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Abstract We propose a new approach to the problem of ro-
bust estimation for a class of inverse problems arising in
multiview geometry. Inspired by recent advances in the sta-
tistical theory of recovering sparse vectors, we define our
estimator as a Bayesian maximum a posteriori with multi-
variate Laplace prior on the vector describing the outliers.
This leads to an estimator in which the fidelity to the data is
measured by the L∞-norm while the regularization is done
by the L1-norm. The proposed procedure is fairly fast since
the outlier removal is done by solving one linear program
(LP). An important difference compared to existing algo-
rithms is that for our estimator it is not necessary to specify
neither the number nor the proportion of the outliers; only
an upper bound on the maximal measurement error for the
inliers should be specified. We present theoretical results as-
sessing the accuracy of our procedure, as well as numeri-
cal examples illustrating its efficiency on synthetic and real
data.

Keywords Structure from motion · Sparse recovery ·
Robust estimation · L1-relaxation

1 Introduction

In the present paper, we are concerned with a class of non-
linear inverse problems appearing in the structure from mo-
tion problem of multiview geometry. This problem, that
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have received a great deal of attention by the computer vi-
sion community in last decade, consists in recovering a set
of 3D points (structure) and a set of camera matrices (mo-
tion), when only 2D images of the aforementioned 3D points
by some cameras are available. Throughout this work we as-
sume that the internal parameters of cameras as well as their
orientations are known. Thus, only the locations of camera
centers and 3D points are to be estimated. In solving the
structure from motion problem by state-of-the-art methods,
it is customary to start by establishing correspondences be-
tween pairs of 2D data points. We will assume in the present
study that these point correspondences have been already
established.

One can think of the structure from motion problem as
the inverse problem of inverting the operator O that takes as
input the set of 3D points and the set of cameras, and pro-
duces as output the 2D images of the 3D points by the cam-
eras. This approach will be further formalized in the next
section. Generally, the operator O is not injective, but in
many situations (for example, when for each pair of cam-
eras there are at least five 3D points in general position that
are seen by these cameras [20]), there is only a small num-
ber of inputs, up to an overall similarity transform, having
the same image by O. In such cases, the solutions to the
structure from motion problem can be found using algebraic
arguments.

The main flaw of algebraic solutions is their sensitivity to
the noise in the data: very often, because of the noise in the
measurements, there is no input that could have generated
the observed output. A natural approach to cope with such
situations consists in searching for the input providing the
closest possible output to the observed data. Then, a major
issue is how to choose the metric in the output space. A stan-
dard approach [12] consists in measuring the distance be-
tween two elements of the output space in the Euclidean L2-
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Fig. 1 (a) One image from the dinosaur sequence. (b)–(c) Camera lo-
cations and scene points estimated by the blind L∞-cost minimization.
(d)–(e) Camera locations and scene points estimated by the proposed

“outlier aware” procedure. This figure demonstrates that the estimator
minimizing the L∞-cost is severely affected by the outliers

norm. In the structure from motion problem with more than
two cameras, this leads to a hard non-convex optimization
problem. A particularly elegant way of circumventing the
non-convexity issues inherent to the use of L2-norm consists
in replacing it by the L∞-norm [11, 14, 21, 23–26]. It has
been shown that, for a number of problems, L∞-norm based
estimators can be computed very efficiently using, for exam-
ple, the iterative bisection method [14, Algorithm 1, p. 1608]
that solves a convex program at each iteration. There is how-
ever an issue with the L∞-techniques that dampens the en-
thusiasm of practitioners: it is highly sensitive to outliers
(cf. Fig. 1). In fact, among all Lq -metrics with q ≥ 1, the
L∞-metric is the most seriously affected by the outliers in
the data. Two procedures have been introduced [15, 26] that
make the L∞-estimator less sensitive to outliers. Although
these procedures demonstrate satisfactory empirical perfor-
mance, they suffer from a lack of sufficient theoretical sup-
port assessing the accuracy of produced estimates.

The purpose of the present work is to introduce and
to theoretically investigate a new procedure of estimation
in presence of noise and outliers. Our procedure combines
L∞-norm for measuring the fidelity to the data and L1-norm
for regularization. It can be seen as a maximum a posteriori
(MAP) estimator under uniformly distributed random noise
and a sparsity favoring prior on the vector of outliers. Inter-
estingly, this study bridges the work on the robust estima-
tion in multiview geometry [9, 15, 17, 26] and the theory of
sparse recovery in statistics and signal processing [1, 2, 5, 8].
Furthermore, since the estimator we propose solves the same
convex program as that solved at each step of iteration of the
procedure in [15], the theoretical arguments developed in
the present work provide an explanation to the nice empiri-
cal performance of Kanade and Ke’s procedure. Moreover,
our procedure is complementary to that of Kanade and Ke,
since the free parameter for our procedure is the maximal
reprojection error of inliers and not the presumed number of
outliers.

The rest of the paper is organized as follows. The next
section gives the precise formulation of the translation es-

timation and triangulation problem to which the presented
methodology can be applied. A brief review of the L∞-norm
minimization algorithm is presented in Sect. 3. In Sect. 4, we
introduce the statistical framework and derive a new proce-
dure as a MAP estimator. Main results assessing the accu-
racy of this procedure are stated in Sect. 5, while Sect. 6 is
devoted to a discussion on the relations of our methodology
with some relevant recent studies. Section 7 contains nu-
merical experiments supporting our theoretical results. The
methodology of our study is summarized in Sect. 8 and the
technical proofs are gathered in Sect. 9.

2 Translation Estimation and Triangulation

Let us start by presenting a problem of multiview geometry
to which our approach can be successfully applied, namely
the problem of translation estimation and triangulation in the
case of known rotations. For rotation estimation algorithms,
we refer the interested reader to [10, 19] and the references
therein.

Let P∗
i , i = 1, . . . ,m, be a sequence of m cameras that are

known up to a translation. Recall that a camera is character-
ized by a 3 × 4 matrix P with real entries that can be written
as P = K[R|t], where K is an invertible 3 × 3 matrix called
the camera calibration matrix, R is a 3 × 3 rotation matrix
and t ∈ R

3. We will refer to t as the translation of the cam-
era P. We can thus write P∗

i = Ki[Ri |t∗i ], i = 1, . . . ,m. For
a set of unknown scene points U∗

j , j = 1, . . . , n, expressed
in homogeneous coordinates (i.e., U∗

j is an element of the

projective space P
3), we assume that noisy images of each

U∗
j by some cameras P∗

i are observed. Thus, we have at our
disposal the measurements

xij = 1

eT
3P∗

i U∗
j

[
eT

1P∗
i U∗

j

eT
2P∗

i U∗
j

]
+ ξ ij ,

j = 1, . . . , n, i ∈ Ij , (1)
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where e�, � = 1,2,3, stands for the unit vector of R
3 having

one as the �th coordinate and Ij is the set of indices of cam-
eras for which the point U∗

j is visible. We assume that the

set {U∗
j } does not contain points at infinity: U∗

j = [X∗T
j |1]T

for some X∗
j ∈ R

3 and for every j = 1, . . . , n.
We are now in a position to state the problem of transla-

tion estimation and triangulation in the context of multiview
geometry. It consists in recovering the 3-vectors {t∗i } (trans-
lation estimation) and the 3D scene points {X∗

j } (triangula-
tion) from the noisy measurements {xij ; j = 1, . . . , n; i ∈
Ij } ⊂ R

2. In what follows, we use the notation θ∗ =
(t∗T

1 , . . . , t∗T
m ,X∗T

1 , . . . ,X∗T
n )T. Thus, we are interested in es-

timating θ∗ ∈ R
3(m+n).

