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Abstract We explore the practicability of Nash’s Embed-
ding Theorem in vision and imaging sciences. In particular,
we investigate the relevance of a result of Burago and Zal-
galler regarding the existence of PL isometric embeddings
of polyhedral surfaces in R

3 and we show that their proof
does not extended directly to higher dimensions.
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1 Introduction

Recently, the attention of the vision community was drawn
towards the important problem of isometric embeddings of
manifolds in R

n [43], in particular to the classical case of
surfaces and their embedding in R

3 or R
5 [9]. This approach

was further extended by the employment of metric tech-
niques that achieved fame through the celebrated work of
Michael Gromov [29]—see, [9, 10], amongst others. We do
not consider here the critique of the metric method in gen-
eral, since that would be, indeed, against our belief that it
represents a basic, essential tool in imaging (see, for refer-
ence, [66]), but concentrate rather on the first problem: that
of the isometric embedding.

Let us begin by noting that the departure from the en-
trenched view of surfaces as given only locally by parame-
terizations1 certainly has merit, as does the realization that
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1Usually via by spline functions.

surfaces, i.e. 2-dimensional manifolds, need often to be em-
bedded, in a metrically controlled manner, in some R

N .
(The preferred value of N is, for obvious reasons, equal
to 3.) However, there are some deep and disturbing prob-
lems stemming from this approach, that is based upon the
celebrated Nash Embedding Theorem.

We begin with the least of these problems: the feasibil-
ity of finding an isometric embedding of a given, smooth
orientable surface (or, more generally, an orientable mani-
fold) in some R

N , for N large enough. The root of the diffi-
culty in writing and implementing an algorithm based upon
Nash’s Theorem resides in the fact that this theorem2 is a
obtained via a fixed point method. The impediment here re-
sides not only in the fact that such a method requires, at
least theoretically, an infinite number of steps,3 but rather
in the disturbing fact that the manifolds in the approximat-
ing sequence are not usually submanifolds of the same R

N ,
where N represents the dimension of the Euclidean space in
which the target (approximated) manifold, is (ideally) to be
embedded—see also Remark 1.1 below.4 This is not just a
theoretical, quasi-philosophical quandary, but rather a seri-
ous impediment: indeed, since computers, by their very na-
ture, can perform only a finite number of approximations,
the computed manifold will be embedded in a dimension
different from the one stipulated (and often depicted—see
also Remark 6.9 below).

Even if we can, somehow, surmount this difficulty, one
still is faced with the dire specter of dimensionality. To make

2Together with other two recently famous methods: the circle packing
[35, 36] and the Riemann Mapping Theorem (see, e.g. [4]).
3And that it is far less algorithmic in nature than the Picard Fixed Point
Theorem of Differential Equations fame.
4A very similar problem arises also in the computational Riemann
Mapping Theorem.
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this assertion clearer (and more concrete) let us recall a few
facts regarding Nash’s Theorem.

The celebrated Nash Embedding Theorem [52] assures
the existence of an isometric embedding of any Ck, (3 ≤
k ≤ ∞) orientable5 manifold of dimension n into some R

N ,
for some N sufficiently large. In contrast with the topo-
logical case, were one has the classical Whitney’s Theo-
rem (see Appendix 1), the embedding dimension ensured
by the Nash theorem is prohibitively large, giving N =
n(3n+11)

2 . (Note, however, that in Nash’s original work, the
embedding dimension for noncompact manifolds was N =
3
2 (n2 + 5n)(n + 1).)

Even with the further dimension reductions of Gromov
[26, 28] and Günter [30, 31], the assured embedding dimen-
sion, namely (n2 + 10n + 3), for n ≥ 3, and (n + 2)(n + 3),
if n ≥ 4 and max {n(n+3)

2 + 5,
n(n+5)

2 }, respectively, numer-
ics are not very promising: the embedding dimension N of a
surface (i.e. 2-dimensional manifold) provided by the orig-
inal Nash Theorem is 17, and by Gromov’s and Günter’s
improvements, 10. However, a special method developed by
Gromov ([28], p. 298) decreases the embedding dimension
for compact surfaces to 5, while for compact 3-manifolds
the lowest guaranteed embedding dimension is N = 13—
see [28], p. 305. (Moreover, there exists a local isometric
embedding of a given M2 in any 5-dimensional manifold
N5—see [28].)

Strikingly, there is nothing really known about the case
k = 2 (its omission in the discussion above being no mis-
take).6 Since curvature (of differentiable surfaces, at least)
is essentially a C 2 notion7 one would count on a general
Nash embedding theorem for this case, that would allow a
straightforward application in imaging.

When one further relaxes the smoothness condition, the
embedding dimension decreases dramatically: any C 1 ori-
entable 2-manifold is isometrically embeddable in R

3 (see
[45, 51]).8 Indeed, since the proper (i.e. differentiable) no-
tion of curvature makes sense only for manifolds of class
≥2, the additional dimensions that are required to deal with
curvature,9 are not necessary in the C 1 case. The role of the
lack of differentiability is further emphasized by the fact that
by Nash-Kuiper Theorem, even the flat torus is C 1 isometri-
cally embeddable in R

3, in contrast with Tompkins’ Theo-
rem [74] (see also [69], pp. 196–197) that asserts that com-
pact flat C 2 manifolds are not even isometrically immersable

5In the following, all manifolds are supposed to be orientable, except
if otherwise specifically stated.
6It is not even known whether C 2 manifolds admit C 2 isometric immer-
sions in R

3.
7Indeed, almost all the corpus of classical differential geometry of sur-
faces may be developed assuming only this degree of smoothness.
8The PL version of this result (and its extension to higher dimensions)
represents the subject of following 3 sections.
9Using, for instance, the Gauss Equation—see, e.g. [1, 18].

into R
2n−1. Not only this, but also the following result (due

to Kuiper [45]) holds: The unit sphere S
n ⊂ R

n+1 admits an
isometric C 1 immersion in R

n+1, for any n ≥ 1. (This being
in sharp contrast with the fact that any such C 2 immersion is
congruent to the unit sphere, for n ≥ 2.)

