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Abstract This paper describes a generalized axiomatic
scale-space theory that makes it possible to derive the no-
tions of linear scale-space, affine Gaussian scale-space and
linear spatio-temporal scale-space using a similar set of as-
sumptions (scale-space axioms).

The notion of non-enhancement of local extrema is gen-
eralized from previous application over discrete and rota-
tionally symmetric kernels to continuous and more general
non-isotropic kernels over both spatial and spatio-temporal
image domains. It is shown how a complete classifica-
tion can be given of the linear (Gaussian) scale-space con-
cepts that satisfy these conditions on isotropic spatial, non-
isotropic spatial and spatio-temporal domains, which results
in a general taxonomy of Gaussian scale-spaces for contin-
uous image data. The resulting theory allows filter shapes
to be tuned from specific context information and provides
a theoretical foundation for the recently exploited mech-
anisms of shape adaptation and velocity adaptation, with
highly useful applications in computer vision.

It is also shown how time-causal spatio-temporal scale-
spaces can be derived from similar assumptions. The math-
ematical structure of these scale-spaces is analyzed in detail
concerning transformation properties over space and time,
the temporal cascade structure they satisfy over time as well
as properties of the resulting multi-scale spatio-temporal
derivative operators. It is also shown how temporal deriv-
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atives with respect to transformed time can be defined, lead-
ing to the formulation of a novel analogue of scale normal-
ized derivatives for time-causal scale-spaces.

The kernels generated from these two types of theories
have interesting relations to biological vision. We show how
filter kernels generated from the Gaussian spatio-temporal
scale-space as well as the time-causal spatio-temporal scale-
space relate to spatio-temporal receptive field profiles reg-
istered from mammalian vision. Specifically, we show that
there are close analogies to space-time separable cells in
the LGN as well as to both space-time separable and non-
separable cells in the striate cortex. We do also present a set
of plausible models for complex cells using extended quasi-
quadrature measures expressed in terms of scale normalized
spatio-temporal derivatives.

The theories presented as well as their relations to biolog-
ical vision show that it is possible to describe a general set
of Gaussian and/or time-causal scale-spaces using a unified
framework, which generalizes and complements previously
presented scale-space formulations in this area.

Keywords Scale-space · Multi-scale representation ·
Scale-space axioms · Non-enhancement of local extrema ·
Causality · Scale invariance · Gaussian kernel · Gaussian
derivative · Spatio-temporal · Affine · Spatial · Temporal ·
Time-recursive · Receptive field · Diffusion · Computer
vision · Image processing

1 Introduction

When analyzing sensory data, such as images, a fundamen-
tal issue arises from the fact that real-world objects may ap-
pear in different ways depending upon the scale of observa-
tion. This insight is a major motivation for the development
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of multi-scale representations such as pyramids [8, 10] and
scale-space representation [20, 31, 32, 35, 39, 40, 65, 67,
73]. Indeed by studying the problem of how to construct
a multi-scale representation, a general and multi-purpose
theory for early visual operations can be stated, where the
Gaussian kernel and its derivatives arise as a canonical fam-
ily of image operators given natural requirements of a visual
front-end. Complementary works have demonstrated that
these filters can serve as a basis for expressing a large num-
ber of visual operations, including feature detection, stereo
matching, computation of optic flow, tracking, estimation of
shape cues and view-based object recognition [47].

Traditionally, however, most works on multi-scale rep-
resentations have been concerned with image data defined
on isotropic spatial domains, characterized by the fact that
image data are accessible in all directions and moreover
that all directions are equally treated. During recent years,
these ideas have been extended to non-isotropic spatial do-
mains in terms of affine Gaussian scale-space, where dif-
ferent amounts of smoothing may be performed in differ-
ent directions, for example to account for the linear (affine)
component of perspective deformations [39, 51], as well as
to spatio-temporal scale-space, where space and time are
intrinsically different dimensions and in addition Galilean
motions may occur [43]. In particular, when dealing with
temporal and/or spatio-temporal data in an on-line situation,
we have to accept the fact that we cannot allow filters to ex-
tend into the future. For this reason, the smoothing filters
have to be time-causal [33, 49]. The subject of this article is
to show how a previously stated scale-space formulation in
terms of non-enhancement of local extrema [38, 41] can be
used for deriving Gaussian scale-spaces over non-isotropic
as well as time-casual domains in an axiomatic way, by re-
laxing the requirement of rotationally symmetric filters that
has been used in previous applications of non-enhancement
of local extrema as a scale-space axiom.

