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Abstract It is well-known that local binary pattern (LBP)
histograms of real textures exhibit a markedly uneven dis-
tribution, which is dominated by the so-called uniform pat-
terns. The widely accepted interpretation of this phenom-
enon is that uniform patterns correspond to texture micro-
features, such as edges, corners, and spots. In this paper
we present a theoretical study about the relative occurrence
of LBPs based on the consideration that the LBP operator
partitions the set of grayscale patterns into an ensemble of
disjoint multidimensional polytopes. We derive exact prior
probabilities of LBPs by calculating the volume of such
polytopes. Our study puts in evidence that both the uneven
distribution of the LBP histogram and the high occurrence of
uniform patterns are direct consequences of the mathemati-
cal structure of the method rather than an intrinsic property
of real textures.
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1 Introduction

Texture analysis represents a fundamental building block of
many computer vision and image processing applications.
This research topic has received increasing attention dur-
ing the last decades, and, consequently, many approaches
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have been proposed. Such a vast set of methods—which has
been recently referred to as a “galaxy of texture features”—
includes Julesz textons, Gabor filters, wavelets, Markov ran-
don fields, co-occurrence matrices, Laws masks, texture
spectrum, run lengths, trace transform and many others.
Comprehensive surveys can be found in literature [27, 35,
39]. Within this galaxy the LBP has emerged as one of the
most prominent techniques. The reasons of the success of
this method are basically three: 1) easiness of implementa-
tion, 2) low computational overhead and 3) high discrimi-
native power. Such characteristics make it an ideal candi-
date for many applications, including real-time processing.
Since its introduction [25], the method has been successfully
applied to many diverse areas of image processing: med-
ical and biomedical image analysis [12, 24, 31], face and
facial expression recognition [1, 11, 29], fingerprint match-
ing [23], surface inspection and grading [9, 20, 33], remote
sensing [18], motion analysis and object tracking [13, 34].

Despite its widespread adoption and the ample literature,
little theoretical investigation has been carried out on this
method. As a result some important questions still remain
unresponded. One of the basic concerns is about the relative
occurrence of local binary patterns. Many experimental re-
sults show that local binary patterns have a markedly uneven
distribution in real textures [9, 15, 21, 26]. Such distribution
seems to be dominated by the so called uniform patterns,
namely those patterns whose number of bitwise 1/0 transi-
tions (and vice versa) is at most two. Ojala et al. [26] re-
ported a proportion of uniform patterns ranging from 76.6%
to 91.8% in textures picked from the Brodatz database and
from 82.4% to 93.3% in textures picked from the OuTex
database. Recently a similar trend has been found by Liao et
al. [15], who considered textures from the Brodatz, Meastex
and CURet databases.
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So far the high incidence of uniform patterns has been ex-
plained in an “objective” way: they would be fundamental
properties of the observed textures corresponding to prim-
itive microfeatures such as corners, edges, and spots [26].
Herein we look at the problem from a different perspective
and propose an alternative “subjective” explication: the high
occurrence of uniform patterns might be an intrinsic charac-
teristic of the method through which textures are analysed.
In order to support this claim we take a closer look at the ra-
tionale behind the method from a mathematical standpoint.
We determine the exact prior probabilities of local binary
patterns under the assumption that the grayscale values are
uncorrelated, and prove that the uniform patterns have high
probability of occurrence. We propose to regard the LBP op-
erator as a partition of the set of grayscale patterns into mul-
tidimensional polytopes. Following this approach, the prior
probabilities of LBP patterns can be conveniently computed
by calculating the volumes of such polytopes.

The remainder of the paper is organized as follows:
Sect. 2 briefly recalls the basics of the LBP, Sect. 3 describes
two alternative methods to evaluate the probability distribu-
tion in the case of the LBP3×3, Sect. 4 extends the evaluation
to the case of the LBP8,1, and Sect. 5 summarizes the main
conclusions of the work.