Remark 1 (Chirality) It should be noted right away that if
the point U∗

j is in front of the camera P∗
i , then eT

3P∗
i U∗

j ≥ 0.
This is termed chirality condition. Furthermore, we will as-
sume that none of the true 3D points U∗

j lies on the prin-
cipal plane of a camera P∗

i . This assumption implies that
eT

3P∗
i U∗

j > 0 so that the quotients eT
�P∗

i U∗
j /eT

3P∗
i U∗

j , � = 1,2,
are well defined.

Remark 2 (Identifiability) The parameter θ we have just
defined is, in general, not identifiable from the measure-
ments {xij }. In fact, one easily checks that, for every
α �= 0 and for every t ∈ R

3, the parameters {t∗i ,X∗
j } and

{α(t∗i − Rit), α(X∗
j + t)} generate the same measurements.

To cope with this issue, we assume that t∗1 = 03 and that
mini,j eT

3P∗
i U∗

j = 1. Thus, in what follows we assume that t∗1
is removed from θ∗ and θ∗ ∈ R

3(m+n−1). Further assump-
tions ensuring the identifiability of θ∗ are given below.

3 Estimation by Sequential Convex Programming

This section presents results on the estimation of θ based on
the reprojection error (RE) minimization. This material is
essential for understanding the results that are at the core of
the present work. In what follows, for every s ≥ 1, we denote
by ‖x‖s the Ls -norm of a vector x, i.e., ‖x‖s

s = ∑
j |xj |s if

x = (x1, . . . , xd)T. As usual, we extend this to s = +∞ by
setting ‖x‖∞ = maxj |xj |.

A classical method [12] for estimating the parameter
θ is based on minimizing the sum of the squared REs.
This defines the estimator θ̂ as a minimizer of the cost
function C2,2(θ) = ∑

i,j ‖xij − xij (θ)‖2
2, where xij (θ) :=

[eT
1PiUj ; eT

2PiUj ]T/eT
3PiUj is the 2-vector that we would

obtain if θ were the true parameter. It can also be written as

xij (θ) =
[

eT
1Ki (RiXj + ti )

eT
3Ki (RiXj + ti )

; eT
2Ki (RiXj + ti )

eT
3Ki (RiXj + ti )

]T

. (2)

The minimization of C2,2 is a hard nonconvex problem. In
general, it does not admit closed-form solution and the ex-

isting iterative algorithms may often get stuck in local min-
ima. An ingenious idea to overcome this difficulty [11, 13]
is based on the minimization of the L∞ cost function

C∞,s (θ) = max
j=1,...,n;i∈Ij

‖xij − xij (θ)‖s , s ∈ [1,+∞]. (3)

Note that the substitution of the L2-cost function by the
L∞-cost function has been proved to lead to improved al-
gorithms in other estimation problems as well, cf., e.g., [6].
This cost function has a clear practical advantage in that all
its sublevel sets are convex. This property ensures that all
minima of C∞,s form a convex set and that an element of
this set can be computed by solving a sequence of convex
programs [14], e.g., by the bisection algorithm. Note that
for s = 1 and s = +∞, the minimization of C∞,s can be
recast in a sequence of LPs. The main idea behind the bi-
section algorithm can be summarized as follows. We aim
to designate an algorithm computing θ̂ s ∈ arg minθ C∞,s(θ),
for any prespecified s ≥ 1, over the set of all vectors θ satis-
fying the chirality condition. Let us introduce the residuals
rij (θ) = xij − xij (θ) that can be represented as

rij (θ) =
[aT

ij1θ

cT
ij θ

; aT
ij2θ

cT
ij θ

]T

, (4)

for some vectors aij�, cij ∈ R
3(m+n−1). Furthermore, as pre-

sented in Remark 2, the chirality conditions imply the set of
linear constraints cT

ij θ ≥ 1. Thus, the problem of computing

θ̂ s can be rewritten as

minimize γ subject to

{‖rij (θ)‖s ≤ γ,

cT
ij θ ≥ 1.

(5)

Note that the inequality ‖rij (θ)‖s ≤ γ can be replaced by
‖Aij θ‖s ≤ γ cT

ij θ with Aij = [aT
ij1;aT

ij2]. Although (5) is not
a convex problem, its solution can be well approximated
by solving a sequence of convex feasibility problems of the
form

Ps,γ : find θ s.t.

{‖Aij θ‖s ≤ γ cT
ijθ ,

cT
ij θ ≥ 1.

Given a small number ε > 0 controlling the accuracy of ap-
proximation, the bisection algorithm reads as follows:

Step 1: Compute a θ̂ satisfying the chirality conditions; for
example, by solving a linear feasibility problem.

Step 2: Set γl = 0 and γu = C∞,s (̂θ).
Step 3: Set γ = (γl + γu)/2.
Step 4: If Ps,γ has no solution, set γl = γ . Otherwise, re-

place the current value of θ̂ by a solution to Ps,γ and set
γu = C∞,s (̂θ).

Step 5: If γu − γl < ε, then assign to θ̂ s the current value
of θ̂ and terminate. Otherwise, go to Step 3.
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4 Robust Estimation by Linear Programming

This and the next sections contain the main theoretical con-
tribution of the present work. We start with the precise for-
mulation of the statistical model. We then exhibit a prior
distribution on the unknown parameters of the model that
leads to a MAP estimator.

4.1 The Statistical Model

Let us first observe that, in view of (1) and (4), the model we
are considering can be rewritten as

[aT
ij1θ

∗

cT
ij θ

∗ ; aT
ij2θ

∗

cT
ij θ

∗

]T

= ξ ij , j = 1, . . . , n; i ∈ Ij . (6)

Let N = 2
∑n

j=1 Ij be the total number of measurements
and let M = 3(n + m − 1) be the size of the vector θ∗.
Let us denote by A (resp. C) the N × M matrix formed by
the concatenation of the row-vectors aT

ij� (resp. cT
ij ).1 Sim-

ilarly, let us denote by ξ the N -vector formed by concate-
nating the vectors ξ ij . In these notation, (6) is equivalent to
aT
pθ∗ = (cT

pθ∗)ξp , p = 1, . . . ,N . This equation defines the
statistical model in the case where there is no outlier. To ex-
tend this model to cover the situation where some outliers
are present in the measurements, we introduce the vector
ω∗ ∈ R

N defined by ω∗
p = aT

pθ∗ − (cT
pθ∗)ξp so that ω∗

p = 0
if the pth measurement is an inlier and |ω∗

p| > 0 otherwise.
This leads us to the model:

Aθ∗ = ω∗ + diag(Cθ∗)ξ , (7)

where diag(v) stands for the diagonal matrix having the
components of v as diagonal entries.