Moreover, any C 0 embedding is smoothable to C 1, there-
fore Whitney’s Embedding Theorem (see Appendix 1) im-
plies Nash’s Embedding Theorem (for n ≥ 2).

We should note that the case of analytic manifolds is,
again, different: In [53] Nash proved that any compact (real)
analytic n-dimensional manifolds has an isometric embed-
ding in 3

2 (n2 + 5n). Gromov [26] extended Nash’s result to
include noncompact manifolds and also reduced the embed-
ding dimension (for both cases) to 1

2 (n2 + 7n + 10).

Remark 1.1 The striking difference between the results for
the various degrees of smoothness emphasize once more the
delicate manner in which one should approach the embed-
ding problem, and even more so its practical applications.
Moreover, even small variations of the metric, especially
those producing change in the sign of (Gaussian) curvature
(see also Remark 5.2), can abruptly change10 the embedding
dimension (see [33] for a plethora of results in this direc-
tion).

It follows that, when using approximating sequences
of PL manifolds and the isometric embedding technique,
one can not ascertain with any degree of certainty that the
sequence of embeddings remains in the same (minimal)
dimension. Indeed, those familiar with polygonal meshes
(e.g. people working in the field of graphics) know that—
quite counterintuitively—even polygonal approximations of
spheres have vertices of (concentrated) negative curvature
(that is saddle points).

Therefore, the only general assured embedding dimen-
sion is that guaranteed by the Nash-Gromov-Günther Theo-
rem.

Remark 1.2 Since we perceive shape, rather than distance,
and since, by the previous remark (and the discussion pre-
ceding it, as well as by Remark 3.5 below), curvature, hence
shape, is lost, it follows that C 1 isometric embeddings and
their PL counterparts are far less useful in imaging, recogni-
tion and matching purposes than hoped for.

Before proceeding any further, we have to add that we are
aware that some readers are less familiar with some of the
necessary background in differential topology and that, in
any case, it would be best to refresh the basic necessary no-
tions regarding immersions and embeddings. Therefore, we
have included a glossary of relevant notions as Appendix 1.

10And, unfortunately, usually increase.
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Given its goal, the pace is slow and the tone is rather di-
dactical, therefore many a reader may want to omit it. How-
ever, since we also discuss therein one of the common mis-
understandings regarding isometric embeddings, we believe
it may be useful to all.

2 A Suggested Solution: PL Isometric Embeddings

It has been suggested to us [59] that the disquieting facts re-
garding the smooth embeddings considered in Nash’s The-
orem need not disturb us to much, for, in the imaging and
graphics practice, one is faced, in many cases (at least at
some intermediary processing stage) with PL-flat surfaces
(“triangular meshes”)11 and for these a highly surprising and
widely unexpected result exists,12 namely the following the-
orem due to Burago and Zalgaller:

Theorem 2.1 Any compact orientable PL 2-manifold ad-
mits an isometric embedding in R

3.

The common wisdom regarding the statement above is,
of course, that in imaging and graphics such surfaces rep-
resent the geometric object under investigation, or at least a
“decent” approximation of it.

Unfortunately, this does not represent the solution of the
problem in question. Indeed, a number of problems arise as
soon as one examines this theorem a bit closer.

To begin with, the formulation above, while convenient
and easy to recall, is not the correct one. The correct one
can be found in [28], p. 213 (but recall also the title of the
paper [15] of Burago and Zalgaller):

Theorem 2.2 (Burago-Zalgaller [28]) Every compact ori-
ented surfaces with a piecewise linear metric can be piece-
wise linearly isometrically embedded in R

3.

First thing that strikes us is the apparently cumbersome
and futile new terminology. However—as usually is the
case in Mathematics, these apparent pointless minutiae and
stresses are essential, and not due to just a whim of the math-
ematician. To comprehend this better in the case at hand, we
should first understand the difference between the two (ap-
parently identical) notions:13

11Or only slightly more general polyhedral surfaces.
12For some more recent, seemingly paradoxical, related results, see e.g.
[13, 54, 55].
13Given the space limitations and the desire for cohesiveness, we must
assume the reader is familiar with the very basic notions of PL topol-
ogy. (For a deep, yet enjoyable and not overly technical source on these
notions, see [73]. See also Appendix 1 for additional material on em-
beddings.)

PL isometric embedding If P is a simplicial polyhedron
of dimension n, any simplicial map f : P → R

m (which is,
by definition, linear on any simplex of P ) induces a flat met-
ric on each such simplex and, in consequence, a (singular)
Riemannian metric g on P . More precisely, if P has k edges,
then g is uniquely determined by the vector (g1, . . . , gk),
where gi = (length(ei))

2. Saying that f is a PL isometric
embedding means that f is as above and, in addition, it is
also an embedding.

PL isometric embedding of subdivided polyhedra In this
case, the mapping (embedding) f : P → R

m is required to
be linearly isometric on the simplices of a simplicial subdi-
vision of P . Evidently, by a sufficient number (albeit practi-
cally infinite) number of subdivisions, one can approximate
the Riemannian case using PL metrics, i.e. such that each
simplex of P is isometric to a Euclidean simplex (in R

n).
So, why is the first definition not adequate? The main

problem is its rigidity: Informally put, one “has to work with
what he’s got”. That is, further subdivisions (hence approx-
imations) are not allowed. Therefore, this approach rapidly
reduces to a largely combinatorial problem, at least in many
of its aspects (see, e.g. [38]).

