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Abstract Most automatic focusing methods are based on
a sharpness function, which delivers a real-valued estimate
of an image quality. In this paper, we study an LZ-norm
derivative-based sharpness function, which has been used
before based on heuristic consideration. We give a more
solid mathematical foundation for this function and get a
better insight into its analytical properties. Moreover an ef-
ficient autofocus method is presented, in which an artificial
blur variable plays an important role.

We show that for a specific choice of the artificial blur
control variable, the function is approximately a quadratic
polynomial, which implies that after the recording of at least
three images one can find the approximate position of the
optimal defocus. This provides the speed improvement in
comparison with existing approaches, which usually require
recording of more than ten images for autofocus. The new
autofocus method is employed for the scanning transmis-
sion electron microscopy. To be more specific, it has been
implemented in the FEI scanning transmission electron mi-
croscope and its performance has been tested as a part of a
particle analysis application.

Keywords Autofocus/focusing - Sharpness function -
Scanning transmission electron microscopy

1 Introduction

Consider an optical device, such as a photocamera, a tele-
scope, or a microscope. An image obtained with the op-
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tical device depends on a given object’s geometry, known
as the object function, and the optical device defocus. The
method of automatic defocus determination, such that the
recorded image has the highest possible quality (the image
is in-focus), is known as automatic focusing or autofocus
method.

The existing autofocus methods used for various types
of optical devices are usually based on a sharpness func-
tion, a real-valued estimate of the image’s sharpness. For
a through-focus series an ideal sharpness function should
reach a single optimum (maximum or minimum, depend-
ing on the definition of the sharpness function) at the in-
focus image. Existing sharpness functions are based on im-
age derivative [1, 23, 39], variance [4, 31], autocorrelation
[9, 24, 29, 38], histogram [14, 40] or Fourier transform [11,
28, 35, 37]. Overviews of existing sharpness functions can
be found in [18, 28, 32, 40].

An autofocus method can be established in two different
ways:

e A number of images is taken within a wide defocus range
and for each image the sharpness function is computed
giving a discrete set of sharpness function values. Then
the optimal image (the in-focus image) is determined as
the optimum of this discrete set of data (course focus-
ing). Eventually the same procedure is repeated within a
smaller defocus range around the optimum, found on the
previous step (fine focusing).

e Starting out with an initial defocus parameter d, an it-
erative optimization method is used to find the opti-
mal defocus value dy (for example, Fibonacci search
[18, 40], Nelder-Mead simplex method [31] or Powell
interpolation-based trust-region method [26]).

The first approach requires recording of about 20-30 im-
ages, which can be time-consuming for real-world applica-
tions. The goal of the second approach is to minimize the
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number of images necessary to perform the autofocus. It
usually requires not less than 10 images for the autofocus
procedure.

In literature a number of sharpness functions has been
considered and discussed for various optical devices, such
as photographic and video cameras [5, 11, 14], telescopes
[12, 21], light microscopes [1, 9, 18, 32, 34, 39, 40] and elec-
tron microscopes [4, 24, 27, 28, 35, 37]. In this paper we use
the electron microscopy as a reference application for our
autofocus method. To be more precise, the experimental ap-
plication is tested for low resolution scanning transmission
electron microscopy (STEM).

For many practical applications in STEM, defocus has to
be adjusted regularly during the continuous image recording
process. For instance, in electron tomography 50-100 im-
ages are recorded at different tilt angles, where each tilting
changes the defocus [37]. Other possible reasons for change
in defocus are for instance the instabilities of the electron
microscope and environment, as well as the magnetic nature
of some samples. The capacity of the modern processors al-
low computations of a sharpness function within a negligi-
ble amount of time. However, image recording might require
a noticeable amount of time. In particularly in STEM, one
image recording can take 1-to-10 seconds. For this reason
the development of a method that requires fewer images is
important. A number of methods implemented on aberrated-
corrected electron microscopes are able to correct high and
low aberrations including defocus [8, 19, 41]. For defocus
correction these methods require from one to four images
only. However, they are based on specific assumptions about
the object geometry. These methods are not suitable for ap-
plications that require continuous operation since they are
not fully autonomous [36]. In addition some of them make
use of additional equipment, such as aberration correctors or
a special camera, which is not a part of every microscope.

