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Abstract A novel signal processing-oriented approach to
solving problems involving inverse Laplacians is intro-
duced. The Monogenic Signal is a powerful method of com-
puting the phase of discrete signals in image data, however
it is typically used with band-pass filters in the capacity of
a feature detector. Substituting low-pass filters allows the
Monogenic Signal to produce approximate solutions to the
inverse Laplacian, with the added benefit of tunability and
the generation of three equivariant properties (namely local
energy, local phase and local orientation), which allow the
development of powerful numerical solutions for a new set
of problems. These principles are applied here in the context
of biological cell segmentation from brightfield microscopy
image data. The Monogenic Signal approach is used to gen-
erate reduced noise solutions to the Transport of Intensity
Equation for optical phase recovery, and the resulting local
phase and local orientation terms are combined in an iter-
ative level set approach to accurately segment cell bound-
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aries. Potential applications of this approach are discussed
with respect to other fields.
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1 Introduction

Phase is a fundamental concept in both physics and signal
processing. In the former, it describes the delay between
two independent wave-based signals such as electromag-
netic rays, string oscillations and other physical phenomena.
In the latter, it contains information regarding signal shape,
and can be related to wave-based phase through techniques
such as the Fourier Transform. This paper describes a novel
relationship between phase information from these different
theoretical domains, and illustrates how this can be applied
in a specific image processing context.

Our relationship specifically links physical phase from
optical light propagation to local phase from signal fea-
ture detection. In this context, physical phase describes the
perturbation of light caused by passing through a scatter-
ing object which has a different refractive index to the sur-
rounding medium. A key equation describing this effect,
the Transport of Intensity equation (TIE) [21], is frequently
used to recover physical phase information from amplitude-
only data. In contrast, local phase describes the shape or
structure found in a specific signal region. Local phase can-
not be calculated exactly due to limitations imposed by the
Heisenberg Uncertainty Principle [13], but reasonable esti-
mations can be obtained using band-pass quadrature filters.
The Monogenic Signal is a powerful tool for multidimen-
sional estimation of local phase, and is frequently used in
signal processing [8].
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Fig. 1 A series of transillumination brightfield images of a live adher-
ent HeLa cancer cell, at varying levels of focus. The small dark circles
near the top and bottom are caused by oil-based artefacts on the lens.
(Right) A TIE phase-recovered image acquired using the brightfield

image defocus series, using our Matlab implementation of Eq. 3. Sim-
ilar results were obtained using the implementation in the commercial
Iatia QPM™ software

This paper shows that the TIE is equivalent to modifying
a step in local phase estimation using the Monogenic Signal,
where the band-pass filters are exchanged with low-pass fil-
ters. The use of low-pass filters in local phase estimation
goes against accepted theory in this field, however doing so
enables the powerful Monogenic Signal framework to be ap-
plied to a different class of problems. We present our results
in cell microscopy image processing as an application of this
relationship, and it is likely that others may exist. The next
section provides the background to the TIE and Monogenic
Signal, whilst Sect. 3 describes the relationships between the
two. The context of our work is discussed in Sect. 4, along
with possible connections with other research areas in com-
puter vision.

2 Background

2.1 Physical Phase and the TIE

The problem of recovering phase information frequently oc-
curs in many areas of applied physics (e.g. x-ray crystal-
lography). It is typically solved indirectly using iterative so-
lutions based on the Gerchberg-Saxton-Fienup (GSF) algo-
rithm [9], however a direct solution can be obtained ana-
lytically in certain cases. One such case is in optical mi-
croscopy, where the TIE relates amplitude images from dif-
ferent focal planes to the underlying phase.

