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Abstract Block matching along epipolar lines is the core
of most stereovision algorithms in geographic information
systems. The usual distances between blocks are the sum of
squared distances in the block (SSD) or the correlation. Min-
imizing these distances causes the fattening effect, by which
the center of the block inherits the disparity of the more con-
trasted pixels in the block. This fattening error occurs every-
where in the image, and not just on strong depth discontinu-
ities. The fattening effect at strong depth edges is a particular
case of fattening, called foreground fattening effect. A the-
orem proved in the present paper shows that a simple and
universal adaptive weighting of the SSD resolves the fatten-
ing problem at all smooth disparity points (a Spanish patent
has been applied for by Universitat de Illes Balears (Refer-
ence P25155ES00, UIB, 2009)). The optimal SSD weights
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are nothing but the inverses of the squares of the image gra-
dients in the epipolar direction. With these adaptive weights,
it is shown that the optimal disparity function is the result
of the convolution of the real disparity with a prefixed ker-
nel. Experiments on simulated and real pairs prove that the
method does what the theorem predicts, eliminating surface
bumps caused by fattening. However, the method does not
resolve the foreground fattening.

Keywords Stereoscopy · Disparity map · Block matching ·
Subpixel accuracy

1 Introduction

Stereovision consists in finding the depth of a scene from
several views of it. This is one of the central problems in
computer vision, and it has been an active object of research
in the last forty years. Stereovision is based on the fact that
differences of depth in a 3D scene create geometrical dispar-
ities between views of the same scene taken from different
points of view.

Given two stereo rectified images u and v, the question
reduces to finding a disparity function ε such that u(x) =
v(x + ε(x)). Like in motion estimation, the above equation
presents the aperture problem, namely the ambiguity of the
solution, even when some regularity is demanded for the dis-
parity. For this reason, many stereovision algorithms do not
look for a function ε matching the grey level intensity of
each pixel. They prefer to compare the grey levels of an en-
tire block around each pixel. The simplest resulting algo-
rithm is known as block matching by SSD (sum of squared
distances).

The most important drawback of SSD is the well known
“fattening effect”. According to Kanade et Okutomi [7],

mailto:vdmiabc4@uib.es


110 J Math Imaging Vis (2011) 41:109–121

A central problem in stereo matching by computing
correlation or sum of squared differences (SSD) lies
in selecting an appropriate window size. The window
size must be large enough to include enough intensity
variation for reliable matching, but small enough to
avoid the effects of projective distortion. If the win-
dow is too small and does not cover enough intensity
variation, it gives a poor disparity estimate, because
the signal (intensity variation) to noise ratio is low. If,
on the other hand, the window is too large and covers
a region in which the depth of scene points (i.e. dispar-
ity) varies, then the position of maximum correlation
or minimum SSD may not represent correct match-
ing due to different projective distortion in the left and
right images. The fattening effect occurs when the se-
lected window contains pixels at different depth. In
that case we cannot find exactly the same window and
the obtained disparity depends on the different dispar-
ities of the window and not only the central pixel it-
self.

The usual way to cope with the fattening effect is to
use adaptive windows that avoid image discontinuities as
was first proposed by Kanade et al. [7]. Similar works pre-
computing edge points and recursively growing a compar-
ison window avoiding them were proposed by Lotti et al.
[9] and recently by Wang et al. [24]. Patricio et al. [15] and
Yoon et al. [26] select an adaptive window containing only
pixels with a grey level similar to the reference one, like in
neighborhood and bilateral filters [22, 25].

Other approaches do not try to avoid the discontinuities
of the image. They select an adaptive window with a mini-
mum distance criterion. The subjacent idea is that windows
which do not contain discontinuities will be matched with a
small window distance. Fusiello et al. [5] choose among all
the windows containing the reference pixel the one which
has a minimal distance with its corresponding one in the sec-
ond image. Veksler [23] applied the same strategy but used
in addition square windows of different sizes. A more elab-
orated version by Hirschmuller et al. [6] adapts the shape of
the window by dividing the comparison window into small
sub-windows and taking those which attain the minimum
distance. The Delon et al. [4] paper proposes a different
strategy, the barycentric correction attributing the disparity
of a window to the window barycenter pondered by the im-
age gradients.