Moreover (and more important) this rigidity is not just
of convenience (so to say), quite the contrary—it is es-
sential. Indeed, most14 PL isometric maps are rigid, in the
(geo-)metric sense:

Theorem 2.3 [28] Every small deformation of a n-dimen-
sional polyhedron embedded (immersed) in R

n+1 is an
isometry.

In fact, the result just mentioned is more general, but to
avoid a further detour, we refer to [28], pp. 210–211.

Obviously, the second notion is far more attractive, both
for the geometer/analyst as well as for Computer Graphics
and related fields. However, caution should be taken, since
this is still a very flexible notion, since just the metric is to
be preserved. For instance, one has the following result of
Zalgaller [76]:

Theorem 2.4 [76] Let P be a simplicial polyhedron of di-
mension n,n ≤ 4, endowed with a PL metric. Then P admits
an equidimensional PL map into R

n.

This is a very surprising and counterintuitive result.15 So,
even though the embedding condition is omitted, it prepares
us to understand somewhat better the problematic nature of
the definition and of the Burago-Zalgaller theorem.

14Here “most” has a precise mathematical meaning: More precisely,
generic simplicial mappings are rigid, where “generic” is a rather tech-
nical term (see [28]).
15However, it represents the PL version of the C 1 version (that holds
for any n)—see, e.g. [28].
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To further elucidate these notions we take below a closer
look at Burago and Zalgaller’s proof.

3 The Burago-Zalgaller Construction

Main idea of the proof is—not very surprisingly—to adapt
the proof of the C 1 Nash-Kuiper Embedding Theorem.16 For
this, one starts with a (smooth) embedding of the given poly-
hedron in R

3, composed with a contracting homotety. Then:

• Carry out a sequence of stages, divided in turn into a large
number of steps, each of which improves the approxima-
tion to isometry and such that the function obtained at
each stage is short:

Definition 3.1 (Short mappings) Let (X,d) and (Y,ρ) be
metric spaces. A map f : X → Y is called C-short iff

ρ(f (x), f (y)) ≤ Cd(x, y), for all x, y ∈ X .

f is called short (or contracting) iff it is C-short, for some
C < 1.

• Add “ripples”, producing thus a PL version of Kuiper’s
adaptation [45] of Nash’s twist [51] such that one will
have “enough space” to isometrically embedded the sur-
face in R

3.

We won’t dwell too much in the details of the proof, just
mention some of the principal “geometric” stages:

(1) Basic construction element
(a) Let T = �(A1,A2,A3) and t = �(a1, a2, a3) be

acute triangles;
(b) let B,b and R, r the centers and radii of their re-

spective circumscribed circles;
(c) let Ep = 1

2AkAl, ep = 1
2akal; p,k, l ∈ {1,2,3};

(d) and let Hp = BEp,hp = bep .
Moreover, let T 	 t,AkAl > akal, k, l ∈ {1,2,3}.
Then T can be isometrically PL embedded in R

3,
as the pleated surface included in the right prism
with base t , such that AkAlAp fits akE

′
palE

′
kapE′

l ,
where: B ′b⊥t,B ′ap = R and E′

p,E′
k,E

′
l on the

faces of the prism, such that akE
′
p = Eipal =

1
2AkAl .
The following variations of the basic construction
above are also considered:
(i) Each angle ϕ of T satisfies the condition 0 <

α < ϕ and C · AkAl > akal ,C < 1. Moreover,
AkAl/akal ≈ 1.

16We preserve in the following overview of the proof the notation of
[15]. For copyright reasons we do not reproduce, however, the figures
included therein, but rather refer the reader to the original source.

(ii) Each of the lateral faces of the prism—including
the broken lines akE

′
pal—can be (indepen-

dently) slightly rotated around the lines akal

such that the construction still can be per-
formed. (The rotation angle depends upon the
constants α and C above.)

(In general, one has to simultaneously construct a
large number of the units above.)

(2) Standard embedding near vertices
Use the standard conformal map (or folding) from
K(θ,ρ) = {0 ≤ ϕ ≤ θ,ρ > 0} to K(λ, r) = {0 ≤ ψ ≤
λ, r > 0} given by:

ψ = λ

θ
ϕ, r = aρλ/θ .

(The most important case for our purposes being: λ =
2π .)

(3) The triangulation and its refinement
Let A be a vertex of total angle θ .
(a) If θ < 2π , then encircle A by a small “regular”

hexagon composed of 6 triangles of apex angle θ/6.
Some small enough neighbourhood of A the will be
mapped by the standard conformal mapping onto a
planar disk.
Over each triangle included in such a neighbour-
hood, one can perform the basic construction, ob-
taining a PL isometric embedding of this neighbour-
hood.

(b) If θ > 2π , proceed analogously to the previous case
but
(i) In a small circular neighbourhood of radius r1

map (a) isometrically on radial segments and
(b) using a θ/2π contraction on circles centered
at A;

(ii) In a annular neighbourhood {r1 < r < r2} use
the standard conformal mapping with the same
contraction factor θ/2π .

Replace the neigbourhood above with a “cogwheel”
(i.e. a circle surrounded by isosceles “triangles” of
sides, e.g. 2δ, and having as bases arcs of the same
length). The interior of each “cogwheel” is PL iso-
metric embedded using “ripples”. (The basic ele-
ment of each such “ripple” is a pair of congruent tri-
angles, having a common vertex in the center of the
“cogwheel”, one side (of each) being a radius, and a
second common vertex built over the midpoint of an
arc used in the construction of the “cogwheel”—see
Fig. 4 of [15]). Away from neighbourhoods of ver-
tices, refine the triangulation using only acute trian-
gles. In particular, at convex vertices subdivide each
triangle into n2 similar triangles, for some large
enough n; while at non-convex vertices into almost
regular triangles.



J Math Imaging Vis (2012) 43:143–155 147

Remark 3.2 Adaptations [15] of the main technique exposed
above ensure the existence of PL isometric embeddings of
(orientable) PL manifolds with boundary and of PL immer-
sions of nonorientable PL manifolds.

