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Abstract We build and test a Visual Servoing for all de-
grees of freedom of a legged robot. We provide a detailed
geometrical description relevant to the construction of the
Jacobian matrix containing the dependencies of the visual
features on the robot joint angles. This matrix embodies the
forward kinematics model. To obtain an autonomous control
system invariant to world position, we define the ground ref-
erence system relative to the basic support points. The con-
trol of the robot is computed by the inversion of the forward
kinematics model, with two corrections. First, to preserve
the ground reference system we must correct the motion of
the supporting points. Second, we test a stability condition
to avoid the robot to move into unstable configurations. We
have tested the approach on a controlled environment to as-
sess its real life performance. The experimental results show
the robustness of the approach.

Keywords Visual Servoing · Legged robots · Aibo

1 Introduction

Visual Servoing [6, 16, 21, 28, 29, 32, 33, 36, 37] is de-
fined as the task of positioning one or more robots in or-
der to reach specific poses of their final effectors using, in
the closed control loop feedback, the estimated position er-
ror computed from the visual information extracted from the
environment by one or more video-cameras. Figure 1 illus-
trates the main feedback loop in image-based Visual Servo-
ing.

Z. Echegoyen (�) · J.M. Lopez-Guede · B. Fernandez-Gauna ·
M. Graña
Grupo Inteligencia Computacional, UPV/EHU, Donostia, Spain
e-mail: zelmar.echegoyen@gmail.com

Legged robots have been the subject of study for a while
[9, 26]. The hexapod and the four legged robots are the most
common types. Among them the Sony’s Aibo robot has been
a privileged research platform [3, 22, 35]. The control and
generation of gaits has been a subject of extensive research
[1, 13, 17, 18, 23, 24, 38]. General works on Visual servoing
for legged robots deal only with the effectors linked directly
to the camera [4, 19, 20]. Specifically for the RoboCup robot
soccer competition some rough Visual Servoing approaches
[25, 30] have been implemented in the Aibo robot to track
the ball. However, these approaches are limited to the move-
ment of the head effectors in order to keep the ball inside the
robot camera field of view. The space in which the ball can
be followed is restricted by the robot’s body pose.

In the work reported in this paper we build a forward
kinematics model that relates the visual features to all the
robot degrees of freedom. Inversion of this model allows to
perform Visual Servoing changing the robot’s body pose.
We detail the construction of the Jacobian matrix relating
the dependencies of the visual features on all the robot joint
angles. Some initial works were presented in [10, 11].

To obtain an autonomous control system invariant to
world position and orientation of the robot we define a
ground reference system on the robot supporting points. The
forward kinematic model is built over this reference system.
The computation of the joint control commands through the
inversion of the kinematics model is constrained in order to
ensure that the supporting points will remain fixed, to pre-
serve the ground reference system. Besides, there is a condi-
tion for stability of the robot’s pose [2] that must be checked
before applying the computed control commands. This con-
dition consists in the location of the robot’s center of mass
projection inside the convex hull defined by the robot sup-
porting points.

We have performed real life experiments on a Sony’s
Aibo ERS-7 robot under controlled conditions to asses the
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Fig. 1 Visual Servoing
feedback loop

Table 1 Notation used across
the article Ic, Ib, Ig Coordinate Reference Systems for the camera, body and ground

gs,cs Feature point s expressed in the Coordinate Reference System Ig , Ic

iIj Transformation between Coordinate Reference Systems

θ l , θu Angles of the leg and upper body joints

Gπ,Ge Basic and extended sets of support points

p The extended support points and the upper body joints

Jsθ Dependence of image features on the joint angles

Jsp Dependence of image features on p

Jsc Dependence of image features on the camera

Jpθ Dependence of p on the joint angles

Jcθu Dependence of the camera on the upper body joing angles

Jce Dependence of the camera on Ge

Jcπ Dependence of the camera on Gπ

Jπe Dependence of Gπ on Ge

Jeθ Dependence of Ge on the joint angles

applicability of our approach, reporting the quantitative re-
sults of such experiments. The visual feature is the image
center of the detected region corresponding to the target ball.
The degrees of freedom affected by the visual servoing are
all the leg’s articulations, as well as the neck and head articu-
lations. We have found that the approach provide high accu-
racy in the positioning of the visual feature (the ball center)
in the image center. We have not encountered convergence
problems despite the limitations of the control of the joint’s
servomotors, the image segmentation errors and the linear
approximation. The system is able to follow sequences of
ball positions that involve recovering from “uncomfortable”
configurations.

The structure of the paper is as follows. The notation
used through the article is presented in Table 1. In Sect. 2
we classify our Visual Servoing according to the literature
and provide a review of the basic control scheme. In Sect. 3
we provide a general description of the forward kinematics
model. Section 4 gives the relevant geometrical description
of the robot. In Sect. 5 we detail the construction of the Ja-
cobian matrix that describes its forward kinematics model.
Section 6 specifies the inversion of the forward kinematics
model taking into account relevant constraints. In Sect. 7 we

present empirical results on the actual performance of the
approach. Section 8 gives our conclusions.