Point feature matching methods overcome the fattening
problem at the cost of a drastic reduction of the match den-
sity. Matched features can also be curvilinear, which also
circumvents the fattening problem to some extent. For in-
stance, Schmid [21] describes a set of algorithms for au-
tomatically matching individual line segments and curves.
Robert [16] presents an edge-based stereovision algorithm,

where the primitives to be matched are cubic B-splines ap-
proximations of the 2-D edges. Musé et al. [14] and Cao
et al. [3] discuss how to automatically match pieces of
level lines and extract coherent groups of such matches.
The Matas et al. [11] MSER method solves the problem by
matching stable and homogeneous image regions, but their
match set is again sparse. Even if features may seem more
local, they depend anyway on a broad neighborhood. The
same remark applies to the SIFT method (Lowe [10]) and
their affine invariant extensions [13]. Even if the fine scale
Laplacian extrema used (e.g.) in the SIFT method are very
local, their descriptor around involves anyway a 8 × 8 win-
dow (see [2, 8, 12] for comparison on MSER and SIFT).
Thus the fattening problem can occur anyway with these
methods.

The fattening effect is not the sole obstacle to a correct
disparity computation. Occlusions and moving objects make
it a very difficult and sometimes ill-posed problem. Tak-
ing simultaneous snapshots with a low baseline avoids par-
tially these drawbacks. However, when using a low baseline
a larger precision in the disparity computation is needed to
get the same depth precision. The use of a low B/H (where B
is the baseline and H is the altitude) was proposed in satellite
imaging by Delon and Rouge [4].

2 Mathematical Analysis of SSD

Let us denote by x = (x, y) an image point in the continuous
image domain, and by u1(x) = u1(x, y) and u2(x) the im-
ages of an ortho-rectified stereo pair. Assume that the epipo-
lar direction is the x axis. The underlying depth map can
be deduced from the disparity function ε(x) giving the shift
of an observed physical point x from the left image u1 in
the right image u2. The physical disparity ε(x) is not well-
sampled. Therefore, it cannot be recovered at all points, but
only essentially at points x around which the depth map is
continuous. Following the formulation by Delon and Rouge
[4] and Sabater [17], around such points, the deformation
model from an image to the other is

u1(x) = u(x + ε(x), y) + n1(x),
(1)

u2(x) = u(x) + n2(x),

where u the true scene image and n1(x) and n2(x) indepen-
dent Gaussian white noises with standard deviation σ . (The
captor noises are independent because the snapshots are dif-
ferent.) Block matching amounts to finding the disparity at
x0 minimizing

ex0(μ) =
∫

[0,N ]2
ϕ(x − x0)

(
u1(x)−u2(x + (μ,0))

)2
dx. (2)
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where ϕ(x − x0) is a soft window function centered at x0.
For a sake of compactness in notation, ϕx0(x) stands for
ϕ(x − x0),

∫
ϕx0

u(x)dx will be an abbreviation for
∫

ϕ(x −
x0)u(x)dx; we will write u(x + μ) for u(x + (μ,0)) and ε

for ε(x). The minimization problem (2) rewrites

min
μ

∫
ϕx0

(
u(x + ε(x))+n1(x)−u(x +μ)−n2(x +μ)

)2
dx.

Differentiating this energy with respect to μ implies that any
local minimum μ = μ(x0) satisfies

∫
ϕx0

(
u(x + ε(x)) + n1(x) − u(x + μ) − n2(x + μ)

)

×
(
ux(x + μ) + (n2)x(x + μ)

)
dx = 0. (3)

One has by Taylor-Lagrange formula ux(x + μ) = (ux(x +
ε)) + O1(μ − ε), with

O1(μ − ε) ≤ |μ − ε|max |uxx(x + ε)| (4)

and u(x + ε(x)) − u(x + μ) = ux(x + ε)(ε − μ) + O2((ε −
μ)2), where

|O2((ε − μ)2)| ≤ 1

2
max |(uxx(x + ε))|(ε − μ)2 .

Thus (3) yields
∫

ϕx0

(
ux(x + ε)(ε − μ) + O2((ε − μ)2)

+ n1(x) − n2(x + μ)
)(

ux(x + ε) + O1(μ − ε)

+ (n2)x(x + μ)
)

dx = 0 (5)

and therefore

μ

∫
ϕx0

(ux(x + ε))2dx

=
∫

ϕx0

(ux(x + ε))2ε(x) dx + Ã + B̃ + O1 + O2, (6)

where

Ã =
∫

ϕx0

ux(x + ε)
(
n1(x) − n2(x + μ)

)
dx; (7)

B̃ =
∫

ϕx0

(
n1(x) − n2(x + μ)