2 The LBP Texture Model

Detailed descriptions of the LBP method can be found in
various papers [19, 26]. Herein, in order to make the pa-
per self-contained, we just recall the basic concepts of the
method. The approach is based on the concept of local
thresholding: a grayscale window W = {xi ∈ N : 0 ≤ xi ≤
(N − 1), i = 0, . . . , n − 1}, is converted into a set of binary
values B = {bi ∈ {0,1}, i = 1, . . . , n − 1} through the fol-
lowing rule:

bi(xi, x0) =
{

1 when xi ≥ x0

0 when xi < x0
(1)

where n is the number of pixels in the window, N the num-
ber of grayscale values, x0 the central pixel of the window,
and N the set of nonnegative integers. Therefore the LBP
defines a mapping from the space of all the possible Nn

grayscale patterns formed by the n pixels of the window to
the space of all the possible 2(n−1) binary patterns that can
be formed by the resulting binary values of the n pixels of
the window but the central one. The histogram which quan-
tifies the occurrence of such binary patterns represents the
texture signature.

The original version of the LBP [25] is based on the
28 = 256 possible binary patterns obtainable from a squared
3 × 3 window when thresholded by the value of the cen-
tral pixel (Fig. 1). Each pattern can be uniquely identified

Fig. 1 The LBP3×3 texture model

Fig. 2 The LBP8,1 texture model. Interpolated values are marked with
asterisks

through a string of eight binary numbers b8b7b6b5b4b3b2b1,
which represent the pattern “code”. Following the com-
monly accepted convention we refer to this method as the
LBP3×3.

Rotation-invariant versions of the method are obtained
by grouping together all the binary patterns that are actually
rotated versions of the same pattern. A preliminary step to
obtaining rotation invariant versions consists in converting
the original squared neighbourhood into a circular one. The
gray values of the neighbours that do not coincide with the
pixels centers are estimated through bilinear interpolation
[19]. If we apply it to a 3 × 3 window we obtain the LBP8,1

texture model (Fig. 2).
Having defined these two basic models, we can obtain

extended versions by considering different radii of the inter-
polation circle and different angular spacing [26].

3 Relative Incidence of Local Binary Patterns:
The Case of LBP3×3

In this section we derive a priori probabilities of local bi-
nary patterns for the LBP3×3 texture model. The case of the
LBP8,1 is analyzed in Sect. 4. Being interested in deriving
a priori probabilities, we assume we are given no specific
texture to analyse. This lack of knowledge can be modeled
through a non-informative probability distribution. We make
the following assumptions:

1. the grayscale values of the pixels in the neighbourhood
are stochastically independent;

2. the grayscale value is uniformly distributed.
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The assumption of uniform distribution is motivated by
two reasons. First, since the main objective of the paper is to
investigate the LBP method itself—regardless of the image
it is applied to—we assume that no a priori information is
given about the underlying image model. Such a situation is
best modelled by a uniform distribution, which is the non-
informative distribution par excellence. Secondly, a texture
descriptor, as the LBP is, can be regarded to as a channel
through which we convey information about the analysed
image, where the pattern distribution is the output and the
image is the input. Therefore studying the distribution of
LBP is the same as studying the channel capacity. From in-
formation theory we know that the information processed
by a channel (as defined in [2]) depends on the input distri-
bution, which, in this case, represents the stochastic image
model we use for our computations. We may vary the input
distribution until the information processed by the channel
attains a maximum: the channel capacity. In this sense the
use of the uniform distribution as universal prior has been
sustained by various authors, most remarkably by Shulman
and Feder [30]. They show that the degradation of the mu-
tual information with respect to the capacity when using the
uniform distribution as a prior is minimal in many cases, and
it is at most 6% of the channel capacity. Therefore, by using
the uniform distribution as a prior, we expect to make the
LBP work close to its theoretical capacity (i.e. not far from
it more than 6%).

In the following computations we consider the grayscale
value both as a continuous and as a discrete variable.

