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Abstract Interface evolution problems are often solved ele-
gantly by the level set method, which generally requires the
time-consuming reinitialization process. In order to avoid
reinitialization, we reformulate the variational model as a
constrained optimization problem. Then we present an aug-
mented Lagrangian method and a projection Lagrangian
method to solve the constrained model and propose two
gradient-type algorithms. For the augmented Lagrangian
method, we employ the Uzawa scheme to update the La-
grange multiplier. For the projection Lagrangian method, we
use the variable splitting technique and get an explicit ex-
pression for the Lagrange multiplier. We apply the two ap-
proaches to the Chan-Vese model and obtain two efficient
alternating iterative algorithms based on the semi-implicit
additive operator splitting scheme. Numerical results on var-
ious synthetic and real images are provided to compare our
methods with two others, which demonstrate effectiveness
and efficiency of our algorithms.
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1 Introduction

Interface evolution occurs in a wide variety of settings such
as image precessing, computer vision, shape optimization
and geometric inverse problems. Most traditional explicit
front tracking algorithms place marker points along the in-
terface and advance the position of these points through an
evolution equation. However, expensive reparametrization is
necessary during the evolution and the topology of the sub-
regions separated by the interface cannot change automat-
ically. The level set method (LSM) originally proposed by
Osher and Sethian [1] for interface tracking can overcome
these two main drawbacks. Effective and efficient numeri-
cal schemes can be implemented on fixed grids. Moreover,
it can handle topological changes such as merging, splitting
and forming sharp corners. The essential idea of the LSM
is to implicitly embed the propagating interface as the zero
level set of a higher dimensional level set function (LSF).
With this representation, the motion of the interface is de-
scribed by a time dependent Hamilton-Jacobi type evolution
equation of the LSF. The LSM has been applied in many
fields including optimal shape design [2, 3], computational
fluid dynamics [4], inverse problems [5, 6], image process-
ing [7, 8], etc. For more details on the LSM and its applica-
tions, we refer to [9–11].

During the level set evolution, regularity is often needed
to impose on the LSF to prevent it to be too steep or too
flat near the interface. This is normally done by requiring it
to be a signed distance function. The process is commonly
known as reinitialization, which is used extensively as a nu-
merical strategy for maintaining interface evolution stable
(cf. [9, 10]). However, there are some drawbacks for reini-
tialization (cf. [9, 12–14]). For the Chan-Vese (CV) model
[15] in the image segmentation task, whether or not the
reinitialization is processed affects the topology of the re-
sulting image for some special images [13]. It still remains
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to be a problem when and how to implement reinitialization
[12, 14].

There are several effective ways to implement reini-
tialization. Sethian [16, 17] developed the fast marching
method to efficiently calculate the signed distance function
by solving the Eikonal equation on both sides of the inter-
face. Another efficient algorithm for solving this equation
is the fast sweeping method (cf. [18]). Sussman et al. [4]
proposed a time dependent PDE based iterative algorithm
to satisfy the Eikonal constraint equation. For some cases
requiring velocity extension, the fast marching method can
be used to construct a velocity field, which simultaneously
avoids reinitialization (cf. [19]). In [20], a PDE based fast al-
gorithm implemented on a narrow band tube of the interface
was suggested to extend the velocity and implement reini-
tialization. As interesting variants of the traditional LSM,
level set algorithms of piecewise constant type [13, 21–23]
also eliminate the need of reinitialization. These methods re-
quire to handle additional piecewise constant constraints.

To avoid reinitialization, Li et al. [14] proposed a varia-
tional formulation and applied it to the geodesic active con-
tour model for image segmentation. They added a quadratic
penalty term into the original energy functional in order
to force the LSF to be a signed distance function during
evolution. Therefore, the algorithm they provided is essen-
tially based on a classical quadratic penalty method for con-
strained optimization (cf. [24]). By forcing the weight of the
constraint term to infinity, one can penalize the constraint vi-
olations with increasing severity. That is, the larger weight
one uses, the closer the LSF is to a signed distance function.
However, the Courant-Friedrichs-Lewy (CFL) stability con-
dition for explicit discretization of the gradient descent flow
does not allow the weight value to be large, or else the time
step has to be small and the iteration is rather slow. There-
fore, there is a contradiction between the accuracy of the
constraint and the choice of large time steps. In numerical
experiments of [14], large time steps were employed at the
expense of small weight values.

In this paper, we propose two more accurate constrained
optimization approaches, an augmented Lagrangian method
and a projection Lagrangian method, to get rid of reini-
tialization in the level set evolution. For the projection La-
grangian method, we construct a new scheme to update the
Lagrange multiplier using the variable splitting technique
by introducing an auxiliary variable [25–27]. Then we ap-
ply our methods to the well-known CV model (cf. [15, 28,
29]), which is an especially useful model when the image
to be segmented can be approximated by piecewise constant
functions. The additive operator splitting (AOS) scheme is
employed in solving the obtained nonlinear diffusion equa-
tion. Numerical results show that our methods are effective
and less sensitive to noise. Comparing with the LSM with
reinitialization and the penalty method of [14] applying to
the CV model, our algorithms work much faster.