)
(n2)x(x + μ)dx; (8)

O1 =
∫

ϕx0

ux(x + ε)(ε − μ)(n2)x(x + μ)dx

+
∫

ϕx0

O1(μ − ε)
(
n1(x) − n2(x + μ)

)
dx; (9)

O2 =
∫

ϕx0

O2(ε − μ)2(ux(x + ε))dx

+
∫

ϕx0

O2(ε − μ)2[O1(μ − ε) + (n2)x(x + μ)]dx

+
∫

ϕx0

O1(μ − ε)(ux(x + ε))(ε − μ)dx. (10)

Denote by ε the average of ε on the support of ϕ(x − x0),
denoted by Bx0 . By the Taylor-Lagrange theorem we have

Ã = A + O A,

where

A =
∫

ϕx0

ux(x + ε)
(
n1(x) − n2(x + ε)

)
dx (11)

and

O A = (ε − μ)

∫
ϕx0

(ux(x + ε))(n2)x(x + ε̃(x))dx, (12)

where ε̃(x) satisfies ε̃(x) ∈ [min(μ, ε),max(μ, ε)]. In the
same way,

B̃ =
∫

ϕx0

(
n1(x) − n2(x + μ)

)
(n2)x(x + μ)dx

so that B̃ = B + O B, where

B =
∫

ϕx0

(
n1(x) − n2(x + ε)

)
(n2)x(x + ε)dx (13)

and

O B = (μ − ε)

∫
ϕx0

n1(x)(n2)xx(x + ε̃(x))

− (n2(n2)x)x(x + ε̃(x))dx. (14)

The terms A and B are stochastic and we must estimate their
expectation and variance. The terms O1, O2, O A, O B are
higher order terms with respect to ε − μ and are negligible
if ε − μ is small, and the noise samples bounded.

Lemma 1 Consider the main error terms

A =
∫

ϕx0

ux(x + ε(x))
(
n1(x) − n2(x + ε)

)
dx

and

B =
∫

ϕx0

(
n1(x) − n2(x + ε)

)
(n2)x(x + ε)dx

as defined above. One has EA = EB = 0 and
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Var(A) = 2σ 2
∫

[ϕ(x − x0)ux(x + ε)]2
N dx

≤ 2σ 2
∫

ϕ(x − x0)
2ux(x + ε)2;

Var(B) ≤ 2π2σ 4

3

∫
ϕ(x − x0)

2dx + σ 4
∫

ϕx(x − x0)
2dx.

Proof Notice that n1(x) and n2(x + ε) are independent
Gaussian noises with variance σ 2. Thus their difference is
again a Gaussian noise with variance 2σ 2. It therefore fol-
lows that

Var(A) = 2σ 2
∫

[ϕ(x − x0)ux(x + ε))]2
N dx

≤ 2σ 2
∫

ϕ(x − x0)
2(ux(x + ε))2dx,

Var(B) ≤ 2

[
Var

(∫
ϕx0

n1(x)(n2)x(x + ε)

+ Var

(∫
ϕx0

n2(x + ε)(n2)x(x + ε)

)]

≤ 2

[
σ 2 × π2σ 2

3

∫
ϕ2(x − x0)

+ σ 4

2

∫
ϕx(x − x0)

2
]

= 2π2σ 4

3

∫
ϕ(x − x0)

2 + σ 4
∫

ϕx(x − x0)
2. �

Theorem 1 (Main disparity formula and exact noise error
estimate) Consider an optimal disparity μ(x0) obtained as
any absolute minimizer of ex0(μ) (defined by (2)). Then

μ(x0) =
∫
ϕx0

[ux(x + ε(x))]2ε(x)dx∫
ϕx0

[ux(x + ε(x))]2dx
+ Ex0 + Fx0 + Ox0,

(15)

where

Ex0 =
∫
ϕx0

(ux(x + ε(x))
(
n1(x) − n2(x + ε)

)
dx∫

ϕx0
[ux(x + ε(x))]2dx

is the dominant noise term,

Fx0 =
∫
ϕx0

(
n1(x) − n2(x + ε)

)
(n2)x(x + ε)dx∫

ϕx0
[ux(x + ε(x))]2dx

and Ox0 is made of smaller terms. In addition the variances
of the main error terms due to noise satisfy

Var(Ex0) = 2σ 2

∫ [ϕ(x − x0)ux(x + ε)]2
Ndx( ∫

ϕ(x − x0)ux(x + ε)2dx
)2

; (16)

Var(Fx0) ≤
2π2

3 σ 4
∫

ϕ(x − x0)
2dx + σ 4

∫
ϕx(x − x0)

2dx( ∫
ϕ(x − x0)ux(x + ε)2dx

)2
.