In this paper we study derivative-based sharpness func-
tions. The advantage of using these functions has been
already shown experimentally for scanning electron mi-
croscopy images [27, 28]. Some of them are based on a L>-
norm of an image derivative [1, 14, 40]. The use of these
functions is heuristic in nature. Usually they are based on
the assumption that the in-focus image has a larger differ-
ence between neighboring pixels than the defocused one.
In this paper we show analytically that for the noise-free
image formation the L?-norm derivative-based sharpness
function reaches its optimum for the in-focus image, and
does not have any other optima. Moreover under certain as-
sumptions the function can accurately be approximated by
a quadratic polynomial. The error of this approximation can
be decreased by adjusting the artificial blur control variable,
which is given as an input to the autofocus method. The pro-
posed quadratic polynomial interpolation leads to a new aut-
ofocus method that requires recording of three or four im-

ages only. The method is implemented in FEI STEM and is
demonstrated for a real-world microscopy application.

The paper is set up as follows: Sect. 2 explains the im-
age formation modeling used in this paper. Section 3 pro-
vides the definition of the derivative-based sharpness func-
tion, and explains the process of automated focusing. In
Sect. 4 theoretical observations on derivative-based sharp-
ness function are given. Subsequently Sect. 5 describes the
quadratic interpolation of the sharpness function and the aut-
ofocus method. Numerical computations for experimental
data obtained from a STEM FEI microscope are shown in
Sect. 6. Section 7 presents the results of the on-line autofo-
cus correction method implemented and running on a FEI
STEM prototype. Finally Sect. 8 provides discussion on re-
lationship between the mathematical theory and real-world
applications.

2 Modeling

Usually an image is two-dimensional. However, for the sim-
plification of our analysis we restrict the theoretical obser-
vations to a one-dimensional setting. If the objective lens
of the optical device is rotationally symmetric, this restric-
tion does not affect the real problem, because the two-
dimensional case in image formation is a repetition of the
one-dimensional case in an orthogonal direction. Neverthe-
less, in our numerical experiments and the real-world appli-
cation (Sects. 6-7) two-dimensional images are used. One
of the experiments will correspond to the situation of the
non-symmetric lens (for instance, the lens with astigmatism
aberration).

The Fourier transform f of a function f € E2(R) plays a
fundamental role in our analysis and modeling. It is defined
as follows

flw) = / fx)e* dx,

where x is a spatial coordinate and w is a frequency coordi-
nate.

Images for which our sharpness function will be com-
puted are the output images f of the so-called image forma-
tion model represented by Fig. 1. The object’s geometry (or
the object function) is denoted by . The filter g, in Fig. 1
describes the point spread function of an optical device. The
point spread function can accurately be approximated by a
Lévi stable density function for a wide class of optical de-
vices [2, 3, 10]. The Lévi stable density function is implic-
itly defined via its Fourier transform as follows

a 2 “)2/3

0o (@)i=e" 2,

0<p<l. (1)

The parameter § in (1) depends on the optical device, and o
in (1) is known as the width of the point spread function. It
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Fig. 1 The image formation model

is simply related to the control variable d, i.e. the defocus of
the optical device

o =d —d,

where dy is unknown. The goal of the autofocus procedure
is to find the value of dj.

The output of the o, filter is denoted by f and often
post-processed by a PC, cf. Fig. 1. In our model we assume
that in such post-processing a Gaussian filter is applied to
the image fo

1 x?
e 22,
V2«

Filtering with a Gaussian kernel is often applied for denois-
ing purposes, which is an easy alternative to more advanced
denoising techniques [15, 16, 20]. In our autofocus proce-
dure the main use of the control variable « is not for denois-
ing the image fy. As explained in the following sections, it
influences the approximation error when the sharpness func-
tion is replaced by a quadratic polynomial, but it does not
change the location of dy. The value of the control variable
« is fixed during the autofocus process; i.e. when we attempt
to find dy from a number of recorded images corresponding
to different values of d stemming from the same object func-
tion .

We apply the linear image formation model, which is of-
ten used for various optical devices [2, 7, 23, 42], in partic-
ular for electron microscopes [4, 13]. This implies that the
occurring filters are linear and space invariant which easily
can be described by means of convolution products

8a(x) =

for=v 05, S = fo*ga. 2

If no image post-processing is applied then, o« = 0, and
f = fo.

