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Abstract We advocate the use of an alternative calculus in
biomedical image analysis, known as multiplicative (a.k.a.
non-Newtonian) calculus. It provides a natural framework in
problems in which positive images or positive definite ma-
trix fields and positivity preserving operators are of interest.
Indeed, its merit lies in the fact that preservation of positiv-
ity under basic but important operations, such as differenti-
ation, is manifest. In the case of positive scalar functions, or
in general any set of positive definite functions with a com-
mutative codomain, it is a convenient, albeit arguably re-
dundant framework. However, in the increasingly important
non-commutative case, such as encountered in diffusion ten-
sor imaging and strain tensor analysis, multiplicative calcu-
lus complements standard calculus in a truly nontrivial way.
The purpose of this article is to provide a condensed review
of multiplicative calculus and to illustrate its potential use in
biomedical image analysis.

Keywords Multiplicative calculus - Non-Newtonian
calculus - Diffusion tensor imaging - Cardiac strain tensor
analysis - Positivity

1 Introduction

Empirically acquired images are (typically) constrained to
have positive values. Although often taken into considera-
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tion in image reconstruction, positivity is rarely adopted as
an a priori axiom in image analysis. Indeed, little emphasis
is put on operators that preserve positivity, often for good
reasons. A counterexample is a derivative operator, which
does not respect positivity of its operands. If we would con-
sider operators admissible only if they respect positivity,
then the powerful machinery of standard differential calcu-
lus would no longer be at our disposal. This example sug-
gests that insisting on positivity may indeed be too restric-
tive in some cases, and that one is naturally led to admit
non-positive images, such as image derivatives, at least for
image analysis purposes.

However, in this paper we wish to recall an alternative
for standard (a.k.a. classical, additive, or Newtonian) cal-
culus known as multiplicative calculus, first introduced by
Volterra in 1887 [35]. This appears to be a natural frame-
work for local structural analysis whenever positive func-
tions are of interest, and admits a positivity preserving (mul-
tiplicative) differential calculus. The use of multiplicative
calculus has been advocated in other contexts, such as in
the theory of survival analysis and Markov processes, cf.
Gill and Johansen [20]. To the best of our knowledge it has
not yet received any attention in the image literature. Its po-
tential relevance for image analysis should also encourage
the mathematical community to revive this topic, and to fur-
ther explore its foundations especially in the context of non-
commutative matrix algebras, for which no comprehensive
account seems to exist as yet.

We start by considering scalar functions [4, 21, 22,
31, 34] and subsequently turn to matrix valued functions
[19, 24, 33]. The latter are considerably more complicated
as aresult of the non-commutative nature of the matrix prod-
uct, but it is in this context that multiplicative calculus be-
comes particularly interesting. (The commutative case ad-
mits trivial workarounds via standard calculus.) In image


mailto:L.M.J.Florack@tue.nl
mailto:H.C.v.Assen@tue.nl

J Math Imaging Vis (2012) 42:64-75

65

analysis positive matrix valued functions are for instance
encountered in the context of diffusion tensor imaging and
strain tensor analysis.

After a condensed summary of multiplicative calculus
collected from the literature, we will demonstrate its use
by a multiplicative reformulation of two existing biomedi-
cal image analysis applications, viz. multi-scale representa-
tion (or spatial regularization) of diffusion tensor images in
the framework of the log-Euclidean paradigm [1, 9, 11, 28],
and tensorial strain analysis in cardiac magnetic resonance
imaging [12]. These examples merely serve to illustrate
the potential power of multiplicative calculus. In general,
multiplicative calculus should come to mind as a poten-
tially promising tool for addressing image analysis problems
whenever some sort of multiplicative process lies beneath
the surface. We shall point out what these processes are in
our concrete examples.

2 Theory
2.1 Background Structure

Loosely speaking, the key to understand multiplicative cal-
culus is a formal substitution, whereby one replaces addi-
tion and subtraction by multiplication and division, respec-
tively. As a corollary one is then led to replace multiplication
in standard calculus by exponentiation in the multiplicative
case, and (thus) division by exponentiation with the recip-
rocal exponent. However, this naive substitution principle
must be made more precise, as it leads to ambiguities. For
instance, due to symmetry there is no distinction between
the formal roles of the factors in a product like ax, given
a, x € R, leaving us in a quandary about the intentional out-
come of substitution: ax —> x“ or ax —> a*? To properly
appreciate the substitution rule one must bring in additional
structure that distinguishes a from x. To this end we con-
sider a (suitably restricted subspace of a) vector space, V,
with the usual structure for vector addition and scalar multi-
plication, but enriched with multiplication and scalar expo-
nentiation operations. Besides dissolving ambiguities in the
scalar case, this construct allows us to generalize the mech-
anism to non-scalar cases (functions, matrices, etc.).