2 Background on Visual Servoing

There are two kinds of basic configurations for the camera
[21], eye-in-hand and fixed camera. The eye-in-hand sys-
tems have the camera is placed on the final robot’s effector,
allowing to perform the video acquisition inside the work-
ing space,1 centering the image capture process on the tar-
get object. The relation between the camera pose2 and the
robot’s final effector pose is known and constant, because
both share the same motion vector. The main disadvantage
of this model is the possibility of loosing track of the tar-
get object as the robot movements may displace the target
object outside the camera field of view. For this system, cal-
ibration of the camera intrinsic parameters may be required.
The system considered in this paper is of this kind, where
the robot’s head is the system’s effector. Figure 2 provides a
diagram of the system.

1Working space is a region of task space where the robot’s effector
interacts with the objects it is working with.
2The pose is the physical position and orientation.
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From a different point of view [32] Visual Servoing sys-
tems are classified into indirect and direct approaches. In
indirect Visual Servoing systems there is a controller at each
joint of the robot that performs the joint local control based
on encoder information to reach the goal positions set by the
Visual Servoing loop of the system. In direct Visual Servo-
ing systems the robot joint positions are computed from the
visual information at the sampling frequency of the camera.
In this case the visual control loop includes the command of
the joint servomotors. The system considered in this paper
is of the dynamic look-then-move type. The joint and visual
control loops are interleaved because the visual control loop
allows to update the desired positions of the joints while the
robot still continues executing the previous movement.

Finally, the literature distinguishes between Position
Based Visual Servoing (PBVS) and Image Based Visual Ser-
voing (IBVS). In the latter systems the values of the control
parameters are computed as a direct function of the image
features. For this reason, the IBVS is also known as 2D Vi-
sual Servoing system. The most common approach to bring
the image feature parameter values to the desired ones is to
perform a local minimization of the error based on a local
linearization of the robot kinematic function. In this case
there is a direct influence of . Therefore, the relationship
between the image features on the state of the robot joints
is specified through the image Jacobian matrix. In general,
a priori knowledge about the image geometric features is
needed, such as corners or edges [5, 8, 15] or visual land-
marks [12].

2.1 General Visual Servoing Control Paradigm

An image feature is defined as any structural information
that can be extracted from the image. Every feature cor-
responds to the projection of a real physical feature on
the camera plane. From a set of k image feature parame-
ters the image feature parameter vector is defined as s =
[s1, . . . , sk]T , with s ∈ R

k.

2.1.1 Positioning Kinematic Error

The general robot control problem can be stated as reduc-
ing to zero of the positioning error ‖s(θ , t) − s∗‖ in a finite
time [27, 31]. The Kinematic error function, e : R

m → R
n,

is defined as:

e(θ , t) = C · (s(θ , t) − s∗), (1)

where θ ∈ T is the vector of the robot joint positions, s(θ , t)

is the vector of visual features, s∗ the desired visual config-
uration, C the combination matrix of dimension n × m, n is
the number of degrees of freedom and m is the dimension of
the state vector.

The Task Jacobian Je = ∂e
∂θ is usually decomposed into

Je = Le · Jr where Le = ∂e
∂r ∈ R

n×6 is the Error Interaction
matrix relating the kinematic error with the robot end effec-
tor velocity, Jr = ∂r

∂θ
∈ R

6×n is the Robot Jacobian relating
the final effector velocity with the velocities at the joints of
the robot.

It is said that the task is admissible if there is an unique
trajectory {θ(t), t ∈ [0, t∗]} driving the error function to zero
at the time limit (e(θ , t∗) = 0) and Je is regular all over this
trajectory. For the IBVS systems, admissibility requires the
visibility condition, i. e. that there are enough visual features
inside the vision range of the camera at any time.

2.1.2 Final Effector Trajectory in Task Space

It is assumed that the vector of visual features s is differen-
tiable as a function of the robot’s final effector pose r. The
velocity of the state vector can be expressed as a function of
the velocity of the robot’s final effector pose relative to the
target object:

ṡ = ∂s
∂r

∂r
∂t

+ ∂s
∂t

. (2)

Defining the Feature Interaction matrix Ls = ∂s
∂r as the

Jacobian matrix that relates the visual features’ velocity with
the velocity of the robot’s final effector in camera space, and
vr = ∂r

∂t
, (2) can be rewritten as:

ṡ = Ls · vr + ∂s
∂t

. (3)

Assuming that the combination matrix C does not depend
on r, the error interaction matrix can be rewritten as:

Le = CLs. (4)

An exponential decrease of the kinematic error (1) with
time constant λ can be obtained applying the following lin-
ear differential equation:

ė = −λe. (5)

The time derivate of the kinematic error function, ė, can
be written as a function of the velocity of the robot’s joints,
θ̇ , and, if we use the decomposition ∂e

∂θ = ∂e
∂r

∂r
∂θ , we get the

following expression:

ė = ∂e

∂r
∂r
∂θ

θ̇ + ∂e

∂t
, (6)

which can be rewritten as:

ė = Le.vr + ∂e

∂t
. (7)
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Fig. 2 General schema for
Visual Servoing control

Isolating vr from (7) we obtain the following expression:

vr = L+
e

(
ė − ∂e

∂t

)
, (8)

where L+
e is the pseudo inverse of the error interaction ma-

trix.
Substitution of ė in (8) by its expression in (5) lead us to

the following expression for the robot’s final effector veloc-
ity as a function of the kinematic error:

˙
vr = −L+

e

(
λe + ∂e

∂t

)
. (9)

However Le and ∂e
∂t

can only be estimated from the visual
information, so the Cartesian velocity of the robot’s final ef-
fector is formally defined as:

v̂r = −L̂e
+
(

λe + ∂̂e

∂t

)
. (10)

2.1.3 Stability and Convergence

Substituting v̂r by (10) in (7), we get the following expres-
sion for the velocity of the kinematic error function:

ė = −L̂eL̂e
+
(

λe + ∂̂e

∂t

)
+ ∂e

∂t
. (11)

The sufficient condition assuring the steady decrease of
the norm of the kinematic error function ‖e‖ is
L̂eL̂e

+
> 0. Generally the interaction matrix is chosen equal

to the identity matrix, so the stability condition reduces to:

L̂sL̂s
+

> 0. (12)

However, it must be taken into account that this conver-
gence condition can be compromised by the inaccuracy of
the robot effectors and the segmentation processes in the
computer vision software, among other noise sources.

3 General Description of the Kinematics Model

We build a locally linear forward kinematics model of the
robot by composing the diverse Jacobian matrices that em-

body the dependences among visual features and control pa-
rameters. Then we compute a simple inversion of the model
to obtain the desired control commands that will accomplish
the minimization of the visual error. In order to define the
kinematics model a ground reference system is needed to
formalize the effect of the joint motion on the visual fea-
tures. The ground reference system is trivial for static ma-
nipulator robots, but it can be arbitrary and variable for
legged robots. We have used the tips of the legs that are
the actual ground contact points to define this ground refer-
ence system. We determine the ground plane using the robot
joint’s state information provided by the robot’s basic con-
trol systems.

In Fig. 3 we show the tree structure of the decomposi-
tion of the Jacobian matrices which compose the linearized
model of the system kinematics of a legged robot, follow-
ing a hierarchical decomposition [14]. Each partial Jacobian
matrix is a local linear system relating some input and output
variables. The control commands are computed by inversion
of the full Jacobian matrix.

The full system kinematics is described by the Jacobian
matrix Jsθ which embodies the dependence of the visual fea-
tures on the robot joints, it is decomposed as Jsθ = JspJpθ .
The Jacobian matrix Jsp embodies the dependence of the
image features on the upper body articulations and the ex-
tended support points. The Jacobian matrix Jpθ embodies
the dependence of the extended support point positions and
upper body articulations on the robot articulations.

The Jacobian matrix Jsp is further decomposed as Jsp =
JscJcp , where Jsc embodies the dependence of the image
features on the camera reference system and Jcp embodies
the dependence of the camera reference system on the upper
body degrees of freedom and the extended support points.

The Jacobian matrix Jsc is constructed by aggregating
the Jacobian matrices corresponding to each feature point
into a block diagonal matrix. The Jacobian matrix Jcp is
also a diagonal aggregation of matrices Jcθu , that embodies
the dependence of the camera reference system on the up-
per articulations, and Jce, that embodies the dependence of
the camera reference system on the extended support point
positions.
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Fig. 3 General structure of the
Jacobian operators composing
the direct kinematics model

The Jacobian matrix Jce is further decomposed as Jce =
JcπJπe, where Jcπ embodies the dependence of the camera
reference system on the basic support point positions, and
Jπe embodies the dependence of the basic support point po-
sitions on the extended support point positions.

Finally, the Jacobian Jpθ is a diagonal aggregation of the
identity matrix I3×3 and the Jacobian matrix Jeθ , that em-
bodies the dependence of the extended support point posi-
tions on the robot articulations.

4 Robot’s Geometry

Specifying the robot’s geometry is required to formulate the
robot direct kinematics. First we describe how we compute
the support points, then we describe the coordinate reference
systems and the transformations between them. Finally, we
present the image feature coordinates

4.1 Support Points

The legs define the relationship between the robot’s body
and the supporting plane (Fig. 4) where it is standing on.
The support points denoted gi , are the leg points in con-
tact with the ground. They are highlighted by red dots in
Fig. 4. Each leg has, at most, a support point, which can be
the tip or one of the knees. When the robot is standing at
least three legs must have their supporting points in contact
with the ground. The supporting points 3D coordinates must
be computed relative to the robot body center. In order to de-
termine which leg tips are the supporting points, we proceed

Fig. 4 Support Points and body coordinate reference system

as follows: (1) We compute the tip position of each leg rela-
tive to the body center coordinate reference system from the
knowledge of the joint angles of each leg articulation. (2) We
compute the hypothetical supporting planes defined by each
combination of three leg tip points. (3) We discard hypothet-
ical supporting planes for which at least one leg tip is below
it or do not comply with the stability condition about the
center of mass.

