
J Math Imaging Vis (2012) 43:121–134
DOI 10.1007/s10851-011-0293-z

Ordered Hypothesis Machines

G. Beate Zimmer · Don Hush · Reid Porter

Published online: 20 May 2011
© Springer Science+Business Media, LLC 2011

Abstract Stack Filters are a class of non-linear filter typi-
cally used for noise suppression. Advantages of Stack Fil-
ters are their generality and the existence of efficient opti-
mization algorithms under mean absolute error (Wendt et
al. in IEEE Trans. Acoust. Speech Signal Process. 34:898–
910, 1986). In this paper we describe our recent efforts to
use the class of Stack Filters for classification problems.
This leads to a novel class of continuous domain classi-
fiers which we call Ordered Hypothesis Machines (OHM).
We develop convex optimization based learning algorithms
for Ordered Hypothesis Machines and highlight their rela-
tionship to Support Vector Machines and Nearest Neighbor
classifiers. We report on the performance on synthetic and
real-world datasets including an application to change detec-
tion in remote sensing imagery. We conclude that OHM pro-
vides a novel way to reduce the number of exemplars used in
Nearest Neighbor classifiers and achieves competitive per-
formance to the more computationally expensive K-Nearest
Neighbor method.

Keywords Stack filters · Morphological networks · Pattern
classification · Nearest neighbor classification

G.B. Zimmer
Department of Mathematics and Statistics, Texas A&M
University-Corpus Christi, Corpus Christi, TX, USA
e-mail: beate.zimmer@tamucc.edu

D. Hush · R. Porter (�)
Los Alamos National Lab, Los Alamos, NM, USA
e-mail: rporter@lanl.gov

1 Introduction

Just as linear models generalize the sample mean and
weighted average, weighted order statistic models gener-
alize the sample median and weighted median. A more de-
tailed analogy was presented by Arce [1] and can be contin-
ued informally, to generalized additive models in the case of
the mean, and Stack Filters in the case of the median. Both
of these model classes have been extensively studied for sig-
nal and image processing, but in pattern classification their
treatment has been significantly one sided. Generalized ad-
ditive models are now a major tool in pattern classification
and many different learning algorithms have been devel-
oped, e.g. Support Vector Machines, to fit model parameters
to finite data. Several model classes related to Stack Filters
have been applied to classification including Morphologi-
cal Perceptrons with Competitive Learning [25], Min-Max
Networks [33], Order Statistics [28] and Positive Boolean
Function classifiers [9, 17]. In nearly all of these papers,
techniques were developed without reference to the Stack
Filter literature.

In previous work we investigated the direct application of
the Stack Filter model class to classification problems. We
investigated classification loss functions and developed the
concept of rank-order margin [20]. We suggested learning
algorithms for this new design criteria for the weighted or-
der statistic model class. More recently, we investigated the
Stack Filter model class and suggested learning algorithms
based on a discrete partitioning of the input space [22]. This
highlighted the connection between Stack Filter Classifiers
and Decision Tree classifiers. In this paper we present a con-
tinuous domain learning algorithm for Stack Filter Classi-
fiers which we call Ordered Hypothesis Machines (OHM)
and highlight the connection between Ordered Hypothesis
Machines, Support Vector Machines and Nearest Neighbor
classifiers.

mailto:beate.zimmer@tamucc.edu
mailto:rporter@lanl.gov


122 J Math Imaging Vis (2012) 43:121–134

2 Problem Statement

This paper focuses on two-class classification where we
are given a training set of N points, x ∈ R

D , with labels,
y ∈ {−1,1}, drawn at random according to a probability
distribution PX,Y . The task is to find a decision function
F : R

D → R that has small error:

e(F ) = EX,Y (sign(F (x)) �= sign(y)). (1)

Classification performance is measured by the excess er-
ror of the classifier compared to the Bayes optimal classi-
fier e∗ = inf∀F e(F ) and can be viewed as a combination
of approximation and estimation errors (these quantities are
related to bias and variance):

e(F ) − e∗ = (
e(F ) − inf

F ′∈F
e(F ′)

) + (
inf

F ′∈F
e(F ′) − e∗). (2)

The first term is the estimation error and it is due to the
fact that we only have a finite number of examples in the
training set with which to select the best function from the
function class F . The second term is approximation error
and is due to the fact that the Bayes classifier may not be
represented in the function class. These two errors have con-
flicting needs: a common way to reduce approximation error
is to increase the capacity of the function class but this typ-
ically increases the estimation error. The learning algorithm
must balance these needs and the most common approach is
to choose a function F̂ that minimizes a training set error:

F̂ ∈ arg min
F∈F

1

N

N∑

i=1

L(F(x(i)), y(i)) (3)

where L : (R × {−1,1}) → R is a loss function. The choice
of loss function affects both the estimation and approxima-
tion errors of F̂ . A popular approach is to define a very rich
function class and then parameterize the loss function in a
way that allows the tradeoff to be easily tuned for the appli-
cation: Lγ (F (x), y). At one extreme of γ , the loss function
would define a classifier with zero approximation error and
at the other extreme, a classifier with zero estimation error.
We would also like both errors to decrease as N increases.

In the next section we describe how the Stack Filter func-
tion class can be used for two-class classification and discuss
appropriate loss functions. We suggest a parameter γ called
rank-order margin which can be used to control Stack Filter
class complexity. In Sect. 4 we present the main contribution
of this paper, which we call Ordered Hypothesis Machines.
OHM classifiers can be considered Homogeneous Gener-
alized Stack Filter Classifiers where the number of quan-
tization levels grows to infinity. We present a convex op-
timization based learning algorithm for this function class
and show how it leads to a novel way to control the class
complexity of a Nearest Neighbor classifier.

3 Stack Filter Classifiers

3.1 Stack Filters

A Boolean function f : {0,1}D → {0,1} that stacks is a
Boolean function that satisfies the constraint that for all
u,v ∈ 0,1D , ui ≥ vi , ∀i implies f (u) ≥ f (v). A Boolean
function that is defined using ‘and’ and ‘or’, but no nega-
tions, satisfies this order constraint for all u ∈ {0,1}D . Stack
Filters are defined by combining a Boolean function that
stacks with a threshold decomposition architecture [8].

Given a real valued input vector x = (x1, x2, . . . , xD) we
define a vector thresholding function u = (x 	 c), parame-
terized by a scalar c, that thresholds each element of x by
c to produce the binary vector u with elements ui = xi ≥ c.
We also use the notation x(i) to represent the ith order statis-
tic of the vector x, which means if a vector x was sorted
into ascending order, it could be denoted as (x(1), . . . , x(D)).
Given this notation, we define a Stack Index Filter as:

SIf (x) =
D∑

i=1

f (x 	 x(i)) (4)

and a Stack Filter as

F(x) = x(SIf (x)). (5)

Equation (5) highlights the fact that a Stack Filter will
pick one of the components of the vector x as an output
value. Specifically, it will pick the ith order statistic, where
i is defined by the Stack Index Filter.