(17)

Finally,

Ox0 = O1 + O2 + O A + O B∫
ϕx0

[ux(x + ε(x))]2dx
,

and

EOx0 = O
(

max
x∈Bx0

|ε(x) − μ|
)
,

Var(Ox0) = O
(

max
x∈Bx0

|ε(x) − μ|2
)
.

Proof This result is an immediate consequence of (6) com-
pleted with the variance estimates in Lemma 1. The esti-
mates for the higher order terms O are a straightforward ap-
plication of Cauchy-Schwartz inequality. �

Remark Theorem 1 makes sense only when the optimal dis-
parity μ(x0) is consistent, namely satisfies for x in the sup-
port Bx0 of ϕ(x − x0),

|ε(x) − μ(x0)| � 1. (18)

Thus, one of the main steps of block matching must be to
eliminate inconsistent matches.

Remark In all treated examples, it will be observed that
Var(B) � Var(A), which by Lemma 1 directly follows from

σ 2
[

2π2

3

∫
ϕ(x − x0)

2 +
∫

ϕx(x − x0)
2
]

� 2
∫

[ϕ(x − x0)ux(x + ε)]2
N . (19)

3 Mathematical Definition of Fattening, and Its
Solution

The previous mathematical formulation tells us that the ob-
tained minimizer for the SSD problem satisfies

μ(x0) =
∫
ϕx0

[ux(x + ε(x))]2ε(x)dx∫
ϕx0

[ux(x + ε(x))]2dx
(20)

up to the noise terms. In other terms, the obtained minimizer
will be an center of mass of the disparities at each pixel in
the correlation window, each being weighted by its squared
image gradient.

This explains the fattening effect, which actually occurs
at every pixel: Whenever a pixel or a cluster of pixels have
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Fig. 1 Reference image warped
by a known disparity to obtain
an image pair

a large gradient with respect to their neighboring ones, the
estimated disparity for these neighboring pixels will be ob-
tained by combining mainly the disparities of these few very
contrasted pixels. It can even happen that a single pixel
dominates the estimated disparity for all of its neighboring
ones. This effect is strong in all textures and also near image
edges, where a line of pixels dominates the SSD of all their
neighboring ones. This case causes the so called foreground
fattening phenomenon by which buildings looks fatter than
they really are. Yet, the fattening effect happens everywhere,
because a gradient barycenter is never exactly the center of
the correlation window. Even if this is not very noticeable
when looking at the disparity image, this effect becomes
conspicuous when looking at the 3D reconstruction of the
estimated depth (Fig. 4).

The above calculations show that there is only one way to
avoid the fattening: It is to remove the disparity imbalance
in the comparison window. One can compensate the effect
of the squared gradients in the above integral by directly
modifying the values of the window function ϕ, making it

adaptive. By taking ϕx0(x) = ρx0 (x)

ux(x+ε(x))2 in (20) we obtain

μ(x0) =
∫
ρx0

ε(x)dx∫
ρx0

dx
, (21)

which is equivalent to

μ(x0) =
∫

ρ(x − x0)ε(x)dx,

since the function ρ is normalized to have the integral equal
to one. In that way the disparity becomes a weighted aver-
age of all disparities in the correlation neighborhood, which
is no more weighted by the image gradient. Therefore, the
computed disparity is the convolution of the ground truth
disparity ε with a kernel, which can incidently be fixed
at will. The most natural choice for the window ρ is an
isotropic kernel, for example a Gaussian Ga . If we select
such a kernel, the computed disparity writes Ga ∗ ε, which
can be interpolated and could even be deconvolved to some
extent. The choice of the size of the window depends pri-
marily on the noise variance. If there were no noise at all the
window could be a Dirac. In presence of noise, the dominant
disparity error term due to the noise given by Theorem 1
rewrites

Var(Ex0) = 2σ 2
∫

ρ(x − x0)
2

ux(x + ε(x))2
dx. (22)

Thus, the size of the window must be large enough to ensure
this value to be low enough to compensate for σ 2. Indeed,
the integral of ρ being 1, the broader the support of ρ the
smaller the integral will be, because of the presence of the ρ2

term. This implies that the integral behaves like 1/n, where
n is the number of pixels in the window. A good point of the
above result is that adaptive window can be larger without
causing a fattening effect.

