
J Math Imaging Vis (2012) 43:50–71
DOI 10.1007/s10851-011-0283-1

Interval-Valued and Intuitionistic Fuzzy Mathematical
Morphologies as Special Cases of L-Fuzzy Mathematical
Morphology

Peter Sussner · Mike Nachtegael · Tom Mélange ·
Glad Deschrijver · Estevão Esmi · Etienne Kerre

Published online: 13 April 2011
© Springer Science+Business Media, LLC 2011

Abstract Mathematical morphology (MM) offers a wide
range of tools for image processing and computer vision.
MM was originally conceived for the processing of binary
images and later extended to gray-scale morphology. Ex-
tensions of classical binary morphology to gray-scale mor-
phology include approaches based on fuzzy set theory that
give rise to fuzzy mathematical morphology (FMM). From
a mathematical point of view, FMM relies on the fact that
the class of all fuzzy sets over a certain universe forms a
complete lattice. Recall that complete lattices provide for the
most general framework in which MM can be conducted.

The concept of L-fuzzy set generalizes not only the con-
cept of fuzzy set but also the concepts of interval-valued
fuzzy set and Atanassov’s intuitionistic fuzzy set. In ad-
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dition, the class of L-fuzzy sets forms a complete lattice
whenever the underlying set L constitutes a complete lat-
tice. Based on these observations, we develop a general ap-
proach towards L-fuzzy mathematical morphology in this
paper. Our focus is in particular on the construction of con-
nectives for interval-valued and intuitionistic fuzzy mathe-
matical morphologies that arise as special, isomorphic cases
of L-fuzzy MM. As an application of these ideas, we gener-
ate a combination of some well-known medical image re-
construction techniques in terms of interval-valued fuzzy
image processing.
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1 Introduction

Recently, Type-2 and intuitionistic fuzzy set theories have
become increasingly important in applications in rule-based
systems and approximate reasoning [26, 83, 84]. Both Type-
2 and intuitionistic fuzzy set theory extend Zadeh’s fuzzy set
theory [1, 88, 89].

Recall that a conventional or Type-1 fuzzy set has crisp
membership degrees that reside in the unit interval [0,1]. In
contrast, a Type-2 fuzzy set allows for membership degrees
that are Type-1 fuzzy sets on the universe [0,1], i.e., a Type-
2 fuzzy set Ã represents a function from a set X to the class
of Type-1 fuzzy sets on [0,1]. An element x ∈ X is mapped
to a Type-1 fuzzy set Ã(x) which is called the secondary
membership function at x. A particular class of Type-2 fuzzy
sets arises if, for every x ∈ X, the secondary membership
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function Ã(x) equals the characteristic function of an in-
terval Ix ⊆ [0,1]. In this case we speak of interval Type-2
fuzzy sets [51]. For computational reasons, most practical
applications of Type-2 fuzzy sets are indeed only concerned
with the subclass of interval Type-2 fuzzy sets [52, 53, 84].
For most authors interval Type-2 fuzzy sets and interval-
valued fuzzy sets (IVFSs) [34, 42, 67, 89] are two equivalent
concepts although there are some conceptual differences re-
garding notions such as cardinality and support [61]. Re-
call that an interval-valued fuzzy set corresponds to a map-
ping A from X into the class of intervals [μ1,μ2] ⊆ [0,1].
Thus, A(x) = [μ1(x),μ2(x)] for every x ∈ X. Evidently, if
μ1(x) equals μ2(x) for all x ∈ X then the interval fuzzy set
reduces to a (Type-1) fuzzy set. Interval-valued fuzzy sets
have been used successfully by J.M. Mendel to implement
Zadeh’s paradigm of computing with words [50].

Intuitionistic fuzzy sets (IFSs) generalize Zadeh’s orig-
inal definition by defying the law of the excluded middle
which claims that if x belongs to a degree μ to a fuzzy
set then x does not belong to this fuzzy set to the extent
ν = 1 − μ [1, 3]. In IFS theory, the degree of membership
of x and the degree of non-membership of x do not have
to add up to 1. Instead, IFS theory only requires that the
pair consisting of the membership degree μ and the non-
membership degree ν of x in an IFS satisfies the inequality
μ + ν ≤ 1.

Atanassov coined the technical term “intuitionistic fuzzy
set” since intuitionistic logic also rejects the law of the ex-
cluded middle [2]. As Dubois et al. have pointed out [31],
this terminology is unfortunate and misleading. Therefore,
these prominent researchers have advocated a change in ter-
minology from “intuitionistic fuzzy set” to “bipolar fuzzy
set” in view of the fact that the term “bipolarity” captures the
separate handling of positive and negative aspects of infor-
mation. However, we would like to stress that the concept of
“bipolar fuzzy set” had already been previously introduced
by Zhang et al. [91, 92]. Although Zhang’s work on bipo-
lar fuzzy sets is also concerned with two sides of a matter
or positive and negative aspects of information, his bipolar
fuzzy sets are formally different from Atanassov’s IFSs. For
instance, the bipolar fuzzy space is given by [−1,0]× [0,1]
which represents the set of pairs having a negative side as
well as a positive side. Based on these observations, we pre-
fer to adhere to the nomenclature “intuitionistic fuzzy set”
so as to be in agreement with the terminology that prevails
in the literature and in the premier conferences on fuzzy sets
and systems.

This paper investigates a number of theoretical aspects
of L-fuzzy mathematical morphology. Unlike previous pa-
pers on interval-valued and intuitionistic fuzzy mathemati-
cal morphology [10, 11, 59, 60], this paper treats interval-
valued and intuitionistic FMMs as special cases of L-fuzzy
MM. This approach not only allows for a top-down view of

the corresponding mathematical frameworks but also for the
construction of L-fuzzy MMs for other particular instances
of complete lattices L.

Special attention is given to extensions of FMM that are
known as interval-valued and intuitionistic FMMs in which
case the complete lattices in question are denoted by L

I and
L

∗ [27, 60]. In analogy to the fuzzy case [57, 80], we stipu-
late that a certain approach towards interval-valued or intu-
itionistic FMM depends on the choice of interval-valued or
intuitionistic fuzzy inclusion and intersection measures that
are determined by pairs consisting of an implication and a
conjunction on L

I or L
∗. Each pair of connectives should be

linked in terms of a duality relationship of adjunction and/or
negation. In view of these considerations, Sect. 4 is devoted
to the construction of interval-valued or intuitionistic fuzzy
connectives that may serve as a basis for a particular ap-
proach towards interval-valued or intuitionistic FMM. In
Sect. 5, we consider a specific pair of interval-valued fuzzy
connectives consisting of a t-norm and an implication on L

I

that are both adjoint and dual with respect to the standard
negation on L

I . This t-norm and this implication on L
I give

rise to respectively an interval-valued fuzzy dilation and an
interval-valued fuzzy erosion that can be employed to com-
pute the interval-valued morphological gradient of interval-
valued fuzzy images. We adopt this strategy to generate the
interval-valued morphological gradient of an interval-valued
fuzzy representation of a combination of results produced
by three well-known medical image reconstruction meth-
ods. After some appropriate post-processing, the mean of
the upper and lower envelopes of the interval-valued mor-
phological gradient image is transformed using the water-
shed segmentation algorithm. The reconstructed images ob-
tained from the individual reconstruction algorithms are seg-
mented in a similar way. The segmentation results produced
by the individual methods and by the interval-valued combi-
nation of these methods can be visually compared by taking
the segmentation of the original image as the ground truth.

The paper is organized as follows. Section 2 deals with
general mathematical concepts. Specifically, after reviewing
the mathematical background of MM on complete lattices,
we investigate the properties of L-fuzzy logical connectives
that we employ to derive L-fuzzy inclusion and intersec-
tion measures. In Sect. 3, we introduce the general mathe-
matical framework of L-fuzzy MM as a generalization of
FMM. Section 4 focusses on the special cases of interval-
valued and intuitionistic FMMs, in particular on the con-
struction of the underlying interval-valued and intuitionistic
fuzzy logical connectives. Section 5 applies the concepts of
interval-valued FMM that we developed in the previous sec-
tions to generate a combination of distinct medical image
reconstruction algorithms and to process the interval-valued
images that correspond to this combination. Finally, we fin-
ish the paper with some concluding remarks and suggestions
for further research.
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2 General Mathematical Concepts

2.1 The Complete Lattice Framework of Mathematical
Morphology

Mathematical Morphology (MM) is a theory that uses con-
cepts from set theory, geometry and topology to analyze
geometrical structures in an image [37, 48, 69, 70]. MM
has found wide-spread applications over the entire imag-
ing spectrum [16, 35, 36, 44, 63, 74, 75]. MM was origi-
nally invented in the early 1960s by Georges Matheron and
Jean Serra as a tool for the automatic analysis of binary im-
ages [47, 68]. After Sternberg and Serra extended MM to
gray-scale images [69, 76], Serra observed that complete
lattice theory represents the appropriate algebraic frame-
work for MM [37, 65, 70]. Recent research results of Heij-
mans and Keshet have extended this framework to com-
plete inf-semilattices [38]. Recent expositions on the lattice-
theoretical framework of MM include [14, 66].

The fact that the unit interval [0,1] represents a complete
lattice has played a crucial role in the development of fuzzy
mathematical morphology (FMM) which can be viewed as
an extension of binary MM to gray-scale MM [20–24, 32,
41, 46, 57, 60, 80]. In this context, note that a fuzzy set
corresponds to an L-fuzzy set where L = [0,1] [33]. The
complete lattice setting allows for an algebraic definition of
the elementary operators of MM, namely erosion, dilation,
anti-erosion, and anti-dilation [37, 70]. An (algebraic) ero-
sion is defined as an operator ε from a complete lattice L to
a complete lattice M that commutes with the infimum oper-
ation. Similarly, an (algebraic) dilaton is defined as an oper-
ator L → M that commutes with the supremum operation.
Formally, an erosion is an operator ε : L → M satisfying the
left side of Eq. 1 and a dilation δ : L → M is an operator
ε : L → M satisfying the right side of Eq. 1.

ε
(∧

Y
)

=
∧
y∈Y

ε(y),

δ
(∨

Y
)

=
∨
y∈Y

δ(y) ∀Y ⊆ L.
(1)

Anti-erosions and anti-dilations arise from negations,
erosions, and dilations [85]. Recall that a negation on a lat-
tice is an involutive bijection that reverses the partial order-
ing.

Two important notions of duality permeate MM: adjunc-
tion and negation. The operators of erosion and dilation can
be linked by means of negation. Let Ψ be an operator map-
ping a complete lattice L into a complete lattice M and let
νL and νM be negations on L and M, respectively. The op-
erator Ψ ν given by

Ψ ν(x) = νM (Ψ (νL(x))) ∀x ∈ L, (2)

is called the negation of Ψ (with respect to νL and νM).
Thus, we have that the negation of an erosion is a dilation,
and vice-versa [37].