The rest of this paper is organized as follows. In Sect. 2,
some existing results related to the LSM and reinitialization
process are briefly stated. In Sect. 3, our new methods are
proposed in detail. Then we apply our methods to the CV
model and devise two robust algorithms in Sect. 4. Numeri-
cal examples are presented in Sect. 5. Finally, we give a brief
summary and outline the future work in Sect. 6.

2 Related Works

2.1 Traditional LSM

We first recall the basic level set formulations. Let Ω ⊂ R
d

(d = 2,3) be an open bounded domain and {Γ (t) | t ≥ 0}
be a series of moving closed interfaces in Ω with veloc-
ity v = x′(t). For some t , Ω1(t) and Ω2(t) are two subre-
gions separated by Γ (t). Define a Lipschitz continuous LSF
φ(x, t) satisfying
⎧
⎨

⎩

φ(x, t) < 0, x ∈ Ω1(t),

φ(x, t) = 0, x ∈ Γ (t),

φ(x, t) > 0, x ∈ Ω2(t).

(1)

The evolution equation of Γ (t) can be transformed into
that of φ(x, t). Specifically, differentiating the equation
φ(x(t), t) = 0 with respect to t reads:

φt + v · ∇φ = 0. (2)

By restricting the front to propagating along its normal di-
rection with speed vn, (2) turns to the so-called level set
equation

φt + vn|∇φ| = 0. (3)

The velocity vn can be a function of the normal direction,
mean curvature, etc.

In order to keep stability in numerical implementation,
often regularity is imposed on the LSF to ensure 0 < c ≤
|∇φ| ≤ C, for some constants c and C. Actually, it is very
desirable to require it to be a signed distance function, i.e.,

φ(x, t) =
⎧
⎨

⎩

−d(Γ (t), x), x ∈ Ω1(t),

0, x ∈ Γ (t),

d(Γ (t), x), x ∈ Ω2(t),

(4)

where d(Γ (t), x) denotes the Euclidean distance from x to
Γ (t). An equivalent constraint to (4) is the Eikonal equation

|∇φ(x, t)| = 1. (5)

In order to satisfy (5), the authors of [4] used an itera-
tive reinitialization scheme to solve the following equation
to steady state:
{

φt + sign(φ0)(|∇φ| − 1) = 0 in Ω × R
+,

φ(x,0) = φ0 in Ω,
(6)
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where φ0 is the function to be reinitialized and sign(φ0) de-
notes the sign function of φ0. But this expensive reinitializa-
tion approach may cause the interface to move appreciably
after many iterations and it cannot reinitialize the LSF which
is far away from a signed distance function. These issues can
be resolved well by arbitrary interface preserving schemes
[30] and an efficient narrow band based algorithm [20]. In
the filed of image segmentation, for some images without
clear edges, the segmentation results are largely dependent
on the manner of reinitialization [12, 14].

2.2 Variational Level Set Method (VLSM)

The VLSM proposed in [31] offers us a way to embed the
LSF directly into the energy functional.

Assume that the minimization problem with respect to
interfaces is in the following general form:

min
Γ

F (Γ ). (7)

Then the VLSM embeds the LSF into the energy functional
F (Γ ) by utilizing the following facts about the Heaviside
function and Dirac function:
∫

Ω1

f dx =
∫

Ω

f (1 − H(φ))dx,

∫

Ω2

f dx =
∫

Ω

f H(φ)dx, (8)

|Γ | :=
∫

Γ

ds =
∫

Ω

δ(φ)|∇φ|dx,

where f is some given function defined on Ω . The Heavi-
side function H(x) is defined as

H(x) =
{

1, x ≥ 0,

0, x < 0.
(9)

The Dirac function δ(x) is actually the derivative of the
Heaviside function in the distributional sense, i.e.,

δ(x) =
{∞, x = 0,

0, x 	= 0.
(10)

By the VLSM, the minimization problem (7) can be refor-
mulated as

min
φ

F (φ). (11)

The Euler-Lagrange equation of (11) with respect to φ is
much easier to be derived than that of (7) with respect to Γ .
We can use the gradient descent method or other efficient
schemes to get an optimal solution of (11). Moreover, we
can incorporate any additional information or constraints on
the LSF into the variational energy functional.

In numerical implementation, we use the regularized ver-
sion with parameter ε > 0 to approximate the original non-
differentiable function H(x) and δ(x) respectively as

Hε(x) = 1

2
+ 1

π
arctan

x

ε
(12)

and

δε(x) = 1

π

ε

x2 + ε2
. (13)

As pointed out in [15], this kind of smooth approximations
have the tendency to lead a global minimizer of the algo-
rithm.