Statement of the problem Given the matrices A and C, es-
timate the parameter-vector β∗ = [θ∗T;ω∗T]T based on the
following prior information:

(C1) Equation (7) holds with some small noise vector ξ ,
(C2) minp cT

pθ∗ = 1,
(C3) ω∗ is sparse, i.e., only a small number of coordinates

of ω∗ are different from zero.

4.2 Sparsity Prior and MAP Estimator

To derive an estimator of the parameter β∗, we place our-
selves in the Bayesian framework. To this end, we impose a
probabilistic structure on the noise vector ξ and introduce a
prior distribution on the unknown vector β .

1To get a matrix of the same size as A, in the matrix C each row is
duplicated twice.

Since the noise ξ represents the difference (in pixels) be-
tween the measurements and the true image points, it is nat-
urally bounded and, generally, does not exceeds the level of
a few pixels. Therefore, it is reasonable to assume that the
components of ξ are uniformly distributed in some compact
set of R

2, centered at the origin. We assume in what fol-
lows that the subvectors ξij of ξ are uniformly distributed
in the square [−σ,σ ]2 and are mutually independent. Note
that this implies that all the coordinates of ξ are independent.
In practice, this assumption can be enforced by decorrelat-
ing the measurements using the empirical covariance ma-
trix [16]. We define the prior on θ as the uniform distribution
on the polytope P = {θ ∈ R

M : Cθ ≥ 1}, where the inequal-
ity is understood componentwise. The density of this distri-
bution is p1(θ) ∝ 1P (θ), where ∝ stands for the proportion-
ality relation and 1P (θ) = 1 if θ ∈ P and 0 otherwise. When
P is unbounded, this results in an improper prior, which is
however not a problem for defining the Bayes estimator.

The task of choosing a prior on ω is more delicate in that
it should reflect the information that ω is sparse. The most
natural prior would be the one having a density which is a
decreasing function of the L0-norm of ω, i.e., of the num-
ber of its nonzero coefficients. However, the computation
of estimators based on this type of priors is NP-hard. An
approach for overcoming this difficulty relies on using the
L1-norm instead of the L0-norm. Following this idea, we
define the prior distribution on ω by the probability density
p2(ω) ∝ f (‖ω‖1), where f is some decreasing function2

defined on [0,∞). Assuming in addition that θ and ω are
independent, we get the following prior on β:

π(β) = π(θ;ω) ∝ 1P (θ) · f (‖ω‖1). (8)

Theorem 1 Assume that the noise ξ has independent entries
which are uniformly distributed in [−σ,σ ] for some σ > 0,
then the MAP estimator β̂ = [̂θT; ω̂T]T based on the prior π

defined by (8) is the solution of the optimization problem:

min ‖ω‖1 s.t.

{|aT
pθ − ωp| ≤ σcT

pθ , ∀p,

cT
pθ ≥ 1, ∀p.

(9)

The proof of this theorem is a simple exercise and is left
to the reader.

Remark 3 (Condition C2) One easily checks that any solu-
tion of (9) satisfies condition C2. Indeed, if for some solution
β̂ it were not the case, then β̃ = β̂/minp cT

p θ̂ would satisfy
the constraints of (9) and ω̃ would have a smaller L1-norm
than that of ω̂, which is in contradiction with the fact that β̂

solves (9).

2The most common choice is f (x) = e−x corresponding to the multi-
variate Laplace density.
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Remark 4 (The role of σ ) In the definition of β̂ , σ is a free
parameter that can be interpreted as the level of separation
of inliers from outliers. The proposed algorithm implicitly
assumes that all the measurements xij for which ‖ξ ij‖∞ >

σ are outliers, while all the others are treated as inliers.

If σ is unknown, a reasonable way of acting is to impose
a prior distribution on the possible values of σ and to define
the estimator β̂ as a MAP estimator based on the prior in-
corporating the uncertainty on σ . When there are no outliers
and the prior on σ is decreasing, this approach leads to the
estimator minimizing the L∞ cost function. In the presence
of outliers, the shape of the prior on σ becomes more impor-
tant for the definition of the estimator. This is an interesting
point for future investigation.

4.3 Two-Step Procedure

Building on the previous arguments, we introduce the fol-
lowing two-step algorithm.

Input: {ap, cp;p = 1, . . . ,N} and σ .
Step 1: Compute [̂θT; ω̂T]T as a solution to (9) and set J =

{p : ω̂p = 0}.
Step 2: Apply the bisection algorithm to the reduced data

set {xp;p ∈ J }.
Two observations are in order. First, when applying the

bisection algorithm at Step 2, we can use C∞,s (̂θ) as the
initial value of γu. The second observation is that a better
way of acting would be to minimize the weighted L1-norm
of ω, where the weight assigned to ωp is inversely propor-
tional to the depth cT

pθ∗. Since θ∗ is unknown, a reason-
able strategy consists in adding a step in between Step 1
and Step 2, which performs the weighted minimization with
weights {(cT

p θ̂)−1;p = 1, . . . ,N}.

5 Accuracy of Estimation

Let us introduce some additional notation. Recall the defini-
tion of P and set ∂P = {θ : minp cT

p θ = 1}. For every subset
of indices J ⊂ {1, . . . ,N}, we denote by AJ the N ×M ma-
trix obtained from A by replacing the rows that have an index
outside J by zero. Furthermore, for every J ⊂ {1, . . . ,N},
let us define

δJ (θ∗) = sup
θ∈∂P ,Aθ �=Aθ∗

‖AJ (θ − θ∗)‖2

‖A(θ − θ∗)‖2
, θ∗ ∈ ∂P . (10)

One easily checks that for every θ ∈ ∂P , δJ (θ) ∈ [0,1] and
δJ (θ) ≤ δJ ′(θ) if J ⊂ J ′.

Assumption A The real number λ(θ∗) defined by

λ(θ∗) = min
θ∈∂P \{θ∗}

‖A(θ − θ∗)‖2

‖θ − θ∗‖2

is strictly positive.

5.1 The Noise Free Case

To evaluate the quality of estimation, we first place ourselves
in the case where σ = 0. The estimator β̂ of β∗ is then de-
fined as a solution to the optimization problem

min ‖ω‖1 over β =
[
θ

ω

]
s.t.

{
Aθ = ω

Cθ ≥ 1
. (11)

In this particular case the proposed procedure coincides with
the well-known estimator that minimizes the L1-norm of Aθ

subject to Cθ ≥ 1. Although this procedure was known, to
the best of our knowledge the theoretical results of this sec-
tion are new.

From now on, for every index set T and for every vector
h, hT stands for the vector equal to h on an index set T and
zero elsewhere. The complementary set of T will be denoted
by T c .

Theorem 2 Let Assumption A be fulfilled and let T0 (resp.
T1) denote the index set corresponding to the locations of
S largest entries3 of ω∗ (resp. (ω∗ − ω̂)T c

0
). If δT0(θ

∗) +
δT0∪T1(θ

∗) < 1 then, for some constant C0, it holds:

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗
S‖1, (12)

where ω∗
S stands for the vector ω∗ with all but the S-largest

entries set to zero. In particular, if ω∗ has no more than S

nonzero entries, then the estimation is exact: β̂ = β∗.