The multiplicative structure adheres to the following
rules: For any u, v,w € Vand A, u € R:

i. wv)w=u(vw),
ii. there exists an element 1y € V such that lyu = u =
uly,
iii. there exists an element u—! € V such that uu=! =1y =
u_lu,
iv. ut = w)H,

V. l/t1 =Uu.

(The unit element 1y € V is to be distinguished from the
unit scalar 1 € R, but the disambiguating subscript will of-
ten be suppressed if no confusion is likely to arise.) The am-
biguity in the substitution rule of thumb above is resolved
if we prototype a € V (with in this case V = R™ as a set)
and x € R, say, so that a* is well-defined, but x¢ is unde-
fined. Note that, unlike in a standard, additive vector space
structure, we refrain from introducing commutativity of vec-
tor multiplication as a basic axiom. The properties uv = vu
and (uv)* = u*v* may be added as additional properties ex-
pressing commutativity, if appropriate.

In the following we will initially assume commutative
multiplication, until explicitly stated otherwise. We will
identify V with the space of appropriately chosen, positive
functions, furnished with additional multiplicative struc-
ture in the usual way by defining (fg)(x) = f(x)g(x),
(M) = (fx)* for f,g eV, reR, x € R", et cetera.
(Caveat: for a function f, f~! indicates multiplicative in-
verse, i.e. 1/f in the commutative case, not compositional
inverse finV.)

2.2 Multiplicative Differentiation

Below it is tacitly understood that our functions (images)
of interest are positive definite and smooth. In general we
may define a positive definite function f as a function with
a codomain in which the notion of positivity is well-defined,
such that f(x) > 0 for all x in its domain of definition. In
this paper the codomain may be an appropriate space of pos-
itive definite square matrices, i.e. matrices with positive real
eigenvalues. For the moment we will however assume that
our functions of interest are scalar valued, so that no ambi-
guity arises with respect to the ordering of product factors
(and thus the meaning of division signs in standard calcu-
lus). Furthermore, we consider the 1-dimensional case for
simplicity (n = 1). Quotes (') and asterisks (*) will be used
to denote differentiation in the one-dimensional case follow-
ing the standard and multiplicative definitions, respectively.

Applying the substitution principle to the definition of a
standard derivative,

. fx+h)— fx)

"x) = lim ——~ 2 7 1
S x) Jim Y (1)
produces the definition of a multiplicative derivative,

_(f+m\Y"

*x)=1 = . 2

fr ) Jim ( 700 2

It is not difficult to show that f* : R — R™T is positive
definite if f : R — RV is positive definite, and that

In f*(x) = (In f)"(x), 3
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Fig. 1 Commuting diagram for * exp ’ dx exp

multiplicative and standard ! (In f) *f f@x) f In f (x)dx

differentiation: *T T, . fT ']‘ f

£*(0) =exp((In ) (x))

f =" s

whence, more generally, using self-explanatory notation for
k-fold differentiation,

In f*® (x) = (In £)® (x), 4

cf. Fig. 1. Extension to the multivariate case is straightfor-
ward. Equation (2) combined with (4) tells us that if a func-
tion is differentiable to some order in standard sense, it is
also so in multiplicative sense, vice versa.

It is clear that multiplicative calculus by itself does not
provide additional instruments for analyzing (positive) im-
ages, as everything can be recast into standard form with the
help of the commuting diagram, Fig. 1. Nevertheless, it may
significantly simplify the analysis in some cases, which is
an advantage by itself. More importantly, however—and this
is our main motivation here—its generalization to the non-
commutative case does provide a genuine extension that has
no (obvious) standard counterpart.

2.3 Multiplicative Integration

Antiderivatives or indefinite integrals are introduced in mul-
tiplicative calculus as follows:

*/ @ =cF @)
for some constant c € Rt iff F* = f, (®)]

in analogy with its standard counterpart:

/f(x)dt =F(x)+c
for some constant c € R iff F' = f. (6)

Note that in the former case we denote the measure dt as a
formal (“infinitesimal”’) exponent, instead of a formal mul-
tiplier, consistent with our substitution rules.