It will be shown that a parameterized family of lin-
ear scale-spaces is obtained by this construction, including
(i) the traditional linear scale-space representation for rota-
tionally symmetric spatial domains, (ii) the affine Gaussian
scale-space for non-isotropic spatial image domains that
may be subject to local or global affine image deforma-
tions and (iii) spatio-temporal linear scale-space for spatio-
temporal image domains subject to local Galilean motions.
Spatio-temporal scale-spaces will be developed for both
non-causal and time-causal spatio-temporal domains. Com-
pared to the isotropic linear scale-space, these affine and
spatio-temporal scale-spaces give rise to non-separable and
elongated filter kernels over space and time, which allow for
shape adaptation in space [5, 6, 51, 55, 61, 69] and velocity
adaptation along the direction of motion [36, 37, 43, 52, 56].
Notably the receptive field profiles generated by this scale-
space concept have high qualitative similarity to receptive

fields profiles recorded from biological vision [11, 70] in
analogy with previously established relations between spa-
tial receptive fields and Gaussian derivative operators [74,
75] with extensions to spatio-temporal data in [76, 77].

1.1 Outline of the Presentation

This paper is organized as follows: Section 2 gives a re-
view of related work with emphasis on axiomatic deriva-
tions of linear scale-spaces. Section 3 defines the notion of
non-enhancement of local extrema and gives formal proofs
showing, by both necessity and sufficiency, how this require-
ment in combination with a semi-group structure implies
both existence and a restriction on a corresponding infinites-
imal generator. Specifically, it is shown how this algebraic
structure implies that the scale-space has to satisfy a family
of parabolic differential equations, where the second-order
term is determined by a positive semi-definite covariance
matrix. The consequences of this result with regard to dif-
ferent types of image domains are developed in Sect. 4 with
emphasis on either rotationally symmetric, affine spatially
anisotropic or non-causal spatio-temporal domains.

Up to this point, we have throughout assumed non-causal
temporal image data, which is relevant for processing sta-
tic spatial domains or spatio-temporal data in off-line situa-
tions. Then, to be able to handle time-causal data in on-line
scenarios, where information about the future is not avail-
able, Sect. 5 shows how the previously stated scale-space
formulation can be reformulated to handle time-causal data,
where we do only have access to the past.

Interestingly, there are close relations between these
scale-space theories and biological vision. Section 6 shows
how the multi-scale spatio-temporal derivative operators
from the two types of spatio-temporal scale-spaces relate
to receptive fields registered in mammalian vision. Finally,
Sect. 7 concludes with a summary and discussion about
some of the main results.

Since the mathematical structure of the resulting time-
causal scale-space turns out to be more complicated than
for the Gaussian scale-space, we find it important to ana-
lyze and describe its properties in more detail. Therefore,
Appendix D includes a brief review of closely related the-
ory for heat conduction in solids, which is then transferred
to spatio-temporal scale-space.

To simplify the flow through the presentation, we have
also put some other more technical material in appendix sec-
tions. Appendix A develops the specific regularity properties
of the scale-space kernels over scales that are used when
deriving formal necessity results. Appendix B describes re-
lations between the proposed notion of non-enhancement
of local extrema and the maximum principle. Appendix C
gives a theory for how Galilean invariant fixed points can
be constructed in a spatio-temporal scale-space representa-
tion as a way of interpreting the output from an ensemble
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of velocity-adapted scale-space filters. Finally, Appendix E
gives the formal definitions and proofs regarding the ax-
iomatic derivation of the time-causal spatio-temporal scale-
space.