Several prominent researchers [24, 37, 39, 46, 65] con-
sider adjunction to be the most important notion of duality
in MM. Consider two arbitrary operators δ : L → M and
ε : M → L for some complete lattices L and M. We say that
the pair (ε, δ) forms an adjunction or that ε and δ are adjoint
if and only if we have

δ(x) ≤ y ⇔ x ≤ ε(y) ∀x ∈ L, ∀y ∈ M. (3)

The following well-known properties of adjunctions [37,
70] will turn out to be extremely useful throughout the paper.
Specifically, the following statements are valid for mappings
δ : L → M and ε : M → L, where L and M are complete
lattices:

1. If (ε, δ) is an adjunction then ε is an erosion and δ is a
dilation.

2. For any dilation δ there is a unique erosion ε such that
(ε, δ) is an adjunction. The adjoint erosion is given by

ε(y) =
∨

{x ∈ L : δ(x) ≤ y}, (4)

for every y ∈ M.
3. For any erosion ε there is a unique dilation δ such that

(ε, δ) is an adjunction. The adjoint dilation is given by

δ(x) =
∧

{y ∈ M : ε(y) ≥ x}, (5)

for every x ∈ L.

The preceding observations clarify that there is a unique
erosion that can be associated with a certain dilation, and
vice-versa, in terms of either negation or adjunction. Adjoint
pairs of erosions and dilations also give rise to openings and
closings [37].

2.2 Logical Operators on a Complete Lattice
and Relationships of Duality

Fuzzy logical operators are well-known extensions of Boo-
lean logical operators. These operators associate elements of
[0,1]2 with elements of [0,1] or—in the case of negation—
map the unit interval [0,1] into [0,1]. Instead of the com-
plete lattice [0,1], we can take any complete lattice L and
define logical operators on L as L

2 → L or L → L map-
pings. This strategy yields the following definitions [25]:

Definition 1 Let L be a complete lattice with smallest ele-
ment 0L and largest element 1L.

– A conjunction on L or L-fuzzy conjunction is defined
as an increasing mapping C : L × L → L that sat-
isfies C(0L,0L) = C(0L,1L) = C(1L,0L) = 0L and
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C(1L,1L) = 1L. In particular, a commutative and asso-
ciative L-fuzzy conjunction T : L × L → L that satisfies
T (x,1L) = x for every x ∈ L is called triangular norm or
simply t-norm on L.

– A disjunction on L or L-fuzzy disjunction is an increasing
mapping D : L × L → L that satisfies D(0L,0L) = 0L

and D(0L,1L) = D(1L,0L) = D(1L,1L) = 1L. In par-
ticular, a commutative and associative L-fuzzy disjunc-
tion S : L × L → L that satisfies S(x,0L) = x for every
x ∈ [0L,1L] is called triangular co-norm or s-norm on L.

– An operator I : L × L → L that is decreasing in the first
argument and that is increasing in the second argument is
called an implication on L or L-fuzzy implication if the
equations I (0L,0L) = I (0L,1L) = I (1L,1L) = 1L and
I (1L,0L) = 0L are satisfied.

Recall that we already reviewed the concept of negation
on a complete lattice L in the previous section. We will also
speak of an L-fuzzy negation. The L-fuzzy connectives on
the complete lattice [0,1] are known as fuzzy conjunctions,
disjunctions, implications, t-norms, s-norms, and negations.

A logical connective can be associated with another log-
ical connective on L in terms of a duality relationship of
negation or adjunction. Let us introduce the following def-
initions that extend the respective definitions for the com-
plete lattice [0,1].

Definition 2 Let C be a conjunction, D a disjunction, and
I an implication on L. Moreover, let N be a negation on L.

– We say that C and D are dual (operators) with respect to
N if and only if the following equation holds for every
x, y ∈ L:

C(x, y) = N(D(N(x),N(y)). (6)

– We say that C and I are dual (operators) with respect to
N if and only if C(z, ·) and I (z, ·) are dual with respect
to N for all z ∈ L. In this case, we have the following
equation for all x, z ∈ L:

C(z, x) = N(I (z,N(x))). (7)

– We say that I and D are dual (operators) with respect to
N if and only if the following equation holds for every
x, y ∈ L:

I (x, y) = D(N(x), y). (8)

In contrast to a pair of operators that are dual with respect
to negation, a pair of adjoint operators ε and δ has the ad-
vantage that ε is guaranteed to represent an erosion and that
δ is guaranteed to represent a dilation in the lattice-algebraic
sense of Eq. 1.

Definition 3 Let L be a complete lattice. An L-fuzzy impli-
cation I and an L-fuzzy conjunction C form an adjunction
if and only if I (z, ·) and C(z, ·) form an adjunction for ev-
ery z ∈ L. In this case, the following statement is true for all
x, y, z ∈ L:

C(z, x) ≤ y ⇔ x ≤ I (z, y). (9)

Note that if an implication I and a conjunction C on L

are adjoint then C(z, ·) is a dilation and I (z, ·) is an ero-
sion for every z ∈ L. Also note that we can employ Eq. 4 to
form the adjoint erosion I (z, .) of a dilation C(z, .) where C

is a conjunction on L. Conversely, we can employ Eq. 5 to
form the adjoint dilation C(z, .) of an erosion I (z, .) where
I is an implication on L. The conditions stated in Theo-
rem 1 and 2 guarantee that the respective adjoint operators
are L-fuzzy implications and conjunctions. The definition of
IC in Theorem 1 generalizes the definitions of intuitionistic
and interval-valued R-implicators provided in [18].

Theorem 1 Let C be an L-fuzzy conjunction. Suppose that
IC : L

2 → L is defined as follows:

IC(z, y) =
∨

{x ∈ L : C(z, x) ≤ y} ∀z, y ∈ L. (10)

The following statements hold true.

1. The mapping IC is decreasing in the first argument, in-
creasing in the second argument, and satisfies the condi-
tions

IC(0L,0L) = IC(0L,1L) = IC(1L,1L) = 1L. (11)

2. The mapping IC represents an L-fuzzy implication if and
only if C(1L, x) > 0L for all x ∈ L\{0L}. In this case, the
implication IC is referred to as the R-implication of C.

Conversely, we are able to derive an L-fuzzy conjunction
CI from an L-fuzzy implication I under certain conditions
that are stated in the following theorem.

Theorem 2 Let I be an L-fuzzy implication. Suppose that
CI : L

2 → L is defined as follows:

CI (z, x) =
∧

{y ∈ L : I (z, y) ≥ x} ∀z, x ∈ L. (12)

The following statements hold true.

1. The mapping CI is increasing and satisfies the conditions

CI (0L,0L) = CI (0L,1L) = CI (1L,0L) = 0L. (13)

2. The mapping CI represents an L-fuzzy conjunction if and
only if I (1L, y) < 1L for all y ∈ L\ {1L}. In this case, we
say that CI is the R-conjunction of I .
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The following theorem deals with successive applications
of Eqs. 10 and 12.

Theorem 3 Let C be an L-fuzzy conjunction that satis-
fies C(1L, x) > 0L for all x 
= 0L. If IC , the R-implication
of C, satisfies IC(1L, y) < 1L for all y 
= 1L then the
R-conjunction of IC is bounded from above by C.

Similarly, let I be an L-fuzzy implication that satisfies
I (1L, y) < 1L for all y 
= 1L. If CI , the R-conjunction
of I , satisfies CI (1L, x) > 0L for all x 
= 0L then the
R-implication of CI is bounded from below by I .

Note that the inequalities I (1L, y) < 1L for all y 
= 1L

are in particular satisfied for the class of L-fuzzy implica-
tions such that I (1L, y) = y for all y ∈ L. Similarly, the
inequalities C(1L, x) > 0L for all x 
= 0L are in particu-
lar satisfied for the class of L-fuzzy conjunctions such that
C(1L, x) = x for all x ∈ L. The latter class encompasses the
class of L-fuzzy t-norms. Extending well-known nomencla-
ture, we say that an application of Eq. 10 to an L-fuzzy
t-norm T results in the R-implication of T .

Theorems 1 and 2 reveal that some care has to be taken
when trying to generate an L-fuzzy implication from an
L-fuzzy conjunction by means of Eq. 10 or an L-fuzzy con-
junction from an L-fuzzy implication by means of Eq. 12,
respectively. Fortunately, the construction of L-fuzzy oper-
ators from another L-fuzzy operator using negation entails
no complications:

Theorem 4 Let N be a negation on L. Suppose that the
L-fuzzy operators C and I are related in terms of Eq. 7, i.e.,
C and I are dual with respect to N . We have that C is a
conjunction on L if and only if I is an implication on L.
Similar statements hold true for Eqs. 6 and 8.

Consider Eq. 8 in the special case where the disjunc-
tion is an s-norm on L that is denoted using the symbol S.
Extending the notions of strong implications or, for short,
S-implications both in conventional as well as in interval-
valued and intuitionistic fuzzy set theories [18], the impli-
cation I given by I (x, y) = S(N(x), y) for all x, y ∈ L is
called an S-implication on L.

2.3 L-Fuzzy Inclusion and Intersection Measures

In Sect. 2.1, we presented the formal definitions of an ero-
sion and a dilation within the complete lattice framework of
MM. As mentioned before, these and other connections to
lattice algebra were discovered by Serra and Heijmans only
at later stages of the development of MM [37, 70]. The ori-
gins of MM lie in certain types of applications of set theory
and of geometry to image processing. In binary MM, an im-
age a : X → {0,1} is viewed as a subset of X which can

be assumed to be either the Euclidean space R
d or the dig-

ital space Z
d . The fundamental operation of binary erosion

yields the set of points for which a translated structuring el-
ement is contained in the input image [69]. The threshold
approach and the umbra approach to grayscale MM employ
straightforward extensions of this basic idea to the grayscale
case [69, 76]. In a similar vein, the fundamental operation of
dilation is defined in terms of intersection of sets.

Thus, the concepts of set inclusion and set intersection
lie at the root of MM. Researchers in fuzzy mathematical
morphology (FMM) have devised fuzzy inclusion and inter-
section measures by relaxing the notions of crisp inclusion
and intersection measure [7, 45, 72, 73, 88]. Large classes
of fuzzy inclusion measures and fuzzy intersection measures
can be constructed in terms of fuzzy implications and con-
junctions [80].

The notion of L-fuzzy set on a universe U was introduced
by Goguen as natural extension of the notion of fuzzy set.
An L-fuzzy set on the universe X is an X → L mapping
where L is a complete lattice that is equipped with a nega-
tion on L [33]. The class of L-fuzzy sets on the universe X
which is generally denoted using the symbol FL(X) encom-
passes the classes of interval-valued fuzzy sets on X and in-
tuitionistic fuzzy sets on X. In Sects. 4 and 5, we will discuss
these special cases. Note that FL(X) represents a complete
lattice whose partial ordering is induced by the partial order-
ing on the complete lattice L, i.e. for a,b ∈ FL(X) we have
a ≤ b if and only if a(x) ≤ b(x) ∀x ∈ X. In the special case
where L = [0,1], we simply write F (X) instead of F[0,1].