Definite integrals can be introduced via a spatial parti-
tioning and limiting procedure akin to the familiar Riemann
sum approximation:

b N
o st = tim [T

with & € [x;_1,x;] and xo = a, xy = b, @)

cf.

b N
/a fx)dx = Ali"lo;f@f) Axi
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f) In f(x)

Fig.2 Commuting diagram for multiplicative and standard antideriva-

tion: / f(x)% =exp(fIn f(x)dx)

with & € [x;_1,x;]and xo = a, xy = b, ®)

in which Ax; = x; — x;_1. The relationship between (5)
and (7) is formalized by the following fundamental theorem
of multiplicative calculus:

b F(b)
* dx __
*/ F*(x) = F@ ©)

recall the well-known standard counterpart relating (6)
and (8):

b
/ F'(x)dx = F(b) — F(a). (10)
a

Again, by virtue of commutativity of multiplication there
exists a simple one-to-one mapping between standard and
multiplicative antiderivatives or integrals, cf. Fig. 2. In the
non-commutative case this is no longer self-evident, as we
will see in Sect. 2.8.

2.4 Linear Functions and Linear Mappings

Linear functions are of special interest for various purposes.
In both standard and (commutative) multiplicative calculus
they can be defined as those functions that have a constant
derivative (i.e. we adhere to the common abuse of terminol-
ogy by allowing a constant offset). This immediately yields

f(x) = ax +b, (11
f @) = ba", (12)

in standard, respectively multiplicative calculus (i.e. f/(x) =
a, respectively f*(x) = a). Thus the exponential function is
the multiplicative analogue or “multiplicative linear func-
tion” of the standard linear function. Recall that in the latter
case it is assumed that f > 0, implying a, b € R*.

In general, linear mappings are defined without offsets
(b parameter in (11-12)). Again, a linear mapping A : V —
W in the context of multiplicative calculus obeys the same
rules as in standard linear algebra, subject to aforementioned
formal operator substitutions: For u,ve V, A, u € R,

AQu + puv) =r1A) + nA), (13)
A v = A’ A)*, (14)
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in the standard, respectively multiplicative case. Derivation
and antiderivation provide important examples in our case.
In analogy with the well-known standard results,

(A f +ug) =rf"+ug', (15)

/(Af+ug)dx=k/fdx+u/gdx, (16)

we have for the multiplicative case

(f*6")" = (fH ", (17)
A iz

*/(f)“g”)dx=<*/ de) <*/gdx) ) (18)

2.5 Taylor Expansions

Analogous to the standard Taylor expansion of an analytic
function,

M
1
fo =3 fP@x-a
k=0 "
1
(M+1) M+
+(M+1)!f E)x—a)" ™, (19)

for some & in-between x and a, we have in the multiplicative
case

M -t
fx) = 1_[ (f(*k)(a)) 3]
k=0

—g)M+1

1
> (f(*(M+1))(§)) e ) (20)

In particular this leads to the linear approximation of a pos-
itive analytic function,

f = fl@f @', 21

cf. the standard approximation

fo) = f@)+ flax —a). (22)

Multiplicative approximations (to any order) have the ad-
vantage of preserving manifest positivity, unlike the stan-
dard ones. In both cases the local approximations hold up
to a small additive term (in the standard case), respectively
a multiplicative factor close to unity (in the multiplicative
case).

As an illustration, let us consider two intrinsically posi-
tive functions often encountered in image analysis. The sig-
moidal function is given by

fx) = (23)

14+e>"

Its standard and multiplicative first order Taylor approxima-
tions are given by

1 1
fEO = fi() =7+ %, (24)

1 1
J) % fn(x) = 2 exp (76) : (25)

The former is seen to violate positivity as soon as x < —2.
As a second example, consider the standard Gaussian
function,

1 1

f(x) = ——exp <——x2> . (26)
Var

Due to symmetry its first order derivative is trivial at the

origin, both in standard as well as multiplicative differen-

tial sense (i.e. its value is 0, respectively 1). The respective

second order Taylor approximations are now given by

1 1,

X fi(r) = — — ——x7, 27

FOO)~ fi(x) W 27)
1 1

F) R fulx) = e (—Exz) . (28)

The multiplicative approximation in fact turns out to be ex-
act! (Cf. Sect. 2.7 to appreciate why this happens to be
s0.) In general one may observe that, in addition to posi-
tivity preservation, multiplicative expansions typically pro-
vide better approximations for compactly supported positive
smooth filters. Such filters are abundant in image processing.