2 Related Work on Axiomatic Scale-Space
Formulations

The Gaussian scale-space concept satisfies a number of use-
ful properties1 that make it particularly attractive for gen-
erating a scale-space representation; (i) linearity, (ii) shift
invariance, (iii) semi-group property, (iv) existence of an
infinitesimal generator, (v) non-creation of local extrema
or zero-crossings in the one-dimensional case, (vi) non-
enhancement of local extrema in any number of dimensions,
(vii) rotational symmetry, (viii) positivity, (ix) unit normal-
ization, and (x) scale invariance. In fact, it can be shown that
the Gaussian kernel by necessity is a unique choice for a
number of different combinations of subsets of these scale-
space axioms [4, 20, 32, 38, 39, 41, 47, 57, 67, 72, 78]

g(x; s) = 1

(2πs)N/2
e−(x2

1+···+x2
N)/2s . (1)

The Gaussian function is also special in the respect that it
(xi) minimizes the uncertainty relation and (xii) is the prob-
ability density function with maximum entropy. The maxi-
mum entropy result can be interpreted as the Gaussian ker-
nel making minimal use of information. These properties are
also desirable when constructing a scale-space representa-
tion, since the uncertainty relation makes the smoothing op-
eration well localized over space and scales, while the max-
imum entropy result means that the Gaussian kernel is max-
imally uncommitted.

When Witkin [73] coined the term “scale-space”, he was
concerned with one-dimensional signals and observed that
new local extrema cannot be created under Gaussian con-
volutions. Specifically, he applied this property to zero-
crossings of the second-order derivative to construct so-
called “fingerprints”. This observation shows that Gaussian
convolution satisfies certain sufficiency results for being a
smoothing operation. The first proof in the Western litera-
ture of the necessity of Gaussian smoothing for generating a
scale-space was given by Koenderink [32], who also gave a
formal extension of the scale-space theory to higher dimen-
sions. He introduced the concept of causality, which means
that new level surfaces must not be created in the scale-
space representation when the scale parameter is increased.
By combining causality with the notions of isotropy and ho-
mogeneity, which essentially mean that all spatial positions

1Please, refer to Lindeberg [48] for detailed mathematical definitions
of these scale-space properties.

and all scale levels must be treated in a similar manner, he
showed that the scale-space representation must satisfy the
diffusion equation

∂tL = 1

2
∇2L. (2)

Related necessity results were given by Babaud et al. [4] and
by Yuille and Poggio [78].

Lindeberg [38] considered the problem of characteriz-
ing those kernels in one dimension that share the property
of not introducing new local extrema or new zero-crossings
in a signal under convolution. Such scale-space kernels can
be completely classified using classical results by Schoen-
berg [62, 63]. For continuous signals, it can be shown that
all such non-trivial scale-space kernels can be decomposed
into Gaussian kernels and truncated exponential functions.
By imposing a semi-group structure on scale-space kernels,
the Gaussian kernels will then be singled out as a unique
choice. For discrete signals, the corresponding result is that
all discrete scale-space kernels can be decomposed into gen-
eralized binomial smoothing, moving average or first-order
recursive filtering and infinitesimal smoothing with the dis-
crete analogue of the Gaussian kernel. To express a corre-
sponding theory for higher-dimensional signals, Lindeberg
[38] reformulated Koenderink’s causality requirement into
non-enhancement of local extrema and combined this re-
quirement with a semi-group structure as well as an infin-
itesimal generator and showed that all such discrete scale-
spaces must satisfy semi-discrete diffusion equations. A cor-
responding scale-space formulation for continuous signals
based on non-enhancement of local extrema for rotationally
symmetric smoothing kernels was presented in [41].

A formulation by Florack et al. [21] with continued work
by Pauwels et al. [57] shows that the class of allowable
scale-space kernels can also be restricted by combining a
semi-group structure of convolution operations with scale
invariance and rotational symmetry. When Florack et al.
[21] studied this approach, they used separability in Carte-
sian coordinates as an additional constraint and showed that
this lead to the Gaussian kernel. If the requirement about
separability on the other hand is relaxed, Pauwels et al. [57]
showed that this leads to a one-parameter family of scale-
spaces, with Fourier transforms of the form

ĥ(ω; s) = e−α|σω|p , (3)

where σ = √
s. Within this class, it can furthermore be

shown that only the exponents p that are even integers lead
to differential equations that have local infinitesimal gener-
ators of a classical form.2 Specifically, out of this countable

2Of the form stated in (11) and made more precise in Sect. 3.