The discrete implementation of such an algorithm faces
the problem of computing the true derivatives ux(x + ε(x))

from the two available images u1 and u2. We can compute
the derivative on the first image, obtaining

u′
1(x)2 = (u′(x + ε(x))(1 + ε′(x)) + n′

1(x))2.

Since this is a stochastic term, the right choice must be indi-
cated by its mean

Eu′
1(x)2 = u′(x + ε(x))2(1 + ε′(x))2 + 2σ 2.

This identity shows that, because of the noise term, we will
be only able to compute the actual derivatives if and when
ε′(x) is small. We shall make this assumption, which means
that the relief is smooth. In order to avoid too small gradients
due mainly to noise, we shall use the following weighting
function

ϕx0(x) = ρx0(x)

max(ux(x + ε(x))2,6σ 2)
,

where σ is the noise standard deviation.

4 Comparative Experiments

In order to illustrate and compare the performance of the
classical SSD strategy and the proposed adaptive algorithm,
several tests were performed on synthetic and real stereo
pairs, and the proposed method was compared with the two
most classic fattening correction strategies.

The first experiments were simulated pairs with a smooth
disparity function. The disparity ε in Fig. 2 was applied to
the reference texture images u of Fig. 1. Each image was
warped by ε to obtain the image pair. Gaussian white noise
was added to both images of the pair. Texture images were
used to make sure that around each pixel there was enough
information to permit its correct matching. The first ground
truth disparity varies slowly and smoothly while the other
two are more oscillatory.
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Figure 3 presents the disparity maps obtained by both
strategies for the first image of the data base. In this case,
a noise with standard deviation 1 has been added, yielding a
signal to noise ratio of about one hundred. The results with
SSD and with the proposed strategy are shown with pro-
late functions supported by 7 × 7 and 11 × 11 pixels. Ob-
serve that the disparity obtained with the proposed strategy
is more similar to the ground truth than the classical SSD al-
gorithm. This improvement is conspicuous when the 11×11
prolate is used or when the disparity map is more oscillatory.
This experimental fact is in agreement with the mathemati-
cal arguments and formulas developed in the previous sec-
tion. The obtained disparity for the classical SSD strategy
depends on the true disparity on the 7 × 7 or 11 × 11 neigh-
borhood and is weighted by the square of the gradient. Thus,
with a larger window the probability of having large gradi-
ents on the window is increased and the favored disparity
by these large gradient points can be more different than the
one of the reference pixel.

In Fig. 4 are displayed the three-dimensional represen-
tations of the central row in Fig. 3 with a 7 × 7 prolate
function. One better evaluates with this representation the
difference between the classical and the adaptive SSD. The
surface obtained by the adaptive SSD is smooth and very
similar to the ground truth. However, the surface by the clas-

Fig. 2 Ground truth disparities applied to images in Fig. 1

sical SSD strategy presents many irregularities due to its de-
pendence on the image gradients.

Table 1 shows the average Euclidean distance between
the obtained disparity and the ground truth for the six images
in Fig. 1. The error values are very similar when the prolate
is small or when the disparity varies slowly, while they in-
crease for the classical SSD algorithm when a larger prolate
or an oscillating ground truth is applied. Table 2 shows the
error committed by comparing the true normals to the sur-
face of the ground truth with the normals to the surfaces of

Fig. 4 Three dimensional representation of the estimated disparity
from the middle row of Fig. 3. Top: estimated disparity by SSD with
a 7 × 7 correlation window. Bottom: proposed adaptive SSD with the
same 7 × 7 correlation window. The fattening effect creates evident
irregularities in the reconstructed surface

Fig. 3 Obtained disparities for
the first image in Fig. 1 and the
three ground truth disparities in
Fig. 2. The left column shows
the disparities obtained with a
classical SSD algorithm with an
isotropic weighting window of
size 7 × 7 and 11 × 11. In the
right column same experiments,
but with the proposed algorithm
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Table 1 Average error on the disparity computation on the six im-
ages of Fig. 1 and the middle ground truth of Fig. 2. For the proposed
method the distance is computed to the convolved ground truth as pre-
dicted by the formulas. The first table is obtained by using a correlation
window of 7 × 7 pixels while the second table is obtained by using a
correlation prolate of size 11 × 11. We observe that the SSD error in-
creases when using a larger window. By using a larger window the
ground truth disparity varies more and the possibility of having a large
gradient increases, therefore making SSD more sensitive to adhesion.
The obtained errors are quite similar for both algorithms, showing that
the use of an adaptive SSD does not diminish the precision of SSD