Remark 5 The assumption δT0(θ
∗)+δT0∪T1(θ

∗) < 1 is close
in spirit to the restricted isometry property (cf., e.g., [4, 5, 8]
and the references therein). It is very likely that results sim-
ilar to that of Theorem 2 hold under other kind of assump-
tions recently introduced in the theory of sparse recovery
based on L1-relaxation [1, 7, 30]. This investigation is left
for future research.

We emphasize that the constant C0 is rather small. For
example, if δT0(θ

∗) + δT0∪T1(θ
∗) = 0.5, then ‖ω̂ − ω∗‖2 +

‖A(̂θ − θ∗)‖2 ≤ (8/
√

S)‖ω∗ − ω∗
S‖1.

5.2 The Noisy Case

The assumption σ = 0 is an idealization of the reality that
has the advantage of simplifying the mathematical deriva-
tions. While such a simplified setting is useful for convey-
ing the main ideas behind the proposed methodology, it is of
major practical importance to discuss the extensions to the
more realistic noisy model.

3In absolute value.
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Theorem 3 Let the assumptions of Theorem 2 be fulfilled
and let the noise vector ξ satisfy ‖ξ‖∞ ≤ σ , then

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗
S‖1 + C1σ(‖Ĉθ‖2 + ‖Cθ∗‖2),

where C0 and C1 are some constants.

The constants C0 and C1 have rather simple explicit
forms which are given in Remark 6 of Sect. 9. These con-
stants have very reasonable values provided that the pa-
rameter λ in Assumption A is not too small and δT0(θ

∗) +
δT0∪T1(θ

∗) is not too close to one.
It should also be noted that Theorem 3 covers also the

case of random noise vector ξ . Indeed, if ξ is random with
all its coordinates a.s. bounded by σ , then the conclusion
of Theorem 3 holds with probability one. The situation is a
bit different in the case of unbounded random errors, since
even if all the assumptions are fulfilled, the result of Theo-
rem 3 is guaranteed to hold only with probability pσ , where
pσ = P(‖ξ‖∞ ≤ σ) is in general < 1. Fortunately, it is often
possible to make this probability close to one by a proper
choice of σ using well-known inequalities controlling the
tails of random variables. For instance, if the coordinates
of ξ are independent centered Gaussian with variance v2,
then by choosing σ = v

√
4 logN , we can guarantee that

pσ ≥ 1 − N−1, which in typical cases is very close to one
since N is large.

The result of Theorem 3 may appear not very conven-
tional in that its right hand side contains a term depending
on the estimator θ̂ . All numerical experiments we did show
that the term ‖Cθ̂‖2 is not very large compared to ‖Cθ∗‖2,
which is always larger than

√
N . However, for the sake of

completeness we present another result that—at the price of
a stronger assumption—leads to an upper bound (on the ac-
curacy of the estimator) which is independent of β̂ .

Theorem 4 Let us introduce the quantity

λC/A(θ∗) = sup
θ∈∂P \{θ∗}

‖C(θ − θ∗)‖2

‖A(θ − θ∗)‖2
.

If all the assumptions of Theorem 3 are fulfilled and
δT0(θ

∗) + δT0∪T1(θ
∗) + √

2σλC/A(θ∗) < 1, then

‖β̂ − β∗‖2 ≤ C′
0‖ω∗ − ω∗

S‖1 + C′
1σ‖Cθ∗‖2

where C′
0 and C′

1 are some constants.

5.3 Discussion on Assumptions

Assumption A is necessary for identifying the parameter
vector θ∗ even in the case without outliers. In fact, if ω∗ = 0,
and if Assumption A is not fulfilled, then4 ∃ θ1 ∈ ∂P \ {θ∗}

4We assume for simplicity that ∂P is compact.

such that Aθ1 = Aθ∗. This obviously implies that the vector
θ∗ is not identifiable.

The main assumption in Theorems 2 and 3 is that
δT0(θ

∗) + δT0∪T1(θ
∗) < 1. While this assumption is by no

means necessary, it should be recognized that it cannot be
drastically relaxed. In fact, it is easy to give an example
showing that the condition δT0∪T1(θ

∗) < 1 is necessary. For
instance, let S = 1 and

A =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 0 0

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

0 1 2
0 2 1
0 1 2
0 3 2

⎤
⎥⎥⎦ ,

θ∗ =
⎡
⎣0

0
1

⎤
⎦ , ω∗ =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ .

Then T0 = {3} and it can be checked that δT0∪{2}(θ∗) = 1,
since the sup is attained for θ ′ = [0 1 0]T. For this exam-
ple, consistent estimation of θ∗ is impossible since there
is no particular reason for choosing θ∗ instead of θ ′. This
kind of situations are discarded thanks to the assumption on
δT0(θ

∗) + δT0∪T1(θ
∗).

Note also that the mapping J �→ δJ (θ) is subadditive,
that is δJ∪J ′(θ) ≤ δJ (θ) + δJ ′(θ). Therefore, the condition
of Theorem 2 is fulfilled as soon as δJ (θ∗) < 1/3 for ev-
ery index set J of cardinality ≤ S. Thus, the condition
maxJ :|J |≤S δJ (θ∗) < 1/3 is sufficient for identifying θ∗ in
presence of S outliers.

A simple upper bound on δJ , can be computed as follows.

Proposition 1 Let us denote by U the N × Rank(A) matrix
having orthonormal columns spanning the image of A. Then,
for every index set J ⊂ {1, . . . ,N} and for every θ ∈ ∂P , we
have δJ (θ) ≤ ‖UJ ‖, where the matrix norm is understood as
the largest singular value.

The proof of this proposition, obtained by replacing the
sup over ∂P by the sup over R

M , is given in Sect. 9. Note
that for a given J , the computation of ‖UJ ‖ is far easier than
that of δJ (θ).

6 Relation to Previous Work

The present work is closely related and to some extent is
complementary to that of Kanade and Ke [15], Sim and
Hartley [26] and Candès and Randall [2]. The first two pa-
pers propose two different approaches for allowing the L∞-
cost minimization procedure to handle outliers, while the
third paper is the first one applying the L1 relaxation heuris-
tic to the problem of robust estimation. After the submission
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of the present paper, the closely related work [22] has been
published, in which the authors establish that the procedures
of [26] and [15] are related through duality, and present ad-
ditional numerical experiments comparing these methods.

In [15], the authors argue for minimizing the (m + 1)th
largest in absolute value reprojection error in order to han-
dle (at most) m outliers. This problem being in general NP-
hard, the authors propose an algorithm, hereafter referred to
as KK-procedure, solving a sequence of convex problems
leading to an estimator that, in some particular cases, mini-
mizes the (m + 1)th largest RE. It is however not clear how
often the KK-procedure will really produce the (m + 1)th
largest RE minimizer. There is actually no theoretical inves-
tigation supporting the KK-procedure.

Since the estimator proposed in the present paper solves
an optimization problem that coincides with that solved at
each step of iteration of the KK-procedure, roughly speak-
ing, the theoretical arguments presented in previous sections
provide an explanation to the nice empirical performance of
the KK-procedure. Moreover, our procedure is complemen-
tary to the KK-procedure, since the free parameter for our
procedure is the precision of inliers, while the free parame-
ter for the KK-procedure is the presumed number of outliers.
The complexities of these algorithms are very comparable.