First we compute the position of the leg tip g applying the
transformations defined by the chain of articulations from
the leg tip up to the body center, as shown in general in
Fig. 5. Figure 6 shows the leg parameter specification for
the Aibo robot. The In homogeneous coordinates, the leg tip
is computed by the following product of elemental transfor-
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Fig. 5 Leg geometry. Transformations applied to determine the leg tip
coordinates

Fig. 6 Geometry of the leg’s articulations in the Aibo robot. Lateral
and frontal views

mation matrices:
(

g
1

)
= (Tn+1 · Rn.Tn · · ·R1.T1).

(
0
1

)
, (13)

where Rk is the rotation matrix corresponding to the k-th leg
articulation from tip to the body center, being n the num-
ber of articulations and Tk−1 the translation matrix corre-
sponding to the leg segment between the (k − 1)-th and the
k-th articulations. Translation matrix T1 corresponds to the
translation from the tip to the first articulation, while trans-
lation matrix Tn+1 corresponds to the translation from the
last articulation to the body center reference system. For a
given robot’s leg, we denote L = (Tn+1 · Rn.Tn · · ·R1.T1).

the transformation giving the leg’s tip.
Each subset of three leg tip points Gπ = (g1,g2,g3) al-

lows to compute the parameters (a, b, c, d) of a hypotheti-
cal support plane solving equation π(gi ) = agi,x + bg,iy +

Fig. 7 Stability Condition to determine the basic support points on the
ground plane

Fig. 8 Coordinate reference systems Ig, Ib, Ic on the Aibo robot

cgi,z + d = 0. If all of the remaining leg tip points g′ we
have π(g′) > 0 then it is a support plane corresponding to
the true ground surface. In order for the robot to be stand-
ing in a stable pose, the projection of the body mass cen-
ter, according to the direction of gravity, must lie inside of
the triangle defined by the support points [2]. This condi-
tion is illustrated in Fig. 7. Assuming a set of basic support
points Gπ the set of extended support points is defined as:
Ge = {g s.t. |π(g)| < tol}, where tol is a tolerance limit for
the distance between the ground plane and a leg tip point in
order to accept it as a support point.

4.2 Coordinate Reference Systems

In order to propagate the correction computed to minimize
the visual feature error, it is necessary to define the relevant
coordinate reference systems coexisting in the robot, and the
transformations between them. We denote Ia a generic ref-
erence system, and aIb the transformation from Ib to Ia . The
three coordinate reference systems of interest in our appli-
cation, illustrated in Fig. 8 for the Aibo robot, are:

– The fixed reference system whose origin lies on the
ground, Ig . Previous works in the literature [19] assume
a predefined world reference system. To avoid this limi-
tation, we define this system relative to the basic ground
support points defined in Sect. 4.1.
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– The body coordinate reference system, Ib, whose origin is
the geometrical center of the robot’s body. It is assumed
that all the readings from the system configuration (i.e. leg
configurations) are provided in this frame of reference.

– The camera reference system, Ic.

4.2.1 The Ground Reference System Ig

We build, in the reference system Ib , the expression of the
director vectors which define the axes of Ig . Assuming a set
of basic support points positions Gπ , we arbitrarily define
g1 as the origin of Ig . The vectors −−→g1g2 and −−→g1g3 define the
direction of the two first reference axes of Ig lying on the
ground supporting plane, note that they may not be orthog-
onal. We built the third axis director vector as their cross
product, orthogonal to the ground supporting plane.

4.2.2 Transformation bIg Between Ig and Ib

The first component of the transformation bIg is the rotation
matrix R0, built from the three director vectors defining the
axes of Ig :

R0 =
⎛
⎝g2 − g1 g3 − g1 (g3 − g1) × (g2 − g1) 0

0 0 0 1

⎞
⎠ ,

(14)

and the second is the translation from the origin of Ib to the
origin of Ig,

T0 =
(

I3×3 g1

0 1

)
. (15)

So, composing the two transformations we finally obtain
the matrix transformation from Ig to Ib ,

bIg = T0R0. (16)

4.2.3 Transformation cIb Between Ib and Ic

Figure 9 shows the neck and head geometric parameters.
There are two tilting degrees of freedom of the Aibo, de-
noted θtilt and θnod . The first corresponds to the neck base

Fig. 9 Aibo head’s degrees of freedom. Lateral and front views

pivoting over the chest, the second allows corresponds to
the head moving vertically at the head-neck articulation. The
third degree of freedom, called θpan, allows a rotation per-
pendicular to the tilt, moving the head from side to side. The
transformation between the camera and body reference sys-
tems is the following composition:

bIc = T3R2T2R1T1, (17)

where T1 is the translation from the camera base to the top
of the neck, R1 accounts for the nod and pan head rotations,
T2 is the translation from the neck top joint to the neck base
joint, R2 accounts for the neck-head tilt rotation, and T3 is
the translation from the neck base to the body mass center.