Remark 3.3 A close examination of the arguments of the
proof shows that Theorem 2.2 can be extended to include
(orientable) non-compact manifolds with bounded (general-
ized) principal curvatures [63].

Yet one naturally has to ask himself the following

Question 1 Is the Burago-Zalgaller Theorem applicable for
Image Processing/Computer Graphics?

Unfortunately, the answer is negative, for the following
reasons:

(1) The construction yields an (infinite) approximation pro-
cess, akin to the original Nash-Kuiper method, hence
numerical errors have to contended with and taken into
account.

(2) The geometry17 of the limiting object is very far from
the one of the “target surface”: Not only is the result-
ing PL surface strongly “corrugated” (as evident from
the construction), it my also contain “superfluous” ver-
tices, i.e. where the curvature (of the metric) is zero.
Moreover, for surfaces of positive extrinsic curvature, it
is quite possible that the surface admits not even an iso-
metric immersion in R

3 such that the extrinsic curvature
equals the intrinsic one. (For the technical definitions
and a simple example of a PL 2-sphere exhibiting this
behavior, see [14], p. 76.)

Also, note that “accidents” in the original embedding
can produce widely diverging subdivision schemes—
see also Remark 1.1. (To grasp this widely divergent be-
havior, one should consider, for instance, the examples
quoted in footnote 10.)

Example 3.4 (Burago-Zalgaller, Example 1.5) For any
ε > 0, the flat torus T

2 (i.e. the “topologist’s torus”, ob-
tained by “gluing” the opposites sides of a plane square
via Euclidean translations) admits a PL isometrical embed-
ding ε-close to the rotation (“round”) torus (see, e.g. [19],
pp. 434–435).18

However, one should understand that while the two tori
are close in the metric sense, they are “far away” in the geo-
metric one (see also Remark 3.5 below). If the details given

17All important in any practical implementation.
18Again, this result represents the PL equivalent of its C 1 counterpart—
see the discussion in the Introduction.

above of the Burago-Zalgaller construction and one’s intu-
ition still do not suffice, then one should recall, as a fur-
ther argument, Mahler’s Compactness Theorem [49] that,
in its geometric form (see, e.g., [28], p. 77), states that
a sequence of n-dimensional flat tori19 converges (in the
Gromov-Hausdorff metric20) to a flat torus of dimension
m ≤ n. In consequence, the limit of such a sequence can not
be a round torus. The apparent contradiction between this
fact and the example of Burago and Zalgaller rests in the fact
that the aforementioned authors consider, as we have already
seen, only converging sequences of PL-flat tori, and these
fail to be flat on their singular set. Unfortunately, this set
tends to be quite large, since its components are produced at
each (of the large number of) iterations, by every geometric
folding step (basic construction element, “cogwheel”, “rip-
ple”, etc.). Therefore, the flatness of the limit torus will be
quite local and the geometry at the points of the singular
(non-flatness) set will diverge quite widely from the one of
the flat torus—see the following remark for a discussion on
this aspect.

Remark 3.5 It is contended in [7], p. 618, that the Burago-
Zalgaller embedding method preserves curvature. However,
this assertion is not made in [15].21 Indeed, this is not pos-
sible, as the example above clearly hints and as we shall
explain in some detail below.

First, we should understand what type of curvature is pre-
served. Evidently, not the canonical (“smooth”) one of clas-
sical differential geometry, since the considered surfaces are
not even C 1. It may be that the authors of [7] refer to the fact
that a piecewise flat surface (or polyhedron) remains piece-
wise flat during the embedding process and, as such, its cur-
vature is identically zero at all the points that do not belong
to the vertices and edges of the triangulation. However, it is
explicitly emphasized in the very introduction of [15] that
“the metric of a polyhedron is locally flat except22 at a finite
collection of points; these points are the “true” vertices.”23

However, it is precisely at these points that Gaussian cur-
vature is concentrated (being the defect of the planar angles
(of the faces) incident at any such vertex). This is a known,
in fact, since Descartes, but it was introduced in modern
Mathematics by Hilbert and Cohn-Vossen [34], and devel-
oped first by Polya [60] and then by Banchoff [2, 3] and,
more recently by Stone [70] and Fu [21]. (Mean curvature

19Algebraically, they can be described as a sequence {Rn/�k}k , where
�k is a lattice.
20See, e.g., [22, 66]
21In fact, the authors of [15] explicitly state (see [15], p. 370) that they
“. . . prove the . . . discrete analog of the well-known result of J. Nash
and N. Kuiper on C 1-smooth isometric immersions” (our emphasis).
22Our emphasis.
23[15], p. 369.
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is, by contrast, concentrated along the edges of a polyhedral
mesh, as the dihedral angle of the two faces who’s intersec-
tion is any specific edge—see [47] for a succinct presenta-
tion and for the bibliography within.)

4 A Shattered Hope

Having seen that the Burago-Zalgaller construction is not
applicable as such, one at least hopes for a positive answer
to the following natural

Question 2 Does Burago-Zallgaler’s Theorem hold in di-
mension n ≥ 3?

Perhaps unexpectedly, and contrary to the unsubstanti-
ated statement of [7],24 the answer to this question is not
known! However, there are indications that the answer is
negative. These indications emerge from the proof in dimen-
sion 2:

(1) The proof is based on the previous result of Burago and
Zallgaler on the existence of acute triangulations.
Strangely enough, next to nothing is known about the
existence of such triangulations in dimension n ≥ 3.25

(2) The proof heavily relies on the use of the use of the stan-
dard conformal map to produce a mapping that (around
the vertices) is arbitrarily close to conformality (and, in
the end) to isometry.
However, in dimension n ≥ 3 this is not possible: the
analogue of the standard conformal map has dilatation
bounded away from 1! Indeed, we can be more specific.
But first, a few technical26 details:

Definition 4.1 (Wedges) Let x ∈ R
n be a point with cylin-

drical coordinates x = (r cosϕ, r sinϕ, z1, . . . , zn−2). The
set Dα = {0 < ϕ < α}, (0 < α ≤ 2π) is called a wedge of
angle α.