3.1 LBP3×3: The Continuous Case

The continuous case is actually a hypothetical scenario since
most imaging systems are, nowadays, digital. Such ideal
condition, however, is worth studying, since it represents
a limit as the number of grayscale levels tends to infinity.
In this case the grayscale intensity is a continuous variable
uniformly distributed in [0,1]: x̄i ∼ U [0,1], i ∈ {0, . . . ,8}.
Throughout this paper we adopt the convention that the ¯
sign refers to continuous-valued variables. Moreover, in the
following equations, the subscripts 3×3 and 8,1 are used to
tag variables referred to the LBP3×3 and LBP8,1 texture
models respectively.

For a given value x̄0 of the central pixel, the probability
for one pixel of the neighbourhood to take binary value bv ∈
{0,1} is:

p̄3×3(bv|x̄0) =
{

x̄0 when bv = 0

1 − x̄0 when bv = 1
(2)

Under the assumptions stated at the beginning of Sect. 3
the probability of occurrence of an LBP3×3 pattern can be
modeled as a repetition of independent trials with probabil-
ities x̄0 for bv = 0 and (1 − x̄0) for bv = 1. Consequently

Table 1 A priori probabilities of LBP3×3 patterns as a function of the
number of “0s” (k)

k 0, 8 1, 7 2, 6 3, 5 4

P̄3×3
1

9

1

72

1

252

1

504

1

630

Fig. 3 A priori probabilities of LBP3×3 patterns in the continuous case

the a priori probability that a grayscale pattern maps to an
LBP3×3 binary pattern, for a given value of x̄0, only depends
on the total number of “0s” (or, equivalently, of “1s”) that
appear in it, and can be expressed as follows:

p̄3×3(b8b7b6b5b4b3b2b1|x̄0) = x̄k
0 (1 − x̄0)

(8−k) (3)

where k is the total number of “0s” contained in the pattern
binary string. Under the assumption that x̄0 ∼ U [0,1], the a
priori probability of a pattern is given by:

P̄3×3(b8b7b6b5b4b3b2b1) =
∫ 1

0
x̄k

0 (1 − x̄0)
(8−k)dx̄0 (4)

which can be expressed in closed form:

P̄3×3(b8b7b6b5b4b3b2b1) = k!(8 − k)!
9! (5)

The corresponding values are reported in Table 1 (note that
P̄3×3(k) = P̄3×3(8 − k) due to duality between 1s and 0s in
a binary pattern). The histogram in Fig. 3 shows the a priori
probability of each of the 256 binary patterns. In this and in
the following histograms we use the convention that green
bars indicate uniform patterns and red bars non-uniform pat-
terns. We recall that uniform patterns are those patterns in
which the number of bitwise transitions (1/0 and vice versa)
is at most two, as formally defined in [26]. For instance
the patterns 00000000 and 00010000 are uniform, since the
number of bitwise transitions is zero and two, respectively.
On the contrary the patterns 01010000 and 01001010 are
non-uniform since the number of bitwise transitions is four
and six, respectively.
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Table 2 A priori probabilities of LBP3×3 patterns as a function of N

for given values of k

k PLBP3×3 (N)

0
1

9
− 1

30N8
+ 2

9N6
− 7

15N4
+ 2

3N2
+ 1

2N

1, 7
1

72
+ 1

30N8
− 5

36N6
+ 7

40N4
− 1

12N2

2, 6
1

252
− 1

30N8
+ 5

63N6
− 1

20N4

3, 5
1

504
+ 1

30N8
− 11

252N6
+ 1

120N4

4
1

630
− 1

30N8
+ 2

63N6

8
1

9
− 1

30N8
+ 2

9N6
− 7

15N4
+ 2

3N2
− 1

2N

3.2 LBP3×3: The Discrete Case

The formulas derived in Sect. 3.1 can be easily extended to
the discrete case. For a given value x0 of the central pixel,
the probability for one pixel of the neighbourhood to get a
binary value bv ∈ {0,1} is:

p(bv|x0) =
{

x0
N

when bv = 0

1 − x0
N

when bv = 1
(6)

Again, under the assumption that x0 ∼ U [0, (N −1)], the
a priori probability of a pattern is:

P3×3(b8b7b6b5b4b3b2b1) = 1

N9

N−1∑
x0=0

x0
k (N − x0)

(8−k) (7)

We can expand (7) to get the probabilities as a function of
N for given values of k (see Table 2). As one would expect
such expressions tends to the results obtained in the contin-
uous case as N → ∞. The histogram in Fig. 4 shows the
probability of occurrence of each of the 256 binary patterns
in the discrete case for N = 256.