Standard and multiplicative Taylor expansions for the
sigmoidal and Gaussian functions are illustrated in Figs. 3
and 4.

2.6 Critical Points

The following claims can be easily verified. If f*(x) > 1
then f is strictly increasing at x € R. If f*(x) < 1 then f
is strictly decreasing at x € R. If f*(x) =1 then f has a
critical point at x € R, viz. a local minimum if f**(x) > 1,
alocal maximum if f**(x) < 1, and an indifferent or degen-
erate critical point if f**(x) = 1. This mimics the standard
results, obtained by replacing multiplicative derivation by
ordinary derivation, and the unit element 1 by the null el-
ement O in the above. These observations may provide the
foundations for a multiplicative variational calculus for mul-
tiplicative energy functionals for image optimization prob-
lems, and can be easily generalized to the multivariate set-
ting. We will not elaborate on this.

2.7 Differential Equations

It is well-known that many natural phenomena can be mod-
eled in terms of ordinary or partial differential equations

@ Springer
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Fig. 3 Sigmoidal function and

y
its first order Taylor expansions 3l . .
in standard and multiplicative f(x)= .' PR
sense. Positivity is manifest only 1+exp(=x) I R
in the latter case. Recall (23-25) 1 1 I. //
————— fs(X)=—+—x P
2 4 o 7/
1 X 2 'I 7’ 7
..... -— =— — e
mx)=exp(7) T
'I 7 7
0/ //
.
_L=%/ . X
~10 -5 e 5 10
//
7
7’ //
// —1}
Fig. 4 Gaussian function and y
its second order standard Taylor 0.5¢ >
expansion. The second order f(x)= ! exp(f X_]
multiplicative Taylor expansion van 2
is exact and thus coincides with £ (x)= 11 X2
the original Gaussian function. s V2r 2v2n
Recall (26-28)

(ODEs/PDEs). Phenomena driven by some (perhaps im-
plicit) multiplicative mechanism may be more conveniently
described in the context of multiplicative calculus than in the
standard way. It is beyond the scope of this paper to scruti-
nize this, but as an illustration we consider the following
initial value (ODE) problem:

ut = A,
u*(0) =B, 29)
u(0)=0C,

with A, B, C > 0 given constants. A straightforward com-
putation, using (4), yields the following unique solution (the
multiplicative counterpart of a parabola):

1
u(x) =exp <§ax2 + bx + c> , 30)
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\
\
\
\
\
\
\
\
\
\
\
\

in whicha =InA, b =1nB, ¢ =InC. Qualitative behaviour
is governed by the convexity parameter A, with 0 < A <1
producing bounded (Gaussian) solutions, A = 1 unilaterally
unbounded exponential solutions, and A > 1 bilaterally un-
bounded solutions. In particular this explains the observa-
tion on the coincidence of a Gaussian function and its sec-
ond order multiplicative Taylor expansion, recall p. 67.

As a second example, let us consider a multiplicative
counterpart of the heat equation (PDE):

uf = A*u for (x,t) e R” x RT, a1
u(x,0)= f(x) forxeR"

in which we use multiplicative derivation with respect to
both the evolution parameter t € R}, i.e. u} = 8ju, as well
as with respect to the (Cartesian) coordinates x € R". The
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multiplicative (x-linear) Laplacian is defined here as
A* =expoAoln, (32)

cf. (4). Note that, in the commutative case (only), this im-
plies

A*u=a:1xluH'8:nxnu. (33)

Again, the solution is straightforward, since in the logarith-
mic domain the problem reduces to the standard heat equa-
tion for Inu with In f as initial condition:

w(x, 1) = exp (¢ *In f)(x)) . (34)

in which

i (x) = exp (— ”’”'2) . (35)
\/4mn 4t

Note that if u solves (31), then so does any *-linear combi-
nation of multiplicative derivatives of u.