The procedure introduced by Sim and Hartley [26], here-
after referred to as SH-procedure, consists in iteratively
computing the L∞-cost minimizer and in removing, at each
cycle, the measurements that have maximal RE. For a fixed
positive integer k—the free parameter of the procedure—the
SH-procedure stops when the total number of removed mea-
surements exceeds k. While the authors prove that at each
cycle at least one outlier is removed, there is no theoretical
result evaluating the number of inliers removed at each cy-
cle. As for the KK-procedure, the SH-procedure requires the
number of presumed outliers. (Note however that one can
also consider a stopping rule depending on the desired accu-
racy of the reconstruction; namely, one can decide to termi-
nate iterations when the maximal reprojection error becomes
smaller than a prescribed threshold σ .) The SH-procedure is
substantially more time consuming than the KK-procedure,
as well as the one proposed in the present work. In fact, in
many situations, the number of outliers is of order of sev-
eral hundreds while the average number of measurements
removed at each iteration varies between 10 and 30 for dif-
ferent datasets. In such cases, the SH-procedure may require
a large number of cycles being very time-expensive.

In the statistical literature, the approach consisting in L1-
relaxation for robust estimation in the presence of measure-
ment errors has been recently considered in [2], see also
Candès and Tao [3]. However, there is a key difference be-
tween the framework considered by the authors and the one
of the present work. In fact, Candès and Randall are con-
cerned by the problem of decoding linear codes in which the

matrix A can be chosen by the encoder/decoder. Therefore,
their results require some conditions that are prohibitively
restrictive in our context. For example, the columns of A are
assumed to be orthogonal.

7 Numerical Experiments

The aim of this section is twofold. First, we show that the
presented methodology can be effectively implemented and
leads to estimators that are competitive with the state-of-the
art procedures. Second, we provide an empirical evaluation
of the quantities involved in our theoretical results for sev-
eral real-world datasets. This gives an idea of the order of
magnitude of the constants appearing in the theorems.

We implemented the algorithm in MatLab, using the Se-
DuMi package for solving LPs [28]. The Matlab code of our
program can be freely downloaded from imagine.enpc.fr/
~dalalyan/3D.html. To test our approach, we applied our al-
gorithm to four datasets: the dinosaur and the corridor se-
quences5, as well as the fountain-P11 and the Herz-Jesu-
P25 sequences6.

7.1 Dinosaur Data

The dinosaur sequence consists of 36 images of a dinosaur
on a turntable, see Fig. 1(a) for one example. The 2D im-
age points which are tracked across the image sequence and
the projection matrices of 36 cameras are provided as well.
There are 16,432 image points corresponding to 4,983 scene
points. This data is severely affected by outliers which re-
sults in a very poor accuracy of the “blind” L∞-cost mini-
mization procedure. Its maximal RE equals 63 pixel and, as
shown in Fig. 1, the estimated camera centers are not on the
same plane and the scatter plot of scene points is inaccurate.

We ran our procedure with σ = 0.5 pixel. If for pth mea-
surement |ωp/cT

pθ | was larger than σ/4, then it has been
considered as an outlier and removed from the dataset. The
corresponding 3D scene point was also removed if, after
the step of outlier removal, it was seen by only one cam-
era. This resulted in removing 1,306 image points and 297
scene points. The plots (d) and (e) of Fig. 1 show the esti-
mated camera centers and estimated scene points. We see, in
particular, that the camera centers are almost coplanar. Note
that in this example, the second step of the procedure de-
scribed in Sect. 4.3 does not improve on the estimator com-
puted at the first step. Thus, an accurate estimate is obtained
by solving only one linear program.

We compared our procedure with the SH-procedure [26]
and the KK-procedure [15]. For the SH-procedure, we it-
eratively computed the L∞-cost minimizer by removing, at

5www.robots.ox.ac.uk/~vgg/data1.html.
6cvlab.epfl.ch/~strecha/multiview/.

http://imagine.enpc.fr/~dalalyan/3D.html
http://imagine.enpc.fr/~dalalyan/3D.html
http://www.robots.ox.ac.uk/~vgg/data1.html
http://cvlab.epfl.ch/~strecha/multiview/
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Fig. 2 DINOSAUR DATA: (a)–(c) Upper view of the 3D points esti-
mated by the KK-procedure (a), by the SH-procedure (b) and by our
procedure. (d) Boxplots of the errors when estimating the camera cen-

ters by our procedure (left) and by the KK-procedure (right). (e) Box-
plots of the errors when estimating the camera centers by our procedure
(left) and by the SH-procedure (right)

Fig. 3 CORRIDOR DATA: (a) One image out of 11. (b) Camera locations and scene points estimated by our method. (c) True cameras and scene
points

each cycle j , the measurements that had a RE larger than
Emax,j − 0.5ε, where Emax,j was the largest RE at the cy-
cle j . We have stopped the SH-procedure when the number
of removed measurements exceeded 1,500. This number has
been attained after 53 cycles. Therefore, the execution time
was approximately 50 times larger than for our procedure.
The estimator obtained by SH-procedure has a maximal RE
equal to 1.33 pixel, whereas the maximal RE for our estima-
tor is of 0.62 pixel. Concerning the KK-procedure, we run
it with the parameter value m = N − NI with NI = 15,000,
which is approximately the number of inliers detected by
our method. Recall that the KK-procedure aims at minimiz-
ing the mth larges RE. As shown in Fig. 2, our procedure is
quite competitive with those of [15, 26].

7.2 Corridor Data

Let us turn to the corridor sequence, consisting of 11 frames
one of which is shown in Fig. 3. Matched 2D image points,
true 3D scene points and the camera matrices are also pro-
vided. There are 737 scene points and 4,035 image points.
Thus in average, to each scene point correspond nearly 5.5

image points. We have first ran the original L∞ cost min-
imization algorithm to evaluate the influence of outliers.
It has produced an estimator having maximal reprojection
error equal to 1.7 pixel, with a very accurate estimator of
the locations of cameras. We then ran our algorithm with
σ = 0.5 pixel. It classified 214 image points and 8 scene
points as outliers. This also lead to an improvement of the
accuracy of estimation of the camera locations by a factor
larger than three. The resulting estimators of camera loca-
tions and scene points are shown in Fig. 3.