2.3 Variational Level Set Method Without Reinitialization
(VLSMWR)

Using the VLSM and considering the constraint (5), we can
formulate the general interface evolution problem as the fol-
lowing constrained minimization problem

min
φ

F (φ) subject to |∇φ| = 1. (14)

In order to avoid reinitialization in the geodesic active
contour model, the authors of [14] added a penalization
term into the minimization functional after applying the
VLSM and obtained the following unconstrained minimiza-
tion problem

min
φ

{

L(φ) = F (φ) + μ

2

∫

Ω

(|∇φ| − 1)2dx

}

. (15)

The first-order necessary condition leads to

∂L

∂φ
= F ′(φ) − μ

[

Δφ − ∇ ·
( ∇φ

|∇φ|
)]

= 0. (16)

They used the explicit Euler scheme

φk+1 = φk − Δt
∂L

∂φ
(φk) (17)

to solve the PDE
{

∂φ
∂t

= − ∂L
∂φ

in Ω × R
+,

φ(x,0) = φ0(x) in Ω.
(18)

It was pointed out in [14] that the time step Δt > 0 and
the penalization parameter μ > 0 must satisfy μΔt < 0.25
for stability. If one choose a relatively large μ, Δt must be
rather small in order to satisfy the CFL condition, which
means that more iterations are needed to solve (18) to the
steady state. On the other hand, we can easily see that this
method is essentially a kind of quadratic penalty method for
constrained optimization [24]. If μ is too small, we cannot
penalize the constraint violation effectively. In order to im-
prove the accuracy and stability, we introduce the following
two methods.
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3 Two Constrained Optimization Methods

We know from [24] that the quadratic penalty function is
not an exact penalty function. The constraint will be fulfilled
only when the penalty parameter is sufficiently large. How-
ever, too large penalty parameters may result in instability.
In the following, we use two exact methods: the augmented
Lagrangian method and the projection Lagrangian method,
to force the LSF to be close to a signed distance function so
that we can avoid the complicated and expensive reinitial-
ization process. Based on the piecewise constant and binary
level set frames, the two methods have been applied to im-
age segmentation [13, 21] and shape optimization [22, 23].

3.1 Augmented Lagrangian Method

Firstly, we use the augmented Lagrangian method to solve
(14). The augmented Lagrangian method reduces the pos-
sibility of ill-conditioning by introducing explicit Lagrange
multiplier estimates at each step into the minimization func-
tion. There is a simple but efficient updating scheme, i.e.,
the Uzawa algorithm. Moreover, the convergence of this al-
gorithm can be guaranteed without increasing μ to a very
large value as the penalty method.

Define K(φ) = |∇φ|−1, then the augmented Lagrangian
functional of (14) is

Lμ(φ,λ) = F (φ) +
∫

Ω

λK(φ)dx + μ

2

∫

Ω

K2(φ)dx, (19)

where λ ∈ L2(Ω) is the Lagrange multiplier. The penaliza-
tion parameter μ > 0 should be chosen properly.

A saddle point of Lμ requires that

∂Lμ

∂φ
= 0 and

∂Lμ

∂λ
= 0. (20)

In fact, we minimize Lμ with respect to φ and maximize
Lμ with respect to λ. From the definition of Lμ in (19), we
have

∂Lμ

∂φ
= F ′(φ) − ∇ ·

(

λ
∇φ

|∇φ|
)

− μ

[

Δφ − ∇ ·
( ∇φ

|∇φ|
)]

, (21)

∂Lμ

∂λ
= K(φ). (22)

We update φ, λ alternatively to find the saddle point starting
from the initial guesses φ0 and λ0.

The updating of φ is done by introducing an artificial
time variable t and moving in the steepest descent direction
by

∂φ

∂t
= −∂Lμ

∂φ
, (23)

Algorithm 1 Uzawa Algorithm for VLSMWR

Choose μ properly, fixed. Initialization: φ0, λ0, k = 0.

Step 1. Update φ using the explicit Euler scheme (24) or
other semi-implicit schemes, to approximately solve

Lμ(φk+1, λk) = min
φ

Lμ(φ,λk).

Step 2. Update λ by (25).
Step 3. Iterate again if necessary; k = k + 1.

where ∂Lμ/∂φ is given by (21). When t → ∞, (23) reaches
the steady state ∂φ/∂t = 0, which implies that ∂Lμ/∂φ = 0.
In numerical implementation, we can solve equation (23) by
the explicit scheme
{

φ[k,n+1] = φ[k,n] − Δt [k,n] ∂Lμ

∂φ
(φ[k,n], λk),

φ[k,0] = φk,
(24)

where n = 0,1, . . . ,N − 1 in the superscript [k,n] denotes
the nth inner iteration corresponding to the kth outer itera-
tion and Δt [k,n] > 0 is the time step, which should be small
enough to ensure the stability of the numerical scheme.
A line search method can be applied to find the optimal
Δt [k,n] at each iteration. Alternatively, considering the time
consuming of the line search strategy, we can choose a small
fixed Δt by trial and error. We can also employ the semi-
implicit schemes to improve the stability and eliminate the
time step restriction. After performing N inner iterations,
we set φk+1 = φ[k,N ] to approximately solve (23).