3 Sharpness Function and Problem Formulation

In this section we introduce the derivative-based sharpness

function explicitly and investigate its behavior with respect
to the defocus parameter d. As the parameter d is closely
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Fig. 2 Sharpness function A reaches its optimum at the in-focus im-
age. The goal of the autofocus procedure is to find the value of defo-
cus dy

related to the width o it is convenient to define the sharpness
function as a function of o as (cf. [14, 18])

9 2

A@) 1= H LA 3)
3)6 L2

For the linear image formation model (2), we have
P 2

A(o) = H—(l// * 05 * 8a) 4)
8)6 L2

Since 0 = d — dy, we will consider the function A(d — dy).
For a through-focus series of images the sharpness func-
tion is computed at different values of d for a fixed value
of «. A general behavior of a sharpness function is shown in
Fig. 2. The image at the defocus d = d is sharp or in-focus
and the sharpness function reaches its optimum. The image
far away from d is called out-of-focus.

We recall that for our autofocus procedure « is fixed and
a finite number, say N, of the defocus control d are chosen:
di,...,dy with d| <dp < --- <dp. For each of the cor-
responding images f1, f2, ..., fy the value of a sharpness
function is computed
Aj:=A(d; —dpy), i=1,...,N. 5)

As already mentioned before, the problem of automated
focusing is to estimate the optimum location dy of the sharp-
ness function from the given points (5). The location dy is
independent on the object function .

In this paper our aim is to do this using a small number of
recorded images, i.e., N = 3 or N =4, while in other papers
N > 10 is usually used [14, 18, 40, 42]. For this purpose
we will look for the function shape which can accurately be
approximated by a quadratic polynomial. In the next section
the error estimates of such an approximation for derivative-
based sharpness function are provided.
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4 Theoretical Observations

In this section we collect some useful properties of the
derivative based sharpness function. First, in Sect. 4.1, we
deal with general properties of A in case the spread func-
tion g, is a Lévi stable density function. In Sect. 4.2, we
restrict ourselves to the Gaussian point spread functions and
study in more detail properties of A for a typical collection
of object functions: A Gaussian particle and the more gen-
eral case of a digital image.

4.1 General Properties of the Sharpness Function A

Property 1 If f is given by the linear image formation
model (2) then the sharpness function A is

1o
Ao) == f 2 (@)2e " o= 4oy, (6)
T

—0o0

Proof For 1/}, g, f , the Fourier transforms of v/, g, f respec-
tively, it holds that f = /0, g«. Then from Parseval’s iden-
tity we find

2
A0) af 1||f||2
o). =|— = —||lw
ox’ |2 2w L
1 o 2,7 2\~ 2\ 2
=52 | @160 @) 12 (@) do. O
T J—00

We assume that the object function satisfies the property

o
/ [¥ () dx < o0, )
—00

which holds throughout the paper. In practice this property
will be easily satisfied because the function ¢ has a finite
domain, i.e., the image has a finite size. As a consequence
we have that v is bounded and continuous. In case of a dig-
ital image (cf. Sect. 4.2) having a finite number of pixels, v
is a tri-geometric polynomial which again is bounded and
smooth.

Property 2 For the object function (7), the sharpness func-
tion A (o) is smooth, and is strictly increasing for o < 0 and
strictly decreasing for o > 0.

Property 3 For the object function (7) and a > 0, the
sharpness function A(o) has a finite maximum at ¢ =0

max A (o) = A(0).

Properties 2-3 follow directly from (6). Figure 3 shows a
numerically computed sharpness functions A for different
values of «.
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Fig. 3 Numerically computed sharpness functions A

Due to the physical limitations of the optical device the
width of the point spread function has a positive under-
bound: o > o9 for a certain positive number oy. From now
on we consider a Gaussian point spread function, i.e. 8 =1
in (1). A Gaussian function (or a composition of Gaussian
functions) is often used as an approximation of the point
spread function for different optical devices [20, 23, 42], in-
cluding the electron microscopes [4, 22].