To do more experiments, we removed the outliers de-
tected by our procedure from the dataset. This resulted in
a “clean” dataset with 3,813 image points and 729 scene
points. We then artificially added outliers in order to study
the impact of the number of outliers on the performance
of the algorithm. Thus, we have randomly chosen—among
3,813 measurements present in the dataset—S measure-
ments that served as outliers. To these S measurements, we
have added independent 2D vectors with independent coor-
dinates having the same distribution as ζ , where

P(ζ ∈ dx) = 1

2
e−(|x|−a)1[a,+∞)(|x|) dx.
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Table 1 TP is the number of true positives, that is the number of cor-
rectly classified real outliers. FP is the number of false positives, that
is the number of inliers classified as outliers. Accuracy is the largest of
11 reals measuring the distances between the estimated and true cam-

era locations for each camera. Cycles is the number of cycles required
by the SH-procedure to achieve the desired number of removed mea-
surements. Mean is the average over 500 replications, while StD is the
standard deviation

a S Our procedure SH-procedure

TP FP Accuracy TP FP Accuracy Cycles

Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD

5 20 19.2 0.93 12.8 4.15 0.016 0.006 16.7 2.00 40.4 11.59 0.079 0.013 3.7 0.48

5 200 192.1 2.76 197.2 17.37 0.018 0.006 192.4 5.93 225.9 15.53 0.050 0.020 15.2 2.02

5 500 474.6 4.50 747.9 29.86 0.049 0.015 490.9 3.15 537.3 21.89 0.013 0.003 28.8 1.82

5 1,000 935.5 8.49 1,186.9 37.87 0.173 0.046 972.1 4.81 1,061.1 20.45 0.012 0.004 46.0 1.41

10 20 19.3 0.77 30.4 8.28 0.013 0.004 17.2 2.10 37.1 8.54 0.131 0.043 3.9 0.74

10 200 192.7 2.14 672.0 40.42 0.024 0.009 192.7 2.50 210.7 2.99 0.011 0.033 15.5 0.56

10 500 484.0 3.74 1,252.8 50.53 0.080 0.039 492.5 2.39 534.36 19.80 0.014 0.006 32.6 1.85

10 1,000 966.4 5.95 1,541.0 33.23 0.211 0.073 976.4 5.09 1,056.8 24.79 0.010 0.002 53.5 2.69

In other terms, ζ is the symmetrized version of an expo-
nential random variable translated by a, where a is a posi-
tive parameter corresponding to the magnitude of the RE for
outliers. We have run our procedure with σ = 1 pixel on this
dataset for several values of S and a; namely, S = 20; 200;
500; 1,000; and a = 5;10. For each value of S and a, the ex-
periment has been repeated 500 times. We also did the same
experiment for the SH-procedure which has been stopped as
soon as the number of removed observations exceeded 2S.

The results of these experiments are summarized in Ta-
ble 1, where we present the average values and the standard
deviations for the number of true positives and false posi-
tives, as well as for the accuracy of estimating the camera
locations and for the number of cycles for SH-procedure,
where each cycle comprises one realization of the bisection
algorithm. To compute the accuracy, we have beforehand
normalized the camera locations so that they are centered
and the average distance to the origin is equal to one.

The results reported in Table 1 demonstrate the comple-
mentarity of the SH-procedure and the one proposed in the
present work. In fact, the SH-procedure outperforms our
procedure in terms of the accuracy of estimating the cam-
era locations when S ≥ 500 or a = 10. This improvement
is achieved at the cost of much larger execution times. For
example, when S = 500 and a = 5, the average execution
time for our algorithm is more than 25 times smaller than
that for the SH-procedure and the results of our algorithm
have very acceptable accuracy. It is also noteworthy that this
synthetic dataset is particularly well suited for the use of the
SH-procedure, since more than 95% of the outliers have a
RE lying in the interval [a, a + 3], which leads to the re-
moval of a large number of measurements at each cycle. In
the case of the dataset of the next subsection, for instance,
the REs of outliers are much more spread out and, as a con-
sequence, the average number of measurements removed at

each cycle is more than 5 times smaller than in the case of
the synthetic data of this subsection.

7.3 Herz-Jesu Data

This is one of benchmark datasets of [27]; it contains
25 frames which are corrected for distortion. Each frame
is of size 2048 × 3072. The authors provide the cam-
era matrices as well. We first established pairwise corre-
spondences between different frames using SIFT descrip-
tors [18, 29]. The resulting correspondence matrix is avail-
able at http://imagine.enpc.fr/~dalalyan/3D.html. It consists
of 15,323 scene points and 87,968 measurements. The naive
L∞-cost minimization leads to an estimator with maximal
RE larger than 1,000 pixels.

We applied our procedure, with the parameter σ = 0.5
pixel, to this dataset. It classified 32,093 image points and
10,702 scene points as outliers and resulted in an estima-
tor that has a maximal RE bounded by 0.25 pixel. The es-
timated camera locations and 3D points classified as inliers
are shown in Fig. 4. The accuracy for estimating camera lo-
cations was equal to 0.037. We have also tried to apply the
SH-procedure on this dataset. After 100 cycles the number
of removed measurements were slightly larger than 1,000
and the maximal RE was still on the order of 350 pixels.
Finally, we applied the KK-procedure with m = 25,000,
which is the approximate number of inliers detected by our
method. The accuracy for the resulted estimator of camera
locations was 0.058. The boxplots of errors for different
cameras are presented in Fig. 5.

7.4 Fountain Data

Fountain-P11 is another dataset presented in [27], which
contains eleven frames of a fountain. One of these frames is

http://imagine.enpc.fr/~dalalyan/3D.html
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Fig. 4 HERZ-JESU-P25 DATA [27]: (a) One image out of 25. (b) Camera locations and scene points estimated by our method. (c) True cameras
and estimated scene points

Fig. 5 Boxplots of the errors
when estimating the camera
centers by our procedure (left)
and by the KK-procedure (right)
for (a) HerzJesu P25 sequence
and (b) Fountain P11 sequence

presented in Fig. 6(a). We established the correspondences
in the same way as for the previous dataset and got 10,455
scene points and 31,714 image points. We applied our pro-
cedure with the same parameter value σ = 0.5. It has clas-
sified as outliers 2,531 scene points and 8,217 image points.
The result for estimated camera locations and scene points
is shown in Fig. 6. We see that the camera locations are
quite close to the true camera locations provided by [27].
The accuracy for estimating camera locations by our pro-
cedure was equal to 0.017, while that of the KK-procedure
with m = 50,000 was 0.02. The boxplots of errors are shown
in Fig. 5.

7.5 Evaluation of Constants

In this subsection, we attempt to make a numerical evalu-
ation of different constants involved in our theoretical re-

sults. To this end, we consider the Founatin P11 dataset (ex-
periments on the three other datasets leaded to very simi-
lar results) and choose at random 1000 scene-points, esti-
mated by our procedure. These scene points are considered
as ground truth and each of them is projected onto 5 im-
age planes, chosen at random in such a way that the result-
ing image point lies inside the image box. Since the ground
truth cameras are known, these projections are computable.
We further add to all measurements a random noise drawn
from the uniform distribution U ([−σ,σ ]). We then choose
at random No measurements, considered as outliers, and
add to these measurements a random noise uniformly dis-
tributed in [−3σ,−2σ ] ∪ [2σ,3σ ]. The worst-case results
over 10 replications obtained for different values of No and
σ are reported in Table 2. Note here that the “worst-case
results” means the largest values for δT0 , δT0∪T1 and λC/A
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Fig. 6 FOUNTAIN-P11 DATA [27]: (a) One image out of 11. (b) Camera locations and scene points estimated by our method. (c) True cameras
and estimated scene points

Table 2 Numerical evaluation of constants appearing in theorems on
a synthetic data described in Sect. 7.5. One can remark that the main
theoretical assumption δT0 + δT0∪T1 < 1 is fulfilled when the number
of outliers No is not larger than 400, whereas it fails when No = 800