Then we employ the Uzawa algorithm to update the La-
grange multiplier λ by

λk+1 = λk + μK(φk+1). (25)

When the iteration of λ converges, we get K(φ) = 0.
In conclusion, we incorporate all the above schemes into

the following inner-outer iterative Algorithm 1.

3.2 Projection Lagrangian Method

We can also solve the problem (14) by the Lagrange mul-
tiplier approach. Let the penalization parameter in (19) be
zero. Then we get the following Lagrangian functional

L(φ,λ) = F (φ) +
∫

Ω

λK(φ)dx. (26)

A saddle point of L requires that

∂L

∂φ
= F ′(φ) − ∇ ·

(

λ
∇φ

|∇φ|
)

= 0, (27)

∂L

∂λ
= K(φ) = 0. (28)
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The constraint function in our problem contains the first or-
der derivative of φ. With the divergence operation upon λ in
(27), we cannot use any similar projection approach in [13]
to get an explicit formula of λ by (28). Therefore, we use the
variable splitting method by creating a new vector variable,
say p, to serve as the argument of the functional K , under
the constraint p = ∇φ. This leads to following constrained
problem

max
λ

min
φ,p=∇φ

{

F (φ) +
∫

Ω

λ(|p| − 1)dx

}

. (29)

Relaxing the equality constraint p = ∇φ and penalize its vi-
olation by the quadratic function, we obtain an approxima-
tion of (29)

max
λ

min
φ,p

{

L(φ,p, λ) = F (φ) +
∫

Ω

λ(|p| − 1)dx

+ γ

2

∫

Ω

|p − ∇φ|2dx

}

, (30)

where γ > 0 is the penalty parameter.
The system of optimality conditions of (30) is

∂L
∂φ

= F ′(φ) − γ (Δφ − ∇ · p) = 0, (31)

∂L
∂p

= λ
p
|p| + γ (p − ∇φ) = 0, (32)

∂L
∂λ

= |p| − 1 = 0. (33)

The above three equations must be satisfied at a saddle point
of the max-min problem (30).

We can directly optimize the functional in (30). Another
way is to solve the corresponding nonlinear system of opti-
mality conditions (31)–(33).

The alternating iterative method of multipliers consists
in minimizing L(φ,p, λ) with respect to φ and p, keeping λ

fixed, then updating λ for fixed φ and p.
Firstly, for fixed λk ,

(φk+1,pk+1) ∈ arg min
φ,p

{

F (φ) +
∫

Ω

λk(|p| − 1)dx

+ γ

2

∫

Ω

|p − ∇φ|2dx

}

. (34)

To solve the problem (34), we separate it into the following
two sub-problems and update φ and p alternatively.

φk+1 ∈ arg min
φ

{

F (φ) + γ

2

∫

Ω

|pk − ∇φ|2dx

}

, (35)

pk+1 ∈ arg min
p

{∫

Ω

λk|p|dx + γ

2

∫

Ω

|p − ∇φk+1|2dx

}

.

(36)

For updating φ, the optimality condition of subproblem (35)
is actually (31). Then by the gradient descent method, we
find a steady-state solution to the PDE

∂φ

∂t
= −∂L

∂φ
, (37)

where ∂L/∂φ is given by (31). The explicit scheme for solv-
ing (37) reads:

φ[k,n+1] = φ[k,n] − Δt [k,n] ∂L
∂φ

(φ[k,n],pk, λk). (38)

Then φk+1 is determined similarly as in Algorithm 1.
The minimization with respect to p in subproblem (36)

can be done by obtaining the following closed form:

pk+1 =
{

∇φk+1 − λ∇φk+1

γ |∇φk+1| , if |∇φk+1| > λ
γ
,

0, else.
(39)

The formulation (39) is the weighted shrinkage operator that
can be computed in a similar way as the shrinkage operator
[25, 32]. This weighted shrinkage is extremely fast and re-
quires only a few operations per element of pk+1.

Finally, we derive the formula of λ by a projection
method. Multiplying p on both sides of (32) and using (33),
we obtain the explicit expression of λ as:

λ = γ (p · ∇φ − 1). (40)

Then with the updated values of φ and p, we have the up-
dating scheme of λ:

λk+1 = γ (pk+1 · ∇φk+1 − 1). (41)

Now we present the inner-outer iterative projection La-
grangian Algorithm 2.

Algorithm 2 Projection Lagrangian Algorithm for
VLSMWR

Choose γ properly, fixed. Initialization: φ0, p0, λ0, k = 0.

Step 1. Update φ by the explicit scheme (38) or semi-
implicit schemes, to approximately solve

L(φk+1,pk, λk) = min
φ

L(φ,pk, λk).

Step 2. Update p by (39), to solve

L(φk+1,pk+1, λk) = min
p

L(φk+1,p, λk).