As a benchmark case we deal with an object function
for which the power spectrum corresponds to a Gaussian
function. Such images often occur in experimental images
from single particles. In our one-dimensional setting we may
therefore assume that

W@ =Ce @7, C>0,y>0. ®)

For y =0 in (8), |1/A/|2 is a constant, which corresponds to
the situation when the object is nearly amorphous [4].

Property 4 For the object function (8) and a Gaussian point
spread function we have

C
4702 +a? + y2)3

A(o) =

Proof By substituting n = /o2 + a2 + y2 in the identity
o
T
/ wre ™ do = £ )

00 2773 ’

we obtain
27 J_ oo
. C
47 (02 + a2+ y2)3 O

We also observe that the location dy of the maximum of
A does not depend on «. This, of course, will be true in
general.
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Note that for the object function (8) the function
F(d):= A"23d - dy), (10)

is a quadratic polynomial

Fd) =] %((d —do)? + o> +7?).

It will be shown that in the general case the function F(d)
can be well approximated by a quadratic polynomial for
suitable choices of the blur variable «. The quadratic shape
of the function (10) makes finding its optimum faster and
more robust in the real-world applications.

4.2 Digital Image Object

In classical signal analysis a discrete signal ¥ is modeled as
a finite linear combination of delta functions (cf. [25])

K

V) =) ardx — ), ax=0. (1)

k=1

In our setting, the finite sequence of numbers a; are the pixel
values located at x = p of the one-dimensional object func-
tion, K is the number of pixels in the image. We consider an
equally distributed set of pixels, so

wki=ktr, tv>0. (12)
The sampling period t is known as the pixel width. We de-
fine the vector of pixel values

a:= (ak),{(:l. (13)

In this paper we consider the image with a finite number of
pixels, i.e. K < oo.

Proposition 1 The power spectrum of the object function
(11) can be expressed as

V(@)= pme™™, (14)
m
where
P =) i+ (15)
l

are the autocorrelation coefficients of the pixel values.

Proof The Fourier transform of the object function (11)

00 . .
U(w) = Zak/ e 8 (x —kt)dx = Zakeﬂkm
k - k

@ Springer

is a periodic function with the period 27” Then its squared

modulus |1ﬁ(a)) 12 is also a periodic function with period 27”
having the Fourier expansion

W@ =) pne™™,
m

where

_ T/
om=rsz ]
_ f/
o o
T
=5 2.
= Zalém+l = Zazamﬂ.
1 ] U

From definition (15) it trivially follows that

> pw = lallf. (16)

s
T

|,(z_(w)|26—imfa) d(,l)

BRI IR

1&((1)) Zalefilrwefimrw dow
l

19

g

T I/Aj(a))e—i(l-‘rm)‘[a) dI/l

I
T

Property 5 The sharpness function A can be expressed by
means of the autocorrelation coefficients (15) as follows

Alo) =

1 o0 ) ilr;(urz 7w2
Ty Lo [T
m

a7

Proof The proof is straightforward after we rewrite the
sharpness function (6) for 8 =1 as

1
2w (02 + a?)3/2

<[ i)
—00 a4 o2

and substitute the expression for the power spectrum (14). [

A(o) =

2 2
e ¥ dw.

In the two propositions below we approximate the sharpness
. . C .

function A by a functlon of the type @y 10 such a way

that A can be written as

A(o) = (1+ R(0)), (18)

(Ot2 + 62)3 /2
where C depends only on the pixel values C = C(a) and
a relative error R, which can be small in typical circum-
stances. This implies that the function (10) can be expressed
as

F(d) =P(d)(1+ ),
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where P is a second order polynomial. For a small error
R(0), the relative error €(d) will be small: €(d) = — % R(o).

In practical applications the value of o is important in
relation to the pixel width 7. For instance if o > 7, the im-
age is totally out-of-focus (for example, Fig. 4(e)). It is often
the case that o > 7, but not o > t. However, by controlling
the blur «, the value +/a2 + o2 can be much larger than T,
which is important for our error analysis in the next propo-
sitions.

Proposition 2 The sharpness function can be expressed as
follows

Ci
A(U)Zm(l"‘Rl(U))’ (19)
where
T
|R1(U)|§K1W7 (20)

and C1, K1 depend only on the pixel values a.