3.2 Stack Filters as Class Indicators

As defined by (1), we typically use the sign of a real valued
function as a class indicator for two-class classification. This
appears problematic for Stack Filters since the filter chooses
one of the inputs as an output. If all the inputs are positive,
then the Stack Filter will always predict class 1. This restric-
tiveness can be overcome by augmenting the input vector
with mirrored samples. This doubles the length of the input
vector:

xm = [x,−x] ∈ R
2D. (6)

This is similar to the mirrored threshold decomposi-
tion architecture suggested for signal processing applica-
tions [18]. In that paper, mirroring occurs within the thresh-
old decomposition architecture. In this paper, mirroring is
performed up front and we assume a standard threshold de-
composition architecture. Given a mirrored input sample,
the sign of the Stack Filter is a more reasonable class in-
dicator. That is, if we imagine augmenting the expanded
input with a 0, then the median of any input vector will



J Math Imaging Vis (2012) 43:121–134 123

Fig. 1 A Stack Filter acting on a mirrored string. The Stack Index
Filter would give the value 5 and the Stack Filter output is xm(5) = 2,
which means the Stack Filter predicts a class label of +1

be zero, and this leads to an intuitive explanation of Stack
Filter Classifiers: if the Stack Filter selects an input value
greater than the median, then it predicts y = 1. If it se-
lects an input value smaller than the median, then it pre-
dicts y = −1. Figure 1 provides an example of a Stack Fil-
ter Classifier predicting y = 1 for a mirrored input sample
xm = [3,1,2,−3,−1,−2].

A second key property of the Stack Filter function class
for classification is the fact that Stack Filters commute with
thresholding:

F(xm) ≥ 0 ⇐⇒ f (xm 	 0) = 1 (7)

This implies that Stack Filter Classifiers reduce to Boo-
lean function classifiers applied to thresholded inputs. This
means when applying the classifier to classification prob-
lems, we do not actually implement the threshold decom-
position architecture: we simply threshold the input data at
zero, and use a Boolean function to predict the class label.
Boolean function classifiers are a well studied topic in ma-
chine learning. But as we will see, if we consider different
loss functions for Stack Filter Classifiers we arrive at differ-
ent Boolean function classifiers.

3.3 Input Expansion

In two dimensions, the only nontrivial Stack Filters are the
minimum and maximum functions. Even in higher dimen-
sions, Stack Filters lack expressiveness. For example, as
[16] points out, PBF functions can not model the parity
function. Several generalizations of the Stack Filter model
class have been suggested to increase the expressiveness of
Stack Filters for the traditional signal processing applica-
tion including Generalized Stack Filters [14], Permutation
Filters [13], and C-Stack Filters [2].

Homogeneous Generalized Stack Filters allow the Boo-
lean function to receive input from all layers of the thresh-
old decomposition architecture, and Inhomogeneous Gener-
alized Stack Filters also allow the Boolean Function to vary
from one level to the next. We propose a generalization iden-
tical to Homogenous Generalized Stack Filters, but as with

Fig. 2 Input expansion for a two-dimensional problem with five
thresholds at 0.1,0.2, . . . ,0.5

mirroring, we do it by expanding inputs up front. We de-
fine T monotonically increasing evenly spaced thresholds
{t1, . . . , tT } and expand each dimension of the mirrored in-
put vector as:

ex = [x1 − t1, . . . , x1 − tT ,

. . . , xD − t1, . . . , xD − tT ,

. . . ,−(x1 − t1), . . . ,−(x1 − tT ),

. . . ,−(xD − t1), . . . ,−(xD − tT )] (8)

To parallel Generalized Stack Filters the thresholds
would represent all quantization levels, however any mono-
tonic set can be used. We can interpret the expansion geo-
metrically in the input space and this is shown in Fig. 2 for
two dimensions. A particular sample (illustrated with the
large cross) was originally represented as x = [0.35,0.22].
It is then expanded to:

ex = [0.25,0.15,0.05,−0.05,−0.15,

0.12,0.02,−0.02,−0.12,−0.22,

− 0.25,−0.15,−0.05,0.05,0.15,

− 0.12,−0.02,0.02,0.12,0.22] (9)

Since Stack Filters reduce to Boolean functions applied
to thresholded inputs it is useful to define xb = (ex 	 0). For
the example:

xb = [11100, 11000, 00011, 00111]. (10)

The thresholds divide the input space into a number of
partitions, and xb represents a unique identifier for the par-
tition in which the sample falls. For example, xb for a hy-
pothetical second sample x = [0.35,0.21] would be identi-
cal to (10). However, if we assume the distances between
thresholds is sufficiently small (e.g. all quantization levels),



124 J Math Imaging Vis (2012) 43:121–134

Fig. 3 Classification loss functions shown at margin γ = 2

and if we assume the training set is not in conflict, then each
training sample defines its own partition.

Given this interpretation of the input expansion, we can
now reinterpret Stack Filter Classifiers in the binary domain.
Specifically, a Stack Filter classifier is a Boolean function
defined by a look-up table, where partitions in the input
space correspond to a sub-set of rows in the look-up table,
and the assignment of ones and zeros in the output column
obeys the stacking constraints.

The mirrored representation, which appears to redun-
dantly index partitions, allows us to use any Boolean func-
tion as the classifier. That is, since all xb vectors in the input
space have an equal number of ones and zeros (Hamming
weight of D ∗ T ), they can be assigned arbitrary labels and
not violate the stacking constraints. This means there exists
a Stack Filter Classifier that can assign any combination of
labels to the partitions.

Having defined the main components of the Stack Filter
Classifier we now turn our attention to loss functions. The
traditional loss function for Stack Filters is the mean abso-
lute error. This is an appropriate choice for noise suppres-
sion applications in signal and image processing, or regres-
sion. For Stack Filter Classifiers we explore classification
loss functions, illustrated in Fig. 3 and discussed in the next
few sub-sections.

From this point forward, to simplify notation, whenever
we use F(x) we really mean F(ex).

3.4 Zero-One Loss

One of the most common loss functions for classification
is the zero-one, or misclassification loss where we simply
count the number of training samples that are misclassified.
From (7), finding the Stack Filter which minimizes zero-one
loss is equivalent to finding a stacking Boolean function that
minimizes zero-one loss:

L(F(x), y) =
{

1 if sign(F (x)) �= sign (y)

0 else

Fig. 4 On the right we show the input space for a two-dimensional
problem with four partitions and two training samples. The training
samples are shown with ovals for class 1 and squares for class −1.
The mirrored representation means that the original input space is a
subset of entries in the middle row of the lattice and these are the four
binary strings in bold. As margin is increased, our training samples
move lower (for class 1) and higher (for class −1) in the lattice, and this
produces increasing numbers of constraints. By assigning class labels
to entries higher (or lower) in the lattice, we induce class labels, or
cover a greater fraction of the middle row and hence the input space

=
{

1 − f (x 	 x(DT +1)) if y = 1
f (x 	 x(DT +1)) if y = −1

(11)

As we described in Sect. 2, with a sufficient number of
thresholds during input expansion (and assuming training
samples are not conflicted) training samples fall into unique
partitions, and we trivially find the Boolean function that ob-
tains zero error on the training set: we simply memorize the
training data. Of course the corresponding look-up table is
extremely sparse and almost the entire input space remains
undecided.