The TIE was derived by Teague in 1983 [21] from the
Helmholtz Equation, the time-independent form of the Dif-
ferential Wave Equation for a wave in empty space. The
Helmholtz Equation is defined as

[
∇2 +

(
2π

λ

)2]
ψz(x, y) = 0 (1)

where λ is the wavelength and ψz is the component of the
wave function perpendicular to the direction of motion (i.e.
the object plane) at the focal distance �z. Starting from
Eq. 1, Teague derived the TIE,

2π

λ

∂

∂z
I = −∇ · I∇φ (2)

which relates the phase φ to the irradiance image I when
�z = 0, and the gradient of the irradiance in the z-axis. The
TIE is an elliptical second-order PDE which Teague was
able to reduce to the Poisson Equation by introducing an
auxiliary variable. Teague also showed the solution to the
TIE using Green’s functions for the limited case of a circu-
lar object. The next significant advance was by Paganin and
Nugent [19], who derived an algebraic solution for φ to the
TIE:

φ = −k∇−2
[
∇ ·

(
1

I0
∇∇−2 ∂I0

∂z

)]
(3)

where I �= 0 and ∇−2 represents an inverse Laplacian op-
erator. Equation 3 can be solved using finite element meth-
ods [2] or Fourier Transform based approaches [23]. The lat-
ter is most commonly used because the Fast Fourier Trans-
form (FFT) allows the solution to be computed very quickly.
The FFT-based approach computes the inverse Laplacian by

∇−2u(x, y) = F −1
[ F [u(x, y)]

|q|2
]

(4)

where the spatial frequency vector, q �= 0, is radially sym-
metric around the centre of the imaging field, and normal to
the direction of propagation. Figure 1 demonstrates an ex-
ample of phase recovery for a biological cell imaged using
brightfield microscopy by solving the TIE.

2.2 Local Phase Estimation

Oppenheim and Lim demonstrated the importance of phase
in images with a classic experiment in 1981 [17]. They
switched around the phase and amplitude components of
two distinct images, obtained through the Discrete Fourier
Transform (DFT), and reconstituted the images using the
inverse DFT to determine whether the amplitude or phase
component had the greater influence on the final appearance.
The resultant images turned out to resemble the images from
which the phase component was derived. These early ex-
periments studied image-based phase as a global property
across the signal domain, however attention soon turned to
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the properties of phase at a local level. Venkatesh and Owens
showed that this local phase property, ϕ̃, could be estimated
using a pair of band-pass filters that are in quadrature, lead-
ing to the following definition:

ϕ̃(t) = arctan

(
bo(t) ⊗ f (t)

be(t) ⊗ f (t)

)
(5)

where be, bo are even and odd band-pass quadrature filters,
and f (t) is the signal being analysed [22]. Typically, be is
selected on the basis of the current application, and is used
to derive bo by applying the Hilbert Transform to be. Each
filter responds maximally to the function with the same type
of symmetry. Local phase is defined as the ratio of the re-
sponses of the quadrature filter pair to the band-passed sig-
nal, and as such, provides a measure of the oddness or even-
ness of the localised signal. This measure has the useful fea-
ture of being independent of signal amplitude due to a prop-
erty called the split of identity which is assured by the an-
alytic signal. The split of identity means that the represen-
tation is unique for a given signal and that the invariance-
equivariance property is fulfilled. Invariance assures that
certain transformations will not have an effect on the feature,
i.e. local phase is invariant to changes in the local ampli-
tude, and as such it is contrast and illumination independent.
Equivariance on the other hand indicates that there is a clear
monotonic dependency of the property extracted and the pa-
rameters of a transformation, for example, local phase’s de-
pendence on structures present in images [10].