Definition 4.2 (Foldings) The homeomorphism. f : Dα →
Dβ , f (r,ϕ, z) = (r, α

β
ϕ, z), z = (z1, . . . , zn−2) is called a

folding.

Before proceeding further, the reader should familiarize
herself/himself with the technical notions regarding quasi-
conformal mappings. Not wishing to interrupt the flow of

24In fact, the abstract [44] does state the result but does not sustain it
was actually obtained.
25The little existing information is summarized by Zamfirescu [77].
(Some additional hope stems from a different method developed re-
cently by Tasmuratov [71].)
26But hopefully not too technical—we shall restrict ourselves to the
simplest case.

geometric arguments, we have concentrated these in a short
appendix (Appendix 2).

Proposition 4.3 (Gehring-Väisälä [24, 75]) Let Dα,Dβ be
wedges, and let f : Dα → Dβ be the respective folding. If
α ≤ β , then f is quasiconformal, with dilatations KI (f ) =
α
β
,KO(f ) ≥ ( α

β
)1/(n−1). In particular, for β = π , we obtain

KI (Dα) = π
α
,KO(Dα) = (π

α
)1/(n−1), whence K(Dα) = π

α
.

Remark 4.4 Remarkably, the coefficients of quasiconfor-
mality for non-convex domains (i.e. π < α ≤ 2π ) are not
known.27

Following [16], we note the following natural generaliza-
tion of the definition of a wedge:

Definition 4.5 The domain Dαk ⊂ R
n,Dαk = {(r, ϕ1, . . . ,

ϕn−k+1, zn−k+1, . . . , zn)}, 0 < ϕk < αk ,1 ≤ k ≤ n − ν −
1, α = (α1, . . . , αn−ν−1), 0 < α1 ≤ 2π,0 < α2, . . . , αn−ν−1

≤ π is called a dihedral wedge of type ν and angle α.

Remark 4.6 For k = n − 2 we recuperate the classical defi-
nition of wedges.

The numbers that allow us to ascertain whether two
domains are quasiconformally equivalent, i.e. that one is
the quasiconformal (therefore homeomorphic) image of the
other, and, if so, which is the smallest possible dilatation of
such a mapping, are called the coefficients of quasiconfor-
mality (see Appendix 2). We have the following

Proposition 4.7 [16] The coefficients of quasiconformality
for Dαk are:

KI (Dαk) = πn−k−1

α1 · · ·αn−k−1
,

KO(Dαk) ≥
(

πn−k−1

α1 · · ·αn−k−1

) 1
n−1

,

K(Dαk) = πn−k−1

α1 · · ·αn−k−1
.

(1)

Corollary 4.8 Let P be a convex polyhedral domain in R
n

and let m denote the number of faces of P . Then we have the
following estimates:

KI (P ) ≥ m − n + 2

m − n
, KO(P ) ≥

(
m − n + 2

m − n

) 1
n−1

,

K(P ) ≥ m − n + 2

m − n
.

(2)

27At least to the best of our knowledge.
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Remark 4.9 Evidently, the same estimates hold for PL-
smooth convex manifolds.

Hence, for polyhedra with a very large number of faces,
such as encountered in (good) PL approximations of do-
mains D in R

3 (or, more generally, in R
n), having smooth

(convex) boundaries, K(D)  1. Even without considering
approximations and without making appeal to Corollary 4.8,
one can easily produce (convex) polyhedra P that require ar-
bitrarily large dilatation K(P ), by choosing polyhedra with
at least one dihedral angle (between n-faces) π/m, where
m is any (arbitrarily large) natural number, and applying
Proposition 4.3 directly.28

It is interesting to note in this context, that (at least for
polyhedral domains in R

3) the “primary carrier” of dilata-
tion is the mean curvature H—see Remark 3.5 above.

5 Final Comments

5.1 Glimmers of Hope

We bring below two different approaches to the embedding
problem, that both circumvent the intricacies of the Nash
Embedding theorem mentioned in the preceding sections.

5.1.1 A Compromise

Reviewing the facts above, it is hard not to reach the con-
clusion that the situation is quite bleak, as far as the practi-
cal use of Nash’s Embedding Theorem is concerned. How-
ever, one may quite justifiably sustain that making appeal
to global isometric embeddings in general, and to Nash’s
Theorem in particular, is to be somewhat overenthusiastic.
Indeed, it may be very well claimed, that one is rarely faced,
in computer vision, graphics and other related domains, with
surfaces (manifolds) globally defined, hence one can restrict
himself to local isometric embeddings. After all, this is the
position already adopted (albeit in a different context, where
large amounts of data have to be processed) in the widely
quoted work of Roweis and Saul [62]. The method of [72]
is also basically local (see, however [20] for a discussion on
its possible globality).

This approach is also augmented by the very first result
on isometric embeddings, namely the following theorem of
Burstin, Janet and Cartan (see, e.g. [69]):

Theorem 5.1 (Burstin-Janet-Cartan) Any (real) analytic
manifold Mn can be locally (real) analytically isometrically

embedded into R
n(n+1)

2 .

28For a stronger result regarding the nonexistence of isometric embed-
dings for PL manifolds in dimension ≥3, see [63].

The problem with the result above is the fact that it re-
quires analyticity. In fact, even if conjectured already by
Schlaefly in 1873, the proof of the result above for C∞ man-
ifolds is still elusive. (It is true, however, that weaker forms
of this result—that is, with higher embedding dimension—
were obtained by Greene [25] and Gromov [28].)29

Remark 5.2 As in the global case, for lower differentiability
classes, no general results are even possible. Indeed, there
exist a counterexample, due to Pogorelov [58], of a C 2,1

metric on the unit disk B
2 = B

2(0,1) ⊂ R
2, such that there

exists no C 2 isometric imbedding in R
3 of B

2(0, r), for any
0 < r < 1. (See also [50] for some more recent results in this
direction.)