3.5 Large Margin Zero-One Loss

Large margin zero-one loss requires the Stack Filter to
choose samples γ greater than the median for class 1, and γ

less than the median for class −1. For γ ∈ [1..DT ]:

Lγ (F (x), y) =
⎧
⎨

⎩

1 if y = 1 and F(x) < x(DT +γ )

1 if y = −1 and F(x) > x(DT −γ+1)

0 else

=
{

1 − f (x 	 x(DT +γ )) if y = 1
f (x 	 x(DT −γ+2)) if y = −1

(12)

The large margin loss function has the same form as the
zero-one loss problem, however the binary strings are gen-
erated by thresholding samples higher (and lower) in the
threshold decomposition architecture. These new binary
strings will have Hamming weight DT ± γ .

In Fig. 4 we illustrate increasing margin on a lattice
where an arrow between two Boolean vectors u and v im-
plies an ordering u ≥ v (ui ≥ vi , ∀i).



J Math Imaging Vis (2012) 43:121–134 125

Fig. 5 Partitions defined by class 1 samples (crosses) and class −1
samples (circles) at margin γ = 1

In Fig. 5 we illustrate increasing margin in the input
space. As margin increases the partitions associated with
training samples grow in size. In previous work we grew
partitions one direction at a time, always in the direction of
the closest threshold, as dictated by the threshold decompo-
sition architecture [22]. In this paper we expand partitions
by one threshold in all directions at the same time. The re-
sulting partitions correspond to binary strings 2D thresh-
old levels away from the previous level. We interpret mar-
gin γ = 0 as a partition of zero radius, i.e. just a point.
Margin γ = m is interpreted as m increases in 2D dimen-
sions, or m2D steps in the threshold decomposition archi-
tecture. In Fig. 5 we have increased the margin to γ = 1
and training samples now define larger partitions which are
illustrated with bold solid lines for class 1 and shading for
class −1.

3.5.1 Optimization

As the margin is increased, the partitions associated with
training samples begin to overlap. When the partitions have
different labels, there is a potential for a Boolean function
to violate the stacking constraints. We use a zero-one inte-
ger linear program to find the optimal Boolean function that
satisfies the constraints, much like Stack Filter design under
Mean Absolute Error [31].

Formulating the linear program requires us to manipu-
late and compare xb for each sample. Since thresholds are
monotonically increasing, we can do this efficiently with
ranks, i.e., each dimension is represented by integers which
count the number of thresholds below the component for the
first half of the mirrored sample and count the number of
thresholds above the component in the second half of the
mirrored string. This leads to a 2D dimensional vector r

with components:

rd =
T∑

i=1

I ((xd − ti ) > 0) for d = 1, . . . ,D

rD+d =
T∑

i=1

I (−(xd − ti ) > 0) for d = 1, . . . ,D

(13)

where I () is the indicator function. For the example x =
[0.35,0.22] in Fig. 2, the rank representation would be
r = [3,2,2,3]. As we increase margin we simply reduce the
ranks for class 1 samples, and increase the ranks for class
−1 samples. Continuing the example for γ = 1 (as shown
in Fig. 5) the rank reduced sample would be [2,1,1,2].

To find a Boolean function that minimizes the zero-one
loss at margin γ , we associate a binary variable z with
the output column of a partially specified Boolean function
look-up-table. We only need to consider the N rows associ-
ated with the rank reduced (or increased) training set. Our
objective is to set the output column for these rows to the
class labels in the training set, but this is subject to the stack-
ing constraints:

maximize
N∑

i=1

zi

subject to zi + zj ≤ 1 when

ri ≤ rj {∀i, j |yi �= yj } and

zi ∈ {0,1} ∀i ∈ {1, . . . ,N}

(14)

The constraint matrix is unimodular and the linear pro-
gram relaxation (zi ∈ [0,1]) is exact. Note that in (14) we
aim to set zi to one for both class 1 and class −1 samples.
This is to simplify the notation and leads to the interpreta-
tion of z as a indicator that will determine if we keep (1)
or discard (0) the training sample. If we wanted z to reflect
the class labels we would set the output column of class −1
rows where zi = 1 to 0.

After the optimal values of z are found, we can use the
partially specified look-up-table to predict new samples. To
do this, we must determine if a new sample is covered by
any of the rows in the look-up table. To determine if a new
sample r , in rank representation form, is covered by class 1,
we evaluate r ≥ ri for all class 1 rows with zi = 1. To de-
termine if a new sample is covered by class −1, we eval-
uate r ≤ ri for all class −1 rows with zi = 1. If a new
sample is covered by multiple rows, then the stacking con-
straints will ensure that these rows will all have the same
output value. In terms of the example in Fig. 5, this would
mean the gray and solid line partitions will not be allowed
to overlap, and so some of training samples will be misclas-
sified.



126 J Math Imaging Vis (2012) 43:121–134

3.5.2 Model Class Complexity

An important property of the large margin zero-one loss is
that as γ increases, the number of Boolean functions that can
satisfy the additional constraints decreases. These loss func-
tions therefore define reducing sets of Boolean functions.
More specifically, a Stack Filter minimizer of zero-one loss
at margin γ :

F̂γ (x) ∈ arg min
F∈F

Lγ (F (x), y)

is equivalent to minimizing misclassification loss with a
Stack Filter from a restricted function class:

F̂γ (x) ∈ arg min
F∈Fγ

L(F (x), y)

where Fγ ⊆ · · · ⊆ F1 ⊆ F . The margin parameter is mono-
tonically related to the size of the Stack Filter function class
and is also discrete and bounded. This is an important prop-
erty since it means rank-order margin can be used to control
model class complexity for Stack Filter Classifiers, much
like regularization in Support Vector Machines.

3.6 Hinge Loss

The hinge loss at margin γ is similar to the hinge loss
used in Support Vector Machines, which is defined as
max(−yF(x),1), but it differs in that hinge loss for Stack
Filter Classifiers is bounded above by 2γ and takes the value
zero at F(x) = x(DT +γ ). Due to the stacking constraints,
hinge loss can be defined as a sum of large margin zero-one
loss functions:

Lh
γ (F (x), y) =

γ∑

γ̂=−γ

Lγ̂ (F (x), y) (15)

which can be decomposed in the binary domain:

Lh
γ (F (x),1) =

γ∑

γ ′=−γ

1 − f (x 	 x(DT +γ ′))

Lh
γ (F (x),−1) =

γ∑

γ ′=−γ

f (x 	 x(DT −γ ′+2))

(16)

The hinge loss linearly penalizes samples by how much
they are misclassified as measured by rank-order margin.
Hinge loss can also be interpreted in the input space. Unlike
large margin zero-one loss which optimizes the placement
of N partitions of size γ , hinge loss optimizes the place-
ment of γN partitions with sizes varying from 1 . . . γ . This
means the approximation error of the final classifier is typi-
cally much smaller than the large margin zero-one classifier.
The estimation error however is related to the number of
Boolean functions that satisfy the stacking constraints, and
this is the same for both zero-one and hinge loss classifiers.
Our previous work confirmed the superior performance of

Stack Filter Classifiers designed under hinge loss in both
synthetic and real-world experiments [22].