Generalizing the construction of approaches towards
FMM [57, 80], this paper presents a general scheme for con-
structing approaches towards L-fuzzy MM. To this end, we
need to introduce a notion of L-fuzzy inclusion measure
that can be employed to define the concept of L-fuzzy ero-
sion. Clearly, an L-fuzzy inclusion measure IncL should act
on FL(X) × FL(X) and should extend the notions of intu-
itionistic, interval-valued, and conventional fuzzy inclusion
measures. As Cornelis and Kerre have explained, an intu-
itionistic fuzzy inclusion measure should associate a pair of
IFSs with an element of L

∗ = {(μ, ν) ∈ [0,1]2 : μ + ν ≤ 1}
[19] and therefore an interval-valued fuzzy inclusion mea-
sure should associate a pair of IVFSs with an element of
L

I = {[x, y] ⊆ [0,1]}. These considerations lead us to the
following definition of L-fuzzy inclusion measure:

Definition 4 An L-fuzzy inclusion measure defined as a
function IncL : FL(X) × FL(X) → L that satisfies the fol-
lowing properties for all a,b ∈ PL(X), where PL(X) =
{a ∈ FL(X) : a(x) = 0L or a(x) = 1L∀x ∈ X}.
a ≤ b ⇒ IncL(a,b) = 1L and

a 
≤ b ⇒ IncL(a,b) = 0L.
(14)
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Extending the concept of fuzzy intersection measure to
the L-fuzzy domain leads to the following definition:

Definition 5 An L-fuzzy intersection measure is a func-
tion SecL : FL(X)× FL(X) → L that satisfies the following
properties for all a,b ∈ PL(X).

a ∧ b 
= 0FL(X) ⇒ SecL(a,b) = 1L, (15)

a ∧ b = 0FL(X) ⇒ SecL(a,b) = 0L. (16)

If L = [0,1] then we simply speak of fuzzy inclusion
and intersection measures and we use the symbols IncF
and SecF to denote them. Evidently, an L-fuzzy implica-
tion I gives rise to an L-fuzzy inclusion measure IncL and
an L-fuzzy conjunction C gives rise to an L-fuzzy intersec-
tion measure SecL if we define IncL and SecL as follows for
all a,b ∈ FL(X):

IncL(a,b) =
∧
x∈X

I (a(x),b(x)). (17)

SecL(a,b) =
∨
x∈X

C(a(x),b(x)). (18)

We will refer to the operator IncL in Eq. 17 as L-fuzzy Inf-
I inclusion measure and we will refer to the operator SecL

in Eq. 18 as L-fuzzy Sup-C intersection measure. The next
section reviews the construction of approaches to fuzzy MM
based on fuzzy Inf-I inclusion measures and Sup-C intersec-
tion measures. Approaches to L-fuzzy MM arise as obvious
extensions of this construction.

3 From Fuzzy Mathematical Morphology to L-Fuzzy
Mathematical Morphology

3.1 Some Basic Concepts of Fuzzy Mathematical
Morphology

A certain approach to FMM is determined by certain def-
initions of fuzzy erosion and dilation since a fuzzy anti-
dilation and anti-erosion can be constructed by combining
a fuzzy erosion or a fuzzy dilation with a fuzzy negation. To
maintain the consistency with the complete lattice frame-
work for mathematical morphology we say that a function
εF : F (U) → F (V ) is a fuzzy erosion if and only if εF is
an erosion in the sense of Eq. 1. Similarly, we say that an
operator δF : F (U) → F (V ) is a fuzzy dilation if and only
if it satisfies Eq. 1.

Let us leave these purely mathematical considerations for
a moment aside. Intuitively speaking, the notion of erosion,
dilation respectively, is meant to extract some relevant in-
formation on the shape and form of objects by means of
a structuring element (SE) [69]. Hence, a fuzzy erosion

εF : F (X) → F (X), a fuzzy dilation δF : F (X) → F (X)

respectively, is generally given by a rule that combines an
input fuzzy set x ∈ F (X) with an arbitrary, but fixed fuzzy
structuring element s ∈ F (X) and generates an output fuzzy
set y ∈ F (X). Recall that sx, the translation of s by x, and s̄,
the reflection of s around the origin, are defined as follows:

sx(y) = s(y − x), s̄(y) = s(−y), ∀y ∈ X. (19)

The value IncF (a,b) can be interpreted as the degree of
subsethood or inclusion of the fuzzy set a in the fuzzy set
b. Various researchers have presented fuzzy inclusion mea-
sures [7, 45, 72, 73, 88]. A certain fuzzy inclusion measure
IncF induces an operator E F : F (X) × F (X) → F (X) via
the following definition [57]:

EF (a, s)(x) = IncF (sx,a). (20)

We refer to EF as a fuzzy erosion if IncF (s, ·) commutes
with the infimum operation for all s ∈ F (X). In this case,
the operator EF (·, s) represents an erosion for every SE s.
Given a fuzzified set intersection SecF such that SecF (s, ·)
commutes with the supremum operation, we obtain a fuzzy
dilation ΔF : F (X)× F (X) → F (X) via the following def-
inition (note that s̄x(y) = s̄(y − x) = s(x − y) ∀y ∈ X):

ΔF (a, s)(x) = SecF (s̄x,a). (21)

Recall that almost all approaches towards fuzzy math-
ematical morphology employ inclusion measures based on
infima of fuzzy implications to generate fuzzy erosions as
well as intersection measures based on suprema of fuzzy
conjunctions to generate fuzzy dilations [80]. The following
section generalizes this strategy to the L-fuzzy setting.

3.2 Some Basic Concepts and General Results on L-fuzzy
Mathematical Morphology

Given L-fuzzy inclusion and intersection measures, it is
easy to construct operators EL,ΔL : FL(X) × FL(X) →
FL(X) in analogy to Eqs. 20 and 21 as follows:

EL(a, s)(x) = IncL(sx,a), (22)

ΔL(a, s)(x) = SecL(s̄x,a). (23)

In particular, if the L-fuzzy inclusion and intersection
measures occurring in Eqs. 22 and 23 are induced by an
L-fuzzy implication I and an L-fuzzy conjunction C in
terms of Eqs. 17 and 18 then we obtain the following ex-
pressions for the operators EL and ΔL:

EL(a, s)(x) =
∧
y∈X

I (sx(y),a(y)) ∀x ∈ X, (24)

ΔL(a, s)(x) =
∨
y∈X

C(s̄x(y),a(y)) ∀x ∈ X. (25)
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Here, the L-fuzzy set a plays the role of the image and
the L-fuzzy set s plays the role of the structuring element.
We refer to the operator EL, ΔL respectively, using the ter-
minology L-fuzzy erosion, L-fuzzy dilation respectively, if
EL(., s) represents an erosion in the sense of Eq. 1 for every
SE s ∈ FL(X), if ΔL(., s) represents a dilation in the sense
of Eq. 1 for every SE s ∈ FL(X), respectively. In this case,
we refer to EL(a, s) as the L-fuzzy erosion of the image a by
the SE s and we refer to ΔL(a, s) as the L-fuzzy dilation of
the image a by the SE s.

Theorem 5 Let the operator EL be induced by an Inf-I in-
clusion measure, i.e., EL is given by Eqs. 22 and 24. The
following statements are equivalent.

1. The operators EL(., s) are erosions for all s ∈ FL(X).
2. The operators IncL(s, .) are erosions for all s ∈ FL(X).
3. The operators I (s, .) are erosions for all s ∈ L.

The following, similar theorem concerns L-fuzzy dila-
tions.

Theorem 6 Let the operator ΔL be induced by a Sup-C
intersection measure. The following statements are equiva-
lent.

1. The operators ΔL(., s) are dilations for all s ∈ FL(X).
2. The operators SecL(s, .) are dilations for all s ∈ FL(X).
3. The operators C(s, .) are dilations for all s ∈ L.

In MM, erosions and dilations usually occur in pairs
whose constituents are dual to each other with respect to
either adjunction or negation. Note that a negation N on L

induces a negation N on FL(X) by means of the equations
N (a)(x) = N(a(x)), where a ∈ FL(X) and x ∈ X. For sim-
plicity, we introduce the following nomenclatures.

Definition 6 Let EL and ΔL be FL(X) × FL(X) → FL(X)

mappings. We say that the pair (EL,ΔL) forms an adjunc-
tion if and only if (EL(., s),ΔL(., s̄)) forms an adjunction
for every SE s ∈ FL(X). We say that EL and ΔL are dual
with respect to a negation N on L if and only if EL(., s) and
ΔL(., s̄) are dual with respect to the corresponding negation
N on FL(X) for every SE s ∈ FL(X).

Our focus is on operators EL and ΔL that are built from
L-fuzzy connectives by means of Eqs. 24 and 25. The fol-
lowing theorem links a duality relationship between EL and
ΔL to the corresponding duality relationship between the
underlying L-fuzzy connectives I and C.

Theorem 7 Let I be an L-fuzzy implication and C be an
L-fuzzy conjunction. The pair (I,C) forms an adjunction if
and only if the corresponding pair (EL,ΔL) given by Eqs. 24
and 25 forms an adjunction. Similarly, I and C are dual with

respect to an L-fuzzy negation N if and only if the corre-
sponding FL(X) × FL(X) → FL(X) mappings EL and ΔL

are dual with respect to N .

For now, Theorem 7 concludes our investigation of the-
oretical aspects of general L-fuzzy MM. The results of
this section can be applied to any particular choice of L

which are of practical interest, in particular to the classes of
interval-valued, intuitionistic, and bipolar fuzzy sets. Note
that Theorem 7 refers to two possible approaches for con-
structing pairs consisting of an erosion and a dilation. In
some recent papers, Bloch has established links between
these two approaches for the special cases of fuzzy sets and
bipolar fuzzy sets [12, 13].

4 Connectives for Interval-Valued and Intuitionistic
Fuzzy Mathematical Morphologies

4.1 Introduction and Basic Concepts of Interval-Valued
and Intuitionistic Fuzzy Sets

In this paper, we are especially interested in interval-valued
and intuitionistic fuzzy mathematical morphologies which
we will treat as special cases of L-fuzzy MM. This line
of reasoning is made possible by the facts that the classes
of interval-valued and intuitionistic fuzzy sets form com-
plete lattices. In fact, these complete lattices are isomorphic
[27]. Before going into details, let us briefly review interval-
valued and intuitionistic fuzzy sets.

As the name indicates, interval-valued fuzzy sets (IVFSs)
on a universe X are mappings A : X → L

I . Here, the symbol
L

I denotes the set of all closed subintervals of [0,1]. An in-
tuitionistic fuzzy set (IFS) is a mapping A′ : X → L

∗ where
the symbol L

∗ denotes the set {(μ, ν) ∈ [0,1]2 : μ + ν ≤ 1}.
Both IVFSs and IFSs belong to the class of L-fuzzy sets
where L is a complete lattice [27, 30]. The partial ordering
on [0,1] induces a partial ordering on the set L

I = {[x, y] ⊆
[0,1]} as follows:

[u,v] ≤ [x, y] ⇔ u ≤ x and v ≤ y. (26)

If the symbol 0LI denotes
∧

L
I and 1LI denotes

∨
L

I

then we have 0LI = [0,0] and 1LI = [1,1]. The complete
lattice L

∗ = {(x, y) : x +y ≤ 1} is endowed with the follow-
ing partial ordering:

(u, v) ≤ (x, y) ⇔ u ≤ x and v ≥ y. (27)

The least element of L
∗, denoted by 0L∗ , is given by (0,1)

and the greatest element of L
∗, denoted by 1L∗ , is given by

(1,0). From now on, we will refer to the complete lattice of
interval-valued fuzzy sets on X using the symbol LIVFS and
we will refer to the complete lattice of intuitionistic fuzzy
sets on X using the symbol LIFS.
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Several researchers have pointed out that the notions of
interval-valued fuzzy sets and intuitionistic fuzzy sets are
mathematically equivalent [5, 87]. Most importantly, the
complete lattices LIVFS and LIFS are isomorphic because the
underlying complete lattices L

I and L
∗ are isomorphic [27,

30] in terms of φ given as follows:

φ : L
I → L

∗

[x, y] �→ (x,1 − y).
(28)

The lattice isomorphism φ induces a lattice isomorphism
� : LIVFS → LIFS that maps an IVFS A with A(x) =
[A(x), Ā(x)] for all x ∈ X to the IFS A′ that satisfies A′(x) =
(A(x),1 − Ā(x)). The inverse of φ associates an element
(μ, ν) ∈ L

∗ with [μ,1 − ν] ∈ L
I and induces the lattice iso-

morphism �−1 from LIFS to LIVFS.
Note that elements of [0,1] can be identified with ele-

ments of L
I of the form [x, x] and with elements of L

∗
of the form (x,1 − x) = φ([x, x]). In other words, the unit
interval [0,1] can be considered a subset of L

I as well as
of L

∗. Therefore, the class of fuzzy sets F (X) over the uni-
verse X is contained in the class of interval-valued fuzzy sets
LIVFS as well as in the class of intuitionistic fuzzy sets LIFS

over X.
In the remainder of this section, we focus our attention

on operations on the complete lattice LIFS, citing some spe-
cific examples of intuitionistic fuzzy operations that have
appeared in the literature. Generalizations of the Gödel im-
plication IM are given by the following intuitionistic impli-
cations I ∗

M , I ∗
AG, and I ∗

S [6, 18, 19]:

I ∗
M(u,v) =

{
1L∗ if u ≤ v,

v otherwise.
(29)

I ∗
AG(u,v) =

⎧⎪⎪⎨
⎪⎪⎩

1L∗ if u1 ≤ v1,

(v1,0) if u1 > v1 and u2 ≥ v2,

(v1, v2) if u1 > v1 and u2 < v2.