Equation (31) is a special case of a so-called pseudo-
linear scale space [16]. Also, the so-called log-Euclidean
scale space for diffusion tensor images [1, 9, 11, 28] is gov-
erned by a multiplicative system similar to (31), in which
case # and f are to be interpreted as positive definite matrix
fields, and exp and In are the usual extensions applicable
to such matrices [11, 24], cf. also Sect. 3.2. Note that in this
non-commutative case equivalence of (32) and (33) does not
hold, a consequence of the Campbell-Baker-Hausdorff for-
mula:

In(exp X expY)

= X + Y + commutator terms involving [X, Y]. (36)
2.8 The Multivariate Case and the Non-commutative Case

It requires minor efforts to generalize foregoing results to the
multivariate case. The PDE example of the previous section
is a typical illustration. We will refrain from elaborating on
this, but employ such generalizations whenever applicable.
In contrast, as anticipated by (36), extension to the case
of non-commutative multiplication is nontrivial, yet highly
relevant in modern image analysis practice. For instance,
we must account for non-commutative multiplication when
handling (positive definite) matrix valued functions, such
as diffusion tensor images or strain tensor images. This
case has received remarkably little attention. A few results
have been provided by Gantmacher [19] and Slavik [33]. It
should be noted that Gantmacher’s definition, if restricted to
scalars, differs from ours. Using the notation D, for multi-
plicative derivation with respect to x € R he defines the mul-
tiplicative derivative of a (positive definite, square) matrix
field X : R — M} as follows (M, here denotes the space

of real m x m matrices, and M the subspace of positive
definite matrices):

D X(x)=X'(x)X"'(x). 37)

Consistency with our notation and definition for the scalar
case rather suggests that we use the following definition in-
stead (Slavik [33] discusses various alternatives):

X*(x) = exp (X/(x)X_l(x)) . (38)

One must remain on the alert here, for X’X ! =In' X =
XX’ generically holds only in the commutative case, such
as the scalar case (m = 1), or the special case whereby X is
a linear function in the standard sense of Sect. 2.4, notably
(11), recall (36). In other words, for definition (38), and its
mirror form, in the context of matrix functions, (3) and the
commutative diagram of Fig. 1 do not apply.

Gantmacher also considers the multiplicative integral in
a slightly different form. In our case (7) remains applicable,
provided we rearrange factors on the right hand side in an
unambiguous order, as follows:

b
*/ X@)™ = lim X(Ex)2W - X (&)>
a AX,’—)O
with & € [x;_1, x;] and xg = a, xy = b. 39)

Note that (38) entails a definite choice with respect to the
ordering of the factors X’ and X! in the multiplicative
derivative, which affects the corresponding definition of the
antiderivative, (39), as well. Thus we have at least three dis-
tinct ways to introduce multiplicative differential and inte-
gral calculus in the context of matrix functions, viz. (i) (38)
in combination with (39), (ii) the analogous scheme with
reverse ordering of X’ and X!, respectively of the -
infinitesimal factors as they occur in the defining limiting
procedure of the multiplicative integral, and (iii) the ma-
trix equivalent of the In/exp-formalism of (3). The first op-
tion (i), i.e. (38-39), meets our needs in the example of
Sect. 3.1. In Sect. 3.2 we will illustrate the third, in some
sense “unbiased” option (iii), which appears to be the natural
one in the context of the so-called log-Euclidean paradigm
for diffusion tensor imaging [1, 9, 11, 28].

3 Examples

3.1 Lagrangian Strain Analysis of the Myocardium
Cardiac strain analysis can be based on any imaging pro-
tocol and image analysis algorithm that produces an accu-

rate estimate of the gradient velocity tensor field of material
points in the myocardium as a function of position and time
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in the image sequence. An analytical procedure for this has
been proposed elsewhere [2, 12, 17], based on tagging mag-
netic resonance imaging, a technique originally proposed by
Zerhouni et al. [36], and incrementally improved to its cur-
rent state of the art, including volumetric tagging [30, 32].

In the following example we sketch the analytical pro-
cedure underlying cardiac strain analysis, recasting it in a
multiplicative framework from the outset. At the same time
this shows how to extend the scalar framework to the case of
(positive definite) matrix valued functions. Detailed defini-
tions and proofs (based on standard calculus) can be found
elsewhere [12].

The velocity gradient tensor, L, with components' L%
relative to a coordinate frame, relates the rate of change of
a momentary infinitesimal material line element dx“ to the
line element dx? itself. From dx® = dv® it follows, using
the chain rule, that?

dx® = Lj;dxﬁ
o

. ov
with LY = — (a,8=1,...,n). (40)
dxh

If X = x(X, t9) denotes the position of a material point
at a fiducial moment #(p, and x = x(X, ¢) the position of the
same material point at some later moment in the cardiac cy-
cle, t > 1y, then relative tissue deformation can be described
by a smooth mapping x (X, t; o). We considering this as a
function of X and ¢. The associated differential map, called
the deformation tensor field, is characterized by the Jacobian
matrix F, with components

ox%

Fe= (41)

By virtue of the chain rule, the relation between deformation
and velocity gradient tensors, (40) and (41), is given by the
first order ODE [19]

F=LF, (42)

subject to an initial condition.> The multiplicative nature
of the evolution of F is apparent from (42), reflecting the
fact that concatenations of (infinitesimal) deformations cor-
respond to multiplications (respectively multiplicative inte-
gration) of the associated Jacobians.