The problem with hinge loss minimization is computa-
tional complexity. We must include the complete set of par-
titions (rows of the look-up-table) defined by training sam-
ples as margin is increased from −γ to γ within the lin-
ear program. In practical problems this number depends on
the number of thresholds used during input expansion. We
would like the number of thresholds to be very large so that
Stack Filter Classifiers can be applied to a wide range of
problems, and the linear program soon becomes computa-
tionally prohibitive. In the next section we present the main
contribution of this paper, which is to suggest that hinge-
loss minimization of Stack Filter Classifiers can be effi-
ciently solved in the continuous domain where the number
of thresholds grows to infinity (or alternatively, the distance
between quantization levels diminishes to zero).

4 Ordered Hypothesis Machines

Ordered Hypothesis Machines are Stack Filter Classifiers
with a particular choice of input expansion that permits ef-
ficient minimization of hinge loss. The key observation is
that although hinge loss requires binary chains of length 2γ

for each training sample during optimization, we can keep
track of the length of the chain instead of keeping track of
its individual members. We first describe the required input
expansion and then describe the optimization.

4.1 Input Expansion

In the discrete case γ corresponds to number of threshold
levels above and below the median in the threshold decom-
position architecture. In the input space, this defines parti-
tions around each training sample, growing one threshold at
a time. Note that in the previous section we suggested mak-
ing 2D steps for each increase in γ . This is because, we now
suggest a continuous parameterization of γ where partitions
grow symmetrically through an infinite number of threshold
levels and γ corresponds to the size of the partition in the
input space.

This continuous formulation reduces the number of vari-
ables to N : we have a single variable associated with each
training sample that represents the number of symmetrically
increasing partitions that are associated with the training
sample’s class label. The final component to be defined is
the shape of the partition. We suggest parameterizing this
shape by a distance function:

dij = ‖xi − xj‖p (17)

To mimic the rectangular partitions defined by axis-
parallel thresholds we would choose p = ∞. However other



J Math Imaging Vis (2012) 43:121–134 127

choices include spherical partitions (‖‖2) and diamond-
shaped partitions (‖‖1). In fact, any shape in the input space
can be used, as long as the overlap between partitions varies
linearly with γ . For the experiments in this paper we use
‖ ‖2 since it will produce decision surfaces most similar to
the classifiers we compare to in our experiments: Support
Vector Machines with Gaussian Kernels, and Nearest Neigh-
bor Classifiers based on Euclidean distance. In experiments
not published we observed very little difference in perfor-
mance with different values of p. We revisit this topic in our
final summary in Sect. 6.

4.2 Optimization

We associate a real-valued variable vi ∈ [0,2γ ] with each
training sample xi ∈ R

D , and associated label, yi ∈ {−1,1}.
The range of the variable is 2γ , instead of γ to account for
loss incurred at values of negative margin. If the final value
of the variable is less than γ , the training sample gets mis-
classified. If the final length is 2γ , the training sample is at
the center of a partition of size γ in the input space. The fol-
lowing optimization procedure minimizes hinge loss for the
continuous domain classifier by maximizing variable sizes
subject to the constraint that no two partitions with different
labels overlap:

maximize
N∑

i=1

vi

subject to vi + vj ≤ 4γ − �i,j if yi > yj and

0 ≤ vi ≤ 2γ ∀i ∈ {1, . . .N}

(18)

where �i,j = max(2γ − di,j ,0).
In the Stack Filter integer linear program in (14), the vari-

ables are indicators that determine whether we keep (1), or
discard (0), partitions of different fixed sizes. We solve a
linear program relaxation with a uni-modular constraint ma-
trix, and threshold the real-valued variables found to obtain
an exact integer solution. In (18) we solve a very similar
linear program but the constraint matrix is no longer uni-
modular (since we introduce non binary values into the right
hand side of the constraint equations) and we use the real-
valued variables found by the linear program directly to de-
termine partition sizes.

4.2.1 Deciding Between Minimum Cost Solutions

The optimization problem in (18) is an under-determined
problem and there may be several solutions. Prior knowl-
edge can be introduced that would prefer one class over
another. In our experiments we tried to balance the choice:
If we minimize ‖v‖1 while maximizing a small multiple of
‖v‖2

2, we get a solution that gives the components of v equal

weight. In practice we choose a small value (for example
w = 10−15):

maximize
N∑

i=1

vi − w

N∑

i=1

v2
i

subject to vi + vj ≤ 4γ − �i,j if yi > yj and

0 ≤ vi ≤ 2γ ∀i ∈ {1, . . .N}

(19)

4.2.2 Online Learning Algorithm

The linear (or quadratic) programs suggested in the pre-
vious sections provide an efficient learning algorithm for
Ordered Hypothesis Machines which has similar compu-
tational complexity to Support Vector Machines. However,
for large scale problems (thousands of training samples or
more) generic solvers often surpass the memory available
in today’s typical workstation. In the case of Support Vector
Machines, much effort has been spent specializing quadratic
programming for the specific SVM optimization [19]. This
kind of approach is also likely to provide substantial perfor-
mance improvements in solving (18) for Ordered Hypothe-
sis Machines and is a topic for future research.

In Sect. 5.3 we apply OHM to a change detection prob-
lem which requires large numbers of training samples. Our
generic solver ran out of memory for this problem and so we
implemented an adaptive learning algorithm based on the
adaptive Stack Filter algorithm first presented in [15]. The
continuous domain version of this algorithm can be summa-
rized as:

Input: v(t), di,j , α Output: v(t + 1)

Repeat

1. Update
vi(t + 1) = (1− α)vi(t) + (α)2γ ∀i

2. Check
If vi(t + 1)+ vj (t + 1) ≤ 2γ + dij ∀j |yi �= yj

then return vi(t + 1)

Else proceed to step 3

3. Iterate
If vi(t + 1)+ vj (t + 1) > 2γ + dij ∀j |yi �= yj

�ij = vi(t + 1) + vj (t + 1) −2γ − dij

vi(t + 1) = vi(t + 1) − �ij/2
vj (t + 1) = vj (t + 1) − �ij /2

Set i = j
Go to 2.

(20)

At the end of each pass (Steps 1 through 3 complete) we
are guaranteed to have non-overlapping partitions and we
can stop at any time.