Step 3. Update λ by (41).
Step 4. Iterate again if necessary; k = k + 1.
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Remark 1 A useful stopping criterion should be devised ac-
cording to the practical problem to be solved. Therefore,
we have not and cannot present a unified stopping criterion
for either of the above two algorithms based on the general
frame of VLSMWR.

4 Applications to the Chan-Vese Model

As a piecewise constant case of the Mumford-Shah model
[33], the CV model [15] is one of the classical active contour
models in image segmentation. It is usually solved by the
VLSM. Therefore, the penalty approach based VLSMWR
in [14] can be naturally applied to CV model. In this section,
we will apply our two proposed variational methods to the
CV model to get rid of reinitialization.

Let I : Ω → R be an image to be segmented. The CV
model aims to find an interface which is optimal in that it
minimizes the following functional

F (Γ, c1, c2) = α

∫

Γ

ds + β1

∫

Γ out

(I − c1)
2dx

+ β2

∫

Γ in

(I − c2)
2dx, (42)

where Γ out and Γ in are respectively the subregions outside
and inside Γ . The constants c1 and c2 are the mean intensi-
ties of each region separated by Γ . Here, α > 0 is the weight
of the regularization term and β1, β2 > 0 are the weights of
the fidelity terms.

Using the variational level set frame, (42) can be trans-
formed to

F (φ, c1, c2) = α

∫

Ω

δε(φ)|∇φ|dx

+ β1

∫

Ω

(I − c1)
2(1 − Hε(φ))dx

+ β2

∫

Ω

(I − c2)
2Hε(φ)dx. (43)

We can update c1, c2 and φ alternately.
Minimizing F with respect to c1 and c2 for some

fixed φk , we obtain

ck
1 =

∫

Ω
I (1 − Hε(φ

k))dx
∫

Ω
(1 − Hε(φk))dx

, (44)

ck
2 =

∫

Ω
I Hε(φ

k)dx
∫

Ω
Hε(φk)dx

. (45)

Then we can apply our proposed methods in Sect. 3 to
the CV model. For the gradient descent flow (23) in the aug-

mented Lagrangian method, we have

∂φ

∂t
= μΔφ + ∇ ·

[

(λ − μ)
∇φ

|∇φ|
]

+ αδε(φ)∇ ·
( ∇φ

|∇φ|
)

+ δε(φ)
[
β1(I − c1)

2 − β2(I − c2)
2].

(46)

In the projection Lagrangian method, the gradient flow (37)
turns to

∂φ

∂t
= γΔφ + αδε(φ)∇ ·

( ∇φ

|∇φ|
)

+ δε(φ)
[
β1(I − c1)

2 − β2(I − c2)
2]. (47)

Noting the time step restrictions of the linear and nonlin-
ear diffusion terms in (46) and (47) if explicit schemes
are employed, we choose the semi-implicit AOS scheme to
improve the stability and accelerate the convergence. This
scheme was first proposed in [34] and later applied to non-
linear diffusion filtering [35]. It is unconditionally stable
and does not suffer from the time step restriction. The AOS
scheme splits an arbitrary d-dimensional spatial operator
into a set of one-dimensional ones and computes implicitly
in parallel by the Thomas algorithm efficiently.

Specially for (46), we solve the following semi-implicit
equation by the AOS scheme for n = 0,1, . . . ,N − 1:

φ[k,n+1] − φ[k,n]

Δt

= μΔφ[k,n+1] + ∇ ·
[

(λk − μ)
∇φ[k,n+1]

|∇φ[k,n]|
]

+ αδε(φ
[k,n])∇ ·

(∇φ[k,n+1]

|∇φ[k,n]|
)

+ δε(φ
[k,n])

[
β1(I − ck

1)
2 − β2(I − ck

2)
2], (48)

with φ[k,0] = φk . The solution of (47) by the AOS scheme
is similar to (48). For full discretization, we use finite differ-
ences [15] to discretize the spatial partial derivatives.

Though it is not very expensive in calculation of one
semi-implicit step, the total computational effort of one
outer iteration requiring many inner steps can be very huge.
In order to reduce the computational effort while keeping ef-
fectiveness, we simplify the inner-outer iterative framework
of each algorithm by performing only one step (i.e., N = 1)
in the inner iteration using the AOS scheme. The resulting
alternating algorithms are very efficient from numerical ex-
perience.

The evolution can be stopped if some stopping criterion is
satisfied. In our paper, we employ a criterion for CV model
recently proposed in [36]. The iteration will be stopped auto-
matically when the change of the curve length keeps smaller
than a prescribed threshold θlength for a fixed threshold of
iterations M.
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Now we are ready to present the algorithms for the CV
model.

Remark 2 The proposed two algorithms can be generalized
to the multi-phase CV model [29] to eliminate the need of
reinitialization.

Remark 3 For all our implementation of the Uzawa algo-
rithm, we have set μ to be constant during the iterations.
Better convergence behavior may be obtained if μ is in-
creased gradually. But instability may be caused if μ is in-
creased too quickly, which is a common phenomenon when
using the augmented Lagrangian approach [24].