Proof Splitting e Ve?+o? into (e Ve?+o> — 1) +11in (17), one
obtains

l o0 2 76()2
A(G)—m(/_oowe da);pm

Ci

0 _imte
+ / ey o eV — l)da)). @1
oo —~
Applying (16), and (9) for n = 1, one obtains
o0 2 JT
Cy:= 2" d, =-——1|la].
= [ o 02 =" lall
To estimate R; observe that
e — 1] =2 sing <Inl, neR, (22)
for n = \/’%, and consequently
S pule T — 1| < <Z|m|pm>—ﬂ. @3)

From the estimate (23) and ffooo |a)|3e_“’2 dw =1 it follows
that

9] imtw
‘ f w2 Z om(eve+o? — 1) dw
—oo m

< (Z mlp ) S
Then the statement of the proposition is straightforward with

ﬁ Zm Pm

in (20). U

It follows from the proposition that the function (10) can
approximated by a quadratic polynomial at any accuracy by
increasing the value of the blur «.

Now let o < 7. It means that the image is almost in-focus
and might be unsharp only slightly. Figures 4(a)-4(c) show
the examples of artificially blurred images. From left to
right: original image, blurred image with o/t = 0.5, blurred
image with o/t = 1. We can hardly see any difference be-
tween original and blurred images. However, if we zoom
into the details (Figs. 5(a)-5(c)) the difference is visible.
This correspond to the fine focusing, which is considered
in the proposition below.

Proposition 3 The sharpness function can be expressed as
follows

C
A(U)—m(l‘FRZ(U)), 24)
where
o? +02
|R2(0)| < K2 7 (25)

and C», K depend only on the pixel values a.

Proof Splitting ), pm into po + Zm#) om in (17) one ob-
tains

Ay = — Y et d
) = e rarpr\ | wre T de
C
o0 _ _imto 5
+ me/ w?e Valtole™® da)>,
m#£0 -
o0 ) T
Cr = ,00/ e do= L Jall.
- 2

To estimate R, observe that

o] . 2 4
‘/ w2e=® 1 da)‘ = ‘?(2 - 172)6‘_"7 <,
—0oQ

n

(26)
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Original image: 6=0 6/1=0.5

ol=1

oh=10

o/1=100

Fig. 4 Artificially blurred images of a gold particle with different values of o/t

Original image: 6=0 6/t=0.5

ol=1 o/t=10

()

(d)

Fig. 5 Artificially blurred images of a gold particle with different values of o/7. The images are the magnified versions of those shown in Fig. 4.
Only if we zoom into the small particles we can see the difference in the image quality for the small values of o

i.e. substitute n = — 22—
[0 402
oo _imtw 2 2
a“+o
2™ e Var+o do| <4———.
m2r2
—0o0

Then the statement of the proposition is straightforward with

i Zm?&O %
VT po
in (25).

K> =
O

Proposition 3 considers the situation of a very fine focusing,
which is different from Proposition 2, where a more general
case is considered. However, it is shown that in both situ-
ations the function F can be approximated by a quadratic
polynomial with a given accuracy by means of adjusting the
value of the control variable «. This coincides with findings
of Property 4 for a different object function model.

5 The Autofocus Algorithm

It has been mentioned before that the function evaluations
in our problem are very expensive and derivative informa-
tion is not available. For this reason quadratic interpolation
is a convenient approach for computing a quadratic poly-
nomial approximation of the function F. In our autofocus
method we take the minimum of the polynomial as the min-
imum of the sharpness function. For the given data points
Fy := F(dy), k = 1,2, 3 we interpolate the function F by a
polynomial P(d) := co + c1d + c2d?. So one has

F(d)=Pd)(1+e@),

@ Springer
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where P(dy) = Fy,k=1,2,3.

From Proposition 2 we conclude that the error €(d) can
be decreased by increasing . Theoretically the error of this
approximation (cf. Proposition 2) can be made as small as
needed by dramatically increasing the value «. However, if
a — oo then F(d) — 0 and all its derivatives, which may
causes numerical errors and make it difficult to find the op-
timum of the function. Figure 6 shows three functions (10)
computed for different « values. In the next section it will be
shown how the large values of « influence the shape of the
function computed for experimental through-focus series.