4.3 Image Features

The image plane coordinates of the visual feature si =
(ui, vi)

T are computed from the feature coordinates csi =
(xi, yi, zi)

T in the camera system Ic, according to the pro-
jective equation:

si =
(

ui

vi

)
= λ

xi

(
yi

zi

)
= φ(csi ), (18)

where λ is the focal length. We assume that the featured
object is static relative to the ground reference system Ig ,
therefore we can obtain the image plane coordinates si from
the corresponding coordinates gsi in Ig applying the trans-
formation cIg between Ig and Ic, defined as the composition
of transformations cIb and bIg .

(
ui

vi

)
= φ(cIg(

gsi )). (19)

4.3.1 Aibo’s Image Feature Vector

In the experiments of Sect. 7 the stated task goal is to bring
the ball to the image center, therefore the image feature
s = (u, v) is the center of the region identified as the ball by
the Aibo’s segmentation algorithms. We also consider the
relation between the known ball diameter D and its estima-
tion from the segmentation of the image D̂, to compute an
estimation d̂ of the ball distance to the camera:

d̂ = λ
1

2

D

tan( 1
2 D̂)

. (20)

The estimated distance is used to compute the feature
camera coordinates from the image feature coordinates:

cs = d̂

⎛
⎝cos(v). cos(u)

sin(u)

sin(v)

⎞
⎠ . (21)
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5 Direct Kinematics

We construct the Jacobian matrix Jsθ relating the variations
of the robot degrees of freedom with the variations of the
visual features in the image plane composing partial influ-
ences among the robot components and with the visual fea-
tures according to the general strategy described in Sect. 3
and illustrated in Fig. 3.

5.1 Dependence of Image Features on the Camera Jsc

Deriving (18) we get the following differential equation for
an image feature si :

(
u̇i

v̇i

)
=

⎛
⎝

−λ.yi

x2
i

λ
xi

0 0
−λ.zi

x2
i

0 λ
xi

0

⎞
⎠ ·

⎛
⎜⎜⎝

ẋi

ẏi

żi

0

⎞
⎟⎟⎠ = Jsic

c ṡi . (22)

To build the Jacobian matrix Jsc that relates the variations
of the features in camera space with their image projections,
we aggregate the individual feature Jacobian matrices Jsic

into the following block diagonal matrix:

Jsc =
⎛
⎜⎝

Js1c 0 0

0
. . . 0

0 0 Jskc

⎞
⎟⎠ . (23)

Therefore, Jsc defines a linear transformation from vari-
ations of feature point positions in the camera reference sys-
tem Ic into variations of the image feature vector s,

�s � Jsc · �(cs).

5.2 Dependence of the Basic Support Points Gπ on the
Extended Support Points Ge: Jπe

Changes in the extended support points �Ge may induce
changing the ground plane and changes �Gπ in the basic
support points:

�Gπ = Jπe�Ge,

which can be expanded as follows:

⎛
⎝�gπ

1�gπ
2�gπ
3

⎞
⎠ =

⎛
⎝M11 · · · M1n

M21 · · · M2n

M31 · · · M3n

⎞
⎠

⎛
⎜⎝

�ge
1

...

�ge
n

⎞
⎟⎠ , (24)

where variations on the ground plane are expanded as
�Gπ = (�gπ

1 ,�gπ
2 ,�gπ

3 )T , variations on the extended sup-
port points are expanded as �Ge = (�ge

1, . . . ,�ge
n)

T and
Jπe ∈ R

12×4n is the Jacobian matrix of (24). The Jacobian
building block matrices of size 4 × 4 are defined as follows:

– Mij = I4×4, if the tip of the j -th leg corresponds to the
i-th basic support point.

– Mij = 0, if the tip of the j -th leg does not correspond to
the i-th basic support point.

5.3 Dependence of Camera Coordinates on Upper Body
Joint Angles and Extended Support Points Jcp

According to (19), the image feature coordinates in the cam-
era reference system could be expressed as a function of the
feature coordinates in the ground reference system. Deriv-
ing (19) we get the Jacobian matrix that relates the varia-
tions in the camera reference system Ic with the variations
in the upper body articulations and the basic support points
positions:

Jcp = ∂(cs)
∂pπ

= ∂(cIb ·b Ig(
gs))

∂pπ

, (25)

where pπ is the following vector of upper joints and basic
support points positions:

pπ =
(

θu

Gπ

)
. (26)

Using the chain rule, we rewrite (25):

Jcp = ∂(cIb)

∂pπ

(bIg)(
gs) + (cIb)

∂(bIg)

∂pπ

(gs). (27)

The transformation cIb depends only on θu (the upper body
joint angles) and bIg depends on Gπ . We can define the fol-
lowing independent Jacobians from (27):

Jcθu = ∂(cIb)

∂θu

(bIg)(
gs), (28)

Jcπ = (cIb)
∂(bIg)

∂Gπ

(gs), (29)

where Jcθu defines the dependences of the features in the
camera reference system on the upper body articulations and
Jcπ defines the dependences of the features in the camera
reference system on the basic support points. These matri-
ces corresponding to the kinematics in two orthogonal sub-
spaces.