We notice that both in the discrete and continuous case
the most probable patterns are the flat area black/white spots
(all bits “0” or “1”, respectively). In the continuous case
the distribution is perfectly symmetric, as one would expect
(Fig. 3). In the discrete case, due to the ≥ in the LBP def-
inition (1), the white spot pattern is slightly more probable
than its black counterpart (Table 2, Fig. 4).

3.3 LBP as a Space Partitioning Method

In Sects. 3.1 and 3.2 we derived simple expressions for the
a priori probabilities of LBP3×3 patterns using elementary
statistical considerations. In this specific case our task is
made easy by the relatively simple structure of the LBP3×3

Fig. 4 A priori probabilities of LBP3×3 patterns in the discrete case,
N = 256

Fig. 5 The LBP model defines a mapping from the grayscale pattern
space (left) to the binary pattern space (right)

model. With a more complicated model (e.g., LBP8,1), how-
ever, similar expressions are very hard to find. Therefore in
this section we describe an approach which makes it pos-
sible to deal with the problem in a more general way. We
observe that the LBP operator can be interpreted as a map-
ping from the grayscale pattern space to the binary pattern
space (Fig. 5). As detailed below, such mapping is defined
through a partition of the grayscale pattern space. We would
like to emphasize that local binary patterns should not be
considered as physical entities. They are actually a way to
mathematically formalize the partition of the grayscale pat-
tern space.

Let’s consider, first, the continuous case. In this scenario
the grayscale pattern space is the 9-dimensional unit hyper-
cube, and a grayscale pattern is just a point of the hyper-
cube. The set of all the possible LBP3×3 patterns introduces
a partition of the hypercube, each part P̄ being defined as
follows:

P̄3×3(b8b7b6b5b4b3b2b1)

=
{

x̄ ∈ R
9 : 0 ≤ x̄i ≤ 1, Ax̄ ≥ 0

}
(8)
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Fig. 6 The graph structure of the polytopes corresponding to the
LBP3×3 patterns 00000000, 00000101, and 00001101

where:

A =

⎛
⎜⎜⎝

A10 A11 0 0 · · · 0
A20 0 A22 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A80 0 0 0 · · · A88

⎞
⎟⎟⎠ ; (9)

Aij =

⎧⎪⎪⎨
⎪⎪⎩

1 when bi = 0,

−1 when bi = 1,
j = 0,

−1 when bi = 0,

1 when bi = 1,
j �= 0;

(10)

x̄ =

⎛
⎜⎜⎝

x̄0

x̄1

· · ·
x̄8

⎞
⎟⎟⎠ ; (11)

and 0 denotes a vector whose components are all 0.
This set of inequalities is usually referred to as the hy-

perplane description of a polytope in R
9 [5]. Therefore the

problem of computing the a priori probabilities of LBP pat-
terns is the same as computing the volumes of the corre-
sponding polytopes which partition the 9-dimensional unit
hypercube. To get an idea of the “shape” of the polytopes
which correspond to each LBP3×3 pattern we can plot their
graph structure. This is the set of the 0- and 1-dimensional
faces (vertices and edges) of the polytope. Higher dimen-
sional faces are not considered in the graph. Figure 6 re-
ports the graphs of three polytopes as example. The images
have been obtained through the Mathematica implemen-
tation1 of the Avis-Fukuda algorithm [3].

Efficient algorithms exist to compute the exact volume
of polytopes. Herein we used polymake [10], a library for
polytopes manipulation whose algorithm for volume calcu-
lation is based on Fukuda’s cddlib implementation of the
double description method of Motzkin et al. [22]. Through
this library we could verify that the volumes of the polytopes
coincide with the results reported in Table 1.

1http://library.wolfram.com/infocenter/MathSource/440/.