7 × 7 σ = 0.0 σ = 1.0 (SNR = 100) σ = 2.0 (SNR = 50)

SSD 0.118 0.121 0.138

Proposed 0.108 0.113 0.139

11 × 11 σ = 0.0 σ = 1.0 (SNR = 100) σ = 2.0 (SNR = 50)

SSD 0.135 0.136 0.139

Proposed 0.107 0.109 0.116

Table 2 Average on the six images of Fig. 1 and the middle ground
truth of Fig. 2 of the percentage of points with an angular difference of
the surface normal to the ground truth normal larger than 10 degrees.
For the proposed method the distance is computed to the convolved
ground truth as predicted by the formulas. The first table is obtained
by using a correlation window of 7 × 7 pixels while the second table
is obtained by using a correlation prolate of size 11 × 11. Observe
that with a larger correlation window a surface more similar to the
original one is obtained. This result is notable: the obtained percentage
of points with a very different normal to the surface is much higher for
the classical SSD than the proposed algorithm

7 × 7 σ = 0.0 σ = 1.0 (SNR = 100) σ = 2.0 (SNR = 50)

SSD 0.35 0.54 1.27

Proposed 0.04 0.20 1.26

11 × 11 σ = 0.0 σ = 1.0 (SNR = 100) σ = 2.0 (SNR = 50)

SSD 0.48 0.50 0.64

Proposed 0.01 0.01 0.11

the obtained disparities. Are shown the ratio of points of the
surface for which the normal has an error of more than 10
degrees with respect to the original normal. The accuracy
gain is quite important by using the adaptive strategy. No-
tice that the distance of normals is the right measure to esti-
mate how two renderings of the same object differ visually.
Indeed, most 3D visualizations are done by a Lambertian
model. The grey level of the rendered image is the scalar
product of the surface normal with the solar direction. Thus
the above error measure is the right one to estimate the vi-
sual gain.

Fig. 5 Synthetic image pair. Left: the disparity ground truth, the back-
ground has uniform disparity while the building simulates the slope of
a roof. Center and right: image pair

It is observed in Table 2 that with a small correlation
window the use of the adaptive strategy is more sensitive
to noise. This is not easily explained by comparing the pre-
cision terms in Theorem 1, but it can be explained by sim-
ple probabilistic arguments. When computing the weighted
Euclidean distance of two noisy patches, the influence of
noise on the distance is proportional to the energy of the
window weight distribution. This influence is minimal when
using a flat window or similarly an isotropic kernel. When
using the proposed adaptive kernel, the weight of large gra-
dient points is reduced and the weight of non gradient points
increased. This makes the window weighting less uniform.
This noise sensitivity is reduced by increasing the window
size, as shown in the same table.

The next experiment was performed with a synthetic dis-
parity map applied to a building image. The background has
uniform disparity but the building has a sloped roof. Since
the background has uniform disparity, we can only observe
the fattening effect in and near the building. The ground
truth disparity and the simulated image pair are shown in
Fig. 5. Figure 6 shows the estimated disparities with the clas-
sical SSD algorithm and with the proposed adaptive SSD,
using again prolate windows of 7 × 7 and 11 × 11 pixels.
The same figure shows the error image, namely the differ-
ence between the estimated disparities and the ground truth.
With the proposed strategy the obtained image difference
stands between the estimated disparities and the convolved
ground truth by the same prolate. This is consistent with the
formulation in the previous section, where we showed that
the adaptive SSD estimates a convolved disparity, indepen-
dent of the gradient of the image. For the SSD algorithm, we
observe a prominent error near the boundaries of the build-
ing, while for the proposed strategy this error passed unno-
ticed.