If we make use of matrix Jeπ , defined in (24), we can de-
fine the dependences of the camera on the extended support
points:

Jce = Jcπ · Jπe. (30)

The Jacobian matrix Jcp can be constructed as the aggre-
gation of the Jacobian matrices Jcθu and Jce into the follow-
ing block diagonal matrix:

Jcp =
(

Jcθu 0
0 Jce

)
. (31)
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The dependence of the variations in the camera feature
positions on the variations in the upper body degrees of free-
dom and the extended support points positions can be sum-
marized by:

�(cs) � Jcp�p, (32)

where p is the vector of upper joint angles and extended
support point positions:

p =
(

θu

Ge

)
. (33)

5.4 Dependence of p on the Robot’s Articulation Angles:
Jpθ

We can decompose the Jacobian matrix Jpθ , which defines
the dependence of p on the robot’s degrees of freedom,
into two Jacobian matrices, one which relates the extended
support points and the leg’s articulations Jeθ and the other
which is the identity matrix for the upper body articulations.
To build Jeθ we start modelling the changes in the extended
support point coordinates in response to the changes in the
degrees of freedom of the corresponding leg, as follows:

�ge
i � Ji · �θ i , (34)

where Ji is the Jacobian matrix of equation (13), relating the
variations of the i-th extended support point to variations
of the leg’s joint angles θ i = (θi1, θi2, . . . , θimi

) in the leg
corresponding to this i-th extended support point. The size
of each Ji matrix is 4 × mi , being mi the number of joints
of leg i.

Aggregating the extended support point Jacobians into a
diagonal block matrix, we get the following equation:

⎛
⎜⎝

�ge
1

...

�ge
n

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

J1 0 0 0
0 J2 0 0
...

...
. . .

...

0 0 0 Jn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�θ1

�θ2
...

�θn

⎞
⎟⎟⎟⎠ , (35)

which can be expressed in matrix form as follows:

�Ge = Jeθ�θe, (36)

where θe is the vector composed of all the joint angles of the
legs corresponding to all the extended support points.

In order to obtain a single matrix that relates the varia-
tions of p in all the articulation joints of the robot, we define
the following diagonal block matrix:

Jpθ =
(

Im×m 0
0 Jeθ

)
, (37)

where m is the number of upper body articulations.

The dependence of variations in vector p on variations in
the robot degrees of freedom, can be summarized as:

�p � Jpθ�θ . (38)

We must note that for the Aibo, we can have as support-
ing points the knees. Then the Jacobians in (34) may have
two different expressions. Considering this issue in detail
will introduce irrelevant complexity.

5.5 Image Feature Jacobian Matrix

Finally, we construct the full Jacobian matrix that models
the dependence of the image features on all the degrees of
freedom of the robot by composing the Jacobian matrices
of (23), (31) and (38):

�s = (JspJpθ )�θ, (39)

where Jsp = JscJcp . The global Jacobian matrix is defined
as:

Jsθ = JspJpθ . (40)

Equation (39) is thus rewritten in the following way:

�s = Jsθ�θ. (41)

6 Constrained Inverse Kinematics

To determine the velocity at each robot’s degrees of freedom
that will minimize the dynamic visual error ‖ṡ − (Jsθ )θ̇‖,
we must compute the inverse of the Jsθ matrix in (41). In
general, this matrix is not invertible, because it is under-
constrained. The general minimum least squares solution is
given by the seudoinverse J+

sθ in the following way:

θ̇ = J+
sθ ṡ + (I − J+

sθ Jsθ )w, (42)

where w is an arbitrary vector of Rm+3n, m is the number of
upper body joints and n is the number of extended support
points. In general, (I − J+

sθ Jsθ )w 	= 0 and all the vectors of
the form (I − J+

sθJsθ )w belong to the kernel of the trans-
formation associated to Jsθ . However, (42) does not take
into account the constraint of preserving the ground refer-
ence system invariant, which implies keeping the distances
between supporting points constant.

We denote d = (d1, . . . , dn(n−1))
T a vector containing all

distances among the extended support points. The Jacobian
matrix that relates the changes in this vector to the changes
in the extended support points is given by:

Jde =
(

∂di

∂ej

; i = 1, . . . , n(n − 1); j = 1, . . . , n

)
. (43)
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The vector d is not affected by variations in the upper
body’s degrees of freedom, thus we can formulate its depen-
dency on p by a Jacobian matrix Jdp constructed as follows:

Jdp =
(

0n×m 0
0 Jde

)
. (44)

�d � Jdp ·
(

�θu

�Ge

)
. (45)

Using Jdp , Jpc and Jsc we can construct the dependen-
cies of d on the variations of image features:

�d = [JdpJpcJ
+
sc ]�s.

