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Abstract In this paper, lattice Boltzmann D2Q5 (two di-
mensions and five discrete velocity directions) and D2Q9
(two dimensions and nine discrete velocity directions) mod-
els are used to solve Perona-Malik equation, which is widely
used in image filtering. A set of images added three types
of noise are processed using these models. Then the pro-
cessed images are compared in aspects of peak signal to
noise ratio (PSNR) and visual effect. The comparison show
that two models have almost the same filtering effect. Simul-
taneously, it is validated that D2Q5 model is more efficient.
Other findings are: (1) D2Q5 and D2Q9 models are more
effective in dealing with some images than others; (2) salt
and pepper noise is relatively difficult to remove compared
with gaussian noise and speckle noise; (3) lattice Boltzmann
method shows good stability in the image filtering.

Keywords Lattice Boltzmann method · Perona-Malik
equation · Image filtering · Nonlinear diffusion equation

1 Introduction

Originating from the initial value problem for heat conduc-
tion equation, partial differential equations (PDEs) began
as a tool to be used in the field of image processing. The
heat conduction equation filters images utilizing the diffu-
sion process. However, the edge of images can not be pre-
served well by this equation because the Laplacian operator
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in the equation is linear. To solve this problem, Perona and
Malik proposed a novel diffusion equation [1] which can
maintain the edge effectively. After that, many other mod-
els [2–4] are proposed based on the Perona-Malik equation
(P-M equation).

To solve P-M equation, many numerical methods can
be used, such as finite difference method, finite element
method, finite volume method and so on. Among them,
the lattice Boltzmann (LB) method is a relatively new nu-
merical method emerging in recent years. It has been ex-
tended successfully to solve the reaction-diffusion equa-
tion [5], nonlinear evolution equation [6–8], wave equa-
tion [9], Poisson equation [10, 11] and convection-diffusion
equation [12–14]. Besides, “the lattice Boltzmann method
provides the capability of handling complicated bound-
aries and easily implemented fully parallel algorithms” [15].
This makes it probably be a highly efficient numerical
method to solve P-M equation which is a special case of
the convection-diffusion equation. That is to say, image can
probably be filtered efficiently with the lattice Boltzmann
method.

In fact, the lattice Boltzmann method has been applied
to image filtering by few researchers [15–20]. In Ref. [15],
the lattice Boltzmann D2Q9 model for nonlinear diffusion
filtering was firstly proposed and the feasibility of the lat-
tice Boltzmann model for image filtering was verified. Af-
ter that, the lattice Boltzmann model for diffusion equation
was extended to 3D space for volume smoothing and surface
denoising in Refs. [16, 17]. In Refs. [18, 19], a new lattice
Boltzmann D2Q9 model for medical image smoothing was
proposed by introducing a medium between the nodes of the
lattice based on Ref. [21]. In Ref. [20], the lattice Boltzmann
scheme was used to simulate the well known total variation
based restoration model, that is, ROF model. With satisfac-
tory restored images, the computational speed of LB method
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is much faster than the iterative fixed point method which is
another method to solve ROF model.

The main reason that authors in Refs. [15–20] investi-
gate the application of lattice Boltzmann method to image
filtering is that this method provides the easily implemented
fully parallel algorithms which fulfill the intrinsic features
of parallelism. The authors have paid much attention to this
advantage, but they omit the efficient difference between
different lattice Boltzmann models, such as the difference
between D2Q5 and D2Q9, which are two commonly used
2-dimensional models. As we know, D2Q5 model has five
evolution directions but D2Q9 has nine, this implies D2Q5
model may be more efficient. But what about the differ-
ence in filtering effect? The motivation of this paper is to
compare the difference in filtering effect between two mod-
els with Perona-Malik equation, and simultaneously validate
the higher efficiency of D2Q5 model. The difference in fil-
tering effect is evaluated by testing a set of images which
show different degrees of contrast, edge details, texture, etc.
Considering the noise type may affect result, we add three
types of noise to each image respectively. The higher effi-
ciency of D2Q5 model is validated by comparing the time
which is used to carry out the same iterations. Before tests,
we fix two experimental parameters in reasonable ways, and
find that lattice Boltzmann method shows good stability in
the image filtering. Finally, through lots of tests, we com-
pare the differences in filtering effect and efficiency between
D2Q5 and D2Q9 models, and find that two models have al-
most the same capacity, but D2Q5 model is more efficient.