In the discrete domain the same line of reasoning leads
to the problem of counting the number of integer points in a
polytope [5, 32]. Consider a generic convex polytope P :

P = {x ∈ N
n : xi ≥ 0,Ax + tb ≥ 0} (12)

where A is an integral matrix, b an integer vector, t an in-
teger parameter, and x is the discrete version of x̄ (11). In
the above expression the elements of b represents the up-
per limits of the xi , and so the effect of t is that of “inflat-
ing”/“deflating” the polytope. The number of integer points
LP (t) in P as a function of t is a polynomial in t of degree
n when P is an integer polytope, and a quasi-polynomial of
the same degree when P is a rational polytope [5, 8, 32].
These two results are usually referred to as the Ehrhart’s
theorem and the Ehrhart’s theorem for rational polytopes,
after French mathematician Eugéne Ehrhart, who first inau-
gurated the study of this problem.

A polytope as expressed in (12) is referred to as a closed
polytope, since it is defined by closed half-spaces, being all
the inequalities in (12) loose inequalities. In the case of the
LBP3×3 it results, from the definition (1), that the polytope
corresponding to a specific pattern is a semi-open polytope
[36], since it is defined both by open and closed half-spaces.
A semi-open polytope is a closed polytope minus some of
its faces. To get an idea of this we can consider, for instance,
a square minus some of its edges, or a cube minus some of
its faces. A semi-open polytope can be expressed as follows:

P3×3(b8b7b6b5b4b3b2b1)

=
{

x ∈ N
9 : 0 ≤ xi ≤ (N − 1),

A′x ≥ 0
A′′x > 0

}
(13)

where A′ and A′′ are integral matrices. The two inequal-
ities that appear in the above equation have the following
meaning: they represent the set of closed (A′x ≥ 0) and open
(A′′x > 0) half spaces which define the polytope. Now from
[36] (proposition 27) we derive that {x ∈ N

d : Ax > 0} =
{x ∈ N

d : Ax − 1 ≥ 0}, where 1 is a vector whose compo-
nents are all 1. Now we can convert the polytope in (13) into
the following equivalent representation:

P3×3(b8b7b6b5b4b3b2b1)

=
{

x ∈ N
9 : 0 ≤ xi ≤ (N − 1), Ax + c ≥ 0

}
(14)

where A is the same as in (10) and c is an 8 × 1 array whose
elements are:

ci =
{−1 when bi = 0

0 when bi = 1
(15)

In practice c is a slack variable which permits to treat
both strict and non strict inequalities in the same way: the

http://library.wolfram.com/infocenter/MathSource/440/
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Table 3 Number of lattice points inside LBP3×3 polytopes as a function of the number of levels N , for given values of k

k L(P3×3(N))

0
1

9
(N − 1)9 + 3

2
(N − 1)8 + 26

3
(N − 1)7 + 28(N − 1)6 + 833

15
(N − 1)5 + 70(N − 1)4 + 506

9
(N − 1)3 + 28(N − 1)2 + 239

30
(N − 1) + 1

1, 7
1

72
(N − 1)9 + 1

8
(N − 1)8 + 5

12
(N − 1)7 + 7

12
(N − 1)6 + 7

40
(N − 1)5 − 7

24
(N − 1)4 − 5

36
(N − 1)3 + 1

12
(N − 1)2 + 1

30
(N − 1)

2, 6
1

252
(N − 1)9 + 1

28
(N − 1)8 + 1

7
(N − 1)7 + 1

3
(N − 1)6 + 9

20
(N − 1)5 + 1

4
(N − 1)4 − 11

126
(N − 1)3 − 5

42
(N − 1)2 − 1

105
(N − 1)

3, 5
1

504
(N − 1)9 + 1

56
(N − 1)8 + 1

14
(N − 1)7 + 1

6
(N − 1)6 + 31

120
(N − 1)5 + 7

24
(N − 1)4 + 13

63
(N − 1)3 + 1

42
(N − 1)2 − 4

105
(N − 1)

4
1

630
(N − 1)9 + 1

70
(N − 1)8 + 2

35
(N − 1)7 + 2

15
(N − 1)6 + 1

5
(N − 1)5 + 1

5
(N − 1)4 + 52

315
(N − 1)3 + 16

105
(N − 1)2 + 8

105
(N − 1)