We want to our control system to preserve d. Therefore,
we must project the obtained movements into the null space
of [JdpJpcJ

+
sc ], to this end we define the constrained control

rule for the movements of the extended support points:

�p1 = [(I − J+
dpJdp)(JpcJ

+
sc )]ks�s, (46)

where ks ∈ R is a control gain.
However, due to noise and the inaccuracy of the linear

approximations and positioning systems, the actual motion
of the robot articulation induce undesired variations in d.
Therefore, some corrective actions for repositioning the sup-
port points are required, we project the movements obtained
by applying the seudoinverse of Jacobian Jdp to the error in
the distances between extended support points positions into
the null space of J+

sp .:

�p2 = [(I − J+
spJsp)J+

dp]kd�d, (47)

where kd ∈ R is a control gain.
Finally, we combine (46) and (47) in order to obtain

a control law that moves the articulations maintaining the
ground reference system invariant while moving the image
features to the desired ones. This global control law is de-
fined as follows:

�θ = J+
pθ [�p1 + �p2]. (48)

This equation allows us to determine the variations on
the robot’s degrees of freedom to get the desired configura-
tion of the image. However, this equation is unrestricted and
may drive the robot into unstable configurations, that is, to
articulation configurations out of the region of stable poses
in configuration space. Stable poses are characterized by the
support points convex hull condition [2] illustrated in Fig. 7.
When this condition does not hold or the projection point
is too close to the polygon boundary we restrict the Visual
Servoing to the upper body degrees of freedom, using the
transformation gIc instead of bIc to construct a reduced Ja-
cobian Jsθu that relates the image features to the upper body
degrees of freedom [25, 30].

Fig. 10 The experimental ground

Fig. 11 Ground plane partition in front of the Aibo. Each ellipse mod-
els the uncertainty associated to its center location. Aibo’s position is
in the lower vertex of the triangle

Fig. 12 Discretization of the space inside the uncertainty ellipse for
each location

7 Empirical Results on the Aibo

We have applied the Visual Servoing scheme to the visual
tracking of a ball using all the degrees of freedom of a
Sony’s Aibo ERS-7 robot as described in Sect. 4.3.1. The
visual feature is the center of the image region labeled as
the ball by the robot’s computer vision algorithms. Program
development has been done using the Carnegie Mellon Uni-
versity’s SDK [34] and the SONY’s SDK [7]. We examine
the behavior of the robot under different controlled experi-
mental settings. Figure 10 shows the experimental ground,
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Table 2 Average final visual error at each uncertainty circle

Nominal Error norm

position Average Variance

1 0.0821 0.0024

2 0.0732 0.0007

3 0.0642 0.0011

4 0.0886 0.0097

5 0.0757 0.0006

6 0.0874 0.0062

7 0.0704 0.0008

8 0.0791 0.0016

9 0.0935 0.0016

10 0.0860 0.0002

11 0.0766 0.0010

12 0.0868 0.0056

13 0.0698 0.0016

14 0.0737 0.0008

15 0.0740 0.0097

16 0.0880 0.0004

17 0.0692 0.0038

18 0.0665 0.0006

Total 0.0783 0.0027

Fig. 13 Final Visual Servoing error norm distribution versus distance
to the ball in the 3D world reference system

where the paper sheet contains the appropriate marks for the
measured experimental locations. A sample video of the ex-
periment is available.3 The experiments start from nominal
initial values of the Aibo’s degrees of freedom in a standing
stable position. The Aibo position and orientation defines

3http://www.ehu.es/ccwintco/index.php/DPI2006-15346-C03-03-
Resultados#videos.

Fig. 14 Final visual error norm versus initial visual error

Table 3 Accumulated derivatives of the error trajectory at each nomi-
nal position

Nominal Derivative Norm

position Average Variance

1 0.0065 0.0016

2 0.0065 0.0003

3 0.0059 0.0002

4 0.0065 0.0009

5 0.0052 0.0005

6 0.0089 0.0027

7 0.0061 0.0004

8 0.0050 0.0002

9 0.0059 0.0003

10 0.0090 0.0006

11 0.0050 0.0005

12 0.0029 0.0002

13 0.0051 0.0007

14 0.0066 0.0005

15 0.0051 0.0002

16 0.0030 0.0002

17 0.0029 0.0002

18 0.0011 0.0000

Total 0.0052 0.00054

the world reference system. The two experiments are as fol-
lows:

– Experiment 1: The ball is placed in a fixed position. The
robot performs Visual Servoing to place the ball center in
the image plane center, stopping after reaching the goal
under some tolerance condition. The ground plane before
the robot is partitioned as specified in Fig. 11 to allow
for the systematic test of the robot’s behavior sensitiv-

http://www.ehu.es/ccwintco/index.php/DPI2006-15346-C03-03-Resultados#videos
http://www.ehu.es/ccwintco/index.php/DPI2006-15346-C03-03-Resultados#videos
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Fig. 15 Sample trajectories of the ball center in the image plane with the ball placed in some position inside the uncertainty circle (positions 1
to 6)

ity to the positions of the ball. Each location ellipse is
further discretized to simulate uncertainties in ball posi-
tion.