The paper is organized as follows. The lattice Boltzmann
model for P-M equation is introduced in Sect. 2. Exper-
iments and discussions are presented in Sect. 3. Finally,
a brief conclusion is given in Sect. 4.

2 Lattice Boltzmann Model for P-M Equation

The P-M equation can be written as follows [1]:

{
∂u
∂t

= ∇ · (α(|∇u|)∇u)

u(x,0) = u0(x),
(1)

where x is the pixel, u(x, t) is the intensity of an image at
position x and time t , u0(x) is the intensity of an image at
time t = 0, α(·) is a positive nonincreasing diffusion coeffi-
cient. In Ref. [1], Perona and Malik provided two diffusion
coefficients, α(s) = e−(s/k)2

and α(s) = 1
1+(s/k)2 , where k

(threshold value) can be preset or altered as image iterates,
s is the modulus of image gradient, that is |∇u|.

Recently, a general lattice Boltzmann model for nonlin-
ear convection-diffusion equation has been proposed by Shi
and Guo in [14]. Since P-M equation is a special convection-
diffusion equation, we can establish a corresponding D2Qb

model with b velocity directions in 2D space. The evolution
equation of the model reads

ui(x + ci�t, t + �t) = ui(x, t) − 1

τ
[ui(x, t) − u

(eq)

i (x, t)],
i = 0, . . . , b − 1, (2)

where {ci , i = 0, . . . , b − 1} is the set of discrete velocity
directions, b is the direction number, �t is the time step, τ is
the dimensionless relaxation time, ui(x, t) and u

(eq)

i (x, t) are
the density distribution function and the equilibrium density
distribution function, respectively.

The equilibrium distribution function is taken as

u
(eq)

i (x, t) = αiu(x, t). (3)

For D2Q9 model,

ci =

⎧⎪⎪⎨
⎪⎪⎩

(0,0) i = 0,

(cos[(i − 1)π/2], sin[(i − 1)π/2])c i = 1,2,3,4,

(cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4])√2c

i = 5,6,7,8,

where c = �x
�t

, �x is the lattice spacing, and

αi =
⎧⎨
⎩

4/9 i = 0,

1/9 i = 1,2,3,4,

1/36 i = 5,6,7,8.

For D2Q5 model,

ci =
{

(0,0) i = 0,

(cos[(i − 1)π/2], sin[(i − 1)π/2])c i = 1,2,3,4,

αi = 1/5 i = 0,1,2,3,4.

Note that
∑

i αi = 1, and u(x, t) is defined by u(x, t) =∑
i ui(x, t), so ui(x, t) and u

(eq)

i (x, t) satisfy

∑
i

ui =
∑

i

u
(eq)

i = u,

∑
i

ciu
(eq)

i = 0,
∑

i

ciciu
(eq)

i = c2
s uI,

(4)

where c2
s = c2/3 and c2

s = 2c2/5 for D2Q9 and D2Q5
model, respectively.