The next experiment displays a more complicated case
with occlusion and shadows containing nearly no informa-
tion. Figure 7 shows the image pair and its ground truth. In
Fig. 8 are displayed the estimated disparities and the error
image difference between the estimated disparities and the
ground truth. For the proposed strategy the image difference
stands again between the estimated disparities and the con-
volved ground truth by the same prolate. Observe that the
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Fig. 6 Obtained disparities for the synthetic image pair in Fig. 5.
The top left columns display the disparities obtained with a classical
SSD algorithm with an isotropic weighting window of size 7 × 7 and
11 × 11. The top right columns show the same experiments but with

the proposed algorithm. Bottom: image difference between the esti-
mated disparities and the ground truth. For the proposed strategy the
displayed image difference stands between the estimated disparities
and the convolved ground truth by the same prolate

Fig. 7 Synthetic image pair. Left: the disparity ground truth. The back-
ground has uniform disparity while the building has a sloped roof. Cen-
ter and right: image pair

error is mainly concentrated near the edges of the building,
where the foreground fattening effect is severe. Although in
the synthetic case of Fig. 6 we were able to nearly elim-
inate the error near the edges with the proposed strategy,
this is not the case for this pair. The error committed by the
SSD algorithm is reduced but not eliminated. This is due
to the occlusions which make ε discontinuous, and to the
fact that near most of the building boundaries the shadow
has removed all possible information that could be used to
correct the match. Surprisingly, the error is much smaller at
non shadowed edges, even if occlusions and discontinuities
of the disparity are still present.

4.1 Comparison with Foreground Fattening Elimination
Strategies

As exposed in the introduction, many strategies have been
proposed to remove the fattening effect and are beautifully
reviewed and compared in [20]. Our goal now is to compare
the proposed strategy with two of the more performing algo-
rithms. Yoon et al. [26] selects an adaptive window contain-
ing only pixels with a grey level similar to the reference one,
in the spirit of bilateral filters [22]. The main idea is to keep
in the correlation window only points belonging to the same
object, which are likely to have a similar grey level. The

Fusiello et al. [5] classic min-filter chooses among all the
windows containing the reference pixel the one which has a
minimal distance with its corresponding one in the second
image.

Figure 9 compares the adaptive strategy with these two
algorithms on the pair of Fig. 7. The three estimated dispar-
ities remove the dilatation of buildings due to the fattening
effect. But the estimated disparity by RAFA is more blurred
than the other two, since the recovered disparity is by our
theorem a convolution of the original one with the correla-
tion window.

In order to evaluate the subpixel precision of the three
methods, we applied the algorithms to the first texture image
in Fig. 1 and the second simulated ground truth disparities
in Fig. 2. Figure 10 displays the estimated disparity for the
three algorithms. It is observed that the disparity estimated
by the min-filter produces a shock effect which creates dis-
continuities of the estimated disparity. These shocks are not
present when using the adaptive window of Yoon et al. How-
ever, many irregularities are present in the estimated dispar-
ity, which are similar to the ones obtained by the classical
SSD. The estimated disparity by RAFA algorithm is more
similar to the ground truth. This can also be observed by
looking at the 3D representation of the estimated disparities
by the three algorithms (see Fig. 11).

4.2 Experiments on the French Space Agency Simulated
Data

The conclusion of these comparisons is that classical fatten-
ing removal techniques work correctly for foreground fat-
tening due to the presence of important disparity disconti-
nuities. Nevertheless, as was pointed out, fattening occurs
everywhere, even in the absence of strong depth disconti-
nuities. This fact seems to have passed unnoticed. It might
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Fig. 8 Estimated disparities
with the classical SSD (a) and
adaptive SSD strategy (b) for
the synthetic image pair in
Fig. 5. Top: disparities obtained
with a weighting window of size
7 × 7 and 11 × 11. Bottom:
image difference between the
estimated disparities and ground
truth

Fig. 9 Estimated disparity on stereo pair in Fig. 7. From left to right:
Fusiello et al. [5] min-filter, Yoon et al. [26] bilateral strategy, and the
proposed adaptive window strategy. The three estimated disparities re-
move the dilatation of buildings due to the fattening effect. The esti-

mated disparity by RAFA is more blurred than the other two, because
the recovered disparity is a convolution of the original one with the
correlation window

Fig. 10 Estimated disparity on the first texture image in Fig. 1. Inde-
pendent additive white noise with standard deviation 2 was added to
both images before matching. From left to right: the min-filter Fusiello

et al. [5], the bilateral Yoon et al. [26], and the proposed adaptive
window strategy. The RMSE (in pixels) are respectively 0.18, 0.19,
and 0.11

be due to the fact that existing databases for stereo bench-
marks are not designed for accuracy estimation, or because
the fine gains possible by avoiding the fattening effect seem
negligible with respect to other gross errors in the final error
statistics. No current benchmark seems to permit to evaluate
the loss of precision due to the general surface fattening. To
illustrate this fact, Fig. 13 shows a detail of the stereo pair
in Fig. 12 of the Middlebury dataset [19]. Are shown the es-
timated disparities by the classical SSD and by the adaptive
RAFA. Both disparities present many irregularities probably
present in the object (a rough stone). However, the smooth-
ness of the furnished ground truth did not allow for a nu-

merical comparison of the two estimated disparities. This
ground truth is anyway furnished without any external vali-
dation and without any specification of its own precision.