Still, one may argue (rather convincingly) that it is quite
common30 in imaging and vision to adopt smooth, even ana-
lytic models and consider standard types of approximations
(for the manifolds and for various differential operators on
these manifolds).

A further incentive to adopt the local point of view as a
viable and practical alternative for the Nash embedding the-
orem, at least as far as surfaces are concerned, is provided
by the low embedding dimension (compare with the dis-
cussion in the Introduction, regarding the Nash dimension).
Indeed, by a result of Jacobowitz [37], any smooth (more
specifically of class Cm,m > 3) 2-dimensional Riemannian
manifold admits a smooth local isometric embedding in R

4.
The embedding dimension can be further reduced to 3 if the
given surface has strictly positive Gaussian curvature (see
[37]). Unfortunately, the proof is again based upon an infi-
nite iteration scheme, so the problems raised above in con-
nection with the Nash embedding resurfaces again. How-
ever, an alternative, constructive proof, due to Poznyak [61],
exists—see [42], p. 82 (also [33], Proposition 41), for an
outline of the proof. Moreover, the proof provides a stronger
result, by producing an embedding of the given surface into
a specific 3-dimensional hypersurface embedded in R4. It
seems, therefore, that for surfaces, the use of local embed-
dings represents an approach truly feasible in applications.

5.1.2 More Dimensions

Surprisingly, a very effective (at least from the theoretical
viewpoint) alternative embedding method follows the quite
opposite direction: Instead of reducing the scope of the em-
bedding, one can extend it by adding dimensions. That is,
one can embed Mn not in some R

N , but in an infinitely di-
mensional space, more precisely in L∞(Mn)—the (Banach)

29The author is not aware of the existence of meaningful, general the-
orems regarding Ck manifolds, for 2 ≤ k < ∞.
30Even though the author does not subscribe himself to this philosophy.
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space of bounded Borel functions on Mn, endowed with the
“sup” metric, i.e. d(f,g) = supx∈Mn |f (x) − g(x)|, for any
f,g ∈ L∞(Mn)—via the Kuratowski Embedding [46]:

Definition 5.3 (Kuratowski embedding) Let Mn be a closed
Riemannian manifold. Then

K : Mn → L∞(Mn), K(x) = distx ,

where

distx = dist(x, ·), (3)

where “dist” denotes the (intrinsic, Riemannian) distance on
Mn, is called the Kuratowski embedding (of Mn).

This method is much more powerful than it would appear
at first sight. Indeed, the Kuratowski embedding is an isom-
etry, more precisely we have the following Lemma (see, e.g.
[32]):

Lemma 5.4 With the notation above, we have

d(distx,disty) = dist(x, y).

Remark 5.5 This approach is widely divergent from the
Riemennian embedding one adopted in Nash’s Theorem. In-
deed, the Riemannian and Kuratowski embeddings coincide
iff K(Mn) ⊂ L∞(Mn) is a convex, open subset of an affine
linear subspace of dimension n.

On behalf of the Kuratowski embedding, one can remark
that, albeit being infinite dimensional, it may be quite advan-
tageous when a functional approach is needed or sought for
(e.g. when considering spline functions, wavelets, etc.).31

However, usually (and more realistically) the spaces that ap-
pear in Computer Science (and even more so in Graphics)
are finitely dimensional. Moreover, most people in the said
communities find infinitely dimensional spaces as somewhat
of an artifice, highly nonintuitive, and of theoretical value at
best.

Fortunately, there exists a finitely dimensional version of
the Kuratowski embedding: Let X be an ε-net32 in Mn,
|X| = m. Then, for small enough ε, KX : X → lm∞ is an
embedding, where KX = K|X—the restriction of K to X
and lm∞ denotes the m-dimensional Banach space endowed,

31A closely related approach is well known to the Imaging and Vision
community: Embedding by using the eigenvalues of the Laplacian or
of the Green Kernel. (For applications of these methods in the context
of Riemannian Geometry, see, e.g. [5, 39].)
32Recall that ε-nets are defined as follows:

Definition 5.6 Let (X,d) be a metric space, and let A ⊂ X. A is called
an ε-net iff d(x,A) ≤ ε, for all x ∈ X.

again, with the “sup” metric: if x = (x1, . . . , xp), then ‖x‖ =
supi |xi |.

Moreover, we can assure that this “discrete” version of
the Kuratowski embedding is bi-Lipschitz, more precisely
we have the following result [32, 41]:

Theorem 5.7 Let Mn be a compact Riemannian manifold
without boundary. Then, for any C > 0, there exists a ε-net
X, where ε = ε(C), such that

(1 − C)dist(x, y) ≤ |KX(x) − KX(y)| ≤ dist(x, y). (4)

Due to the theorem above, the finite dimensional version
of the Kuratowski embedding is proves to be very useful in
Global Differential Geometry: Its use in the study of sys-
toles was pioneered by Gromov [29] (see also [32, 41]). It
was also employed to prove yet another result of Gromov
[27] (and Katsuda [40]), namely a rigidity theorem: Infor-
mally stated, the theorem in question asserts that if two n-
dimensional (compact) Riemannian manifolds, having the
same lower bound for their volumes, and upper bounds on
diameters and sectional curvatures, are sufficiently close one
to each other in the Gromov-Hausdorff (metric) topology,33

then they are diffeomorphic.
Since the manifolds usually encountered in Imaging, Vi-

sion, etc., naturally satisfy such bounds, it follows that the
result above, as well as the finitely-dimensional Kuratowski
embedding in general, are quite relevant for applications in
the mentioned fields, in particular for recognition type prob-
lems.34 (See also [64] for a different application of the Kura-
towski embedding in Imaging, namely to Sampling Theory.)