To derive the macroscopic equation (1), we can use the
following Chapman-Enskog expansion procedure:

ui = u
(0)
i + εu

(1)
i + ε2u

(2)
i ,

∂t = ε∂t1 + ε2∂t2, ∇ = ε∇1,
(5)

where u
(0)
i = u

(eq)

i , ε is a small expansion parameter, t1 =
t/ε and t2 = t/ε2 are two macroscopic time scales, ∇1 is the
gradient operator in the macroscopic length scale x1 = x/ε.
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Summing the first formula in (5) over i and using the first
formula in (4), we have
∑

i

u
(k)
i = 0 (k ≥ 1). (6)

By applying Taylor expansion to (2), we get

Diui + �t

2
D2

i ui + · · · = − 1

τ�t
(ui − u

(eq)

i ), (7)

where Di = ∂t + ci · ∇ . Denote D1i = ∂t1 + ci · ∇1. Substi-
tuting (5) into (7) and collecting the terms in order of ε and
ε2 separately, gives

D1iu
(eq)

i = − 1

τ�t
u

(1)
i , (8)

∂t2u
(eq)

i + D1iu
(1)
i + �t

2
D2

1iu
(eq)

i = − 1

τ�t
u

(2)
i . (9)

Substituting (8) to the left side of (9) and combining the
terms including u

(1)
i on the left side, we can rewrite (9) as

∂t2u
(eq)

i + D1i

[(
1 − 1

2τ

)
u

(1)
i

]
= − 1

τ�t
u

(2)
i . (10)

Summing (8) and (10) over i and using (4) and (6), we obtain

∂t1u = 0, (11)

∂t2u + ∇1 ·
[(

1 − 1

2τ

)∑
i

ciu
(1)
i

]
= 0. (12)

Using (8) and (4) we have

∑
i

ciu
(1)
i = − τ�t

∑
i

ciD1iu
(eq)

i

= − τ�tc2
s ∇1u. (13)

So, substituting (13) into (12), we obtain

∂t2u = ∇1 ·
{[

c2
s

(
τ − 1

2

)
�t

]
∇1u

}
. (14)

Combining (14) and (11), and taking α = c2
s (τ − 1

2 )�t ,we
have

∂tu = ∇ · (α∇u), (15)

that is to say the P-M equation is exactly recovered to order
O(ε2) using the proposed models.

3 Numerical Experiments and Discussions

Our experiments are carried out as follows. Firstly, we se-
lect one classic black-and-white image in Fig. 1, which has

the size of 256×256, with the value varying in [0,1]. Sec-
ondly, one type of noise is added to the image using Matlab,
which is gaussian noise with average value 0 and variance
0.01 or salt and pepper noise with intensity 0.05 or speckle
noise with average value 0 and variance 0.04. Thirdly, based
on the proposed lattice Boltzmann model for P-M diffusion
equation, ueq

i (x,0) is computed with (3) where u(x,0) is the
added noise image. After assigning ui(x,0) with u

eq
i (x,0),

ui(x,�t) is computed with (2).
Before the computation, we need to calculate τ in (2),

which is related to α(|∇u|). The formula to compute ∇u in
the internal region of image for D2Q9 and D2Q5 model is

∇u(x) = 1

β�x

l∑
i=0

eiu(x + ci�t), (16)

where β is set to be 6.0 and 2.0 for D2Q9 model and D2Q5
model respectively, l is set to be 8 and 4 for D2Q9 model and
D2Q5 model respectively, ei = ci/c. On the boundaries, the
image gradient is composed of two components, one is with
the direction normal to the boundaries, the other one is with
the direction tangent to the boundaries. Because we use the
adiabatic boundary condition for u(x, t), i.e., the intensity
flux along the outward normal direction of the boundaries is
zero, so the normal component of image gradient is zero and
we only need to compute the tangent one. We firstly compute
the tangent component of image gradient on four boundaries
excluding four angular points with the second order forward
difference. Secondly, two upper angular points are viewed
as points on the upper boundary, the tangent component of
image gradient at the upper left and right angular point is
calculated with one order forward and backward difference,
respectively. The treatment of two lower angular points is in
the same way.