Remark 4 We have used variable splitting and the penalty
approach for the projection Lagrangian algorithm. Then
one drawback exists that as γ becomes very large, the
intermediate minimization problems become increasingly
ill-conditioned. Then numerical problems will be caused
[24, 27]. Therefore, we should choose moderate values of
γ in simulation.

5 Computational Results

In this section, some numerical results for qualitative and
quantitative comparisons among different methods are pre-
sented to demonstrate the effectiveness and efficiency of
our algorithms. We refer the Algorithm 3, Algorithm 4 and
the penalty method of [14] applying to CV model respec-
tively as UA, PLA and Li’s method in the following. We set
β1 = β2 = 1 for generality. The initial LSF φ0 is a piecewise
constant function with a rectangular contour located in the
middle of the image to be segmented for our methods and
Li’s method. For the VLSM with reinitialization, the initial
LSF is a signed distance function. The parameter α is usu-
ally formatted by α = η×2552, η ∈ (0,1). We set the spatial
step h = 1 and the parameter ε = 1.5. For the stopping cri-
terion, we use θlength = 5 and M = 10 as in [36].

First, we use the natural Europe night-lights image to il-
lustrate the unfavorable effects of reinitialization for the CV

Algorithm 3 Uzawa Algorithm for VLSMWR applying to
CV model

Choose μ properly, fixed. Initialization: φ0, λ0, k = 0.

Step 1. Update c1, c2 by (44) and (45).
Step 2. Update φ by solving (46) using the semi-implicit

AOS scheme (48) with N = 1.
Step 3. Update λ by (25).
Step 4. Test whether the stopping criterion is satisfied.

If yes, the algorithm is stopped. Otherwise, set k = k +1
and continue.

Algorithm 4 Projection Lagrangian Algorithm for
VLSMWR applying to CV model

Choose γ properly, fixed. Initialization: φ0, p0, λ0, k = 0.

Step 1. Update c1, c2 by (44) and (45).
Step 2. Update φ by solving (47) using the AOS scheme

with N = 1.
Step 3. Update p by (39).
Step 4. Update λ by (41).
Step 5. Test whether the stopping criterion is satisfied.

If yes, the algorithm is stopped. Otherwise, set k = k +1
and continue.

model in Fig. 1. We can see from Figs. 1(b) and 1(c) that
the segmented images visually have different topologies for
the VLSM with no or with reinitialization process using the
same parameters, which demonstrates that whether or not
the reinitialization is done affects segmentation results. For
reinitialization, we have used the first order upwind scheme
[30] to solve (6) with ten time marching steps and implement
this procedure for every fifth iteration. Then the segmenta-
tion results by Li’s method and our methods given in Fig. 2
show the effectiveness of the three algorithms. Moreover,
they show that Li’s method and the presented methodology
incorporating the reinitialization constraint variationally do
not suffer from the same unfavorable effects as the classical
reinitialization. See Tables 1 and 2 for the corresponding it-
eration number and cost time for segmentation of this exam-
ple. For the VLSM with reinitialization, more than half of
the time is spent on reinitialization. Li’s method has faster
implementation although it requires more iterations than the
VLSM with reinitialization. We can see that our methods are
much faster than both of the VLSM and Li’s method.

Then we compare our methods with Li’s method by a
spiral image from an art picture. The original image shown
in Fig. 3(a) is processed by Li’s method and our methods,
respectively. As shown in Fig. 4, our two methods can also
detect features as Li’s method for the same image. We ob-
serve from Table 2 that either of our algorithms exceeds Li’s
method in the convergence speed and computational time.

We show further the robustness and accuracy of our
methods by a synthetic binary image. The original binary
image with ground truth known a priori is presented in
Fig. 5(a). Then the image is imposed with the Gaussian ad-
ditive noise in Fig. 5(b). The Signal to Noise Ratio (SNR),
which is defined as

SNR = 10 · log10

(
Variance of Data

Variance of Noise

)

,

for this image is 4.41.
The degraded image is segmented by the VLSM with

reinitialization, Li’s method and the two proposed methods,
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Fig. 1 Segmentation of Europe night-lights image using VLSM with
no reinitialization and with reinitialization for α = 0.08 × 2552 and
Δt = 0.01. (a) Original Europe night-lights image. (b) Processed im-

age with no reinitialization. (c) Processed image with reinitialization
for every fifth iteration

Fig. 2 Segmentation of Europe night-lights image using Li’s method,
UA and PLA, respectively. First column: Segmentation result using
Li’s method with α = 0.15 × 2552, μ = 1, Δt = 0.02 and the piece-
wise constant approximation. Second column: Segmentation result us-

ing UA with α = 0.05 × 2552, μ = 0.01, Δt = 0.05 and the piecewise
constant approximation. Third column: Segmentation result using PLA
with α = 0.06 × 2552, γ = 0.1, Δt = 0.1 and the piecewise constant
approximation