128 J Math Imaging Vis (2012) 43:121–134

4.3 Application

After training OHM classifiers we have a set of partitions
(of varying sizes) associated with training samples. To apply
this classifier to a test point, we must evaluate if the test
point falls within a partition. If it does, we assign the test
point the class label of the associated training sample. The
stacking constraints guarantee that the test point will not fall
into multiple partitions with different class labels. However,
the point may fall outside of all partitions in which case it’s
label will be undetermined. Note that as the dimension of
the problem increases, it is more and more likely that a test
point will be undetermined. Various schemes for assigning
labels to undetermined points are possible (e.g. assign label
to the class which largest prior probability) that may or may
not work better in different applications. We suggest using a
Nearest Neighbor Classifier to assign these labels, since in
our formulation, finding the nearest neighbor is equivalent to
finding the nearest partition. For a test point x and training
sample i:

F̂ (x) = yargmaxi (vi−di,x) ∀i ∈ {1, . . . ,N} (21)

Equation (21) obtains the same training error as the OHM
classifier. However when extrapolating the classifier to test
data, (21) is different. For example, at γ = 0 all vi = 0 which
means all (nontrivial) test points are undecided. In this case
(21) is identical to the Nearest Neighbor Classifier. However
as γ is increased, OHM classifiers will introduce larger and
larger offsets into (21).

An important side effect of increasing the size of par-
titions, is that some partitions become redundant. That is,
the stacking constraints force some partitions to completely
cover partitions from the opposite class, which means they
do not contribute to the final classifier. After optimization
we can post process the samples to determine which parti-
tions are covered and the associated training samples can be
thrown away.

In Fig. 6 we show this affect for a two dimensional syn-
thetic problem with 100 training samples (50/50 class mem-
bership). As margin is increased we observe a typical trough
in the error estimate, and also see a monotonically decreas-
ing number of remaining training samples (or exemplars).

4.4 Relationship to Other Classifiers

4.4.1 Support Vector Machines

The approach used to develop Ordered Hypothesis Ma-
chines is analogous to Support Vector Machines. Both ap-
proaches use convex optimization to select empirical-error
minimizing functions which are defined over training sam-
ples. In the case of SVMs with particular kernels, there
is theoretical interest in the fact that this expanded feature

Fig. 6 Error estimates and number of remaining training samples (ex-
emplars) as margin is increased

space has infinite dimension. As we have described, OHM
classifiers are also chosen from a class of Stack Filters that
operate on a feature space of infinite dimension. Both ap-
proaches also provide a free parameter that can be directly
tied to model complexity. In the case of SVMs this parame-
ter controls the magnitude of the weight vector used to lin-
early combine distance functions to training samples. In the
case of OHM, this parameter characterizes the number of
Boolean functions that can satisfy the stacking constraints.

The two approaches also overlap in the permissable input
expansions. SVMs permit any expansion that can be em-
bedded in an inner product space, which leads to the class
of Kernel functions. OHM also permits some expansions
that could be defined with Kernel functions, but it limits
the choice to Triangular finite support Kernels. During opti-
mization SVMs find multiplicative weights for Kernel func-
tions with constant width centered on training samples. In
contrast, OHM chooses different widths for the Kernels cen-
tered on training samples.

However SVM and OHM classifiers are fundamentally
different classifiers. SVMs produce a generalized additive
model where a test point is classified based on the sum of
relationships to a subset of the training samples, whereas
OHM predicts a test point based on its relationship to a sin-
gle exemplar within a subset of training samples. This means
OHM has a closer connection to Nearest Neighbor Classi-
fiers.

4.4.2 Nearest Neighbor Classifiers

At a margin of zero—when training samples are associ-
ated with infinitesimally small partitions—OHM can be im-
plemented with a Nearest Neighbor Classifier ((21) with
vi = 0 ∀i). At larger margins the optimization grows par-
titions and dismisses training samples that get covered by



J Math Imaging Vis (2012) 43:121–134 129

Fig. 7 Data for Experiments 1 and 2: overlapping normal data and overlapping chi square data, shown in 2 dimensions

partitions of the opposite class. This means we introduce
a training sample specific offset (vi > 0) into the distance
function. This means our distance function is neither reflex-
ive, symmetric or non-negative and is reminiscent of adap-
tive nearest neighbor methods [30].

Most importantly, OHM provides a global optimization
method that selects which samples are used in the final clas-
sifier. In this light, OHM provides a new type of condensed
nearest neighbor method [32] and produces classifiers with
smaller computational cost than the Nearest Neighbor Clas-
sifier. Also, as we see in the next section, choosing a subset
of training samples also leads to improved performance.

4.4.3 Morphological Networks

Morphological Perceptrons are also related to OHM classi-
fiers [23]. They define decision regions by combining axis-
aligned offsets with morphological operations and therefore
are most similar to Stack Filter Classifiers. However the
approach used for training is significantly different. Mor-
phological perceptron learning has focused on constructive
algorithms which incrementally build decision surfaces to
minimize training data error [24]. This provides a way to
adapt the size and shape of partitions around training sam-
ples and this increased flexibility may be useful in some ap-
plications.

Since Stack Filter Classifiers and OHM Classifiers de-
pend on a partial order relation in a lattice, they are also
related to other types of Morphological Networks. How-
ever, since OHM is motivated by the empirical error min-
imization framework, its relationship to lattice theoretic ap-
proaches requires further work to understand. These other
approaches include Morphological Perceptrons with Com-
petitive Learning [25], which rapidly and deterministically
converges to zero error on the training set, Fuzzy Lattice

Neural Networks [12], as well as Associative Memory type
approaches [29]. It may be fruitful to consider how advances
in statistical machine learning can be incorporated into these
lattice theoretic approaches.

5 Experiments

5.1 Synthetic Experiments

In this section we compare OHM as defined by (19), to a
radial basis Support Vector Machine [7], a CART Decision
tree [6] and a Nearest Neighbor Classifier. To select the free
parameters for the SVM we use 1-fold cross-validation with
a training set with 250 samples and a validation set of 250
samples. We used 5 different values for both the regulariza-
tion parameter (C) and the width of the Gaussian kernel:
{10−2,10−1,0,10,100}. This means we tried 25 different
parameter combinations in total. The test set used to esti-
mate performance has 2000 samples. To select the margin
value for OHM (γ in (19)), we split the interval from 0.01 to√

D into 25 equal parts. D is the dimension of the problem.
We used the OpenCV [4] implementation of CART which
implements its own cross-validation procedure for tree prun-
ing, and so we provided both training and validation samples
(a total of 500 samples) to the training procedure.

Experiment 1: We chose overlapping independent nor-
mal random values form a 1-dimensional setting up to a 32-
dimensional setting. For class 1 we selected means of all ze-
ros and a the covariance matrix the identity matrix I and for
class 0 we selected a mean of all 0.25 and covariance matrix
of 0.75 ∗ I . As the dimensions grow, this problem gets eas-
ier, as the sample means start pulling apart. The decision tree
is at a disadvantage on this problem since it uses axes par-
allel decision surfaces. We also apply Nearest Neighbor and



130 J Math Imaging Vis (2012) 43:121–134

Fig. 8 Experiment 1: Comparison of OHM, SVM, CART and Near-
est Neighbor Classifiers on independent normal distributions in dimen-
sions 1 to 128

K-Nearest Neighbor Classifiers to the problem. We repeated
the experiment 20 times and plotted the mean error and with
an error bar of one standard deviation in either direction.