By summing ui(x,�t) with the first formula in (4), we
get u(x,�t) in the internal region of image. But the val-
ues u(x,�t) and ui(x,�t) on the boundaries are still un-
known. To solve this problem, we use the adiabatic bound-
ary condition to calculate u(x,�t) and non-equilibrium ex-
trapolation method [22] to calculate ui(x,�t) on the bound-
aries. The specific implementation of boundary condition
is as follows. Firstly, according to the adiabatic boundary
condition for u(x, t), u(B,�t) is set equally to u(N,�t),
where points B and N are shown in Fig. 2 and u(N,�t)

has been calculated before the boundary treatment. Sec-
ondly, based on the first formula in (5), the density distri-
bution function ui(x, t) for every pixel and at any time can
be decomposed into two parts, i.e., ui(x, t) = u

eq
i (x, t) +

u
neq
i (x, t), where u

neq
i (x, t) is the non-equilibrium part of

ui(x, t). The basic idea of non-equilibrium extrapolation
method in [22] is to approximate the non-equilibrium part
of boundary point with that of the internal point next to
it, i.e., u

neq
i (B,�t) ≈ u

neq
i (N,�t), where u

neq
i (N,�t) =
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Fig. 1 Images used in
experiments

Fig. 2 The heavy solid line represents the image boundary, the dashed
line represents the grid line in the internal region of image. B is the
point on the boundary, N is the point next to B in the internal region of
image

ui(N,�t) − u
eq
i (N,�t). So we can calculate ui(B,�t)

with the formula ui(B,�t) = u
eq
i (B,�t) + u

neq
i (B,�t) ≈

u
eq
i (B,�t) + ui(N,�t) − u

eq
i (N,�t). Because u(B,�t)

and u(N,�t) are equal, u
eq
i (B,�t) is equal to u

eq
i (N,�t)

according to (3). Thus, ui(B,�t) ≈ ui(N,�t), i.e., den-
sity distribution function at the boundary point is fixed with
that of internal point next to it. Calculated with the above
method, u(x,�t) and ui(x,�t) on the boundaries are well
determined. Similar to the computation of image gradient,
two upper and lower angular points are again viewed as
points on the upper and lower boundary, respectively.

Now we get u(x,�t) for every pixel at time �t , i.e., we
get the image which has iterated one step. This process con-
tinues till the noise added to the image is filtered effectively.
After the added noise images are processed, we use Mat-
lab to show the results, and the visual effect of image fil-
tering can be easily distinguished. The processing effect is
also evaluated with the quantitative index PSNR, which is
defined as

PSNR = 10 log10

(
256∑

x,y=1

1.02

(u(x, y, t) − uo(x, y))2

)
, (17)

where u(x, y, t) is the processed version for the added noise
image u(x, y,0) at time t , uo(x, y) is the original image
without noise, (x, y) is the pixel. Generally speaking, the
larger PSNR value means the higher fidelity. In our experi-
ments, diffusion coefficient is chosen as α(s) = 1

1+(s/k)2 .

3.1 Two Parameters k and c

There are two parameters in our experiment which are k in
the expression of α(s) and c = �x/�t in (2). Before exper-
iments, they need to be fixed in a reasonable way.
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Fig. 3 (a) is the Lenna image
added gaussian noise,
(a1), (a2) are the processed
versions using D2Q9 model, �t

denotes the time step, step
denotes the iteration step, the
PSNR values for (a), (a1) and
(a2) are 20.28, 27.04 and 26.94,
respectively

As used by Perona and Malik in Ref. [1], k is fixed ei-
ther by hand at some fixed value or using the “noise es-
timator” described by Canny [23]: a histogram of the ab-
solute values of the gradient throughout the image is com-
puted, and k is set equal to the 90% value of its integral
at every iteration, i.e., k = 0.9