8
1

9
(N − 1)9 + 1

2
(N − 1)8 + 2

3
(N − 1)7 − 7

15
(N − 1)5 + 2

9
(N − 1)3 − 1

30
(N − 1)

strict inequality −xi + x0 > 0 is converted into the equiv-
alent loose inequality −xi + x0 − 1 ≥ 0. In order to pro-
vide the interested reader with a greater insight into the no-
tation, we report in extenso the matrices A and c for a spe-
cific pattern. If we consider, for instance the LBP3×3 pattern
00000101, we have:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0
1 0 0 0 −1 0 0 0 0
1 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
0

−1
−1
−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

It has been shown that Ehrhart’s results also hold for
semi-open polytopes [36]. We also observe that the polytope
in (14) can be treated as a parametric polytope of parame-
ter (N − 1), according to the definition given by Clauss and
Loechner [7].

Counting integer points in polytopes is difficult. When
the dimension is an input variable the problem of detecting
a lattice point in polyhedra is NP-hard [16]. Fortunately in
1993 Barvinok found an algorithm to count integer points
inside polyhedra which runs in polynomial time provided
that the dimension is fixed [4]. Later on the method has been
extended to parametric polytopes [7], which is the case stud-
ied here. The Barvinok’s algorithm and its extensions repre-

sent the basis of some free libraries to count integer points
in polytopes such as barvinok [38] and LattE [17].

To compute the number of lattice points inside the poly-
tope in (8), we used the barvinok_ enumerate pro-
gram of the barvinok library, which enumerates the num-
ber of lattice points in a polytope as a piecewise step-
polynomial. First of all we observe that the coordinates of
the vertices of the polytope in (14) can take values 0 or 1,
and therefore the polytope is integral. Consequently we ex-
pect the number of integer points in the polytope to be a
polynomial in (N − 1) of degree 9. The results reported in
Table 3 confirm that the number of integer points is indeed a
polynomial in (N −1) of degree 9. Now we can compute the
probability of occurrence of each LBP3×3 pattern by divid-
ing the number of lattice points in each corresponding poly-
tope by the total number of points in the 9-dimensional hy-
percube (N9). This leads to the same results reported in Ta-
ble 2.

4 Relative Incidence of Local Binary Patterns:
The Case of LBP8,1

In this section we are concerned with the a priori distribu-
tion of local binary patterns when the original 3 × 3 window
is converted into a circular lattice through bilinear interpo-
lation. This is a preliminary step to make the method robust
against rotation. The basic idea is that, as the texture rotates,
the gray values of the neighbourhood move along the cir-
cle centered on the central pixel. The resulting model is re-
ferred to as the LBP8,1 [19, 26]. We remark, beforehand,
that converting from a squared neighbourhood to a circu-
lar one introduces an artificial dependence between the gray
values which forces the interpolated points to take gray val-
ues “similar” to those of their neighbourhoods. As a conse-
quence one can reasonably expect a significant change in the
probability distribution, with a higher occurrence of uniform
patterns.
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In the LBP8,1 model the interpolated points have coor-
dinates (±√

2/2,±√
2/2). Therefore the bilinearly interpo-

lated gray value x∗
i is [28]

x∗
i = w1xmod(i−1,8) + w2xi + w1xmod(i+1,8) + w3x0 (17)

where i = 2,4,6,8 (Fig. 2), and:

w1 = (
√

2 − 1)/2

w2 = 1/2 (18)

w3 = (1 − √
2/2)2

In this case no such simple formulas as in the case of the
LBP3×3 can be found. Nonetheless, having established the
equivalence between local binary patterns and space parti-
tions, we can still compute the exact a priori probabilities
through the polytope approach. For this approach to be ap-
plied, however, we have to make another assumption. From
(17) and (18) it is evident that, in general, LBP8,1 polytopes
are irrational. Unfortunately there is still no theory to deal
with this class of polytopes [5]. Therefore we consider ra-
tional approximations of the weights w1,w2 and w3 which
result from the assumption

√
2 ≈ 99

70
(19)

We believe that the above approximation, which is cor-
rect up to the fourth decimal digit, has very little effect on
the estimation of the relative occurrence of LBP8,1 patterns.