The above theory is well established in fields such as
electrical and acoustic signal processing, however it did not
initially not lend itself to a simple extension to 2D signals as
a suitable 2D odd filter did not appear to exist. The break-
through came when Felsberg and Sommer showed that al-
though 2D odd filters could not be defined using scalar-
valued filters, the use of vector-valued filters could generate
such a filter [8]. Felsberg and Sommer were able to deter-
mine this by using a 2D generalisation of the Hilbert Trans-
form known as the Riesz Transform, and were thus able

to generate 2D odd symmetric filters from a given even-
symmetric band-pass filter by convolving it with the follow-
ing odd frequency domain vector-valued filters:

H1(u1, u2) = j
u1√

u2
1 + u2

2

and

H2(u1, u2) = j
u2√

u2
1 + u2

2

(6)

Their discovery led to a new representation of 2D signals
known as the Monogenic Signal. They were able to derive
expressions for local energy (an intensity-dependent mea-
sure of feature strength) and local phase using 2D spheri-
cal quadrature filters. In addition, a novel property was ob-
tained, that of local orientation, which provides a measure
of the direction of maximal signal variance. Given a suitable
band-pass filtered image,

Ib(x, y) = I (x, y) ⊗ b(x, y) (7)

where b(x, y) is the selected band-pass filter, the local en-
ergy (Ã), local phase (ϕ̃) and local orientation (θ̃ ) are given
by

Ã(x, y) =
√

I 2
b + (H1 ⊗ Ib)2 + (H2 ⊗ Ib)2 (8)

ϕ̃(x, y) = arctan

(
H2 ⊗ Ib

H1 ⊗ Ib

)
(9)

θ̃ (x, y) = arctan

(
Ib√

(H1 ⊗ Ib)2 + (H2 ⊗ Ib)2

)
(10)

The computation of these is summarised in Fig. 2.
The choice of band-pass filter for calculating the odd and

even quadrature filters is a key step, and has been discussed
in a comprehensive review by Boukerroui et al. [5]. Bouk-
erroui examined the properties of several families of band-
pass filters, including Gabor, log-Gabor, Gaussian Deriva-
tive, Difference of Gaussian (DoG) and Cauchy filters, and

Fig. 2 The Monogenic Signal
allows the derivation of local
energy, local phase and local
orientation for 2D signals. The
images describe an even
Difference of Gaussian filter and
its corresponding odd
quadrature filter pair
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determined that with the exception of the Gabor filter, most
were suitable for feature detection. In our experience, im-
proved results can be obtained using a scale-invariant filter
devised by Mellor and Brady [15]. This is a tunable filter
which produces images with very sharp boundary edge fea-
tures, which is described in further detail in Sect. 3.2.

3 Relating the TIE to the Monogenic Signal

Our specific application for local phase is the segmentation
of biological cell boundaries from brightfield microscopy
images. These images are commonly acquired from entry-
level research microscopes which contain no hardware-
based contrast enhancement. Biological cells are transparent
fluid-filled objects which act as a lens. They appear near-
invisible when the microscope is in-focus, but exhibit in-
creased contrast when defocusing the microscope due to
diffraction effects. The improvement in contrast is at the
cost of image resolution, due to blurring by the microscope’s
Point Spread Function (PSF). One popular approach to seg-
menting cells in such images is to improve the contrast and
then use simple image processing techniques. In 2002, Nu-
gent et al. published a technique called Quantitative Phase
Microscopy (QPM), which solved the TIE directly to re-
cover the phase properties of the sample. The solution inside
cells is of a different refractive index to the external medium,
and thus a phase image provides improved contrast images
where the cells can be clearly visualised [3]. An example re-
sult can be seen in Fig. 1. These images can then be easily
thresholded, for example in [7].

One significant aspect of Fig. 1 is that the solution
contains a low frequency field in the background. Volkov
demonstrates that this is due to the application of inappro-
priate boundary conditions to the solution of Eq. 3, and rec-
ommends the use of periodic boundary conditions [23]. We
found that the application of different boundary conditions
did not significantly reduce the low frequency field in our
images. The field becomes more significant for larger im-
ages with multiple cells and additional noise. Figure 3 shows
the phase solution for larger images, where it is dominated

by very strong low frequency noise which obscures the cells.
This effect, which confounds any attempt to segment the
cells on the basis of recovered phase, has been widely re-
ported in the literature [4, 12, 18, 23], along with solutions
to minimise it through experimental changes and image fil-
tering, which have had limited success.