(30)

I ∗
S(u,v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1L∗ if u ≤ v,

(1 − v2, v2) if u1 ≤ v1 and u2 < v2,

(v1,0) if u1 > v1 and u2 ≥ v2,

v if u1 > v1 and u2 < v2.

(31)

In contrast to intuitionistic and interval-valued implica-
tions, general intuitionistic or interval-valued fuzzy conjunc-
tions have not been extensively studied in the literature. In-
stead, researchers have concentrated on the special classes
of intuitionistic and interval-valued t-norms [25, 26, 29].
Examples of intuitionistic t-norms include the following
[4, 18, 26, 29]:

T ∗
M(u,v) = u ∧ v = (u1 ∧ v1, u2 ∨ v2), (32)

T ∗
W(u,v) = (0 ∨ (u1 + v1 − 1),1 ∧ (u2 + v2)), (33)

T ∗
A (u,v) = (u1v1, u2 + v2 − u2v2), (34)

T ∗
L (u,v) = (0 ∨ (u1 + v1 − 1),

1 ∧ (u2 + 1 − v1) ∧ (v2 + 1 − u1)). (35)

As far as the definition of a negation on L
I or L

∗ is
concerned, several researchers have left away the involutive-
ness requirement [18, 26, 30]. Thus, these definitions neither
comply with the definition of a negation in the complete lat-
tice framework of mathematical morphology [37] nor with
the types of negations that have been used by researchers in
fuzzy mathematical morphology [15, 57, 71, 80]. Since we
view interval-valued and intuitionistic FMMs both as special
cases of L-fuzzy MM and as extensions of FMM, we addi-
tionally require negations on L

∗ and on L
I to be involutive

in accordance with our definition of negation in Sect. 2.1.
Deschrijver, Cornelis, and Kerre have completely character-
ized (involutive) negations on L

∗ and on L
I [25, 26]. In par-

ticular, the standard negations N ∗
S on L

∗ and NS on L
I are

given as follows:

N ∗
S (u) = (u2, u1) ∀u ∈ L

∗, (36)

NS(x) = [1 − x2,1 − x1] ∀x ∈ L
I . (37)

Note that, given an implication I ∗, a conjunction C∗, and
a negation N ∗ on L

∗, we are able to construct a specific
approach to intuitionistic FMM. Intuitionistic fuzzy inclu-
sion and intersection measures IncL∗ and SecL∗ immediately
arise as the inf-I ∗ inclusion measure and the sup-C∗ inter-
section measure defined in Eqs. 17 and 18. Then, Eqs. 24
and 25 lead to intuitionistic fuzzy operators EL∗ and ΔL∗ .
Theorem 7 implies that I ∗ and C∗ are dual with respect to
N ∗ if and only if EL∗ and ΔL∗ are dual with respect to N ∗.
Moreover, I ∗ and C∗ are adjoint if and only if EL∗ and ΔL∗
are adjoint. Similar remarks can be made in the interval-
valued fuzzy case.

4.2 Construction of Interval-Valued and Intuitionistic
Fuzzy Operators

The development of various approaches to interval-valued or
intuitionistic FMM based on interval-valued or intuitionistic
Inf-I inclusion and Sup-C intersection measures presumes
the availability of interval-valued or intuitionistic implica-
tions and conjunctions. Ideally, researchers and practition-
ers have a variety of interval-valued and intuitionistic impli-
cations and conjunctions at their disposal including criteria
that facilitate the choice of a particular approach to interval-
valued or intuitionistic FMM that is suited for a given ap-
plication [58–60]. As a first step in this direction, this sec-
tion presents several strategies for constructing new interval-
valued and intuitionistic fuzzy operators.
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4.2.1 Operators Derived from the Lattice Isomorphism
between L

I and L
∗

The following theorems reveal that there is a natural one-
to-one correspondence between operators on L

∗ and opera-
tors on L

I that allows for the construction of interval-valued
fuzzy connectives from intuitionistic fuzzy connectives and
vice-versa. Recall that φ denotes the lattice isomorphism
L

I → L
∗ that was defined in Eq. 28.

Theorem 8 Consider the following mapping M that as-
sociates functions F ∗ : (L∗)2 → L

∗ with functions F =
M(F ∗) : (LI )2 → L

I where F = M(F ∗) is defined as fol-
lows for all x,y ∈ L

I .

F (x,y) = φ−1(F ∗(φ(x),φ(y))). (38)

The inverse of M is given by

M−1(F )(u,v) = F ∗(u,v) = φ(F (φ−1(u),φ−1(v))). (39)

Moreover, the following statements are satisfied.

1. The operator F ∗ is an implication on L
∗ if and only if F

is an implication on L
I . The corresponding statements

also hold true for conjunctions and disjunctions.
2. The operator F ∗ is a t-norm on L

∗ if and only if F is
a t-norm on L

I . The operator F ∗ is an s-norm on L
∗ if

and only if F is an s-norm on L
I .

3. An implication I ∗ on L
∗ and a conjunction C∗ on

L
∗ are adjoint if and only if the respective implica-

tion I = M(I ∗) on L
I and the respective conjunction

C = M(C∗) on L
I are adjoint.

In Eqs. 29 to 31, we presented three intuitionistic fuzzy
extensions of the Gödel implication IM . An application of
Theorem 8 yields three interval-valued fuzzy implications
that extend the Gödel implication IM . First, note that

I ∗
M(φ(x),φ(y)) =

{
1L∗ if φ(x) ≤ φ(y) ⇔ x ≤ y,

φ(y) otherwise.
(40)

Therefore, I ∗
M corresponds to the following implication

IM on L
I :

IM(x,y) =
{

1LI if x ≤ y,

y otherwise.
(41)

In a similar way, we derive the interval-valued implica-
tion IAG corresponding to Atanassov’s and Gargov’s intu-
itionistic implication and the interval-valued implication IS

corresponding to the intuitionistic implication I ∗
S . We ob-

tain:

IAG(x,y) =

⎧⎪⎨
⎪⎩

1LI if x1 ≤ y1,

[y1,1] if x1 > y1 and x2 ≤ y2,

y if x ≥ y.

(42)

IS(x,y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1LI if x ≤ y,

[y2, y2] if x1 ≤ y1 and x2 > y2,

[y1,1] if x1 > y1 and x2 ≤ y2,

y if x > y.

(43)

An application of Theorem 8 to the intuitionistic fuzzy
t-norms listed in Eqs. 32 to 35 yields the following interval-
valued t-norms TM , TW , TA, and TL:

TM(x,y) = x ∧ y = [x1 ∧ y1, x2 ∧ y2], (44)

TW(x,y) = [0 ∨ (x1 + y1 − 1),0 ∨ (x2 + y2 − 1)], (45)

TA(x,y) = [x1y1, x2y2], (46)

TL(x,y) = [0 ∨ (x1 + y1 − 1),

0 ∨ (x2 + y1 − 1) ∨ (y2 + x1 − 1)]. (47)

The fact that [0,1] constitutes a completely distributive
lattice [9] implies that the intuitionistic t-norm T ∗

M is a di-
lation in both arguments. Therefore, the adjoint erosion on
L

∗ can be constructed using Eq. 4. This procedure gives rise
to the R-implicator I ∗

M of T ∗
M on L

∗. By Theorem 1, the
R-implicator I ∗

T of an intuitionistic t-norm T ∗ can be com-
puted as follows:

I ∗
T (u,w) =

∨
{v ∈ L

∗ : T ∗(u,v) ≤ w} ∀u,w ∈ L
∗. (48)

Since Cornelis et al. have shown that the R-implicator of
T ∗

M , where T ∗
M(u,v) = u ∧ v for all u,v ∈ L

∗, is given by
the intuitionistic fuzzy implication I ∗

S of Eq. 31 [18], we
have that I ∗

S and T ∗
M are adjoint. Therefore, Part 3 of The-

orem 8 implies that the interval-valued implication IS and
the interval-valued t-norm TM are adjoint as well. Finally
note that the intuitionistic maximum S ∗

M corresponds to the
interval-valued maximum SM , where SM(x,y) = x ∨ y.

Theorem 9 The following mapping P defines a bijection
between the set of negations on L

∗ and the set of nega-
tions on L

I . If N ∗ is an intuitionistic fuzzy negation then
an interval-valued fuzzy negation N = P (N ∗) is given as
follows.

N (x) = φ−1(N ∗(φ(x))), ∀x ∈ L
I . (49)

The inverse of P associates an interval-valued fuzzy
negation N with an intuitionistic fuzzy negation N ∗ =
P −1(N ) which can be computed as follows.

N ∗(u) = φ(N (φ−1(u))), ∀u ∈ L
∗. (50)

A brief glance at Eqs. 36 and 37 reveals that the bijection
P maps NS to N ∗

S .

Theorem 10 Let M and P be as in Theorems 8 and 9.
Two intuitionistic fuzzy connectives F ∗ and G∗ are dual with
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respect to an intuitionistic fuzzy negation N ∗ in the sense
of Definition 2 if and only if the corresponding interval-
valued fuzzy connectives F = M(F ∗) and G = M(G∗)
are dual with respect to the interval-valued fuzzy negation
N = P (N ∗).

The following equalities reveal that the intuitionistic min-
imum T ∗

M and the intuitionistic maximum S ∗
M are dual with

respect to the standard intuitionistic fuzzy negator N ∗
S .

N ∗
S (S ∗

M(N ∗
S (u), N ∗

S (v)))

= N ∗
S (N ∗

S (u) ∨ N ∗
S (v))

= N ∗
S ((u2, u1) ∨ (v2, v1)) = N ∗

S ((u2 ∨ v2, u1 ∧ v1))

= (u1 ∧ v1, u2 ∨ v2) = u ∧ v = T ∗
M(u,v). (51)

Thus, by Theorem 10, the interval-valued minimum
TM = M(T ∗

M) and the interval-valued maximum SM =
M(S ∗

M) are dual with respect to the standard interval-valued
negator NS = P (N ∗

S ). The following extension I ∗
S ∗

M,N ∗
S

of

the Kleene-Dienes implication IK has been shown to be the
dual of the intuitionistic maximum operator S ∗

M with respect
to the standard intuitionistic negation N ∗

S [4, 6, 18].