In the autofocus algorithm below we use the parameter
Nmax, which corresponds to the maximum number of im-
ages we would like to record for the autofocus. The pri-
mary goal of this paper is to find the in-focus image after
recording of 3 or 4 images only. However, in some practical
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applications, where the higher precisions are required, the
recording of more images could be helpful.

Autofocus algorithm:

1. Let d; be the current defocus control value of the optical
device. Choose a Ad, then d| :==dy — Ad,d3 :=dr +
Ad.

2. Obtain three images at di, da, d3 and compute Fy, F», F3.
We set N = 3.

3. We fit N given points with a quadratic polynomial P(d),
and estimate the sharpness function optimum
d ol

N+1 = 2¢
as the optimum of the quadratic polynomial. For N = 3
this is the straightforward computation. For N > 3 we
obtain the overdetermined system

1 d d}\ [co Fy
cirl1=1...1,

1 dy d12v (o) Fy
—_ ——

D c s

for which a usual least squares solution ¢ can be found in
a regular way by solving the system

D Dc=Ds.

4. If N = Ny, stop. If for the given tolerance d;, €
R, |dy —dn+1] < dio1, stop. Else, compute Fyi1 =
F(dn+1) and go to the previous step.

It is important to note that only the last two steps of the
described algorithm will be repeated interactively. Steps one
and two are performed only ones, in the beginning of correc-
tion. The parameter d;,; can be determined from the knowl-
edge of the optical device behavior. For instance, in electron
microscopy the tolerable defocus error is defined as [37]

2 2
w t
diol = — -1,
tol (2) +<2)

where ¢ is the object’s thickness and w is the depth of field
defined in [6] as

where ¢ is the convergence semiangle of the magnetic lens
and t is the pixel width. The tolerable defocus error can be
considered as the lower bound set by the depth of field

T
diol = —. 27
tol ) o (27
In the step three different numerical method could be
used. The choice of the method is not quite significant for

Table 1 Overview of carbon cross grating experimental focus series

N Magnification Pixel Defocus Defocus  Number
width  range step of images
t [nm] (dy —d;) [nm] Ad[nm] N

1. 10000x 42 36000 2000 19

2. 10000x 42 10000 500 21

3. 200000x 2.1 20000 1000 21

4. 200000x 2.1 10000 500 21

5. 400000x 1.05 900 50 19

Table 2 Overview of gold particles experimental focus series

N Magnification Pixel  Defocus Defocus  Number
width  range step of images
7 [nm] (dy —d;) [nm] Ad[nm] N

1. 10000x 42 31500 450 70

2. 10000x 42 4704 96 50

3. 56000x 7.5 800 16 51

4. 56000x 7.5 5600 80 71

5. 115000x 3.75 2800 40 71

N = 4. On-line experiments with the method implemented
on a prototype FEI STEM for N = 3, 4 are presented in the
following section.

6 Numerical Experiments with STEM Images

Ten experimental through-focus series are obtained with the
FEI STEM microscope. Two different samples are used: a
carbon cross grating sample and a gold particle sample. Car-
bon cross grating is the standard sample for STEM calibra-
tion. The gold particle sample is a typical image example,
used for particle analysis applications. The size of each im-
age in the series is 512 x 512 pixels. The series are obtained
at different magnifications and with different defocus steps.
Figures 7-8 show the first image in the series, the in-focus
image, and the computed function F values plotted versus
the values of defocus control. Each of the figures repre-
sent five series, described in Tables 1-2 (carbon cross grat-
ing sample and gold particles sample correspondingly). The
line numbers in the tables N = 1,2,3,4,5 correspond to
the columns of Figs. 7-8 (from left to right). For each series
two functions are computed: with o« = 0 (dotted line) and
with a > 0 (dashed line). The values of both functions are
scaled between 0 and 1. Computed functions F with o > 0
can accurately be approximated by a quadratic polynomial.