The simplicity of (42) is, however, deceptive. The es-
sential complication arises due to the fact that L is a non-
stationary matrix (as a result of which [L(s), L(¢)] # 0 for

1'Upper indices serve as row indices, lower indices as column indices.

2The Einstein summation convention applied here will be used hence-
forth.

3We suppress the spatial dependence of the Jacobian, concentrating on
its (¢, tp)-dependence, taking ¢ as our variable and 7y as a fixed param-
eter.

@ Springer

s # t, causing complications due to (36)). It can be shown,
using standard calculus® [12, 19], that the solution to 42)
with initial condition F(t =1y, tp) = I is given by

t
F(t,19) = */ exp (L(t)dT), 43)
fo

recall (39). This nontrivial explicit solution clearly confirms
the multiplicative nature of the problem already foreseen in
its implicit differential form, (42). One should therefore ex-
pect that the problem would have been much simpler if it
had been stated in multiplicative differential form from the
outset. Indeed, if we define the corresponding multiplicative
derivative according to (38), then (42) simplifies to

F*=exp(L) with F(t=to,t0) =1, (44)

immediately yielding the solution via antiderivation,? (43).

Several properties of the deformation tensor are manifest
in multiplicative representation. For instance, for square ma-
trices A, B, one has

i. det AB =detAdetB,
ii. det(I +e€A)=1+€trA+ O(e?), and
iii. detexp A =exptrA.

Consequently,

t

det F (¢, ty) = */ exp (tr L(t)dr), 45)
fo

consistent with the multiplicative integral introduced for the
scalar case, (7). This confirms, in particular, that a diver-
gence free velocity field (tr L = divv = 0) preserves vol-
umes: det F (¢, tp) = 1. Furthermore, from (36) it follows
that exp A exp B =exp(A + B) if [A, B] =0, whence for a
stationary velocity field (L(#) = Lo time independent) (43)
directly yields F (¢, t9) = exp((t — to)Lo). However, motion
inducing myocardial deformation is typically highly non-
stationary, so that this stationary approximation will not pro-
vide a good approximation for (43).

The multiplicative integral suggests a straightforward nu-
merical approximation akin to its standard counterpart, sim-
ply by using (39) and (43) without limiting procedure (with
constant time steps At; = At induced by the frame rate of
the image sequence, say). Results reported elsewhere [12],
as well as Figs. 5 and 6, have been obtained in this way.

The deformation tensor field immediately yields the La-
grangian strain tensor field [26] (also known as the Green
strain tensor field [23]):

E=-(F'F-1). (46)

| =

4The proof is not difficult, but far from trivial.

SNote that the multiplicative rate of change F* is somewhat peculiar
from a dimensional analysis point of view, unlike the corresponding
absolute change d F = F*¥!
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Fig. 5 Strain tensor field evaluated for a healthy volunteer at end-sys-
tole t = 11 relative to end-diastole ¢ = fg. The matrix shows the four
(three independent) Cartesian components E;;(x,y,t), i,j = 1,2,
with row index i and column index j, at each point (x, y) € 2 C Z? of
a short-axis cross-section. Fiducial tissue markers have been overlayed
together with their trajectories starting at r = #( to visualize the evolu-
tion of deformation. The pixel value at a given location in the actual
tensor valued image is the 2 x 2 matrix obtained by collecting the en-
tries from corresponding points in the component images displayed in
the matrix above. Recall (43) and (46)

The field E vanishes identically under isometric deforma-
tions, thus capturing genuinely nonrigid deformations.

Figures 5 and 6 illustrate the Lagrangian strain tensor
field for a 2-dimensional short-axis cross-section of the
left ventricle at end-systole (¢ = #1) relative to end-diastole
(t = ty). For more details, cf. Van Assen et al. [3].