We observed an improvement in performance of the
Nearest Neighbor Classifiers as K increased upto a value
of 7, at which point performance did not improve. OHM
performed midway between the best Nearest Neighbor Clas-
sifier and the SVM on this problem.

Experiment 2: For the data we selected a skewed distri-
bution, i.e. we used a random variable x with a chi square
distribution with 3 degrees of freedom. In each dimension
the samples of class 0 were of the form 5 + x and the class
1 samples were of the form 10 − x. We repeated the experi-
ment 20 times and plotted the mean error and with an error
bar of one standard deviation either direction.

It is striking that in this experiment the order of the classi-
fiers is reversed from Example 1: this time the decision tree
outperforms the SVM and OHM is again, approximately
midway between. We also observed that at extremely high
dimensions, the performance of Nearest Neighbor methods
improves quickly, and that OHM inherits these characteris-
tics.

From Figs. 8 and 9 we see that the best classifier for the
job depends on the application. The two problems are in
some sense at two extremes: the Gaussian data is ideal for
generalized additive models and the Chi square data ideal
for decision trees. While OHM does not perform as well
as the best algorithm in either case, it does perform close
to the best algorithm in both cases. In addition, the OHM
performance is remarkably better than the Nearest Neighbor
Classifier considering how small the modification in (21) is
in practice. We presented additional experiments that com-
pare OHM to Nearest Neighbors and K-Nearest Neighbors
in [21] where we observed OHM consistently outperforming

Fig. 9 Experiment 2: Comparison of OHM, SVM, CART and Nearest
Neighbor Classifiers on overlapping chi square distributions

Table 1 Classification accuracies on selected benchmarks. ∗Results
reproduced from [3]. Data sets are (1) Banana, (2) Breast Cancer,
(3) Diabetes, (4) Flare-Solar, (5) Thyroid and (6) Titanic

Data Best results∗ NN KNN − 7 OHM

(1) 10.7 ± 0.4 13.6 ± 0.0 11.4 ± 0.0 11.4 ± 0.8

(2) 24.8 ± 4.6 33.1 ± 0.2 27.7 ± 0.2 27.7 ± 0.2

(3) 23.2 ± 1.6 30.1 ± 0.0 27.0 ± 0.0 26.7 ± 1.9

(4) 32.4 ± 1.8 38.9 ± 0.2 36.2 ± 0.0 34.4 ± 2.2

(5) 4.2 ± 2.1 4.4 ± 0.0 8.7 ± 0.0 4.8 ± 2.4

(6) 22.4 ± 1.0 30.6 ± 1.0 24.6 ± 0.4 22.4 ± 1.0

K-Nearest Neighbors, which is considerable more expensive
to compute.

5.2 Benchmark Data Sets

Blanchard et al. in [3] compared C4.5 decision trees, Op-
timal Decision trees (ODT) on a group of data sets adapted
from the UCI repository and compared it to the results by the
best known (2007) classifiers for those sets. They split the
data into 100 groups of training and test data and recorded
the average and the standard deviation of the MSE. We used
their data sets to test OHM in (19). The results are listed in
Table 1.

On all problems OHM obtained similar or better per-
formance than K-Nearest Neighbors and in all problems
but Thryroid, this was significantly better than the Nearest
Neighbor Classifier. The methods that obtained the best re-
sults reported in [3] were all generalized additive models
trained with different learning algorithms. The best results
on datasets 4 and 5 were obtained with an SVM with Gaus-
sian Kernels.



J Math Imaging Vis (2012) 43:121–134 131

Fig. 10 Experiment 3: An
150 × 150 pixel AVIRIS image
for Florida. Left: example image
from the original hyperspectral
cube. Middle: example image
with simulated pervasive
differences (smoothing). Right:
permutation of the pixels to
simulate anomalous changes

One reason why OHM has larger variance is due to the
margin parameter. In all problems we used half the training
set as a validation set to pick the best value of margin. Once
found, OHM was retrained at that margin with the entire
training set. Some of the test problems have a small number
of training samples (e.g. Titanic has 150 samples) and we
observed a large variation in the value of margin selected
(and hence performance) across the 100 groups. In future
work we hope to investigate properties of the margin in more
detail with the aim of developing more sophisticated selec-
tion methods for the margin parameter.

5.3 Application to Change Detection in Hyperspectral
Imagery

In this section we apply OHM to a change detection prob-
lem using Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) hyperspectral data [11]. Informally, the change
detection problem involves two co-registered images of the
same scene (e.g. two images taken at different times), and
we would like to identify pixels that appear different due
to anomalous changes of interest (e.g. new objects, or new
types of materials) but ignore pixels that appear different due
to pervasive differences (e.g. due to misregistration, differ-
ent atmospheric conditions, seasonal differences etc.).

We cast change detection as a classification problem as
suggested in [27]. Let a ∈ R

Dx be a pixel from one image
(with Dx spectral channels) and b ∈ R

Dy be a pixel from the
second image (with Dy spectral channels). The joint density
p(a, b) represents the pervasive differences (or background)
and we choose the product of marginal densities as a model
of the anomalous changes of interest: p(a)p(b). Pixels of
interest are then defined as pixels whose ratio of foreground
to background models exceeds a certain threshold:

I (a, b) =
{

1 if p(a)p(b)
p(a,b)

> t

−1 otherwise
(22)

We are typically interested in anomalous, or extremely
rare categories of change (a False Alarm Rate 10−3, . . . ,

10−5), and therefore the threshold is usually set very high.
When the distributions are assumed to be Gaussian, closed
form solutions to (22) can be derived [26]. This solution
method is called Hyperbolic due to the shape of its decision
surfaces.

Nonparametric classifiers can also be applied to this
problem by artificially sampling from the two classes. Nor-
mal change or class −1 samples are generated by randomly
choosing a location i and concatenating the matching pix-
els from each of the two images as x = [ai |bi]. Anomalous
change or class 1 samples are generated by randomly choos-
ing two locations i, j and concatenating the pixels from the
two different locations of each picture as x = [ai |bj ].

One of the challenges for building change detection al-
gorithms for very rare targets is evaluation. The resampling
strategy just described can also be used as a simulation
framework for evaluation purposes, and this is illustrated in
Fig. 10. We start with a single image which we call the base
image (left). We then intentionally introduce a pervasive dif-
ference which we would like to evaluate against (middle).
In this case the second image is a smoothed version of the
base image. We then simulate the anomalous changes by
randomly shifting pixels in the pervasive difference image
to generate an anomalous change image (right). To evaluate
change detection algorithms, we simply apply our classifier
to two pairs of images. When applied to the base image,
pervasive difference image pair, the classifier should predict
class −1 for all pixels. When applied to the base image,
anomalous change image pair, the classifier should predict
class 1 for all shifted pixels. By using the entire image this
approach allows us to evaluate our algorithms at the desired
10−3, . . . ,10−5 False Alarm Rate range.

