomic approximation at scales s ∈ I2j = [2j −
Δs,2j + Δs] of the continuous wavelet transform of
the considered signal, using the matching pursuit algo-
rithm and (4).

2. Estimate the corresponding γks using (14) with s1 =
2j − Δs.

3. Eliminate atoms having γk < 0.
4. Estimate the cleaned detail band d̃j at scale s = 2j as

follows:
(i) for each estimated atom, compute the weights

ωkl , as in (13) and correct the slopes αk,s1 s using
(12) with s1 = s − Δs. Let αk,s1 be the corrected
slopes;

(ii) set the piecewise linear signal p(t), as in (15),
where αk,2j = αk,2j −Δs2j (γk−1);

(iii) compute its dyadic undecimated discrete wavelet
transform d̃j at the j th scale level.

– Invert the UDWT using the cleaned detail bands
{d̃j }j=1,2,...,J to obtain the de-noised signal fd .

The algorithm works on rows and columns respec-
tively of the vertical and horizontal sub-bands of image 2D
Wavelet Transform (2D-WT) [34], that is a redundant trans-
form. In fact, the atomic approximation is not robust to dec-
imation since it can cause the loss of extremum points from
a dyadic scale to another and the change of atoms shape.
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Fig. 7 From left to right:
Original, noisy and recovered
test images using ANL-means.
From top to bottom: Lena
corrupted with Gaussian noise
with standard deviation σ = 25,
Barbara (σ = 20), Peppers
(σ = 50) and Boats with
(σ = 55)

3 Experimental Results and Concluding Remarks

Extensive tests have been performed using several images.
Some results achieved on commonly used 512×512×8 bits
test images Lena, Barbara, Peppers and Boats, will be pre-
sented. For all of them, the 2D-WT [33] has been computed
up to the 4th scale level using the 3/9 spline biorthogonal
wavelet.

Table 1 shows PSNR values of the denoised images that
have been estimated from the corrupted ones using zero
mean white Gaussian noise with different standard devi-
ations σ = 5,10,15,20,25,50. ANL-means has been per-

formed over 15 different noise realizations for each stan-
dard deviation and the resulting PSNRs have been averaged
over these runs. PSNR values have been compared with the
most recent and powerful de-noising approaches that follow
NL-means philosophy. In particular we have selected: the
Bayesian non local means and variable window sizes in [13],
the image denoising with block matching and 3D filtering
BM-3D FFT in [6], the improved NL-means with iterations
[32], the PCA based NL means [28], the spatially adaptive
wavelet thresholding with context modelling SAWT in [5]
(that is very close, in spirit, to NL-means), the SURE based
NL-means [31] and the two level adaptation Gaussian mix-
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Fig. 8 Zoom of the denoised
Lena, Barbara, Peppers and
Boats images in Fig. 7

ture estimator FSP-2LA presented in [12]. PSNR values in
Table 1 are taken from the original works along with their
numerical precision. All selected approaches catch similari-
ties in the image except for [12], that uses a coarser adapta-
tion level by defining a larger neighborhood for estimating
the local signal statistics at each subband of an overcom-
plete pyramid. ANL-means performance is comparable and
often over-exceeds the most powerful NL-means based im-
age de-noising schemes. Table 2 shows that ANL-means is
also competitive with some of the most powerful denois-
ers, such as BLS-GSM [35], SA-DCT [36], SURE [37] and
Learned Dictionaries [10]. In order to better appreciate the
achieved results, Fig. 7 shows some denoised test images
while a zoom around their sharp transitions is presented in
Fig. 8. ANL-means is able to recover edges without introduc-
ing annoying ringing effects. The modeling of the multiscale
behavior of significant points allows to discriminate between
noise and interfering objects, while the modified matching
pursuit preserves the correlation between adjacent coeffi-
cients. The modeling of the time-scale behavior of higher
order singularities also avoids the over-smoothing of smooth
regions and guarantees textures recovering. In fact, the con-
tent of each dyadic scale is derived from finer scales (atoms
trajectories) allowing high frequencies preservation. Finally,
since image similarities are measured from groups of co-
efficients, the best block size in which to evaluate similar-
ity measures is atoms support at the considered resolution.
Moreover, it compensates the one dimensional nature of the
algorithm that does not make any geometrical assumption on
the image—it independently processes rows and columns in
the direction of the high pass filtering.

In order to emphasize the contribution of NL-means, Ta-
ble 1 also includes the denoising results provided by the pro-
posed approach without using self-similarities, that is pre-
sented in [34] (Atomic model). The gain goes from .09 db to
1.6 db over the considered set of images, confirming the po-
tential of the Non Local means philosophy. It also confirms

the fact that if similarities are not found, denoising still oc-
curs since it is already embedded in the estimation of atoms
slopes. Moreover, any user’s interaction is required.

The main computational effort of ANL-means is required
for the estimation of atoms’ context, that involves inde-
pendent least squares approximations over a fixed num-
ber of scales. For an M × M image, the complexity is
O(2MN |Is |), where N is the number of atoms and |Is | is
the employed number of scales. In particular, differently
from classical NL-means, ANL-means does not use all co-
efficients in the computation of the weights in (13), but just
the estimated atoms. It turns out that O(N N−1

2 ) compar-
isons are required for a fixed band. The CPU time on a Pen-
tium IV processor for a 512×512 image is about 65 seconds
using a non optimized Matlab code.

The proposed model is not adequate for non Gaussian
and uncorrelated noise. This will be one of the main topics
of our future research as well as a further optimization to
speed up the algorithm. With regard to the employed func-
tion for weights computation, a deeper investigation would
be required. As described in [32], different measures have
been considered, but the de-noising results do not signifi-
cantly change. In the future, it will be probably more inter-
esting to introduce some metrics accounting for the human
visual system, as done in [38], to really improve the visual
quality of the recovered image.

Acknowledgements Authors would like to thank the anonymous re-
viewers for their suggestions and comments that allowed to improve
the presentation of the work.
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