5.2 A Possible Solution

A more realistic approach (both from the theoretical and im-
plementational viewpoints) would be to obtain a Discrete
Nash Embedding Theorem [48]. A certain amount of con-
fidence in the feasibility of obtaining such a result stems,
amongst others, from the existence of discrete versions of
the required differential operators and invariants (see, e.g.
[11, 12]).

Another geometrization approach stems from the differ-
ential geometry of metric spaces (see, e.g. [8]). By using a
discretization of the (metric) Finsler-Haantjes curvature of
curves [65] we can obtain the embedding, via a proper dis-
cretization of the Gauss-Bonnet theorem, of any given met-
ric graph, not into R

n (or lp , H
n) but rather into a model

space (a model surface, to be more precise)—see [67].

33See, e.g. [22, 66] for a short overview of the notion.
34For the implementation of the (finitely dimensional) Kuratowski em-
bedding, one can still make appeal, for instance to MDS (Multidimen-
sional Scaling), in one of its many forms (even if, perhaps, it is not
very efficient in this case). (See, e.g. [57] for a brief presentation of the
MDS method.)
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Naturally, one expects the two embedding methods con-
sidered above to converge and augment each other, particu-
larly in our purely geometric context, stemming from prob-
lems in PL differential geometry, computer graphics and im-
age processing, where the graphs considered are skeletal of
triangulations of manifolds (or of cell-complexes), and the
weights are either edge-weights (i.e. distances between ver-
tices) or/and vertex-weights (i.e. curvature measures)—see,
e.g. [66, 68].

However, both methods, applied in a more general con-
text, rend themselves to various practical implementations,
in such areas as multicommodity flows in networks (e.g.
for the prediction of informational bottlenecks, discovery of
holes, etc.), clustering of statistical data (in particular in bio-
informatics—see, e.g. [65]) and expanders.
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Appendix 1: Immersions and Embeddings

We presume the reader is familiar with the notions of differ-
entiable manifold and tangent space, as well as with basic
concepts of topology (for any eventually needed details see
[73]), and we recall only the relevant definitions:

Definition 6.1 (Immersion) Let Mm,Nn be smooth differ-
entiable manifolds and let f : Mm → Nn a differentiable
map. If rankf = m at each point of Mm, then f is called an
immersion.

Definition 6.2 (Embedding) Let Mm,Nn be smooth differ-
entiable manifolds and let f : Mm → F(Mm) ⊆ Nn a dif-
ferentiable homeomorphism. If f is also an immersion, then
it is called an embedding.

(Note that, in this case, m = n, of course.)
The condition that f be a homeomorphism is very strong

and shouldn’t considered lightly. Indeed, not even asking
that f be injective will suffice, as proven by the (classical)

fact that there exists a injective immersion of R into the “fig-
ure eight” curve, but this is not an embedding, since it is not
a homeomorphism: the image is not even a manifold!35

To sum up: The notions of embedding and immersion are
not interchangeable—while any embedding is, in particular,
an immersion, the opposite is not true.36

If one discards even the differential structure, then topo-
logical embeddings (in the sense of that they are homeomor-
phic on their image) are relatively easily obtained by

Theorem 6.3 (Whitney’s Theorem) Every (smooth) mani-
fold of dimension n admits a (smooth) embedding in R

2n

and a (smooth) immersion in R
2n−1.

Remark 6.4 It is easy to prove, for compact manifolds, that
an embedding in some finite dimension N exists. It is then
progressively (much) harder to discard the compactness re-
striction and to gradually “zero in” to dimension 2n, via em-
bedding dimensions (n + 1)2 and 2n + 1.

Up to this point we have dealt with classical (“pure”)
differential topology, that is the famous “rubber geom-
etry” of popularization texts (albeit endowed with some
“smoothness”—necessary for the “differential” part). At this
point, however, we should introduce a bit of “solid” geome-
try, necessary, e.g. for recognition purposes.37 The idea is to
use a specific “measuring yard”, for each manifold, that is a
Riemannian metric:

Definition 6.5 (Riemannian manifolds) Let Mn be a man-
ifold and let x = (x1, . . . , xn) denote a standard coordinate
chart. The Riemannian metric g on Mn is defined by the
length element

ds2 = g =
n∑

i=1

gij dxi dxj ,

where the functions gij = gij (x1, . . . , xn) represent the
scalar products of the vector fields ∂

∂xi
, ∂

∂xj
associated to

the given chart:

gij = g

(
∂

∂xi

,
∂

∂xj

)
.

35An even more pathological example can be constructed, where R is
injectively immersed in the (flat) torus T

2 as a dense geodesic (just
consider the image under the covering map of T

2, of a line making an
irrational angle with the Ox axis.
36Therefore, even though, for stylistic reasons, one usually tends to
avoid repetitions of the same word, one cannot (see e.g. [10]) freely
interchange “immersion” and “embedding”. . .
37Think of the individualization problems amoebas are faced with . . .
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Once an infinitesimal distance is introduced, global ones
can also be measured (transforming a Riemannian manifold
into a “honest-to-God” metric space) as follows:

Let c : [0,1] → Mn be a curve. Then its length is given
by:

length(c) =
∫ 1

0
‖c′(t)‖dt.

(Here is important to recall that c′(t) is just a tangent vector,
so ‖c′(t)‖ = √

g(c′(t), c′(t)).)
The intrinsic (or inner) distance between two points

p,q ∈ Mn is defined as

d(p,q) = inf
c

{length(c) | is a curve of ends p and q}.

(We have tried here to keep the technical aspects of the
definition above to a minimal level; for those insisting on
absolute formal correctness, we recommend, for instance,
[17].)