The series shown in the second columns of Figs. 7-8 are
recorded with a small defocus step. The qualities of the first
image in the series and the in-focus image do not differ so
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Fig. 7 Functions (10) computed for experimental STEM focus series of carbon cross grating sample. From top to bottom: The first image in
the series, in-focus image from the series, functions with and without artificial blur plotted versus defocus. From left to right: Five different

experimental focus series

much: We can see the details on the first images from the
series, only the edges are a bit unsharp. It is shown in Ta-
bles 1-2 (N = 2) that these series have relatively small de-
focus ranges and defocus steps for particular magnification.
For these cases the function F has a shape nearly quadratic
even with o = 0, as follows from Proposition 3. The func-
tion F shape is different in a broader defocus range for the
same sample at the same magnification (Fig. 7, first column
and Fig. 8, first column). The functions with « = 0 have
shapes similar to a Gaussian, but not a quadratic polynomial.
In this case the functions have a nearly quadratic shape after
applying the blur « to the images.

The fourth series of carbon cross grating (Fig. 7, fourth
column) is the only experimental series recorded with the
presence of astigmatism aberration. For other experimental
series astigmatism of the magnetic lens has been corrected
before the recording. The lens with astigmatism is not per-
fectly symmetric and as a consequence has more than one
focal point [24], which results in the asymmetry of the point
spread function. Consequently the recorded image cannot be
totally sharp. The sharpness function might have local op-
tima due to the presence of astigmatism [4, 31]. Two local
minima can be seen in the plot. They disappear after ap-
plying the artificial blur. The influence of the astigmatism
aberration on the derivative-based sharpness function, and

@ Springer

the stigmatic sharpness function improvement after apply-
ing the artificial blur have been studied in [30].

In the last experiments (Figs. 7-38, fifth column) the mag-
nification of the microscope is higher and as a consequence
the influence of noise on the image quality increases. We can
see that in these cases the blur « helps to cope with the noise
in the function.

Figure 9 shows functions F computed for different val-
ues of the blur « for experimental through-focus series of
gold particles (N = 1, 2). For the large o = 20 the func-
tion becomes noisy (not because of the noise in the date,
but due to numerical errors) and does not provide useful in-
formation anymore. It follows that for the proper work of
the method we have to make a proper choice of the value
o, which is not too large, but also not too small. This choice
might depend on the sample geometry as well as on the level
of noise and possible presence of astigmatism in the images.
It also depends on the ratio of the given magnification (or
the pixel width) to the defocus range. The choice does not
have to be made every time, but once for a particular appli-
cation, where we deal with the class of geometrical objects
and microscope settings. The examples shown in Fig. 9 im-
ply that « = 2 might be enough. However, Fig. 9 only shows
the functions computed for the series of images recorded at
the magnification 10000 x . For the higher magnifications the
higher levels of noise are present in the images. In this case
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a higher value of « is needed (see for instance Fig. 8, where
o = 3 is used).

7 Application

The method is tested in a prototype FEI Tecnai F20 STEM
electron microscope. The Gaussian function provides only a
rough approximation of the real-world STEM point spread
function. A more accurate model based on the wave aberra-
tion function [13], which is less convenient for the analytical
observations.

Defocus [nm]

The tests are performed with the help of Java-based ex-
perimental platform (called EXPLA), which consists of a
core that connects to the TEMScripting interface for FEI mi-
croscope control, and an application control framework [31].
For our experiment the autofocus method is implemented in
Matlab V7.5 (R2007b). The method is integrated with a par-
ticle analysis application. The goal of this application is a
statistical analysis of the particle distribution (particle loca-
tions and sizes). During the application run the images for
further analysis are recorded at different positions and mag-
nifications. During the run the position of the ideal defocus
do changes as the result of machine controls changes (stage
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Fig. 10 On-line experiment: image defocus improvement via interpolation the function F' by a quadratic polynomial

position and magnification), as well as sample and environ-  portant to run the algorithm of automated defocus correction

ment instabilities. If the image is out-of-focus, the particle ~ with a certain periodicity in time as a part of particle analysis
analysis software might give errors. For this reason it is im-  automated application.
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Four examples of application runs are shown in Fig. 10.
The images of gold particles are focused automatically. First
two columns show autofocussing with three images, and the
third and the fourth columns show autofocussing with four
images. The recording of the fourth image might improve
the final image quality (the function F has a lower value).
However, the improvement is not that strong. The difference
between the fourth and the fifth resulting images in this ex-
periment is not distinguishable by a human eye.

For all the runs of the method described in this section
the value of « is fixed @ = 3. The choice has been made ex-
perimentally by computing the function F for experimental
data and fitting it with a quadratic polynomial. The value of
o corresponding to the smallest approximation error is cho-
sen.