Table 1 Comparisons on the computational effort between our methods and the VLSM with reinitialization

Images (size)
VLSM with reinitialization UA PLA

Iterations Time (s) R-Timea (s) Iterations Time (s) Iterations Time (s)

Europe night-lights (180 × 195) 247 16.42 9.8 45 2.48 67 4.19

Synthetic image (128 × 128) 30 4.26 3.51 18 0.47 13 0.37

aThe time spent on reinitialization
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Table 2 Comparisons on the computational effort between our methods and Li’s method

Images (size)
Li’s method UA PLA

Iterations Time (s) Iterations Time (s) Iterations Time (s)

Europe night-lights (180 × 195) 331 13.83 45 2.48 67 4.19

Spiral (187 × 227) 285 15.48 61 4.56 69 5.11

Synthetic image (128 × 128) 76 1.42 18 0.47 13 0.37

Ultrasound (202 × 241) 184 11.02 24 1.96 18 1.53

Galaxy (140 × 179) 183 5.74 26 1.05 51 2.45

Fig. 3 Segmentation of the spiral image using Li’s method. (a) The original spiral image. (b) Segmentation result using Li’s method with
α = 0.05 × 2552, μ = 1, Δt = 0.02. (c) The piecewise constant approximation

Fig. 4 Segmentation of the
spiral image using UA and PLA,
respectively. First column:
Segmentation result using UA
with α = 0.04 × 2552,
μ = 0.001, Δt = 0.1 and
the piecewise constant
approximation. Second column:
Segmentation result using PLA
with α = 0.05 × 2552, γ = 1,
Δt = 0.03 and the piecewise
constant approximation
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Fig. 5 (a) Original synthetic
image. (b) Degraded image and
the same initial contour for all
the methods

respectively. We use the same initial contour as shown in
Fig. 5(b) for all these approaches. The intermediate itera-
tions and the final results are displayed in Fig. 6. From the
satisfactory results, we can see that all the four methods
work for this noisy image. In Fig. 7, we present quantitative
comparisons among the four methods by giving the plots
of the L2-Error (i.e., L2 distance between the characteris-
tic function of the segmented object and that of the exact
object) vs. the iteration number and the time spent, respec-
tively. We observe from Fig. 7 that our methods converge
faster and give more accurate segmentation results. Then
we investigate the influence of the parameter μ in Table 3
by increasing μ gradually while fixing other parameters as
α = 0.15 × 2552 and Δt = 0.02. We can see from Table 3
that a small value of μ leads to quantitatively better seg-
mentation. But it also shows that the segmentation error and
iteration number keep unchanged as μ ≤ 10−2. Therefore,
we need not use very large or small μ in the augmented La-
grangian method. Meanwhile, the time reported in Tables 1
and 2 shows a large reduction in the total computation effort
by our algorithms.

In Fig. 8, we show the segmentation of an ultrasound
medical image by Li’s method and our methods, respec-
tively. All the three algorithms can detect the cell in the
image. Again, the time reported in Table 2 shows more ef-
ficiency of our methods. Moreover, we use this example to
investigate the role of the penalty parameters μ and γ for our
methods. In Fig. 9, we plot the mean deviation of |∇φk|−1,
which measures the distance between the computed LSF at
the kth iteration and the signed distance function of the same
zero contour. We observe that the constraint |∇φ| = 1 can be
satisfied better as μ or γ increases. Considering the segmen-
tation accuracy, however, the time step should be decreased
accordingly.

In Fig. 10, we present segmentation results of a galaxy
image with scattered data shown in Fig. 10(a) using Li’s
method to illustrate the influence of the penalization pa-
rameter μ. Since the segmentation results are largely de-
pendent on the weighted parameters of the regularization

Table 3 Effect of μ on the converged value of L2-Error

μ Converged L2-Error Iterations

10−3 5.3852 19

10−2 5.3852 19

10−1 5.7446 19

1 5.8310 22

term and the data fitting terms, especially for images with
very smooth contours [15], we use the same fixed value
α = 0.01 × 2552 and investigate the role of the parameter μ.
We observe that when μ increases from 0.01 to 10, the seg-
mentation result becomes more visually pleasing, which co-
incides well with the property of the penalty method. That
is, we should use relatively large penalty parameter in Li’s
method especially for the segmentation of challenging im-
ages such as this galaxy image. However, the time step (from
1 to 0.02) must be small enough to ensure stability of the
algorithm, which slows down the convergence of the algo-
rithm. In Table 2, we report the computational effort for
Fig. 10(d).

Figure 11 displays segmentation of the galaxy image us-
ing UA. We use the same value for α as in Fig. 10 for compa-
rability. When μ changes from 10−4 to 1, the segmentation
results are visually similar to that obtained by Li’s method
with larger μ = 10. Therefore, we conclude that it is enough
to choose a relatively small μ in the augmented Lagrangian
method as mentioned previously. Figure 12 shows the re-
sults using PLA. The iteration numbers for the two different
parameters γ = 1 and γ = 10 are 58 and 51, respectively.
Therefore, the total time is almost the same. Once again,
from Table 2, we can see the superiority of our two algo-
rithms to Li’s method in efficiency.