3.2 Multiscale Representation of Positive Definite Matrix
Fields

The so-called log-Euclidean paradigm provides an example
of a representation that takes positivity into account a pri-
ori. It has been proposed in the context of symmetric pos-
itive definite diffusion tensor images [1, 9, 28], although it
is in itself of a more generic nature. Here we consider the
paradigm in the context of multiscale representations of dif-
fusion tensor images, as introduced elsewhere [11].

We denote a diffusion tensor image by X : R" — S,
where S,J{ C S, C M, denotes the set of R-valued symmet-
ric positive definite n x n matrices, S, the set of R-valued
symmetric n X n matrices, and M, the set of all R-valued
n x n matrices. Its pointwise inverse is X'™ : R” — S, so
that (X™ X)(x) = (XX™)(x) = I, the identity matrix, at
each point x € R". C?(R", M,,) denotes the class of ana-
lytical functions X : R" — M],. Self-explanatory definitions
hold for C*(R", ;") C C*(R", S,) C C*(R", M,,).

BRBRWRNN

i
SSVVVVVVVUVNNN

R Ll L

i

T, i T S, i T T

sg
b 3]
A3 1)
8 \\=
R L
SANARERRN
S840
A
°N
«

L L L L LA
L4

P L el A

PIPPPP PP PTODD

Fig. 6 The same strain tensor field as in Fig. 5, but with each ten-
sor displayed as an ellipsoidal gauge figure reflecting the eigensys-
tem of the non-negative definite matrix FTF = 2E + I. More pre-
cisely, the boundary of each gauge figure is given by the quadric
F& - F& = constant, with § = (&,n), and F evaluated at the corre-
sponding spatiotemporal base point (x, y,t). Hue emphasizes main
direction, while purity is a measure of anisotropy (with white corre-
sponding to an isotropic, i.e. circular figure)

The scale space representation of X € C“(R",S}) is
generated by the blurring operator (detailed below)

F:C*R",SH xRt - C°(R",SH: (X, 1) = F(X,1),

with F(X,0) = X for all X € C*(R",S;}). We use the

shorthand notation X; = ¥ (X, t). The isotropic Gaussian

scale space kernel in n dimensions is given by (35).
Elsewhere it has been argued that the closure requirement

FX, )™ =F(X™, 1), (48)

in other words, the condition that blurring and inver-
sion should commute, naturally leads to the log-Euclidean
paradigm [11].

Recall that the exponential map exp : M, — GL, maps
a general n X n matrix to a nonsingular matrix, i.e. an ele-
ment of the general linear group [18, 19, 27]. For later con-
venience we define M = exp(M,,) C GL,,. For our purpose
it suffices to consider elements of S,, C M,,, which are diag-
onalizable with real eigenvalues, in which case the range of
the exponential map equals exp(S,) = S;". So we will em-
ploy the prototype

exp:S, — S/ 1A expA. (49)
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Fig. 7 Commuting diagram for blurring and inversion

An operational representation of a general analytical matrix
function is given by Sylvester’s formula® [5-7, 24]:

m
def
F(A) =) F()A; (50)
i=1
in which the A;, i = 1,...,m <n, are all distinct eigenval-

ues of A. In (50) the left hand side—with intentional abuse
of notation, or “argument overloading”—is defined by virtue
of the analytical scalar function F € C*(R, R) on the right
hand side, i.c. F = exp, and the so-called Frobenius covari-
ants are given by

m
Ai= ]

=1

P (A—nI). (51)

It is conventionally understood that an empty product
(which occurs in the most degenerate case in which all
eigenvalues coincide, i.e. m = 1) evaluates to the unit ma-
trix.

The logarithmic map, restricted to S;f, has prototype

ln:S:[—>Sn:B|—>lnB. (52)

It is the unique inverse of the exponential map on Spy:
In(S;") = S, Equations (50-51) are applicable with F = In.

Figure 7 shows the multiscale representation consistent
with the closure property, (48). Indeed, if X € C*(R", S;{),
then X; = ¥ (X, t) constructed according to

F(X,1)=exp(¢; *InX), (53)
satisfies the desired commutativity property, (48). This fol-
lows immediately by inspection of Fig. 7 and (53), using the

identities

exp(—A) = (expA)™ and InB™ =—InB, (54)

Generically one expects m = n a.e. within the image domain.

@ Springer

for AeS,, B e S;f. For illustrations of DTI blurring, cf.
Florack and Astola [11].