I ∗
S ∗

M,N ∗
S
(u,v) = (u2 ∨ v1, u1 ∧ v2). (52)

By Theorem 10, forming the image of I ∗
S ∗

M,N ∗
S

under the

bijection M produces the interval-valued fuzzy implication
ISM,NS

that is the dual of the interval-valued maximum op-
erator SM with respect to the standard interval-valued nega-
tion NS . Thus, we obtain

ISM,NS
(x,y) = M(ISM,NS

)(x,y)

= φ−1(I ∗
S ∗

M,N ∗
S
(φ(x),φ(y)))

= φ−1(I ∗
S ∗

M,N ∗
S
((x1,1 − x2), (y1,1 − y2)))

= φ−1((1 − x2) ∨ y1, x1 ∧ (1 − y2))

= [(1 − x2) ∨ y1, (1 − x1) ∨ y2]. (53)

4.2.2 Interval-Valued and Intuitionistic Operators Based
on Fuzzy Operators

As we will point out in this section, a large class of intu-
itionistic and interval-valued fuzzy connectives can be con-
structed from fuzzy logical connectives on [0,1]. For sim-
plicity, we focus on interval-valued fuzzy connectives. Their
intuitionistic fuzzy counterparts can be obtained via Eq. 39.
In particular, the following definitions of t-representable
operators on L

I can be related in terms of Theorem 8 to
the respective definitions of t-representable operators on L

∗
[17, 18].

Definition 7 A conjunction C on L
I is called C-representa-

ble if C equals Cr
C,C′ for some fuzzy conjunctions C and C′

where Cr
C,C′ is defined as follows:

Cr
C,C′(x,y) = [C(x1, y1),C

′(x2, y2)]. (54)

A disjunction D on L
I is called C-representable if D

equals Dr
D,D′ for some fuzzy disjunctions D and D′ where

DD,D′ is defined as follows:

Dr
D,D′(x,y) = [D(x1, y1),D

′(x2, y2)]. (55)

If both C and C′ are t-norms then we refer to C as t-
representable. Similarly, if both D and D′ are s-norms then
we refer to D as t-representable [25].

Obviously, t-representable conjunctions and disjunctions
on L

I constitute respectively t-norms and s-norms on L
I .

Let us proceed by stating conditions that yield C-representa
ble conjunctions and disjunctions on L

I .

Theorem 11 The function Cr
C,C′ defined in Eq. 54 repre-

sents a conjunction on L
I if and only if C(x, y) ≤ C′(x, y)

for all x, y ∈ [0,1]. Moreover, the function Dr
D,D′ defined

in Eq. 55 represents a disjunction on L
I if and only if

D(x,y) ≤ D′(x, y) for all x, y ∈ [0,1].

The conditions of Theorem 11 are trivially satisfied if
C = C′ (or if D = D′). Thus, the Łukasiewicz t-norm TW

gives rise to the interval-valued t-norm T r
W = TW of Eq. 45

and the conjunction of Kleene and Dienes, denoted by CK ,
gives rise to the following interval-valued fuzzy conjunction
Cr

K :

Cr
K(x,y) = [CK(x1, y1),CK(x2, y2)]

= [x1 ∧ H0(x1 + y1 − 1),

x2 ∧ H0(x2 + y2 − 1)], (56)

where

H0(x) =
{

0, x ≤ 0,

1, x > 0.
∀x ∈ R. (57)

It is a well-known fact that the minimum t-norm TM rep-
resents the pointwise largest t-norm [62]. Therefore, Theo-
rem 11 yields the following t-norm T r

P,M and the following

conjunction Cr
K,M on L

I .

T r
P,M(x,y) = [TP (x1, y1), TM(x2, y2)]

= [x1 · y1, x2 ∧ y2], (58)

Cr
K,M(x,y) = [CK(x1, y1), TM(x2, y2)]

= [x1 ∧ H0(x1 + y1 − 1), x2 ∧ y2]. (59)
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Definition 7 reveals that C-representable fuzzy operators
on L

I can be generated by applying conventional fuzzy op-
erators to the lower and upper bounds of the considered in-
tervals. Definition 7 can be modified by lowering the upper
bound (pessimistic approach) or by lifting the lower bound
(optimistic approach). Generalizing previous definitions of
pseudo-t-representable operators [25], we define pseudo-C-
representable operators as follows. Here, we refrain from
using two representatives since otherwise we would have
several possible definitions of pessimistic operators and op-
timistic operators to choose from.

Definition 8 Let C be a fuzzy conjunction. The pessimistic
conjunction Cp

C and the optimistic conjunction Co
C with rep-

resentative C is defined as follows:

Cp
C(x,y) = [C(x1, y1),C(x1, y2) ∨ C(x2, y1)], (60)

Co
C(x,y) = [C(x1, y2) ∧ C(x2, y1),C(x2, y2)]. (61)

Likewise, if D is fuzzy disjunction then the pessimistic dis-
junction Dp

D and the optimistic conjunction Do
D with repre-

sentative D are defined as follows:

Dp
D(x,y) = [D(x1, y1),D(x1, y2) ∨ D(x2, y1)], (62)

Do
D(x,y) = [D(x1, y2) ∧ D(x2, y1),D(x2, y2)]. (63)

As the reader may have already perceived, the interval-
valued conjunction TL of Eq. 47 is given by the pessimistic
approach in conjunction with the representative TW . As we
have seen, numerous types of C-representable and pseudo-
C-representable conjunctions and disjunctions can be con-
structed by means of Definitions 7 and 8. In a similar vein, a
large variety of I -representable and pseudo-I -representable
implications arise from the following definitions [25].

Definition 9 Let I and I ′ be fuzzy implications such that
I (x, y) ≤ I ′(x, y) for all x, y ∈ [0,1]. We define the I -
representable implication I r

I,I ′ with representatives I and

I ′, the pessimistic implication I p
I with representative I , and

the optimistic implication I o
I with representative I as fol-

lows:

I r
I,I ′(x,y) = [I (x2, y1), I

′(x1, y2)], (64)

I p
I (x,y) = [I (x2, y1), I (x1, y1) ∨ I (x2, y2)], (65)

I o
I (x,y) = [I (x1, y1) ∧ I (x2, y2), I (x1, y2)]. (66)

For example, the Gödel implication IM and the Goguen
implication IP satisfy the inequality IM(x, y) ≤ IP (x, y)

for all x, y ∈ [0,1] and allow for the construction of the
I -representable implication with representatives IM and IP

as well as the pessimistic and optimistic implications with
either one of the representatives IM or IP . For simplicity,

we denote these implications using the symbols I r
M,P , I p

M ,

I p
P , I o

M , and I o
P .

Clearly, representable and pseudo-representable implica-
tions and conjunctions on L

I (on L
∗, respectively) can be in-

serted in Eqs. 22 and 23 in order to generate interval-valued
(intuitionistic) fuzzy operators EI and ΔC that form the ba-
sis of a particular approach to interval-valued (intuitionistic)
FMM. If the operators EI and ΔC form an adjunction then
their compositions yield (algebraic) openings and closings
which in turn can be used to construct a variety of morpho-
logical filters [37]. On the one hand, if E I and ΔC are ad-
joint then E I (., s) is necessarily an erosion and ΔC (., s) is
necessarily a dilation for all structuring elements s ∈ LIVFS

or, equivalently, I(z, .) is an erosion and C(z, .) is a dilation
for all z ∈ L

I . On the other hand, given an implication I on
L

I such that I(z, .) are erosions for all z ∈ L
I , we can eas-

ily construct the adjoint conjunction C on L
I using Eq. 12.

Conversely, given a conjunction C on L
I such that C(z, .)

are dilations for all z ∈ L
I , one can construct the adjoint im-

plication using Eq. 10. Both schemes produce an adjunction
(E I ,ΔC ).

By the following theorem, representable and pseudo-re-
presentable interval-valued connectives that are erosive or
dilative in the second argument arise naturally from fuzzy
connectives having the same property.

Theorem 12 If C, C′ and I , I ′ are respectively fuzzy
conjunctions and fuzzy implications such that C(x, y) ≤
C′(x, y) and I (x, y) ≤ I ′(x, y) for all x, y ∈ [0,1] then the
following statements hold true:

1. The interval-valued conjunctions Cr
C,C′ and Cp

C represent
dilations in the second component for every fixed first
component z ∈ L

I if and only if the conjunctions C and
C′ represent dilations in the second component for every
fixed first component z ∈ [0,1].

2. The interval-valued implications I r
I,I ′ and I o

I represent
erosions in the second component for every fixed first
component z ∈ L

I if and only if the implications I and
I ′ represent erosions in the second component for every
fixed first component z ∈ [0,1].

For example, the interval-valued t-norms TM , TW , and
TA are all dilative in the second argument because they are
respectively t-representable in terms of the minimum, the
Łukasiewicz, and the product t-norms, which are dilative in
the second argument. Another example of an interval-valued
t-norm that is dilative in the second argument is given by TL

of Eq. 47 since TL equals T p
W , i.e., the pessimistic conjunc-

tion with the single representative TW .
The optimistic conjunction Co

C does generally not yield
a dilation for fixed z ∈ L

I even if C(z, .) is a dilation
for every z ∈ [0,1] (the optimistic t-norm T o

M associated
with the minimum t-norm represents an exception because
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T o
M = T r

M ). As an example consider the optimistic t-norm
T o

P corresponding to the product t-norm on [0,1] × [0,1].
Let z = [0.5,1], x1 = [0,1], and x2 = [0.5,0.7]. Let us

show that T o
P (z,x1 ∨ x2) 
= T o

P (z,x1) ∨ T o
P (z,x2). If x de-

notes x1 ∨x2 = [0.5,1] then it suffices to show the following
inequality

z1x2 ∧ z2x1 
= (z1x
1
2 ∧ z2x

1
1) ∨ (z1x

2
2 ∧ z2x

2
1). (67)

The left-hand side of this expression equals 0.5 whereas
the right-hand side equals 0 ∨ 0.35 = 0.35. In a similar vein,
the pessimistic implication I p

I does generally not yield an
erosion for fixed z ∈ L

I even if I (z, .) is an erosion for every
z ∈ [0,1].

The next two sections are concerned with the types of
interval-valued fuzzy connectives that arise in applications
of the duality relationships of negations and adjunction—or,
more generally, in applications of Eqs. 10 and 12—to rep-
resentable and pseudo-representable interval-valued fuzzy
connectives.

4.2.3 Construction of Operators Using Adjunction

Under certain conditions stated in Theorems 1 and 2, we can
derive the R-implication of a given interval-valued fuzzy
conjunction C and the R-conjunction of a given interval-
valued fuzzy implication I . As mentioned above, this con-
struction leads to an adjunction (I, C) if we are given a con-
junction C on L

I that constitutes a dilation in the second
argument or an implication I on L

I that constitutes an ero-
sion in the second argument. Some of the special cases dis-
cussed in the previous section are especially easy to deal
with:

Theorem 13 If C is a fuzzy conjunction such that
C(1, x) > 0 for all x 
= 0 then the R-implication of the pes-
simistic conjunction Cp

C is given by the optimistic implica-
tion I o

I where I is the R-implication of C. In this case, we
also have that I o

I and Cp
C are adjoint if and only if I and C

are adjoint.
Conversely, if I is a fuzzy implication such that

I (1, x) < 1 for all x 
= 1 then the R-conjunction of the opti-
mistic implication I o

I is given by the pessimistic conjunction
Cp

C where C is the R-conjunction of I . In this case, we also
have that I o

I and Cp
C are adjoint if and only if I and C are

adjoint.