The Monogenic Signal provides a way to sidestep the ef-
fects of the low frequency noise, first by observing that a
key step in the FFT-based solution for the TIE can be incor-
porated into the Monogenic Signal to produce results which
resemble those from solving the TIE. It is then noted that
the Mellor-Brady filter can be used to approximate these re-
sults, but with the added advantage of increased tunability.
Finally, applying the modified Mellor-Brady filter with the
Monogenic Signal framework results in local phase images
with reduced levels of low-frequency noise, along with ad-
ditional local amplitude and local orientation images which
together provide a rich resource for more powerful image
processing of brightfield image data.

3.1 The Monogenic Signal can Reproduce TIE
Phase-Recovered Images

We start by noting that Eq. 4, the FFT-based solution for
the inverse Laplacian calculated for solving the TIE, can be
regarded as convolving the input image ∂I

∂z
with a radially

symmetric low-pass filter q(x, y)−2, where q is the spatial
frequency. This is identical to Eq. 7 of the Monogenic Sig-
nal formulation, with I (x, y) ≡ ∂I

∂z
and b(x, y) ≡ q−2. Lo-

cal energy and local phase images were computed using a
∂I
∂z

derivative image as the input for Eq. 7. The results in
Fig. 4 show that when the derivative image is used as the in-
put, the resulting local energy and local phase resemble the
TIE recovered phase results shown in Fig. 3, thus demon-
strating that the Monogenic Signal has the potential to re-
produce TIE phase recovered images. In contrast, when the
in-focus brightfield image is used as the input, the results
are meaningless (data not shown). This demonstrates that
the q−2 filter is only applicable to specific types of images.

The use of the TIE FFT filter to compute local energy and
local phase suggests that the Monogenic Signal may have

Fig. 3 (Left) A brightfield
image of multiple adherent
HeLa cancer cells. The image is
slightly defocused for clarity.
(Right) TIE phase-recovered
image, displaying a large low
frequency noise artefact
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Fig. 4 (Top) An input
derivative image ∂I

∂z
for Eq. 7.

(Bottom, left-to-right) The
output local energy image and
local phase image computed
from the input derivative image,
using the TIE-derived q−2

low-pass filter

potential uses other than as a feature detector. The results
suggest that physical phase ϕ can be approximated by

ϕ ≈ ∇−2 ∂I

∂z
(11)

Teague actually derived Eq. 11 from the TIE by introducing
an auxiliary function ψ [21], using

∇ψ = I∇φ (12)

to give

∇2ψ = −2π

λ

∂I

∂z
(13)

where ψ acts to scale the intensity values to produce phys-
ically meaningful values. The key point is that the use of
low-pass filters to generate quadrature filter pairs can pro-
duce results within the Monogenic Signal framework which
approximate the solution to the Poisson equation for phase
recovery. This confers two potential advantages. The first is
that if a filter can be found to approximate the q−2 low-pass
filter, but which is also tunable, then it may be possible to
’dial out’ the low frequency noise. The Mellor-Brady filter
is such a filter, and its application is discussed in the next
section. The second is that the Monogenic Signal permits
computation of local amplitude, local phase and local ori-
entation, which permit the development of advanced image
processing algorithms.

3.2 The Mellor-Brady Filter can Approximate the TIE
Low-Pass Filter

The choice of band-pass filter for calculating the odd and
even quadrature filters is a key step when using the Mono-
genic Signal. Earlier, we introduced the Mellor-Brady filter.
This useful filter is derived from the idea of geometric mo-
ments, Mp,q ,

Mp,q =
∫ ∫ ∞

−∞
I (x, y)xpyq dx dy (14)

where p,q determine the order of the moments. Positive or-
der geometric moments are often used to produce scale and
rotation invariant global image metrics such as the centre of
image intensity mass. Mellor used the definition for negative
order moments to produce local measures, and combined
this with negative powers of the radius r(x, y) = √

x2 + y2

to make the measures rotationally invariant:

Mk(x, y) =
∫ ∫

I (x, y)r−k(x − u,y − v)dudv (15)

This is equivalent to convolution with a radially symmetric
low-pass filter r−k , which is undesirable for feature detec-
tion due to the existence of a DC component. A band-pass
filter is created by taking the difference of two such filters to
give the spatial domain filter

f (r) =
[

1

rα+β
− 1

rα−β

]
(16)

where α and β are parameters which control the filter pro-
file. In practice, the algorithm is used with parameter values
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of α = 3.25, β = 0.25, as this results in a band-pass filter
which is relatively scale-invariant. However when α → 0, it
becomes a low-pass filter whose properties are comparable
to the q−2 filter. Figure 5 compares the Mellor-Brady filter
frequency domain profile against the q−2 filter for several
values of α. It can be seen that the case where α = 0.25 dis-
plays a high degree of similarity to the q−2 filter.

The Mellor-Brady filter is used to compute the local en-
ergy, local orientation and local phase for the derivative im-
age in Fig. 4. The results are shown in Fig. 6 using α val-
ues of 0.25,1.5,3.5. At α = 3.5 the local energy image
shows very weak feature signals, which is expected given
the low level of contrast of the original derivative image in
Fig. 4. The local phase image highlights cellular anatomic
features, which is expected given that local phase estima-
tion using band-pass filters and the Monogenic Signal is an
established intensity-invariant feature detection technique.
As α decreases, the cell boundaries become emphasised
in the local energy images, and the local orientation val-
ues point towards the cell boundaries from increasing dis-
tances. The cell interiors begin to fill in as α decreases, and
at α = 0.25 they approximate the TIE phase recovered im-
ages in Fig. 3. The low frequency noise patterns also begin
to manifest themselves in the local phase images, and these
are strongest for α = 0.25. Significantly, in comparison to
the TIE recovered phase image in Fig. 3, the low frequency
noise component of the α = 0.25 image is repressed and
the edge features are significantly enhanced. This ability of
the low-pass Mellor-Brady filter to generate output similar
to the TIE approach, but to additionally control and tune
the level of low-frequency noise, makes it potentially more
suitable for cell segmentation purposes compared to the TIE
phase-recovered images.

3.3 The Low-Pass Mellor-Brady Filter can Provide
Additional Information

The information derived from the Monogenic Signal com-
bined with the low-pass Mellor-Brady filter can facilitate
the development of advanced image processing algorithms.
Figure 7 shows the low-pass local phase and local orienta-
tion images obtained for a given brightfield image and its
derivative image. In this case, the local phase image allows
thresholding or region-growing algorithms to be applied to
identify the cells. The local orientation image directs algo-
rithms towards the cell boundary features, and thus can act
as a driving force which allows the algorithm to escape from
local minima. These have been incorporated into an auto-
matic level-set framework for segmenting cell boundaries.
Complete details of the segmentation algorithm are avail-
able at [1]. In brief, a multi-region level set implementation
based on the framework by Sethian [20] is used. A signed

Fig. 5 (Colour online) Frequency domain plots of the Mellor-Brady
filter profile (blue, Eq. 16) for α = 0.25,1.5,3.5, compared to the TIE
q−2 filter profile (red, based on Eq. 4)
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Fig. 6 (Left to right column)
Local energy, local orientation
and local phase images
computed using the derivative
image in Fig. 4, using the
Mellor-Brady filter with values
of α = 0.25 (top row), α = 1.5
(middle row) and α = 3.5
(bottom row). Standard
applications of the Monogenic
Signal use a band-pass filter
(α = 3.5) for feature detection,
however our application uses
α = 0.25, which yields a
low-pass filter. Each column is
rendered using the same colour
scale (0–1 for local energy,
0–2π for local orientation and
local phase)

distance function φ is generated, and the level set PDE be-
low is solved to convergence:

∂φ

∂t
+ F |∇φ| = 0 (17)

where the speed term F is given by

F = Fphase + Forientation + Fsmooth (18)

The first two terms in Eq. 18 use local phase and lo-
cal orientation images which have been computed using the
Mellor-Brady low-pass filter (α = 0.25, β = 0.25). Fphase is
a region term computed over the local phase image, whilst
Forientation uses the local orientation image to guide the level
set evolution, by comparing it at each iteration to the direc-
tion of ∇(φ = 0):

Forientation = cos(θ∇φ − θLO) (19)

where θ∇φ is the angle of the normal vector of φ, and θLO is
the local orientation angle at the corresponding pixel posi-
tion. The third term, Fsmooth, is a standard regularising term
using the curvature of φ. Sample results of the segmenta-
tion algorithm are shown at the bottom of Fig. 7. The algo-
rithm was able to correctly segment 81.3% (±3.2) of cell
body pixels, and was able to produce results on 85% of cells
tested. As a comparison, a Chan and Vese level set [6] was
applied to the TIE phase recovered images, and was only
able to segment 62% of cells with an accuracy of 76.1%
(±2.1), due to the confounding influence of the strong low-
frequency fields observed in Fig. 3.

In summary, the use of low-pass local phase images
makes the algorithm considerably more robust, and slightly
more accurate, than the TIE-based algorithm, due to the sup-
pression of the low-frequency noise fields and the enhance-
ment of the cell boundaries. The local orientation images
confer an additional advantage by enabling the level set to
converge faster on the optimal solution. This example illus-
trates one way in which the use of low-pass Monogenic Sig-
nal filters can provide an advantage for specific applications.

3.4 Analysis of the Low-Pass Mellor-Brady Filter

In Sect. 2.1 the TIE equation was introduced as Eq. 4 by
solving the inverse Laplacian. Given the theory of Mono-
genic Signal computation in 2D (Fig. 2), one could observe
that the first step in the process is the application of a band-
pass filter. In this section it is shown that a careful choice of
the filter, with specific attention given to the filter’s charac-
teristics in the spatial domain, holds significant potential for
applications involving the solution to inverse Laplacians.

The band-pass filter defines the nature of the features to
be extracted from digital images. Typically filter properties
are assessed in the frequency domain, with one of the most
important being the selection of narrow frequency bands
which then assures a proper recovery of the phase properties.
However, it is often neglected that, for local feature extrac-
tion such as phase properties, the localization requirement
in the spatial domain is equally (or more) vital.

One way of summarizing filter properties for local fea-
ture definition was presented in [16]. There are three desired



J Math Imaging Vis (2012) 43:156–165 163

Fig. 7 (Colour online)
(Top-left) In-focus brightfield
image, (top-right) derivative
image, (middle-left) local phase
map using low-pass filter,
(middle-right) local orientation
map using low-pass filter (with
directional arrows
superimposed). The scale in the
local phase and local orientation
images is −π (blue) to +π

(red). (Bottom row) Cell
boundary segmentation results
superimposed on brightfield and
fluorescent images. The local
phase and local orientation
images were generated by
applying the low-pass
Mellor-Brady filter
(α = 0.25, β = 0.25) to the
derivative image, as discussed in
Sect. 3.2

properties suggested as guidelines:

1. Scale invariance

f (ar) = s(a)f (r), where s(a) �= 0,∀a �= 0 (20)

2. Strong criteria of energy localisation of isotropic filters
in the spatial domain
∫ R

0
2πrf (r)2 dr ≥

∫ ∞

R

2πrf (r)2 dr,

∀ R > 0,R ∈ R

(21)

This means that the energy deposited in a finite area (a
circle for isotropic filters) is much greater than any en-
ergy that is left outside this area, i.e. at a distance greater
than the finite radius R.

3. The mean value of the filter is 0 in the spatial domain,
i.e. the filter DC value is 0, which allows accurate gradi-
ent estimation and is also essential for phase estimation
because of the ratio of the even and odd filters that are
needed.