4.1 LBP8,1: The Continuous Case

As in the case of LBP3×3 the set of all the possible LBP8,1

patterns introduces a partition of the 9-dimensional hyper-
cube, each part being defined as in (8), where, in this case
the matrix A takes the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A10 A11 0 0 0 0 0 0 0
A20r3 A21r1 A22r2 A23r1 0 0 0 0 0
A30 0 0 A32 0 0 0 0 0

A40r3 0 0 A43r1 A44r2 A45r1 0 0 0
A50 0 0 0 0 A55 0 0 0

A60r3 0 0 0 0 A65r1 A66r2 A67r1 0
A70 0 0 0 0 0 0 A77 0

A80r3 A81r1 0 0 0 0 0 A87r1 A88r2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

where the Aij are defined as in (10). Now, bringing together
(17)–(19), we get the following values for the integer coef-
ficients r1, r2 and r3:

r1 = 4060

r2 = 9800 (21)

r3 = 17919

Fig. 7 The graph structure of the polytopes corresponding to the
LBP8,1 patterns 00000000, 00000101, and 00001101

Fig. 8 A priori probabilities of LBP8,1 patterns in the continuous case

As we did in Sect. 3.3 we report the graph structure of
three LBP8,1 polytopes (Fig. 7). In this case we notice that
the structures are more complicated than the LBP3×3 coun-
terparts (Fig. 6), which agrees with the difference in com-
plexity between (9) and (20). The histogram of the a priori
probability distribution of LBP8,1 patterns in the continuous
case is showed in Fig 8. Table 4 reports the exact values for
the three local binary patterns of Fig. 7.

4.2 LBP8,1: The Discrete Case

The discrete case can be solved through the same approach
used for the LBP3×3 (Sect. 3.3). In particular (14) and (15)
still hold, provided that we take the matrix A as in (20).

Table 5 reports the exact a priori probabilities of the three
polytopes shown in Fig. 7. Looking at Figs. 8 and 9 we no-
tice that the probability distribution changes significantly if
compared with the 3 × 3 model. It is evident, in particular,
the higher occurrence of the uniform patterns, as detailed in
the following section.

4.3 The Contribution of Uniform Patterns

In the preceding sections we have described an approach
to compute the exact a priori probability distributions of
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Table 4 Exact a priori probabilities of the three LBP8,1 patterns of Fig. 7 in the continuous case under the assumption of rational interpolation
weights (18) and (19)

Pattern code Probability

00000000
344746891273556080355382732092933000022940683202690554397230181438690613067784727

1924081986089385261773791551406115480477713193229373977028341133578240000000000000
≈ 0.1792

00000101
43316466689309939151978980193302143018387043655995225793791457821767081

8646448079435116482887105528934777284707283437856410263796838400000000000
≈ 0.0050

00001101
13002077245013305150132914522555458923568696291304578949175215215457419

8646448079435116482887105528934777284707283437856410263796838400000000000
≈ 0.0015

Table 5 Exact a priori probabilities of the three LBP8,1 patterns of Fig. 7 as a function of the number of levels N under the assumption of rational
interpolation weights (18) and (19)

N Pattern code

00000000 00000101 00001101

64
3118238338969334

649
≈ 0.1731

96258479582765

649
≈ 0.0053

27692362324755

649
≈ 0.0015

128
1624469658107347992

1289
≈ 0.1761

47735995000052987

1289
≈ 0.0052

14024790442690437

1289
≈ 0.0015

256
838907467027119809606

2569
≈ 0.1756

24045568889514282403

2569
≈ 0.0051

7141375193636033373

2569
≈ 0.0015

Fig. 9 A priori probabilities of LBP8,1 patterns in the discrete case,
N = 256

LBP3×3 and LBP8,1 patterns both in the continuous and dis-
crete case. We can now compute the exact incidence of uni-
form patterns in these two models. In Table 6 we report the
percentage of occurrence of uniform patterns for the two tex-
ture models in the discrete case (for different values of N )
and in the continuous case.