For example, the adjoint implication of TL = T p
W is given

by I o
W , i.e., the optimistic implication with the representa-

tive IW and the adjoint implication of Cp
K is given by I o

K ,
i.e., the optimistic implication with the representative IK ,
where IK denotes the Kleene-Dienes implication.

Theorem 14 If C and C′ are fuzzy conjunctions such that
C(x, y) ≤ C′(x, y) for all x, y ∈ [0,1] and C′(1, x) > 0 for
all x 
= 0 then the R-implication of the representable fuzzy
conjunction Cr

C,C′ is given by the following expression where
I is the R-implication of C and I ′ is the R-implication of C′:

ICr
C,C′ (x,y) = [I (x1, y1) ∧ I ′(x2, y2), I

′(x2, y2)]. (68)

In this case, Cr
C,C′ and its R-implication are adjoint if and

only if the pairs (I,C) and (I ′,C′) form adjunctions. Simi-
larly, if I and I ′ are fuzzy implications such that I (x, y) ≤
I ′(x, y) for all x, y ∈ [0,1] and I (1, x) < 1 for all x 
= 1
then the R-conjunction of the representable fuzzy implica-
tion I r

I,I ′ is given by the following expression where C is the
R-conjunction of I and C′ is the R-conjunction of I ′.

CI r
I,I ′ (x,y) = [C(x2, y1),C(x2, y1) ∨ C′(x1, y2)]. (69)

In this case, I r
I,I ′ and its R-conjunction are adjoint if and

only if the pairs (I,C) and (I ′,C′) form adjunctions.

Let us apply Theorem 14 to the interval-valued minimum
operator TM = T r

M . Recall that the fuzzy minimum TM is ad-
joint to the Gödel implicator IM . Therefore, Theorem 12 re-
veals that the R-implication of TM forms an adjunction with
TM . By Theorem 14, we obtain ITM

(x,y) = [IM(x1, y1) ∧
IM(x2, y2), IM(x2, y2)]. Closer inspection shows that the
latter expression boils down to the interval-valued implica-
tion IS that was introduced in Eq. 43.

The R-implications of optimistic conjunctions and the
R-conjunctions of pessimistic implications are also neither
representable nor pseudo-representable. Let us for instance
derive the R-implication of the optimistic conjunction Co

C

with representative C. The condition C(1, x) > 0 for all
x 
= 0 guarantees the existence of this R-implication that is
given as follows in terms of the R-implication I of the fuzzy
conjunction C:

ICo
C
(z,y) =

∨
{x ∈ L

I : Co
C(z,x) ≤ y}

=
∨

{x ∈ L
I : [C(z1, x2) ∧ C(z2, x1),C(z2, x2)]

≤ [y1, y2]}
=

∨
{x ∈ L

I : (C(z1, x2) ≤ y1 or C(z2, x1) ≤ y1)

and C(z2, x2) ≤ y2}
=

∨
{x ∈ L

I : (C(z1, x2) ≤ y1 and C(z2, x2) ≤ y2)

or (C(z2, x1) ≤ y1 and C(z2, x2) ≤ y2)}
=

∨
{x ∈ L

I : (C(z1, x1) ≤ y1 and C(z2, x1) ≤ y2

and C(z1, x2) ≤ y1 and C(z2, x2) ≤ y2)

or (C(z2, x1) ≤ y1 and C(z2, x2) ≤ y2)}
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=
∨

{x ∈ L
I : C(z1, x1) ≤ y1 and C(z2, x1) ≤ y2

and C(z1, x2) ≤ y1 and C(z2, x2) ≤ y2}
∨

∨
{x ∈ L

I : C(z2, x1) ≤ y1 and C(z2, x2) ≤ y2}
(70)

=
[∨

{x1 ∈ [0,1] : C(z1, x1) ≤ y1 and C(z2, x1) ≤ y2},
∨

{x2 ∈ [0,1] : C(z1, x2) ≤ y1 and C(z2, x2) ≤ y2}
]

∨
[∨

{x1 ∈ [0,1] : C(z2, x1) ≤ y1},
∨

{x2 ∈ [0,1] : C(z2, x2) ≤ y2}
]

= [I (z1, y1) ∧ I (z2, y2), I (z1, y1) ∧ I (z2, y2)]
∨ [I (z2, y1), I (z2, y2)]

= [(I (z2, y1) ∨ I (z1, y1))

∧ (I (z2, y1) ∨ I (z2, y2)), I (z2, y2)]
= [I (z1, y1) ∧ I (z2, y2), I (z2, y2)]. (71)

Similarly, if I (1, x) < 1 for all x 
= 1 then CI p
I

, the

R-conjunction of the pessimistic implication I p
I is given by

the following expression where C is the R-conjunction of I :

CI p
I
(z,x) = [C(z2, x1),C(z2, x1) ∨ C(z1, x2)] ∀z,x ∈ L

I .

(72)

Note that Cr
C and Co

C possess the same R-implications and
that I r

I and I p
I possess the same R-conjunctions. These facts

do not contradict the uniqueness property of the adjoint op-
erator since—as mentioned before—Co

C(z, .) generally does
not constitute a dilation and since I p

I (z, .) does generally not
constitute an erosion. Even if C(z, .) are dilations and I (z, .)

are erosions for all z ∈ [0,1] we have that generally neither
Co

C and its R-implication nor I P
I and its R-conjunction form

an adjunction.
However, a fuzzy conjunction C with dilative partial

mappings C(z, .) induces the C-representable conjunction
Cr

C whose partial mappings Cr
C(z, .) are also dilations ac-

cording to Theorem 12. Thus, Cr
C and its R-implication

ICr
C

= ICo
C

form an adjunction and the R-conjunction of ICr
C

is given by Cr
C . In addition, Theorem 3 implies Cr

C ≤ Co
C .

Similar comments can be made with respect to I r
I , I p

I , and
their common R-conjunction provided that I has erosive
partial mappings I (z, .) for all z ∈ [0,1]. Figure 1 illustrates
these observations.

Of course, the construction schemes based on Eqs. 10
and 12 can also be applied to logical connectives on L

I or
L

∗ that are neither representable nor pseudo-representable.
For example, forming the R-conjunction of the implication

Fig. 1 Relationships between some representable and pseudo-rep-
resentable logical connectives on L

I and their R-implications and
R-conjunctions

IM given in Eq. 41 yields the following R-conjunction CM :

CM(x,y) =
{

x if x ≤ y,

y else.
(73)

Note that CM is not a t-norm on L
I . Moreover, there ex-

ist z ∈ L
I such that the unary operator CM(z, .) does not

represent a dilation. This can be seen as follows. For z =
[0.3,0.8], x1 = [0.2,1], and x2 = [0.4,1], let x = x1 ∨ x2 =
[0.4,1]. We have CM(z,x) = z = [0.3,0.8] 
= [0.4,1] =
CM(z,x1) ∨ CM(z,x2). Therefore IM and CM are not ad-
joint.

The next section is concerned with the construction of
interval-valued operators from given interval-valued opera-
tors using the duality relationship of negation.

4.2.4 Construction of Operators Using Negation

By Theorem 4, we can employ interval-valued negations
in order to build new interval-valued implications, conjunc-
tions, and disjunctions from given interval-valued fuzzy op-
erators. Although this section focusses on interval-valued
implications and conjunctions (the underlying operators of
interval-valued fuzzy MM) the subsequent results can be
easily extended to include interval-valued disjunctions. Due
to the isomorphism between L

I and L
∗, applications of The-

orems 9 and 10 yield analogous results for the intuitionistic
fuzzy case.

According to Deschrijver, Cornelis, and Kerre [25, 26],
every negation N on L

I is determined by a fuzzy nega-
tion N , called representative of N . Specifically, every nega-
tion on L

I can be written in the form NN where NN(x) =
[N(x2),N(x1)] for every x ∈ L

I .
First, let us take a look at the NN -dual operators of rep-

resentable and pseudo-representable operators on L
I × L

I .
This issue has already been addressed by Deschrijver and
Cornelis who have formed S-implicators of optimistic, pes-
simistic, and t-representable s-norms with a single represen-
tative [25].

Theorem 15
Let N be a fuzzy negation. If C and C′ are fuzzy conjunc-

tions such that C(x, y) ≤ C′(x, y) for all x, y ∈ [0,1] and if
I and I ′ are fuzzy implications such that I ′(x, y) ≤ I (x, y)

for all x, y ∈ [0,1] then the following statement holds true:
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The C-representable conjunction Cr
C,C′ and the I -re-

presentable implication I r
I ′,I are dual with respect to the

interval-valued fuzzy negation NN if and only if C and I as
well as C′ and I ′ are dual with respect to N .

From now on, let IR and IM denote respectively the Rei-
chenbach and the Gödel implicators. By Theorem 15, the
pairs (T r

M, I r
K), (T r

P , I r
R), (T r

W , I r
W ), and (Cr

K, I r
M) exem-

plify pairwise dual operators with respect to the standard
interval-valued negation NS having a single representative.
The pairs (T r

P,M, I r
K,R) and (Cr

K,M, I r
K,G) provide examples

of pair-wise dual operators with respect to NS having two
distinct representatives.

Theorem 16 Let C be a fuzzy conjunction, let I be a fuzzy
implication, and let N be a fuzzy negation. The pessimistic
conjunction Cp

C and the optimistic implication I o
I are dual

with respect to NN if and only if C and I are dual with
respect to N . The optimistic conjunction Co

C and the pes-
simistic implication I

p
I are dual with respect to NN if and

only if C and I are dual with respect to N .

Theorem 16 leads to the following pairs of dual operators
with respect to NS :

– (T p
M, I o

K), (T p
P , I o

R), (T p
W , I o

W ), and (Cp
K, I o

M);
– (T o

M, I p
K), (T o

P , I p
R), (T o

W , I p
W ), and (Co

K, I p
M).

This way we can construct a host of pairs that con-
sist of dual interval-valued operators with respect to a cer-
tain interval-valued negation. Of course, this construction
scheme based on negation is not limited to representable or
pseudo-representable fuzzy connectives but can be applied
to any interval-valued fuzzy implication, conjunction, or dis-
junction.

For example, forming the NS -dual of the interval-valued
implication IM introduced in Eq. 41 yields the following
interval-valued conjunction:

CIM,NS
(x,y) =

{
0LI if x ≤ NS(y),

y else.
(74)

In conclusion, the four strategies presented in Sect. 4.2
lead to a large variety of interval-valued and intuitionistic
fuzzy implications and conjunctions that can serve as the
building blocks for particular approaches to interval-valued
or intuitionistic FMM. As in the classical fuzzy case, the
choice of an appropriate pair of particular interval-valued or
intuitionistic fuzzy connectives for a given application rep-
resents an open research problem.

In some previous papers [58, 60], we have provided some
visual examples of applications of interval-valued dilations,
erosions, and edge detection (dilation minus erosion). We
chose to use the interval-valued fuzzy dilation Δ

p
W that is

based on T p
W and the interval-valued fuzzy erosion E o

W that
is based on I o

W because Δ
p
W and E o

W are both adjoint and
dual with respect to NS by Theorem 7. For the same reasons,
these interval-valued fuzzy operators were also selected for
the following simulations concerning tomographic image re-
construction methods.