The Middlebury database is not designed for high preci-
sion, and the accuracy of its ground truth is not given. This
explains why, until some methodology is found to produce
ground truths with certified accuracy, we have to resort to
simulated data. This was apparently also the conclusion of
CNES (French Space Agency), which has created a database
of realistic synthetic pairs with extremely precise numeri-
cal ground truth. The methodology to create such synthetic
pairs, due to L. Moisan, is briefly described in [18] which
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Fig. 11 Three dimensional representation of the estimated disparity from Fig. 10. As predicted by the theorem, the fattening effect is optimally
removed by the adaptive window

Fig. 12 Stereo pair obtained from Middlebury dataset [19]

also gives the results of a benchmark on high accuracy non
dense stereo. Our last experiment will deal with synthetic
pairs simulating aerial views of a village (Fig. 14). Each im-
age of the pair is a projection of the 3D model for a fixed
point view and given camera parameters. The ground truth
has double precision.

For each one of the pairs, we applied the classical and
adaptive SSD as described in the previous sections with a
11×11 window. Previously, a Gaussian white noise of stan-
dard deviation one had been added to each image of the
pair to have a realistic SNR. The computed disparity is kept
only for points not belonging to any occlusion or dispar-
ity discontinuity of the ground truth. Table 3 displays the
mean square error between the estimated disparities and the
ground truth for both pairs. Figure 15 displays the image ab-
solute difference between the estimated disparities and the
ground truth for a piece of the first pair of Fig. 14. Struc-
tured errors are observed in smooth parts of the ground
truth when classical SSD is used. These errors coincide with
edges of the image or with contrasted texture which nev-
ertheless are not depth discontinuities. Adaptive SSD does

Fig. 13 Obtained disparities by classical SSD and RAFA on a piece
of Fig. 12. From top to bottom and left to right: detail in the reference
image, classical SSD disparity, adaptive RAFA disparity and ground
truth furnished in the same dataset [19]. The ground truth furnished is
too smooth and it is quantized. It has no nominal precision. Fattening
effects cannot be compared on it

not create these errors since the obtained disparity does not
directly depend on the image gradient.

Figure 16 displays the 3D reconstruction of a piece of
the disparity computed with the first pair of Fig. 14. The
3D views show the irregularities and artifacts of the com-
puted disparity created near image edges or contrasted tex-
tures when the classical SSD is applied.
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Fig. 14 Synthetic stereo pairs.
Images and ground truth are
displayed. (Courtesy of CNES.
Numerical synthesis: Lionel
Moisan)

Fig. 15 Image absolute difference between the estimated disparities
and the ground truth for a piece of the first pair in Fig. 14. From left
to right: piece of image compared in this figure, classical and adap-
tive SSD errors. Structured errors are observed in smooth parts of the

ground truth when classical SSD is used. These errors coincide with
edges of the image or contrasted texture which are not discontinuities
of the ground truth disparity

Fig. 16 From left to right: piece of left image of the first pair in
Fig. 14, 3D view of computed disparity by classical and adaptive SSD.
The disparity computed by classical SSD presents many irregularities

due to texture image gradients and geometrical configurations corre-
sponding to main edges of the image

Table 3 Mean square errors of the classical SSD and the proposed
adaptive SSD on pairs of Fig. 14. Errors are computed after discard-
ing points belonging to discontinuities of the ground truth depth or to
occluded parts

SSD Proposed

Pair 1 0.085 0.064

Pair 2 0.084 0.059

5 Conclusion

This paper has shown that in block matching methods the
fattening phenomenon occurs everywhere. A mathemati-

cal analysis has proved that fattening could be completely
avoided in the regions with smoothly varying disparity by
introducing adaptive weights in the SSD block matching.
Experimental evidence on simulated data has been provided
to confirm that fattening is indeed avoided with the adap-
tive window. Yet the adaptive window does not correct the
strong foreground fattening, particularly annoying near large
building edges in aerial imaging. However, the adaptive win-
dow promises to be a valuable and simple correction of the
fixed windows used widely in block matching method. Fu-
ture work will consider how to insert this correction in a
complete stereo reconstruction chain.
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