The results reported in Table 6 put in evidence the high
a priori probability of uniform patterns. In the case of the
LBP3×3 such probability is about 55%. This value rises to
about 75% in the case of the LBP8,1. Such results suggest
that the high occurrence of uniform patterns reported in lit-
erature may be a direct outcome of the intrinsic structure of
the method. The results also confirm our guess that bilinear

Table 6 Incidence of uniform patterns in the LBP3×3 and LBP8,1 tex-
ture models

N % of uniform patterns

LBP3×3 LBP8,1

3 56.59198 70.08078

4 55.68389 72.38006

5 55.42405 73.18850

6 55.32865 73.89334

7 55.28726 74.36096

· · · · · · · · ·
64 55.23810 74.87518

128 55.23809 74.88386

256 55.23809 74.88574

∞ 55.23809 74.88667

interpolation produces a significant increase of the percent-
age of uniform patterns.

5 Conclusions and Future Work

In this work we presented a theoretical study about the oc-
currence probability of local binary patterns. As noticed by
various authors, such distribution is highly uneven in real
textures, and seems to be dominated by the so-called uni-
form patterns. Based on this evidence, we decided to investi-
gate whether such result should be considered a fundamental
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property of real textures or something that logically follows
from the mathematical structure of the method. In order to
answer this question we developed an approach to evaluate
the a priori statistical distribution of local binary patterns.
The procedure is based on the consideration that the LBP
can be interpreted as a space partitioning method. As a con-
sequence the a priori probability of each pattern depends on
the volume of the part it belongs to. We showed that these
parts are polytopes in the 9-dimensional space, and therefore
the a priori probabilities can be computed as the volume of
polytopes (continuous case) or the number of lattice points
inside a polytope (discrete case).

The results show that the a priori probability of uniform
patterns is rather high: ≈55% in the case of the LBP3×3.
This value increases significantly when the squared neigh-
bourhood is converted into a circular one through interpola-
tion, and reaches ≈75% in the case of the LBP8,1. This result
makes sense, since bilinear interpolation forces the interpo-
lated pixels to take grayscale values similar to those of their
neighbours. In the introduction we mentioned that other au-
thors reported, with LBP8,1, an incidence of uniform pat-
terns ranging from 76.6% to 93.3% in real textures. If we
compare these values with the theoretical value of ≈75% de-
rived herein, we notice that the incidence of uniform patterns
is even higher in real textures. This additional proportion of
uniform patterns can be easily explained considering that the
theoretical values have been computed under the assumption
that grayscale values of adjacent pixels are uncorrelated. In
real images it is often observed that pixels at nearby loca-
tions tend to have similar intensity values [6]. This results in
an higher incidence of uniform patterns, since bitwise 1/0
transitions in the peripheral pixels are less probable than in
the theoretical case.

As a general conclusion we can say that the high occur-
rence of uniform binary patterns is, to a great extent, a di-
rect consequence of the inherent structure of the method.
The highly uneven a priori distribution of local binary pat-
terns might also be a drawback of the method itself, at least
from a theoretical standpoint, for if we consider each possi-
ble pattern a symbol of an alphabet, the efficiency is maxi-
mum when all the symbols are equally likely.

An interesting by-product of the investigation proposed
in this paper is the interpretation of the LBP as a space par-
titioning method. In our opinion the contribution of this is
twofold: on the one hand we notice that other methods, such
as, for instance, the ILBP [14] and the Image Patch-Based
Classifiers [37] are based on the same idea, and therefore
can be studied using the same strategy. On the other hand
we believe that the idea of space partitioning can pave the
way for the development of new texture descriptors, since
the overall problem can be restated in a different way. Fu-
ture research, in fact, might be focused on studying func-
tions that map grayscale patterns into a lower dimensional

space under the constraint that this mapping maximizes the
theoretical amount of information that can be conveyed and
it is invariant against rotation, grayscale changes or other
transformations.
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