Since the AOS scheme we have employed needs the solu-
tion of linear systems, the computational effort for each iter-
ation of our algorithms is higher than that of Li’s method.
However, we can see from Table 2 that the total compu-
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Fig. 6 Segmentation of the noisy synthetic image using VLSM with
reinitialization, Li’s method, UA and PLA, respectively. First row:
Evolution using VLSM with reinitialization with α = 0.3 × 2552,
Δt = 0.01. Second row: Evolution using Li’s method with α =

0.35 × 2552, μ = 1, Δt = 0.02. Third row: Evolution using UA with
α = 0.15 × 2552, μ = 1, Δt = 0.02. Fourth row: Evolution using PLA
with α = 0.15 × 2552, γ = 1, Δt = 0.1

tational cost required by our approaches is much less than
Li’s method due to the significant reduction in the iteration
number.

Choosing the time step needs a practical considera-
tion [35]. An unpractically large time step will influence the
accuracy of the segmentation and cause oscillations. There-
fore, we do not choose very large time steps in our experi-
ments even if the AOS scheme does not suffer from any time
step restriction.

Both of the proposed iterative algorithms are based
on gradient descent type evolution of the LSF. The PLA

requires to solve one more subproblem (w.r.t. p) than

UA at each iteration. By virtue of the extremely fast

weighted shrinkage operator, however, the additional com-

putational effort for solving this subproblem is nearly neg-

ligible comparing with the solution of linear equations

required by the AOS scheme. From the above experi-

ments, we basically conclude that both of the two meth-

ods are very effective and efficient. It is difficult to say

which one is better in effectiveness, efficiency and accu-

racy.
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Fig. 7 Evolution of L2-Error for segmentation of the synthetic image using different methods. Left: L2-Error vs. iteration number. Right: L2-Error
vs. iteration time

Fig. 8 Segmentation of the
ultrasound image using three
different methods. (a) Original
ultrasound image. (b) Processed
image using Li’s method with
α = 0.05 × 2552, μ = 1,
Δt = 0.1. (c) Processed image
using UA with α = 0.05 × 2552,
μ = 0.01, Δt = 0.2.
(d) Processed image using PLA
with α = 0.1 × 2552, γ = 1,
Δt = 0.02

6 Conclusions and Future Work

We have eliminated the requirement of reinitialization in the
VLSM by the augmented Lagrangian method and the pro-
jection Lagrangian method for constrained optimization. For
the augmented Lagrangian method, we employed the effec-

tive Uzawa type algorithm. Numerical results showed that
we could get stable segmentation by choosing a small penal-
ization parameter in a large range. For the updating scheme
of the projection Lagrangian method, we introduced an aux-
iliary variable to deal with the gradient term. In this way,
we obtained a simple and explicit updating formulation of
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Fig. 9 Evolution of mean deviation of (|∇φ| − 1) for the ultrasound image using UA (left) and PLA (right)

Fig. 10 Segmentation of the
galaxy image using Li’s method
with α = 0.01 × 2552 but
different values of μ.
(a) Original image.
(b) Processed image with
μ = 0.01, Δt = 1. (c) Processed
image with μ = 0.1, Δt = 0.5.
(d) Processed image with
μ = 10, Δt = 0.02

the Lagrange multiplier. The traditional LSM implements
the reinitialization apart from the evolution by solving ad-
ditional PDEs, while our methods incorporate the reinitial-
ization process into the same evolution equation. Therefore,
our approaches do not have the problems such as whether
to implement the reinitialization process, when and how to
implement the reinitialization.

Then we applied the proposed methods to the CV model
and presented two efficient algorithms by virtue of the semi-
implicit AOS scheme, which improved the stability and re-
duced the total computational effort of our algorithms. Nu-
merical experiments have demonstrated that our algorithms
have no unfavorable effects on segmentation results as tradi-
tional reinitialization techniques. Moreover, various numer-
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Fig. 11 Segmentation of the galaxy image using UA with α = 0.01 × 2552 but different values of μ. First column: Segmentation results with
μ = 10−4, Δt = 0.2. Second column: Segmentation results with μ = 10−3, Δt = 0.2. Third column: Segmentation results with μ = 10−1, Δt = 0.1

Fig. 12 Galaxy image
processed using PLA with
α = 0.01 × 2552 but different
values of γ . First column:
Segmentation results with
γ = 1, Δt = 0.1. Second
column: Segmentation results
with γ = 10, Δt = 0.05

ical comparisons show that our algorithms are robust and
more efficient than other approaches.

The proposed methods can generally be extended to the
multiphase case with multiple LSFs. Our future work in-

cludes applications of our methods to other two phase and
multiphase problems using LSM with the reinitialization
process, for example, topology optimization, shape recon-
struction and other imaging and vision tasks.
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