5 Some Experimental Results Concerning
Tomographic Image Reconstruction

The morphological watershed transform can be classified
as a region-based approach for image segmentation [64].
The literature on morphological image processing abounds
with versions of the watershed transform. In practice, the
watershed transform is often applied to the (morphologi-
cal) gradient of the original image [55]. In addition, some
pre- or postprocessing techniques are ususally employed
to avoid oversegmentation. In all the gradient and filtering
techniques we applied in the following experiments we used
the 8-connected disk with radius 1 as a structuring element.

Two of the most widely used watershed algorithms are
the flooding algorithm of Meyer based on the concept of to-
pographical distance and the recursive immersion algorithm
of Vincent and Soille [54, 86]. In the following experiments
we applied the MATLAB implementation of F. Meyer’s al-
gorithm to the (post-processed versions of) morphological
gradients of images that arose by applying three well-known
image reconstruction techniques to the so called Shepp-
Logan phantom. In addition, we generated a single interval-
valued image by combining the three reconstructed images
and computed the mean of the upper and the lower envelope
of a certain interval-valued morphological gradient. After
some post-processing, the resulting image was segmented
using Meyer’s algorithm.

Let us now describe the details of our experiments. Fig-
ure 2 displays a discretized version of the famous Shepp-
Logan phantom (on a 256 × 256 grid) [43] as well as
the reconstructions produced by the following algorithms
[40, 56, 82]: filtered backprojection (FBP), filter of the
backprojections (FOB), and Tretiak & Metz reconstruction.
These algorithms were executed in a noiseless setting using
600 uniform views and 400 equally spaced rays within each
view. The Ramlak filter [43] was employed in both the FBP
and the FOB algorithm. The attenuation parameter for the
Tretiak-Metz inversion was set to 0.1. The morphological
gradients of these images were calculated by subtracting the
eroded images from the respective dilated images. Subse-
quently, we filtered these gradient images by applying the
h-minima transform with h = 0.07 [75] and computed the
watershed segmentation corresponding to each of the indi-
vidual images. The filtered morphological gradient images
and the watershed images are shown respectively in Figs. 3
and 4.
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Fig. 2 Original Shepp-Logan phantom and reconstructions produced
by the FBP, FOB, and Tretiak & Metz algorithms

Fig. 3 Morphological gradients of the Shepp-Logan phantom and of
the reconstructions produced by the FBP, FOB, and Tretiak & Metz
algorithms after applications of the h-minima transform

We also combined the three image reconstruction meth-
ods mentioned above by constructing an interval-valued fuz-
zy image as follows. The lower and upper bounds shown in
Fig. 5 are given by respectively the pixelwise minimum and

maximum of the three reconstructed images. Then we com-
puted the interval-valued morphological gradient in terms
of interval-valued fuzzy dilation Δ

p
W based on T p

W and the
interval-valued fuzzy erosion E o

W based on I o
W . The differ-

ence operator that occurs in the interval-valued morpholog-
ical gradient was chosen as follows [25]:

x − y = [x1 − y2, (x1 − y1) ∨ (x2 − y2)] ∀x,y ∈ L
I . (75)

We then formed the mean of the lower and upper bounds
of the interval-valued gradient image depicted in the top
row of Fig. 6 and subjected it to the h-minima transform
using the same parameter of h = 0.07 as above. Finally,
F. Meyer’s algorithm was applied to the resulting image
which is shown as the first image of the bottom row of
Fig. 6. The image on the right side of the second row of
Fig. 6 illustrates the watershed segmentation corresponding
to the combination of the three image reconstruction meth-
ods. Close visual inspection reveals that this result which is
based on the interval-valued combination of the three meth-
ods is slightly more similar to the segmentation of the origi-
nal image shown in Fig. 4 than the segmentation results ob-
tained by the individual methods. For example, observe that,
in contrast to the watershed segmentation based on the ac-
tual Shepp-Logan data, the left ellipse and the large circle
do not intersect in the image in the top right-hand corner of
Fig. 4 that corresponds to the FBP algorithm. Also note that
in the segmented images on the bottom row of Fig. 4 cor-
responding to the FOB and Tretiak & Metz algorithms the
ellipses have slightly more ragged boundaries than in the
segmentations based on the original Shepp-Logan phantom
and on the interval-valued merger of the three algorithms.

6 Concluding Remarks

This paper introduces L-fuzzy MM where L is an arbi-
trary complete lattice. We have described general aspects of
L-fuzzy MM such as the construction of L-fuzzy erosion
and dilation based on logical connectives on L and relation-
ships of duality in L-fuzzy MM. Interval-valued and intu-
itionistic FMMs arise as special cases of L-fuzzy MM. In
this context, we presented several strategies for constructing
interval-valued and intuitionistic fuzzy logical connectives.

Although we employed the component-wise or product
partial order [9, 19] (also known as the Pareto partial order
in economics, engineering, and social sciences) in conjunc-
tion with interval-valued and intuitionistic fuzzy sets, the
theoretical results of Sects. 2 and 3 are also valid for other
partial ordering schemes that lead to complete lattices such
as the lexicographical partial order on bipolar (intuitionistic)
fuzzy sets [13]. We believe that the results of this paper can
serve as a basis for fruitful research endeavors in the follow-
ing areas:
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Fig. 4 Watershed transform of Shepp-Logan phantom and of recon-
structions produced by the FBP, FOB, and Tretiak & Metz algorithms

Fig. 5 Lower and upper bounds of the interval-valued representation
given by the pixelwise minimum and maximum of the three recon-
structed images in Fig. 2

1. Applications of interval-valued and intuitionistic FMM
in image processing: As we have pointed out before [58–
60], interval-valued and intuitionistic fuzzy set theory en-
able us to model numerical and spatial uncertainty in
grayscale images that is due to image capture, leading
to specific morphological operators and related applica-
tions that have yet to be explored in detail. In previous
papers, we provided some preliminary results concern-
ing interval-valued edge detection [58–60]. In this pa-
per, we went one step further by outlining an application
of interval-valued FMM that aims at combining differ-
ent methods for medical image reconstruction in terms of
the watershed transform. Clearly, the approach presented

Fig. 6 The top row shows the lower and upper bounds of the inter-
val-valued morphological gradient of the image in Fig. 5 based on Δ

p
W

and E o
W . The image on the left of the bottom row depicts the mean of

the images on top after transforming it using h-minima. The last image
depicts the result after applying the watershed transform

in this paper only represents our first attempt to tackle
this problem using the emerging techniques of interval-
valued FMM. Nevertheless, we believe that every exist-
ing application of gray-scale or fuzzy MM in image pro-
cessing potentially lends itself to interval-valued FMM
if some uncertainty regarding the pixel values exists. In
contrast to conventional morphological techniques, inter-
val-valued FMM techniques are able to keep track of this
uncertainty information.

Another interpretation of bipolar FMM (i.e., intuition-
istic FMM) was provided by I. Bloch who has presented
applications to spatial reasoning in image processing
[11, 13]. In this context, one distinguishes between pos-
itive (representing what is granted to be possible) and
negative (representing what is impossible) information,
whose intersection has to be empty and whose union does
not necessarily cover the whole underlying space.

2. Development of L-fuzzy MMs for other special cases of
complete lattices L: Conventional, interval-valued, and
intuitionistic fuzzy sets represent particular instances of
information granules [8, 90]. We suspect that there are
other specific classes of information granules that form
complete lattices and that are conducive to the applica-
tion of morphological tools [81].

3. Development of L-fuzzy—in particular interval-valued
and intuitionistic fuzzy—extensions of existing morpho-
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logical neural networks such as fuzzy morphological as-
sociative memories [77–79, 81, 85]: Training of these
new models may be achieved by means of a generaliza-
tion of the “fuzzy learning by adjunction” scheme [85].
This issue appears to be promising due to the large
number of applications of interval-valued type-2 fuzzy
sets in rule-based systems and approximate reasoning
[26, 83, 84].

Appendix: Proofs of Theorems

Proof of Theorem 1

1. Let us assume that the conditions of the theorem are sat-
isfied. First, let us prove Part 1.
(a) IC(., y) is decreasing for all y ∈ L:

Consider an arbitrary element y of L. Let us compare
the sets {x ∈ L : C(w,x) ≤ y} and {x ∈ L : C(z, x) ≤
y} for arbitrary w,z ∈ L such that w ≤ z. Since
C(w,x) ≤ C(z, x), we have {x ∈ L : C(w,x) ≤ y} ⊇
{x ∈ L : C(z, x) ≤ y}. Hence, we are able to con-
clude that

IC(w,y) =
∨

{x ∈ L : C(w,x) ≤ y}
≥

∨
{x ∈ L : C(z, x) ≤ y}

= IC(z, y). (A.1)

(b) IC(z, .) is increasing for all z ∈ L:
Let z ∈ L be arbitrary. Consider arbitrary elements
y and w of L such that y ≤ w. Since the set {x ∈
L : C(z, x) ≤ y} is contained in the set {x ∈ L :
C(z, x) ≤ w}, we conclude that

IC(z, y) =
∨

{x ∈ L : C(z, x) ≤ y}
≤

∨
{x ∈ L : C(z, x) ≤ w}

= IC(z,w). (A.2)

(c) Eq. 11 holds:
On the one hand, since C(0L,1L) = 0L and
1L = ∨

L, we have IC(0L, y) = ∨{x ∈ L :
C(0L, x) ≤ y} = 1L for all y ∈ L, in particular
for y = 0L and y = 1L. On the other hand, since
C(1L,1L) = 1L and 1L = ∨

L, we have IC(1L,1L) =∨{x ∈ L : C(1L, x) ≤ 1L} = 1L.
2. For the proof of Part 2, note that IC as defined in

Eq. 10 satisfies all the requirements of an L-fuzzy im-
plication except IC(1L,0L) = 0L. Thus, the function
IC represents an L-fuzzy implication if and only if
0L = IC(1L,0L) = ∨{x ∈ L : C(1L, x) ≤ 0L}. Equiva-
lently, we have C(1L, x) > 0L for all x ∈ L \ {0L} since
0L = ∧

L.

Proof of Theorem 2

The proof is similar to the one of Theorem 1.

Proof of Theorem 3

Let C and IC be as stated above. Note that the exis-
tence of the R-implication of C and of the R-conjunction
of IC follows from Theorems 1 and 2. If C′ denotes the
R-conjunction of IC then C′ can be computed as follows
for all z, x ∈ L:

C′(z, x) =
∧

{y ∈ L : IC(z, y) ≥ x}

=
∧{

y ∈ L :
∨

{x′ ∈ L : C(z, x′) ≤ y} ≥ x
}

(A.3)

Replacing y by C(z, x) in
∨{x′ ∈ L : C(z, x′) ≤ y}, we real-

ize that this supremum is greater than or equal to x because
C is increasing. Therefore, C(z, x) is contained in the set
over which the infimum is taken in Eq. A.3 which implies
that C′(z, x) ≤ C(z, x) for all z, x ∈ L. We omit the second,
similar part of the theorem.

Proof of Theorem 4

Assume that I is an L-fuzzy implication. Let C be given by
Eq. 7. Note that the action of I on the set {0L,1L} deter-
mines the action of C on the same set. The operator C is
increasing in both arguments because I is decreasing in the
first argument and increasing in the second argument and
because N inverts the partial order. The rest of the theorem
can be demonstrated in a similar way.