∑ |∇u|/(M × N), where the
sum is computed over the whole image region, M × N is
resolution of the image. In our experiments, we fix k with
the second method. The reason is that the second method
compared with the first one makes the algorithm insensi-
tive to the parameter �x and self-adaptive to different im-
ages and noises. From the formula to calculate ∇u and k,
we know |∇u| and the k fixed with the second method are
both related to �x, they increases by the same order of
magnitude, when �x decreases. But in the diffusion co-
efficient α(|∇u|) = 1/(1 + (

|∇u|
k

)2), |∇u| is divided by k,
so the effect of �x disappears in it, i.e., �x dose not af-
fect the filtering process. In this sense, the second method
is insensitive to the parameter �x and avoids choosing dif-
ferent k for different �x compared with the first method.
On the other hand, because k is computed with the formula
0.9

∑ |∇u|/(M × N), so k is self-adaptive to different im-
age added different types of noise, which reduces the proce-
dure to specify different k for different noisy image in the
first method. Considering above two factors, we choose the
second method to fix k in our experiments.

Besides k, c is also an important parameter. Because
c = �x/�t and �x = 1 is set in advance without loss of
generality, the discussion on c is equivalent to the discus-
sion on �t . Inferred from α = c2

s (τ − 1
2 )�t , �t satisfies

τ = γ�t

(1 + (
|∇u|

k
)2)

+ 1

2
, (18)

where γ is a constant with the value of 3.0 and 2.5 for
D2Q9 and D2Q5 model respectively. As we know, the sta-
bility condition for lattice Boltzmann method is τ > 1/2,
this is equivalent to �t > 0 according to (18). Note that lat-
tice Boltzmann method shows good stability in the image
filtering. If P-M equation is discretized by forward approxi-
mation in time and central differences in space, the stability
condition [24] is

0 < �t ≤ (�x)2/(4α), (19)

Fig. 4 The PSNR varies as the iteration time increases, the iteration
time is t = step × dt , step denotes the iteration step, dt denotes �t .
Without loss of generality, the test image is Lenna image added gaus-
sian noise and the test model is D2Q5 model

where α is diffusion coefficient in (1) varying in (0,1]. If
�x = 1 is set, then the stability condition for the above fi-
nite difference method is 0 < �t ≤ 1/4 [1]. Thus, lattice
Boltzmann method allows larger time step to filter an im-
age, see Fig. 3. In the experiments, the time steps �t are
both larger than 1/4 which is the upper limit for the above
finite difference method to maintain stability. The success-
ful noise removal in Fig. 3(a1),(a2) shows that lattice Boltz-
mann method provides good stability in the image filtering.

Although larger �t leads to less steps or less computation
time, �t should not be too large to the extent that makes
ω approximate 0, where ω = 1/τ . Otherwise, the compu-
tation may result in relatively large numerical error [25].
Figure 4 depicts the PSNR variation of Lenna image added
Gaussian noise. We can see the PSNR value for �t = 1 is
much lower than that of three other cases, the reason is for
�t = 1 the minimal ω (≈0.33) approximates 0. We can also
see the PSNR value for �t = 0.02 is nearly the same as that
of �t = 0.01 but is slightly larger than that of �t = 0.1.
This relationship still exists in other tests, this implies that
the magnitude of PSNR value does not change when �t is
smaller than 0.02.
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3.2 Results and Discussions

In the following numerical experiments, different images
added different types of noise are processed using D2Q9 and
D2Q5 models with �t = 0.02. All computation is done in
the Inter(R) Core(TM) 2 CPU T5600 @ 1.83 GHz, C pro-
grams are optimized with the command-fast in the Inter(R)
C++ Compiler 9.0.

As shown in Fig. 4, the PSNR value of the processed
Lenna image firstly increase to the maximum and then de-
crease monotonically. All other tests show the same trend,
so we take the maximal PSNR value of each processed im-
age as the characteristic indicator to compute the increased
PSNR value. Figure 5 shows the increased PSNR value of
the processed image compared with the added noise image.
We can see the PSNR difference between D2Q5 and D2Q9
model is not large. And the minimal, maximal and average
deviation for two models are 0.01, 0.45 and 0.19. Moreover,
we show the processed images in Matlab and find no visual
difference between two models. Without loss of generality,
the processed rice images are shown in Fig. 6. We can see
the images processed with D2Q9 model are as clear as those
processed with D2Q5 model. Thus, considering the PSNR
value and visual effect, it is believed that two models have
almost the same processing effect.