σ No λ δT0 δT0∪T1 λC/A

0.5 50 1.89 0.122 0.128 2.17

0.5 100 2.04 0.199 0.206 2.01

0.5 400 2.65 0.389 0.413 1.55

0.5 800 3.32 0.527 0.561 1.24

1.0 50 3.73 0.113 0.117 1.11

1.0 100 3.95 0.183 0.191 1.04

1.0 400 5.61 0.397 0.432 0.78

1.0 800 6.63 0.515 0.558 0.62

4.0 50 14.66 0.100 0.106 0.28

4.0 100 17.02 0.214 0.221 0.24

4.0 400 21.72 0.395 0.412 0.19

4.0 800 26.47 0.519 0.564 0.15

and the smallest values for λ. It should also be noted that
all mathematical derivations hold true when the quantities
δT (θ∗) (for T = T0 and T = T1), λ(θ∗) and λC/A(θ∗) are

replaced by δT (θ∗, θ̂) = ‖AJ (̂θ−θ∗)‖2
‖̂θ−θ∗‖2

, λ(θ∗, θ̂) = ‖A(̂θ−θ∗)‖2
‖̂θ−θ∗‖2

and λC/A(θ∗, θ̂ ) = ‖C(̂θ−θ∗)‖2
‖A(̂θ−θ∗)‖2

. It is the values of these quan-

tities that are reported in Table 2.
These numerical evaluation reveals that the assumptions

of Theorems 2 and 3 are fulfilled when the number of out-
liers is less than or equal to 400 and are not fulfilled when
this number is equal to 800. Of course, this does not mean
that the proposed method fails when the number of outliers
exceeds 800. This evaluation merely shows the limits of our
theoretical results: they are not able to capture the proper-
ties of the estimation procedure for large number of outliers.
However, to the best of our knowledge, there are no theoreti-
cal results in the literature assessing the quality of robust es-
timators applicable to our context and holding under weaker
assumption.

One can also observe that the value of λC/A is always
prohibitively large. Interestingly, in all the numerical exper-

iments we did, the entries of the vector Ĉθ were bounded
by the respective entries of Cθ∗. Unfortunately, we did not
succeed to give a mathematical proof to this curious phe-
nomenon. However, this shows that in most situations the
term ‖Ĉθ‖2 is smaller than the term ‖Cθ∗‖ and, therefore,
one does not need to resort to Theorem 4.

8 Conclusion

In this paper, we presented a rigorous Bayesian framework
for the problem of translation estimation and triangulation
that have leaded to a new robust estimation procedure. We
have formulated the problem under consideration as a non-
linear inverse problem with a high-dimensional unknown
parameter-vector. This vector encapsulates the information
on the scene points and the camera locations, as well as the
information on the location of outliers in the data. The pro-
posed estimator exploits the sparse nature of the vector of
outliers through L1-norm minimization.

Although we focused in the present paper on the problem
of translation estimation and triangulation, the proposed ap-
proach applies to other problems of computer vision such
as homography estimation, camera resectioning and 3D re-
construction using a reference plane. (More details on the
relation of these problems and the inverse problem consid-
ered in this work can be found in [14].)

We have given the mathematical proof of the result
demonstrating the efficiency of the proposed estimator under
mild assumptions. Unfortunately, the verification of these
assumptions is impossible, since it requires the knowledge
of the true parameter. It is an interesting open problem to
find possibly stronger but verifiable assumptions that allow
to theoretically assess the accuracy of the estimation.

We applied our procedure to four real-world and syn-
thetic datasets and compared to some recently proposed pro-
cedures. The results of these experiments support our theo-
retical results and demonstrate the complementarity of our
procedure to those previously proposed in the literature. In
particular, our procedure is in general much faster than that
of Sim and Hartley [26] in terms of execution times and is
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more theoretically justified than the method of Kanade and
Ke [15].

9 Proofs

This section contains the proofs of the main theoretical
claims. We begin with an auxiliary result and then present
the proofs of Theorems 2, 3 and 4. To ease notation, since
there is no confusion, we write δJ , λ and λC/A instead of
δJ (θ∗), λ(θ∗) and λC/A(θ∗), respectively.

Lemma 1 Let v ∈ R
d be some vector and let S ≤ d be a

positive integer. If we denote by T the indices of S largest
entries of the vector |v|, then ‖vT c‖2 ≤ S−1/2‖v‖1.

Proof Let us denote by T1 the index set of S largest en-
tries of |vT c |, by T2 the index set of next S largest entries of
|vT c |, and so on. By triangle inequality, one has ‖vT c‖2 ≤∑

j≥1 ‖vTj
‖2. On the other hand, one easily checks that

|v�|2 ≤ |v�| · ‖vTj−1‖1/S for every � ∈ Tj with the conven-
tion T0 = T . This implies that ‖vTj

‖2
2 ≤ ‖vTj

‖1‖vTj−1‖1/S,
for every j ≥ 1. After taking the square root of these in-
equalities and summing up over j , we get the desired result
in view of the obvious inequality ‖vTj

‖1 ≤ ‖vTj−1‖1. �

Proof of Theorem 2 We set h = ω∗ − ω̂ and g = θ∗ − θ̂ .
Applying Lemma 1 to the vector v = hT c

0
and to the index

set T = T1, we get

‖h(T0∪T1)
c‖2 ≤ S−1/2‖hT c

0
‖1. (13)

On the other hand, summing up the inequalities

‖hT c
0
‖1 ≤ ‖(ω∗ − h)T c

0
‖1 + ‖ω∗

T c
0
‖1

and ‖ω∗
T0

‖1 ≤ ‖(ω∗ − h)T0‖1 + ‖hT0‖1, and using the rela-
tion ‖(ω∗ − h)T0‖1 + ‖(ω∗ − h)T c

0
‖1 = ‖ω∗ − h‖1 = ‖ω̂‖1,

we get

‖hT c
0
‖1 + ‖ω∗

T0
‖1 ≤ ‖ω̂‖1 + ‖ω∗

T c
0
‖1 + ‖hT0‖1. (14)

Since β∗ satisfies the constraints of the optimization prob-
lem (11) a solution of which is β̂ , we have ‖ω̂‖1 ≤ ‖ω∗‖1.
This inequality, in conjunction with (13) and (14), implies

‖h(T0∪T1)
c‖2 ≤ S−1/2‖hT0‖1 + 2S−1/2‖ω∗

T c
0
‖1

≤ ‖hT0‖2 + 2S−1/2‖ω∗
T c

0
‖1, (15)

where the last step follows from the Cauchy-Schwartz in-
equality. Using once again the fact that both β̂ and β∗ satisfy
the constraints of (11), we get h = Ag. Therefore,

‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)
c‖2

≤ ‖hT0∪T1‖2 + ‖hT0‖2 + 2S−1/2‖ω∗
T c

0
‖1

= ‖AT0∪T1g‖2 + ‖AT0g‖2 + 2S−1/2‖ω∗
T c

0
‖1

≤ (δT0 + δT0∪T1)‖Ag‖2 + 2S−1/2‖ω∗
T c

0
‖1

= (δT0 + δT0∪T1)‖h‖2 + 2S−1/2‖ω∗
T c

0
‖1. (16)