Proof of Theorem 5

The equivalence of the first two statements follows from the
fact that EL is an erosion in the first argument if and only
if the following equations are satisfied for all index sets K ,
ak, s ∈ FL(X), and x ∈ X:

EL

(∧
k∈K

ak, s
)

(x) =
∧
k∈K

EL(ak, s)(x). (A.4)

Equivalently, we have IncL(sx,
∧

k∈Kak)=∧
k∈K IncL(sx,ak)

for all index sets K , for all ak, s ∈ FL(X), and for all x ∈ X,
i.e., the inclusion measure IncL represents an erosion in the
second argument.

Now, assume that IncL(s, .) are erosions for all s ∈
FL(X). Let us show that I (s, .) are erosions for all s ∈ L.
In other words, we want to show that I (s,

∧
k∈K ak) =∧

k∈K I (s, ak) for all I and for all s, ak ∈ L. Consider ar-
bitrary elements s and ak of L where k ∈ K for some index
set K . Let s and ak be respectively the constant L-fuzzy
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SE and the constant L-fuzzy images such that s(x) = s and
ak(x) = ak for all x ∈ X and k ∈ K . The following sequence
of equalities reveals that I is an erosion in the second argu-
ment:

I

(
s,

∧
k∈K

ak

)
=

∧
x∈X

I

(
s(x),

(∧
k∈K

ak(x)

))

= IncL

(
s,

∧
k∈K

ak

)
=

∧
k∈K

IncL(s,ak)

=
∧
k∈K

(∧
x∈X

I (s(x),ak(x))

)

=
∧
k∈K

I (s, ak). (A.5)

Finally, suppose that I is an erosion in the second argu-
ment. It suffices to prove that IncL represents an erosion in
the second argument to finish the proof of the theorem. Note
that I (s,

∧
k∈K ak) = ∧

k∈K I (s, ak) for all K and for all
s, ak ∈ L

I .
Let s,ak ∈ FL(X) be arbitrary. We conclude the proof of

the theorem as follows

IncL

(
s,

∧
k∈K

ak

)
=

∧
x∈X

I

(
s(x),

(∧
k∈K

ak

)
(x)

)

=
∧
x∈X

I

(
s(x),

∧
k∈K

ak(x)

)
=

∧
x∈X

(∧
k∈K

I (s(x),ak(x))

)

=
∧
k∈K

(∧
x∈X

I (s(x),ak(x))

)
=

∧
k∈K

IncL(s,ak). (A.6)

Proof of Theorem 6

The proof is similar to the one of Theorem 5.

Proof of Theorem 7

The first part of Theorem 7 represents a generalization of
a proposition that appeared in [24]. We proceed by proving
the second part of the theorem. First note that the following
statements are equivalent:

– EL and ΔL are dual with respect to N ;
– EL(., s) and ΔL(., s̄) are dual with respect to N for all

s ∈ FL(X);
– ΔL(., s̄) = EL(., s)N for all s ∈ FL(X);
– ΔL(a, s̄) = N (E (N (a), s) for all s,a ∈ FL(X).

From the definitions of EL and ΔL and the fact that the
bijection N reverses the partial ordering, we have that EL

and ΔL are dual with respect to N if and only if

∨
y∈X

C(sx(y),a(y)) = N

(∧
y∈X

I (sx(y),N(a(y)))

)

=
∨
y∈X

N(I (sx(y),N(a(y)))) ∀s,a ∈ FL(X), ∀x ∈ X.

(A.7)

Equation A.7 reveals that if I and C are dual with re-
spect to an L-fuzzy negation N then EL and ΔL are dual
with respect to N . For the proof of the other direction, con-
sider arbitrary s, a ∈ L. Assume that Eq. A.7 holds for all
s,a ∈ FL(X) and for all x ∈ X. It suffices to show that
C(s, a) = N(I (s,N(a))). Let us choose constant functions
s and a such that s = s and such that a = a. Let x be an ar-
bitrary element of the point set X. We are able to finish the
proof of the theorem as follows:

C(s, a) =
∨
y∈X

C(s(x − y),a(y))

= ΔL(a, s̄)(x) = N (EL(N (a), s))(x)

= N

(∧
y∈X

I (s(y − x),N(a(y))) = N(I (s,N(a)))

)
.

(A.8)

Proof of Theorem 8

Direct verification reveals that M−1 is given by Eq. 39. The
proofs of Part 1 and 3 follow immediately from the fact that
φ and φ−1 are isomorphisms. The proof of Part 2 addition-
ally uses the commutativity and associativity of t-norms and
s-norms on L

∗ to infer the commutativity and associativity
of the corresponding operators on L

I and vice-versa.

Proof of Theorem 9

The proof of Theorem 9 resembles the proof of Theorem 8.

Proof of Theorem 10

First note that Definition 2 refers to conjunctions, disjunc-
tions, and implications. Therefore, each of the intuitionistic
fuzzy connectives F ∗ and G∗ is either an intuitionistic fuzzy
conjunction, disjunction, or implication.

Let us consider a pair of intuitionistic fuzzy connec-
tives consisting of an implication I ∗ on L

∗ and a con-
junction C∗ on L

∗ such that C∗ is the dual of I ∗ with re-
spect to some negation N ∗ on L

∗. Consequently, we have
C∗(w,u) = N ∗(I ∗(w, N ∗(u))) for all w,u ∈ L

∗ which im-
plies

C(x,y) = φ−1(C∗(φ(x),φ(y))) (A.9)

= φ−1(N ∗(I ∗(φ(x), N ∗(φ(y))))), ∀x,y ∈ L
I .

(A.10)
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Replacing I ∗ by M−1(I) and N ∗ by P −1(N ) leads
to the desired equalities C(x,y) = N (I(x, N (y))) for all
x,y ∈ L

I . The proof of the converse direction of the the-
orem concerning the statement “if C and I are dual with
respect to N then C∗ and I ∗ are dual with respect to N ∗” is
similar.

Finally, similar arguments can be applied to pairs of intu-
itionistic fuzzy connectives consisting of a conjunction and
a disjunction or an implication and a disjunction.

Proof of Theorem 11

The proof is left as an excercise to the reader.

Proof of Theorem 12

First, note that Theorem 12 can be applied in particular to
the special cases where C = C′ and I = I ′. In these cases,
we simpy write Cr

C instead of Cr
C,C′ and I r

I instead of I r
I,I ′ .

The sufficiency direction of both statements follows im-
mediately by considering intervals of length 0, i.e. intervals
of the form [x, x], which can be identified with elements
of [0,1]. The necessity direction follows by applying the
commutativity properties of the dilations C and C′ and the
erosions I and I ′ at the respective sides of the intervals.

Proof of Theorem 13

First note that x 
= 0LI if and only if x2 
= 0. Consequently,
for all x 
= 0LI we have that 0 < C(1, x2) which implies that
Cp

C(1LI ,x) > 0LI and thus Theorem 1 can be applied to form
the R-implication of the conjunction Cp

C . Let I denote the
R-implication of the conjunction Cp

C . In other words, I(z,y)

is given as follows for all z,y ∈ L
I :

I(z,y) =
∨

{x ∈ L
I : Cp

C(z,x) ≤ y}
=

∨
{x ∈ L

I : [C(z1, x1),C(z1, x2) ∨ C(z2, x1)]
≤ [y1, y2]}

=
∨

{x ∈ L
I : C(z1, x1) ≤ y1 and C(z1, x2) ≤ y2

and C(z2, x1)] ≤ y2}
=

[∨
{x1 ∈ [0,1] : C(z1, x1) ≤ y1

and C(z2, x1) ≤ y2},
∨

{x2 ∈ [0,1] : C(z1, x2) ≤ y2}
]

= [I (z1, y1) ∧ I (z2, y2), I (z1, y2)]
= I o

I (z,y). (A.11)

Thus the first statement of Theorem 13 holds true. Given this
fact, an application of Theorem 12 shows that I o

I and Cp
C are

adjoint if and only if I and C are adjoint. We omit the proof
of the second part of the theorem.

Proof of Theorem 14

As mentioned before, we have x 
= 0LI if and only if x2 
= 0.
Thus, the following statements are equivalent for fuzzy con-
junctions such that C(x, y) ≤ C′(x, y) for all x, y ∈ [0,1].

Cr
C,C′(1LI ,x) > 0LI ∀x 
= 0LI (A.12)

⇔ [C(1, x1),C
′(1, x2)] > 0LI ∀x 
= 0LI (A.13)

⇔ C′(1, x2) > 0 ∀x2 
= 0. (A.14)

Therefore, the condition C′(1, x) > 0 for all x 
= 0 im-
plies that we can construct the R-implication of Cr

C,C′ ac-
cording to Theorem 1. Equation 68 follows directly from
Theorem 1 of [49] and thus we obtain the first statement of
Theorem 14.

Under the same conditions, an application of Theorem 12
leads to the second statement of Theorem 14, i.e., I r

I,I ′ and
its R-conjunction are adjoint if and only if the pairs (I,C)

and (I ′,C′) form adjunctions.
The proof of the second part of the theorem is based on

a similar line of reasoning. Note that Theorems 13 and 14
generalize Proposition 5 of [25] and Theorem 6.6 of [28],
respectively.

Proof of Theorem 15

On the one hand, suppose that C and I as well as C′ and
I ′ are dual with respect to N . If I denotes the dual of Cr

C,C′
with respect to NN then we have the following equalities for
all z,x ∈ L

I :

I(z,x) = NN(Cr
C,C′(z, NN(x)))

= NN(Cr
C,C′(z, [N(x2),N(x1)]))

= NN([C(z1,N(x2)),C
′(z2,N(x1))])

= [N(C′(z2,N(x1)),N(C(z1,N(x2))))]
= [I ′(z2, x1), I (z1, x2)] = I r

I ′,I (z,x). (A.15)

On the other hand, the assumption that Cr
C,C′ and I r

I ′,I are
dual with respect to NN leads to the following identities that
are valid for all z,x ∈ L

I :

NN(Cr
C,C′(z, NN(x))) = I r

I ′,I (z,x) (A.16)

⇔ [N(C′(z2,N(x1)),N(C(z1,N(x2))))]
= [I ′(z2, x1), I (z1, x2)]. (A.17)

Therefore, we conclude that C and I well as C′ and I ′
are dual with respect to N .
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Proof of Theorem 16

On the one hand, let us assume that C and I are dual with
respect to N . If I denotes the NN -dual implication of Cp

C

then we obtain the following identities for all x,y ∈ L
I :

I(x,y) = NN(Cp
C(x, NN(y)))

= NN(Cp
C(x, [N(y2),N(y1)]))

= NN([C(x1,N(y2)),C(x1,N(y1))

∨ C(x2,N(y2))])
= [N(C(x1,N(y1)) ∨ C(x2,N(y2))),

N(C(x1,N(y2)))]
= [N(C(x1,N(y1))) ∧ N(C(x2,N(y2))),

N(C(x1,N(y2)))]
= [I (x1, y1) ∧ I (x2, y2), I (x1, y2)]
= I o

I (x,y). (A.18)

On the other hand, if Cp
C and I o

I are dual with respect to NN

then we have the following equalities for all x,y ∈ L
I :

[N(C(x1,N(y1))) ∧ N(C(x2,N(y2))),N(C(x1,N(y2)))]
= [I (x1, y1) ∧ I (x2, y2), I (x1, y2)]. (A.19)

This fact implies that C and I are dual with respect to N .
The proof of the second part follows a similar line of rea-
soning.
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