As was observed in [26], considerable performance gains
are possible by reducing the dimensionality of hyperspectral
imagery, prior to applying change detection algorithms. We
therefore reduced the dimension from the original 224 chan-



132 J Math Imaging Vis (2012) 43:121–134

Fig. 11 Results for Experiment 3 compares OHM to subtraction (Ma-
halanobis distance of the difference) and hyperbolic methods

nels to 5 channels per image with (linear) canonical corre-
lation analysis. This leads to a 10 dimensional classification
problem.

We compare the performance of OHM to the Hyperbolic
algorithm as well as simple subtraction (The Malhanobis
distance of (a − b)). Our images contain 22500 pixels. We
use 12000 samples to estimate the required covariance ma-
trices and evaluate performance with the remaining 10500
samples. To generate Receiver Operator Curves of Fig. 11
we obtain a real-valued output from these techniques and
sweep through a final threshold. We perform the experiment
three times for each technique with different training parti-
tions.

For OHM we use 2000 samples in training, and 10000
samples as a validation set to choose free parameters. Un-
like the Hyperbolic and Subtraction classifiers, our classifier
is optimized for a specific threshold. To generate results at
different False Alarm Rates, we must introduce an additional
parameter. This parameter controls the fraction of Class 1
samples in the training set, and during experiments it takes
on values [0.1,0.15,0.2]. This biases the OHM classifier to-
wards the desired low FAR regime. The second free param-
eter is the margin parameter and it was varied uniformly at
20 locations across the data input range.

Although 2000 samples is much smaller than the number
of training samples used for the Hyperbolic and Subtrac-
tion methods, it was too large for our generic equation (19)
solver. Therefore, in this experiment we use the adaptive al-
gorithm described in Sect. 4.2.2. We set α to 0.01 and run for
500 iterations for each parameter combination. This leads to
60 different classifiers.

All 60 classifiers are applied to the validation set and
then we choose the classifier with the best detection rate for
a given false alarm rate. This classifier is then applied to the

test set and the performance plotted in Fig. 11. This process
was repeated three times with different training (and vali-
dation) partitions. Note, with this approach we obtain clas-
sifiers that cover the range of False Alarm Rates uniformly
over the validation set. However as observed in Fig. 11, this
is not guaranteed with test set performance. Larger valida-
tion and test set sizes would help with this problem.

6 Summary

Applying the Stack Filter model class to classification prob-
lems sheds new light on Decision Trees, Support Vector
Machines as well as Nearest Neighbor Classifiers. In pre-
vious work we have shown interesting connections between
the discrete Stack Filter Classifier and Decision Trees. In
this paper we investigated a continuous domain Stack Filter
classifier called Ordered Hypothesis Machines (OHM) that
has interesting relationships to Support Vector Machines and
Nearest Neighbor Classifiers.

We have shown that OHM classifiers can be implemented
with a simple modification of Nearest Neighbor Classi-
fiers, and that OHM training reduces the number of exem-
plars (and hence the memory storage required by Nearest
Neighbor methods) and obtains competitive performance
to K-Nearest Neighbor Classifiers which have significantly
greater computational complexity. In addition, by approach-
ing training as error minimization OHM allows us to de-
sign Nearest Neighbor Classifiers for cost sensitive prob-
lems where one class is extremely rare. In this paper we
demonstrated this with a change detection application, but
there are many other applications for this capability [21].

The connection that this paper makes between OHM
classifiers and Nearest Neighbor Classifiers also points to
topics for future research. OHM Classifiers, Nearest Neigh-
bor Classifiers, Morphological Perceptrons as well as Deci-
sion Tree classifiers, all assume the class conditional densi-
ties are constant within local partitions of training samples
and this can lead to high approximation error (and poor per-
formance) in problems with high dimensions [10]. This may
partly explain why we observed negligible difference in the
performance when using different partition shapes.

Finally, we observe that a popular way to improve per-
formance of Decision Tree classifiers is to use voting, or en-
sembles [5]. Stack Filters have also been interpreted as vot-
ing networks and it is possible that the stacking constraints
could have a role to play in these larger architectures.

References

1. Arce, G.: A general weighted median filter structure admitting
negative weights. In: Proc. 11th Int. Joint Conf. on Artifical In-
telligence, vol. 46, pp. 3195–3205 (1998)



J Math Imaging Vis (2012) 43:121–134 133

2. Barner, K.: C-stack filters. In: ICASSP-91, International Confer-
ence on Acoustics, Speech, and Signal Processing, vol. 3, pp.
2005–2008 (1991). doi:10.1109/ICASSP.1991.150796

3. Blanchard, G., Schafer, C., Rozenholc, Y., Muller, K.R.: Optimal
dyadic decision trees. Mach. Learn. 66(2–3), 209–241 (2007)

4. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools
(2000)

5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001).
doi:10.1023/A:1010933404324

6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification
and Regression Trees. Wadsworth, Belmont (1984)

7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vec-
tor machines (2001). Software available at http://www.csie.
ntu.edu.tw/cjlin/libsvm

8. Fitch, J., Coyle, E., Gallagher, N.: Median filtering by thresh-
old decomposition. IEEE Trans. Acoust. Speech Signal Process.
ASSP-32(6), 1183–1189 (1984)

9. Han, C.C.: A supervised classification scheme using positive
boolean function. In: 16th Int. Conf. on Pattern Recognition,
vol. 2, pp. 100–103 (2002)

10. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest
neighbor classification. IEEE Trans. Pattern Anal. Mach.
Intell. 18, 607–616 (1996). doi:10.1109/34.506411. URL
http://portal.acm.org/citation.cfm?id=232678.232681

11. Jet Propulsion Laboratory (JPL), N.A., (NASA), S.A.: Air-
borne visible/infrared imaging spectrometer (aviris). http://
aviris.jpl.nasa.gov/

12. Kaburlasos, V., Petridis, V.: Fuzzy lattice neurocomput-
ing (fln) models. Neural Netw. 13(10), 1145–1170 (2000).
doi:10.1016/S0893-6080(00)00074-5. URL http://www.
sciencedirect.com/science/article/B6T08-41XM6GH-K/2/
8961210cefa265a6d93967722c577d29

13. Kim, Y.T., Arce, G.: Permutation filter lattices: a general order-
statistic filtering framework. IEEE Trans. Signal Process. 42(9),
2227–2241 (1994). doi:10.1109/78.317846

14. Lin, J., Coyle, E.J.: Minimum mean absolute error estimation over
the class of generalized stack filters. IEEE Trans. Acoust. Speech
Signal Process. 38, 663–678 (1990)

15. Lin, J., Sellke, T., Coyle, E.: Adaptive stack filtering under the
mean absolute error criterion. In: Porter, W., Kak, S. (eds.) Ad-
vances in Communications and Signal Processing. Lecture Notes
in Control and Information Sciences, vol. 129, pp. 263–276.
Springer, Berlin (1989). doi:10.1007/BFb0042738