Notice that the localisation is given as a strong criteria,
which is not definitely necessary in real applications. There-
fore, we hereby define a weaker condition of energy deposi-
tion namely

∫ R

0
f (r)2 dr ≥

∫ ∞

R

f (r)2 dr, ∀ R > 0,R ∈ R (22)

This means that we are only looking for the filter magni-
tude without the area term. As a result it is no longer re-
quired that the infinite area of the filter support is counter-
balanced by the infinitely small filter values in the region
[R,+∞), ∀R ∈ R finite number. It can be derived from the
above definitions that if a filter has the localisation property
according to the strong criteria then the weak criteria also
holds, however the converse is not true, hence the naming
convention introduced in this paper.

First we turn our attention to the filter that is used by
the TIE approximation, F(q) = 1

q2 for which the spatial

equivalent is defined as −
√

π
2 xSign(x), where Sign(x) =
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−1,∀x < 0, and +1 otherwise. To verify its spatial localisa-
tion properties, the integral formula for the strong criterion
is computed to be
∫

r · f (r)2 dr = c1 · r4, (23)

where c1 ∈ R is constant. The weak criterion readily avail-
able to be c2 · r3, with c2 ∈ R constant. This shows that nei-
ther the spatial localisation in the strong nor in the weak
sense can be satisfied (Eqs. 21 and 22).

In contrast, the Mellor-Brady filter satisfies all three con-
ditions suggested for any α < −1, as demonstrated in [16].
In order to mimic the TIE filter, the Mellor-Brady filter pa-
rameters are set to α = β = 0.25 (Sect. 3.2). In this scenario,
all the above properties hold, with the strong localisation be-
ing replaced by the weak one, as in Eq. 22.

4 Conclusions

This paper describes how the use of low-pass filters with
the Monogenic Signal framework can provide a novel way
to address problems which require numerical solutions to
the inverse Laplacian. The use of low-pass filters with the
Monogenic Signal is unusual because prior work in this area
is based almost exclusively on the use of band-pass filters. In
cases where a non-zero DC component exists, for example
with the Gabor filter, steps are often taken to correct this [5].
In our case however, the use of a tunable low-pass filter pro-
duces results that facilitate the solution to a problem in mi-
croscopy image processing. This demonstrates the potential
utility of non-standard filters when used to estimate local
feature metrics using the Monogenic Signal.

The key features of our approach are twofold. Firstly,
it introduces the ability to use tunable filters to mimic the

1
|q|2 term in the fourier transform solution to the inverse
Laplacian, such as the one used to solve the TIE (Eq. 4),
whilst controlling the degree of low-frequency noise intro-
duced into the solution (by satisfying the localisation cri-
terion, unlike the q−2 TIE-based filter). Secondly, it uses
the split of identity feature of the Monogenic Signal to de-
rive three equivariant properties, namely local energy, local
phase and local orientation. We have shown these represen-
tations to be valuable in the context of an iterative level set
algorithm which segments the boundary of biological cells
from brightfield microscopy image data, however the princi-
ples are likely to be generalisable to other problem domains
involving inverse Laplacians and image-based numerical so-
lutions.

There are several example applications requiring inverse
Laplacians. First, the Marr-Poggio theory of early vision en-
visaged the construction of a primal sketch in which zero
crossing contours were computed from a series of octave

separated Laplacian of a Gaussian filters (i.e. the Laplacian
of a Gaussian was convolved with the image). A central
claim of their work was that the original image can be recon-
structed from the zero crossing contours, and this is done by
solving the inverse problem [14]. In a similar vein, Horn pro-
posed a theory based around the human perceptual ability
known as lightness. Horn realised that lighting varies slowly,
however the associated colour changes (or more precisely,
albedo changes) are sharp, and he solved for lightness us-
ing the greens function for the inverse Laplacian [11]. These
suggest that, at least in the domain of computer vision, fur-
ther applications of our method may exist.
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