The values of parameter Ad have been chosen experi-
mentally for the particular application type, as well as the
value of parameter «. It is clear that Ad would be larger
than the tolerable defocus error, but not too large. In a real-
world application Ad should change proportionally to the
magnification, as well as the tolerable defocus error changes
proportionally to the magnification related to the pixel width
value (see (27)). In the four experiments shown in Fig. 10,
we have chosen Ad = 1000, 125, 200, 200 nm correspond-
ingly. The value of Ad is adjusted automatically with the
change in the magnification during the application runs.

8 Discussion

The new method for rapid autofocussing is developed and
tested for the reference case of scanning transmission elec-
tron microscopy. The tests are performed with the standard
calibration sample and the particle analysis application. The
algorithm is based on general assumptions, and thus could
be considered for other applications, such as electron tomog-
raphy [37], as well as for other types of microscopes and
different optical devices.

It has been proven that the derivative-based sharpness
function is strictly monotone and has a unique optimum at
the in-focus image for the noise-free image formation. This
has already been used before on heuristic grounds in prac-
tical applications. The assumption of a Lévi point spread
function is more general than a Gaussian point spread func-
tion used in a number of literature sources [4, 23, 42]. In a
more general case the point spread function of a scanning
transmission microscope could be modeled via the aberra-
tion function [13], which makes the model difficult for anal-
ysis. For a different point spread function model the opti-
mum position of the sharpness function might change. For
instance for the wave aberration-based point spread func-
tion, simulations show that the variance-based sharpness
function reaches its optimum at the so-called Scherzer de-
focus [31], which is different from zero.

In the general case the sharpness function is not a
quadratic polynomial. Nevertheless it has been shown that
for the proper choice of the artificial blur «, function F
can accurately be approximated by a quadratic polynomial.
This provides the possibility of increasing the speed of the
autofocus procedure. The digital image model applied for
analysis in Sect. 4.2 could be replaced by a different model.
In computer vision and computational photography for in-
stance, it has been recently shown that the sharp image
can accurately be described by a sparse function of image
derivatives [17]. Intuitively, this technique could be also ap-
plied to microscopy images.

For our sharpness function we have chosen the L%-norm,
because it is the most practically used norm with a lot of
proven mathematical properties. This simplifies the analy-
sis. For instance a relatively trivial proof of the fact that
derivative-based sharpness function reaches its maximum at
o = 0 for the L2-norm case could be complicated in the case
of L'-norm or the general L”-norm. In practice the L'-
norm derivative-based sharpness function is used as well.
The results of applying such a function to experimental data
have been shown to be similar or worse than of the L>-
norm based function [18, 32, 40]. Our observations could
be probably generalized for the L”-norm case. However, we
do not expect better results analytically nor numerically for
the general L”-norm.

The influence of noise, which is always present during
the image formation in optical devices, on the sharpness
function is not studied in this paper. We can see from nu-
merical experiments with the real data as well as from the
different papers [18, 31, 33] that the noise in the image for-
mation might result in the noise in the sharpness function,
thus the function might obtain local optima and the state-
ment of Property 1 is not true anymore. The noise sensitivity
of different sharpness functions based on two error estimates
has been studied in [33]. In our paper it is clear from numer-
ical experiments with the real data and the on-line applica-
tion runs that function F is nearly a quadratic polynomial
for a reasonable amount of noise (the machine settings for
recording the images are chosen in the same way as for the
real-world applications). The artificial blur parameter « pro-
vides image smoothing that results in the smoothing of the
function. The quantification of the influence of noise and the
automated optimal choice of parameter o could be a topic of
aresearch study in future.

Astigmatism aberration of the optical device lens results
in the point spread function, which is not rotationally sym-
metric. This phenomenon has not been studied in this paper,
because we have considered only one-dimensional setting.
The presence of the astigmatism aberration might result in
the multiple optima in a sharpness function [4, 28]. In one of
the numerical experiments in this paper this effect has been
shown. The influence of the astigmatism aberration on the
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sharpness function, and the stigmatic sharpness function im-
provement after applying the artificial blur have been studied
in [30]. By considering two-dimensional case the method
might be extended to the simultaneous automated defocus
and astigmatism correction method.
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