Since ω∗
T c

0
= ω∗ − ω∗

S , the last inequality yields ‖h‖2 ≤
(2S−1/2/(1 − δT0 − δT0∪T1))‖ω∗ − ω∗

S‖1. To complete the
proof, it suffices to observe that

‖β̂ − β∗‖2 ≤ ‖g‖2 + ‖h‖2 ≤ λ−1‖Ag‖2 + ‖h‖2

= (λ−1 + 1)‖h‖2 ≤ C0‖ω∗ − ω∗
S‖1. �

Proof of Theorem 3 Let us define η = diag(Cθ∗)ξ and η̂ =
Âθ − ω̂. It is clear that these vectors satisfy

‖η‖2 ≤ σ‖Cθ∗‖2 and ‖̂η‖2 ≤ σ‖Ĉθ‖2 (17)

thanks to the condition ‖ξ‖∞ ≤ σ and the constraints |aT
pθ −

ωp| ≤ σcT
pθ , ∀p, which are fulfilled by (̂θ , ω̂). Furthermore,

since under the assumption ‖ξ‖∞ ≤ σ the vector β∗ satisfies
the constraints of the LP (12), in view of (15), we have

‖hT c
01

‖2 ≤ ‖hT0‖2 + 2S−1/2‖ω∗
T c

0
‖1 (18)

with h = ω∗ − ω̂ and T01 = T0 ∪T1. On the other hand, since
h = Ag + η̂ − η, we have

‖hT c
01

‖2 ≥ ‖AT c
01

g‖2 − ‖̂ηT c
01

‖2 − ‖ηT c
01

‖2

and

‖hT0‖2 ≤ ‖AT0 g‖2 + ‖̂ηT0
‖2 + ‖ηT0

‖2.

Combining last three displays, we get

‖AT c
01

g‖2 ≤ ‖hT c
01

‖2 + ‖̂ηT c
01

‖2 + ‖ηT c
01

‖2

≤ ‖hT0‖2 + 2√
S

‖ω∗
T c

0
‖1 + ‖̂ηT c

01
‖2 + ‖ηT c

01
‖2

≤ ‖AT0g‖2 + 2√
S

‖ω∗
T c

0
‖1

+ ‖̂ηT0
‖2 + ‖ηT0

‖2 + ‖̂ηT c
01

‖2 + ‖ηT c
01

‖2.

Using the elementary inequality a + b ≤ √
2(a2 + b2), the

last inequality can be simplified to

‖AT c
01

g‖2 ≤ ‖AT0g‖2 + 2√
S

‖ω∗
T c

0
‖1 + √

2(‖̂η‖2 + ‖η‖2)

≤ ‖AT0g‖2 + 2√
S

‖ω∗
T c

0
‖1 + √

2ε,
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where for keeping formulae short we denoted by ε the ex-
pression σ(‖Cθ∗‖2 + ‖Ĉθ‖2). Therefore,

‖Ag‖2 ≤ ‖AT01g‖2 + ‖AT c
01

g‖2

≤ ‖AT01g‖2 + ‖AT0g‖2 + 2√
S

‖ω∗
T c

0
‖1 + √

2ε

≤ (δT01 + δT0)‖Ag‖2 + 2√
S

‖ω∗
T c

0
‖1 + √

2ε.

Finally, the chain of inequalities

‖β̂ − β∗‖2 ≤ ‖h‖2 + ‖g‖2 ≤ ‖Ag‖2 + ‖g‖2 + ε

≤ (1 + λ−1)‖Ag‖2 + ε

≤ 1 + λ−1

1 − δT01 − δT0

(
2√
S

‖ω∗
T c

0
‖1 + √

2ε

)
+ ε

completes the proof of the theorem. �

Remark 6 The values of constants C0 and C1 can be easily
deduced from the proof of Theorem 3. Indeed, one can see
that

C0 = 2(1 + λ−1)√
S(1 − δT0 − δT0∪T1)

,

C1 = 1 +
√

2(1 + λ−1)

1 − δT0 − δT0∪T1

.

Proof of Theorem 4 Repeating the arguments of the proof
of Theorem 3, we get

‖AT c
01

g‖2 ≤ ‖AT0g‖2 + 2√
S

‖ω∗
T c

0
‖1 + √

2ε,

with ε = σ(‖Cθ∗‖2 + ‖Ĉθ‖2) and g = θ∗ − θ̂ . The triangle
inequality implies that ε ≤ σ(2‖Cθ∗‖2 + ‖Cg‖2) and, set-
ting μS = 2√

S
‖ω∗

T c
0
‖1 + √

8σ‖Cθ∗‖2, we get

‖AT c
01

g‖2 ≤ ‖AT0g‖2 + μS + √
2σ‖Cg‖2. (19)

Using the definition of the matrix norm, one checks that

‖Cg‖2 = ‖C(ATA)−1ATAg‖2 ≤ ‖C(ATA)−1AT‖ · ‖Ag‖2.

This yields

‖Ag‖2 ≤ ‖AT01g‖2 + ‖AT c
01

g‖2

≤ ‖AT01g‖2 + ‖AT0g‖2 + μS + √
2σ‖Cg‖2

≤ ‖Ag‖2(δT01 + δT0 + √
2σλC/A) + μS.

The last inequality can be rewritten as

‖Ag‖2 ≤ μS/(1 − δT01 − δT0 − √
2σλC/A) (20)

provided that the denominator of the right hand side is
strictly positive. Therefore,

‖g‖2 ≤ λ−1‖Ag‖2 ≤ μS

λ(1 − δT01 − δT0 − √
2σλC/A)

,

‖h‖2 ≤ ‖Ag‖2 + 2σ‖Cθ∗‖2 + σ‖Cg‖2

≤ (1 + σλC/A)‖Ag‖2 + 2σ‖Cθ∗‖2

≤ (1 + σλC/A)μS

1 − δT01 − δT0 − √
2σλC/A

+ 2σ‖Cθ∗‖2.

These inequalities, combined with ‖β̂ − β∗‖2 ≤ ‖g‖2 +
‖h‖2, complete the proof of the theorem. �

Remark 7 The values of constants C′
0 and C′

1 can be de-
duced from the proof of Theorem 4. One easily checks that

C′
0 = 2(1 + λ−1 + σλC/A)√

S(1 − δT0 − δT0∪T1 − √
2σλC/A)

,

C′
1 = 2

√
2(1 + λ−1 + σλC/A)

1 − δT0 − δT0∪T1 − √
2σλC/A

+ 2.

Proof of Proposition 1 Let us denote by IN×N,J the N × N

matrix obtained from the identity matrix IN×N by zeroing
all the rows with indices in J . Then, it holds

δJ (θ) ≤ sup
u∈RM

‖IN×N,J Au‖2

‖Au‖2
= sup

v∈Im(A)

‖IN×N,J v‖2

‖v‖2

= sup
w∈RRank(A)

‖IN×N,J Uw‖2

‖Uw‖2
.

On the one hand, it is clear that IN×N,J U = UJ . On the other
hand, the fact that the columns of U are orthonormal implies
that ‖Uw‖2

2 = wTUTUw = wTw = ‖w‖2
2. Therefore,

δJ (θ) ≤ sup
w

‖UJ w‖2

‖Uw‖2
= sup

w

‖UJ w‖2

‖w‖2
= ‖UJ ‖

and the desired result follows. �
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