Formulae for standard differential calculus applied to
(53) are highly nontrivial, cf. the explicit computations of
first and second order standard derivatives by Florack and
Astola [11]. The log-Euclidean paradigm suggests the fol-
lowing way to introduce multiplicative derivation for the
non-commutative case, recall the three options discussed in
Sect. 2.8:

X* L exp (N X)), (55)
for the one-dimensional case. This is similar to (3) for the
scalar case, but recall that in (55) exp and In are the matrix
exponential and logarithm, respectively. For the multivari-
ate case this leads to the following operationalization of the
multiplicative gradient of X; = ¥ (X, 1), recall (53):

' X, &ef exp (0;¢; * In X) . (56)

Equation (56) is consistent with the Gaussian scale space
paradigm given by (31) and (32), in which standard diffu-
sion and Gaussian convolution are now applied component-
wise to matrix entries via the In/exp detour. The (hypothet-
ical) infinite-resolution limit, ¢t — 0, establishes the corre-
spondence between (56) and the non-operational (ill-posed)
“infinitesimal” one [10], i.e. the multivariate counterpart of
(55):

X Yexp (3 InX). (57)

This definition of multiplicative derivation thus seems to
fit naturally with the log-Euclidean paradigm [1, 9, 11, 28].
Adhering to this definition, log-Euclidean blurring can be
seen as the multiplicative counterpart of a standard diffusion
process, i.e. the counterpart of (31-35) for positive symmet-
ric matrix-valued functions. See Fig. 8 for an example of
multiplicative diffusion for regularizing tractography.

As a final remark it should be noted that the log-
Euclidean paradigm has been discussed here as an in-
stance of a multiplicative calculus for positive definite ma-
trix fields, based on the standard matrix product. In this
context, it has been argued that (55-57) are choices, on
a par with alternatives such as (38) and its mirror form.
If one restricts oneself to the log-Euclidean paradigm as
the axiom of choice, it may be more convenient to con-
sider the specific, symmetric product operator e, given by
A e B =exp(InA +InB), and consider the corresponding
multiplicative calculus from the outset. (Due to commuta-
tivity this may greatly simplify the analysis.) This, and other
symmetric matrix products, together with their implications
for differential calculus, have been proposed in the literature,
and may likewise provide points of departure for useful in-
stances of multiplicative calculus, depending on context, cf.
Burgeth et al. [8].
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Fig. 8 Two-dimensional synthetic images illustrating a positive sym-
metric tensor field in terms of ellipsoidal glyphs (principal axes and
radii reflect eigendirections and corresponding eigenvalues). Over-
layed are some fixed end-point geodesics obtained by applying Di-
jkstra’s shortest path algorithm, in which the tensor field itself is
interpreted as the dual Riemannian metric for defining distances. This
complies with the Riemannian rationale for geodesic tractography in

4 Conclusion and Discussion

Multiplicative calculus and its applications to biomedical
image analysis raises many important questions not ad-
dressed in this short paper. For instance, since image intrin-
sic properties must be coordinate independent, a question
arises about its implications for the construction of image
differential invariants [13—15] and tensor calculus. A sec-
ond question pertains to the extension of standard variational
techniques for image optimization problems to the multi-
plicative case. How to set up such a framework rigorously?
In biomedical image analysis such a framework would have
the intrinsic advantage that positivity of solutions would be
guaranteed a priori. Additional questions arise in the con-
text of (non-commutative) matrix fields. Which of the three
proposed options for multiplicative differential calculus (if
any) is the most natural one in a given application context,
what are their mutual relations, how do they relate to stan-
dard differential calculus, and, in the log-Euclidean case of
(57), what does the corresponding antiderivative look like?

Despite major open questions it has been argued that
multiplicative calculus provides a natural framework for
biomedical image analysis, particularly in problems in
which positive images or positive definite matrix fields and
positivity preserving operators are of interest. We therefore
believe that this subject is of broad interest. However, it
seems that many fundamental problems have not been ad-
dressed in the mathematical literature sofar, especially re-
garding the non-commutative case. This is an impediment
for progress in biomedical image analysis.

Examples have been given in the context of cardiac strain
analysis and diffusion tensor imaging to illustrate the rele-

diffusion tensor imaging [25, 29]. The left image shows the result for
the originally synthesized, smooth image. The middle image shows
the result of the same algorithm after the image has been perturbed
by pixel-uncorrelated noise. The right image demonstrates the regu-
larizing effect of log-Euclidean blurring, (53), and its effect on the
performance of the algorithm

vance of multiplicative calculus in biomedical image analy-
sis, and to support our recommendation for further investi-
gation into practical as well as fundamental issues.
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