Fig. 5 The increased PSNR value of the processed image compared
with the added noise image. The added noise image is the result of
adding one type of noise to one image shown in Fig. 1. Corresponding
to each image in Fig. 1, three points are draw, which represent images
added gaussian noise, salt and pepper noise and speckle noise from left
to right

Fig. 6 (a), (b), (c) are rice
images added gaussian noise,
salt and pepper noise and
speckle noise, respectively. (a1),
(b1), (c1) are images processed
with D2Q9 model
corresponding to (a), (b), (c).
(a2), (b2), (c2) are images
processed with D2Q5 model
corresponding to (a), (b), (c)
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Fig. 7 The computation time corresponding to the iteration step for
D2Q5 model and D2Q9 model

In addition, the first step to determine the maximal PSNR
value of processed images is calculating P-M equation with
sufficiently long time. In this process, D2Q5 model cost
much less computation time than that of D2Q9 model, see
Fig. 7. We can see the variation of computation time cor-
responding to the iteration step for two models is nearly
linear. The difference between two models becomes larger
and larger as the iteration step increases. The reason is that
D2Q5 model only needs evolution of five directions but
D2Q9 needs nine. Through computation, we know the slope
of red line and blue line in Fig. 7 is 0.013 and 0.021 re-
spectively. That is to say, D2Q9 model cost 1.62 times more
time than that of D2Q5 model to iterate to the same step, so
D2Q5 model is more efficient. If the resolution of image is
very high, the benefit of D2Q5 model compared with D2Q9
model will be enlarged. So considering the filtering effect
and efficiency, it is concluded that D2Q5 model is better than
D2Q9 model.

In addition to above discussion, we can also obtain the
following conclusions:

(1) Our lattice Boltzmann models which are used to solve
P-M non-linear diffusion equation are effective in image de-
noising. Comparing the images added noise and the images
filtered, it is found that noise of images has been removed
effectively and the edge of images has been protected well.
Comparing with the image added noise, the PSNR values of
processed images increase at least by 4.17, at most by 12.00,
average by 7.85. The PSNR values of some images are close
to or more than 30 which generally means the image is clear
enough.

(2) Our models are more effective in dealing with house
and rice images than other six images, no matter what type
of noise is added, see Fig. 5. PSNRs of processed house (b)
and rice (d) images increase by more than 10, while PSNRs

of other images increase average by 6.69. Moreover, struc-
ture of house and rice images is protected better than other
six images. It is believed that our models can filter the image
similar with house image or rice image very well.

(3) Salt and pepper noise is relatively difficult to remove
compared with gaussian noise and speckle noise. Observing
the processed versions of images which have been added salt
and pepper noise, it is found that some noise points still exist
in images. We can remove more noise points if the iteration
steps are increased. However, if we do so, the cost will be
that more details of images are lost and more contrast of im-
ages are reduced. The reason may be that P-M equation is
insufficient to obtain satisfactory denoising results for im-
ages in which the brightness gradient generated by the noise
is greater than that of the edges [1].

4 Conclusions

In this paper, we apply the lattice Boltzmann method to
solve P-M equation for image filtering. D2Q5 and D2Q9
models are applied to filter eight images with three different
types of noise. It is found that: (1) D2Q5 and D2Q9 mod-
els have almost the same filtering effect but D2Q5 model is
more efficient (2) these models are more effective in dealing
with house and rice images than other six images (3) salt
and pepper noise is relatively difficult to remove compared
with gaussian noise and speckle noise (4) lattice Boltzmann
method shows good stability in the image filtering. It is wor-
thy to note, that the higher efficiency of D2Q5 model will be
very useful in dealing with large amount of image data. And
above conclusions are important references when we choose
lattice Boltzmann method to filter an image added different
types of noise.
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