Of course, the Riemannian metric induces a topology on
Mn (the metric topology), but in fact a much stronger result
holds:

Theorem 6.6 (Palais [56]) The metric of Riemannian man-
ifolds determines its (smooth) manifold structure.

Thus, Riemannian manifolds are, a fortiori, smooth mani-
folds, and the discussion above holds for them as well. How-
ever, a much more specific notion of embedding is relevant
in this case, namely:

Definition 6.7 (Isometric embedding) Let Mn be a Rieman-
nian manifold. An embedding f : Mn → R

N is called iso-
metric iff〈

∂f

∂xi

,
∂f

∂xj

〉
= gi,j , 1 ≤ i, j ≤ n, (5)

where 〈·, ·〉 is the standard inner product in R
N .

Remark 6.8 Of course one can extend the definition above
to include embeddings f : Mn → QN , where Q is a general
Riemannian manifold with metric h, by imposing, instead
of (5), the following condition:

〈∇if,∇j f 〉h = gi,j , 1 ≤ i, j ≤ n, (6)

where ∇if = Df ( ∂
∂xi

) and where 〈·, ·〉h represents the
scalar product defined by the Riemannian metric h on
Tf (x)(Q), (x = (x1, . . . , xn) ∈ Mn).

Remark 6.9 (A common fallacy) Sadly, the notion of iso-
metric embedding (and in particular the result above) are
sometimes puzzling even for the professional mathemati-
cian (and even, sometimes, for topologists! . . . ) However,

things become much simpler if one keeps in mind Defini-
tion 6.7 and remembers that saying that the intrinsic metric
“equals” the Euclidean one, means just that the infinitesimal
length element, as defined by the Riemannian metric coin-
cides with that of the infinitesimal one induced by the ambi-
ent Euclidean space. In any case this shouldn’t be interpreted
as affirming that lengths of curves, as measured on the man-
ifold, equal the Euclidean distance between their ends, as
measured in the ambient space R

N (see Fig. 1). Therefore,
it would be redundant and useless (not to say mistaken) to
try and isometrically embed such surfaces in R

N , for some
N > 3.38

On the positive side, surfaces in R
3 are already embed-

ded and inherit, therefore, a Riemannian structure from the
ambient space, that is the induced metric defines on the sur-
face a Riemannian metric (even if none was supposed (or
given) a priori).

Appendix 2: Quasiconformal Mappings

Definition 7.1 (Quasiregular and quasiconformal mappings)
Let D ⊆ R

n be a domain; n ≥ 2 and let f : D → R
n be a

continuous mapping. f is called

(1) quasiregular (qr) iff
(a) f is locally Lipschitz (and thus differentiable a.e.);

and
(b) 0 < |f ′(x)|n ≤ KJf (x), for any x ∈ Mn;
where |f ′(x)| = sup|h|=1 |f ′(x)h|, and where Jf (x) =
detf ′(x);

(2) quasiconformal (qc) iff f : D → f (D) is a quasiregular
homeomorphism;

The smallest number K that satisfies condition (b) above is
called the outer dilatation of f .

Remark 7.2 One can extend the definitions above to map-
pings between oriented, connected Riemannian n-manifolds,
n ≥ 2, by using coordinate charts (for details see, e.g. [75]).

Remark 7.3 It follows immediately from Condition (1) (b)
above, that qr-mappings are sense preserving.

If f : D → R
n is quasiregular, then there exists K ′ ≥ 1

such that the following inequality holds a.e. in Mn:

Jf (x) ≤ K ′ inf|h|=1
|Txf h|n. (7)

By analogy with the outer dilatation we have the follow-
ing definition:

38In fact, the only manifolds for which the embedding and intrinsic
metric coincide are precisely the piecewise flat ones—see [6].
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Fig. 1 Intrinsic vs. ambient
distance: The length of the
(straight, added) cord never
equals the one of the bow,
independently of the dimension
in which Rodin’s bowman
resides

Definition 7.4 (K-quasiregularity) The smallest number K ′
that satisfies inequality (7) is called the inner dilation KI (f )

of f , and K(f ) = max(KO(f ),KI (f )) is called the max-
imal dilatation of f . If K(f ) < ∞ we say that f is called
K-quasiregular.

The dilations are K(f ),KO(f ) and KI (f ) are simulta-
neously finite or infinite. Indeed, the following inequalities
hold: KI (f ) ≤ Kn−1

O (f ) and KO(f ) ≤ Kn−1
I (f ).

Definition 7.5 (Coefficients of quasiconformality) Let D1,

D2 ⊂ R
n be domains homeomorphic to each other. The

numbers

KO(D1,D2) = inf
f

KO(f ),KI (D1,D2)

= inf
f

KI (f ),K(D1,D2) = inf
f

K(f ),
(8)

where the infima are taken over all the homeomorphisms
f : D1

∼→ D2 are called the outer, inner and total coeffi-
cient of quasiconformality of D1 with respect to D2, respec-
tively. If D2 is the unit ball B

n, then the numbers KO(D1) =
KO(D1,B

n), KI (D1) = KI (D1,B
n), K(D1) = K(D1,B

n)

are simply called the (inner, resp. outer, resp. total) coeffi-
cients of conformality of D1.

Again, the numbers KO(D1,D2),KI (D1,D2) and
K(D1,D2) are simultaneously finite or infinite. However, it
is not always guaranteed that there actually exists a homeo-
morphism f as above, such that KI (f ) = KI (D1,D2) or
KO(f ) = KO(D1,D2), nor that if existing, it is unique.
However, in the following important cases such an extremal
mapping (for KI or KO ) is known to exist:
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Theorem 7.6 (Gehring-Väisälä [24], Gehring [23]) The ex-
tremal mappings for KI and KO exist if

1. D1 or D2 is a ball;
2. The boundary of D1, ∂D1 has k components, where

2 ≤ k < ∞;
3. D1,D2 are tori in R

3.
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