16. Muselli, M.: Approximation properties of positive boolean func-
tions. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri,
R. (eds.) Neural Nets. 16th Italian Workshop on Neural Nets,
WIRN 2005 and International Workshop on Natural and Artificial
Immune Systems, NAIS 2005. Revised Selected Papers. Lecture
Notes in Computer Science, vol. 3931. Springer, Berlin (2006)

17. Muselli, M.: Switching Neural Networks: A New Connection-
ist Model for Classification. Lecture Notes in Computer Science,
vol. 3931, pp. 23–30 (2006)

18. Paredes, J.L., Arce, G.R.: Optimization of stack filters based on
mirrored threshold decomposition. IEEE Trans. Signal Process.
49, 1179–1188 (2001)

19. Platt, J.C.: Fast training of support vector machines using sequen-
tial minimal optimization. In: Advances in Kernel Methods: Sup-
port Vector Learning, pp. 185–208 (1999)

20. Porter, R., Eads, D., Hush, D., Theiler, J.: Weighted order statistic
classifiers with large rank-oder margin. In: Proc. 20th Int. Conf.
on Machine Learning (2003)

21. Porter, R., Hush, D., Zimmer, B.: Error minimizing algorithms for
nearest neighbor classifiers. In: Proceedings of the SPIE (2011)

22. Porter, R.B., Zimmer, G.B., Hush, D.: Stack filter classifiers. In:
Wilkinson, M.F., Roerdink, J. (eds.) ISMM 2009, 9th International
Symposium on Mathematical Morphology and Its Applications to

Signal and Image Processing. Lecture Notes in Computer Science,
vol. 5720, pp. 282–294. Springer, Berlin (2009)

23. Ritter, G.X., Sussner, P.: An introduction to morphological neural
networks. In: 13th Int. Conf. on Pattern Recognition, vol. 4, pp.
709–717 (1996)

24. Sussner, P.: Morphological perceptron learning. In: International
Symposium on Intelligent Systems and Semiotics, pp. 477–482
(1998)

25. Sussner, P., Esmi, E.L.: Morphological perceptrons with com-
petitive learning: Lattice-theoretical framework and constructive
learning algorithm. Inf. Sci. 181(10), 1929–1950 (2011)

26. Theiler, J.: Quantitative comparison of quadratic covariance-based
anomalous change detector. Appl. Opt. 47, F12–F26 (2008)

27. Theiler, J., Perkins, S.: Proposed framework for anomalous
change detection. In: ICML Workshop on Machine Learning Al-
gorithms for Surveillance and Event Detection, pp. 7–14 (2006)

28. Tumer, K., Ghosh, J.: Linear and order statistics combiners for
pattern classification. In: Combining Artificial Neural Nets, pp.
127–162 (1999)

29. Valle, M.E., Sussner, P.: A general framework for fuzzy mor-
phological associative memories. Fuzzy Sets Syst. 159, 747–768
(2008). doi:10.1016/j.fss.2007.10.010. URL http://portal.acm.org/
citation.cfm?id=1344840.1344937

30. Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor
rule with a simple adaptive distance rule. Pattern Recognit. Lett.
28, 207–213 (2006)

31. Wendt, P., Coyle, E., Gallagher, N.: Stack filters. IEEE Trans.
Acoust. Speech Signal Process. 34, 898–910 (1986)

32. Wilson, D., Martinez, T.: Reduction techniques for instance-based
learning algorithms. Mach. Learn. 38, 257–286 (2000)

33. Yang, P., Maragos, P.: Min-max classifiers: Learnability, design
and application. Pattern Recognit. 28, 879–899 (1995)

G. Beate Zimmer graduated from
the Universitaet Konstanz in 1988
and received a Ph.D. in Mathemat-
ics from the University of Illinois
in 1994. She currently is an As-
sociate Professor of Mathematics
at Texas A&M University-Corpus
Christi and spend the summers
2006–2010 as a Laboratory Affil-
iate in the ISR-2 Division of Los
Alamos National Laboratory. Her
interests include Functional Anal-
ysis, environmental modeling, ma-
chine learning and image process-
ing.

http://dx.doi.org/10.1109/ICASSP.1991.150796
http://dx.doi.org/10.1023/A:1010933404324
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://dx.doi.org/10.1109/34.506411
http://portal.acm.org/citation.cfm?id=232678.232681
http://aviris.jpl.nasa.gov/
http://aviris.jpl.nasa.gov/
http://dx.doi.org/10.1016/S0893-6080(00)00074-5
http://www.sciencedirect.com/science/article/B6T08-41XM6GH-K/2/8961210cefa265a6d93967722c577d29
http://www.sciencedirect.com/science/article/B6T08-41XM6GH-K/2/8961210cefa265a6d93967722c577d29
http://www.sciencedirect.com/science/article/B6T08-41XM6GH-K/2/8961210cefa265a6d93967722c577d29
http://dx.doi.org/10.1109/78.317846
http://dx.doi.org/10.1007/BFb0042738
http://dx.doi.org/10.1016/j.fss.2007.10.010
http://portal.acm.org/citation.cfm?id=1344840.1344937
http://portal.acm.org/citation.cfm?id=1344840.1344937


134 J Math Imaging Vis (2012) 43:121–134

Don Hush received his B.S.E.E.
and M.S.E.E. degrees from Kansas
State University, Manhattan, Kansas
in 1980 and 1982 respectively, and
his Ph.D. in engineering at the
University of New Mexico, Al-
buquerque, New Mexico in 1986.
He has served as a technical staff
member at Sandia National Lab-
oratory (1986–87), a Professor in
the Electrical and Computer En-
gineering Department at the Uni-
versity of New Mexico (1987–98),
and a technical staff member at
Los Alamos National Laboratory

(1998–present). He is a Senior Member of the IEEE, and has served
as an Associate Editor for the IEEE Transactions on Neural Networks
and the Signal Processing Magazine.

Reid Porter received a B.S. in Elec-
trical Engineering and B.S. in In-
formation Science from the Queens-
land University of Technology, Aus-
tralia. He is currently a research sci-
entist at Los Alamos National Lab-
oratory where he pursues research
interests in machine learning, image
and signal processing and computer
architecture.


	Ordered Hypothesis Machines
	Abstract
	Introduction
	Problem Statement
	Stack Filter Classifiers
	Stack Filters
	Stack Filters as Class Indicators
	Input Expansion
	Zero-One Loss
	Large Margin Zero-One Loss
	Optimization
	Model Class Complexity

	Hinge Loss

	Ordered Hypothesis Machines
	Input Expansion
	Optimization
	Deciding Between Minimum Cost Solutions
	Online Learning Algorithm

	Application
	Relationship to Other Classifiers
	Support Vector Machines
	Nearest Neighbor Classifiers
	Morphological Networks


	Experiments
	Synthetic Experiments
	Benchmark Data Sets
	Application to Change Detection in Hyperspectral Imagery

	Summary
	References