– Experiment 2: The ball is placed in a sequence of posi-
tions. The robot performs Visual Servoing at each posi-
tion. After normal stopping the ball is moved to the next
position in the sequence. The aim of this experiment is to
test the ability of the Visual Servoing to move the robot

smoothly from one final configuration of its articulations
to another.

7.1 Experiment 1: Visual Tracking of a Static Ball

The reference distance between sampling points in the (x, y)

plane is 30 cm. The horizontal angular aperture of the cam-
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Fig. 16 Trajectories in the image plane when the visual servoing is restarted after moving the ball
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era’s field of view is π
3 radians. The distance to the camera is

in the range from 0.5 m to 2 m. The projection on the ground
of the Aibo’s center of mass in its nominal initial configura-
tion is assumed as the origin of the world reference system.
The ground in front of the robot which is inside the robot’s
field of view is partitioned, as illustrated in Fig. 11, into the
uncertainty ellipses of 18 nominal positions which are fur-
ther discretized as shown in Fig. 12. Each point corresponds
to a position where we place the ball simulating perturba-
tions of the nominal position which is the ellipse center. We
have a total of 576 points into the vision range of the Aibo
robot where we can place the ball to perform the Visual Ser-
voing experiments.

The range of values of the image plane coordinates is
[−1,1] for both axes. After testing all the possible positions
for the ball, the average norm of the final error in the image
plane is 0.0783 with a variance of 0.0027, the resolution of
the Visual Servoing is below 4% of the image space on av-
erage. Table 2 details the average and variance of the final
visual error for each ball position.

Figure 13 plots the visual error norm at the end of the
Visual Servoing process versus the distance from the ball to
the camera image plane. The magnitude of the error does
not show any trend related to the distance to the camera, the
Visual Servoing performance is nearly invariant relative to
the distance of the target object to the camera. The verti-
cal structures in the plot correspond to a collection of ex-
periments where the ball was perceived at similar distances.
Those structures show the same uniform distribution of the
visual error regardless of distance. Therefore, the distribu-
tion of the final error is invariant to the distance of the ball
to the robot. In Fig. 14 we plot the norm of the final visual
error after Visual Servoing versus the initial visual error. The
figure does not show column structures as Fig. 13, because
we have a nearly uniform distribution of the initial visual er-
ror. We find that the final visual error is invariant to the initial
visual error. In Fig. 15 we show some sample trajectories of
the ball center in the image plane along the Visual Servoing
process. Most of them show a fairly smooth convergence to
the image center

To assess the smoothness of the Visual Servoing tra-
jectories we have computed the average spatial deriva-
tive of the trajectories, starting from the sampling points
in each uncertainty circle associated with each ground
plane sampling position. These values are shown in Ta-
ble 3. We can appreciate that some of the starting ball
positions produce systematically smooth trajectories, such
as position 17 and 18, while others, such as positions 6
and 10, produce more jumpy trajectories. The reasons for
that behaviour lie in the uneven distribution of the servo-
motors response power and control resolution on the Aibo’s

articulations, as well as the image segmentation prob-
lems.

7.1.1 Visual Tracking for a Sequence of Ball Positions

In the second experiment, we tested several sequences of po-
sitions of the ball, each one consisting of four positions. The
Aibo performed the Visual Servoing starting from the robot
configuration after Visual Servoing for the previous ball po-
sition, no corrections were made. The ball was static while
the Aibo was performing each Visual Servoing process. The
aim of this experiment is to study the degradation of perfor-
mance due to the accumulation of errors. Figure 16 shows
some example trajectories obtained in this experiment. In
the plots, the red, green, blue and black trajectories corre-
spond to the Visual Servoing trajectories performed by the
Aibo after each of the four ball positions. It can be appre-
ciated that the robot response is quite smooth for the en-
suing positions after having performed the Visual Servoing
for the first one, even if the initial position was a “difficult”
one.

8 Conclusions

We have developed the Visual Servoing for the whole set
of degrees of freedom of the Aibo ERS-7 following a prin-
cipled approach. From the geometrical description of the
robot we have constructed the full Jacobian matrix that em-
bodies the functional dependence of the visual features on
the robot joint angles. We take into account also the cor-
rection of the motion of the supporting points. The seu-
doinverse of this Jacobian matrix provide the desired con-
trol commands for the joints. However, the blind applica-
tion of this control strategy may drive the robot to unstable
or unfeasible configurations for a standing pose. Therefore,
we evaluate an stability condition of the robot configuration
before applying the command. When stability is compro-
mised we restrict the Visual Servoing to the head. Despite
the linear nature of the approach we have not found con-
vergence problems in practice. The approach overcomes the
inaccuracies of the joint servo-motor controls and the im-
age segmentation software. The actual implementation in
the Aibo ERS-7 shows that the approach performs in real
time when the seudoinverse is computed in the on-board
processor of the robot. The real life experiments under con-
trolled conditions have shown that the approach is highly
robust to positioning of the ball in the field of view of
the robot, it performs very fast and with very low final er-
ror, independently of the distance of the ball to the camera
plane.
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