J Math Imaging Vis (2011) 40: 36–81 39

set in turn, only the choice p = 2 gives rise to a non-negative
convolution kernel, which leads to the Gaussian kernel.

There are, however, also possibilities of defining scale-
space representations for other values of p. The specific case
with p = 1 has been studied by Felsberg and Sommer [18],
who show that the corresponding scale-space representation
is in the two-dimensional case given by convolution with
Poisson kernels of the form

P(x; s) = s

2π(( s
2 )2 + |x|2)3/2

. (4)

Duits et al. [12, 13] have investigated the cases with other
non-integer values of p in the range ]0,2[ and showed that
such families of self-similar α-scale-spaces (with α = p/2)
can be modelled so-called pseudo-partial differential equa-
tions of the form

∂sL = −1

2
(−�)p/2L. (5)

These scale-spaces can be related to the theory of Lévy
processes and infinitely divisible distributions. For example,
according to this theory a non-trivial probability measure
on R

N is α-stable with 0 < α ≤ 2 if and only if its Fourier
transform is of the form (3) with p = α [60, page 86]. These
scale-space do, however, not obey non-enhancement of local
extrema, and we will not consider such self-similar scale-
spaces with non-classical infinitesimal generators further,
since the main subject of this article is to develop a more
general theory for Gaussian scale-spaces corresponding to
p = 2.

For the specific family of Gaussian scale-space represen-
tations Koenderink and van Doorn [35] carried out a closely
related study, where they showed that Gaussian derivative
operators are natural operators to derive from a scale-space
representation, given the assumption of scale invariance.
Axiomatic derivations of image processing operators based
on scale invariance have also been given in earlier Japanese
literature [72].

With regard to temporal data, the first proposal about
a scale-space for temporal data was given by Koenderink
[33] by applying Gaussian smoothing to a logarithmically
transformed time axes. Such temporal smoothing filters have
been considered in follow-up works by Florack [20] and
ter Haar Romeny et al. [68]. These approaches, however,
require infinite memory of the past and have so far not been
developed for computational applications. To handle time-
causality in a manner more suitable for real-time implemen-
tation, Lindeberg and Fagerström [49] expressed a strictly
time-recursive space-time separable spatio-temporal scale-
space model based on cascades of temporal scale-space ker-
nels in terms of either truncated exponential functions or
first-order recursive filters. These temporal scale-space mod-
els also had the attractive and memory saving property that

temporal derivatives could be computed from differences
between temporal channels at different scales, thus elimi-
nating the need for complimentary time buffering. A sim-
ilar computation of temporal derivatives has been used by
Fleet and Langley [19]. Early work on non-separable spatio-
temporal scale-spaces with velocity adaptation was pre-
sented in Lindeberg [43, 46] with applications to Galilean
invariant image descriptors and recognition of activities in
[36, 37, 52]. More recently, Fagerström [16, 17] has stud-
ied scale-invariant continuous scale-space models that al-
lows for the construction of continuous semi-groups over the
internal memory representation and in a special case lead to
a diffusion formulation.

Outside the class of linear operations, there is also a large
literature on non-linear scale-spaces [66]. In particular, the
works by Alvarez et al. [3] and Guichard [28] have many
structural similarities to the linear/affine/spatio-temporal
scale-space formulations in terms of semi-group structure,
infinitesimal generator and invariance to rescalings and
affine or Galilean transformations. Non-linear scale-space
that obey similar properties as non-enhancement of local ex-
trema have been studied in particular by Weickert [71]. With
close relationship to non-enhancement of local extrema, the
maximum principle has been used as a sufficient condition
for defining linear or non-linear scale-space representations
Alvarez et al. [3], Hummel and Moniot [30].

3 Generalizing Non-enhancement to Non-isotropic
Domains

Out of the above mentioned large family of possibilities, we
shall here start by exploring the richer structure that can be
obtained from a scale-space family if the requirements about
rotational symmetry are relaxed. To begin the treatment, let
us start by restating the set of scale-space axioms that the
analysis will be based on:

3.1 Structural Scale-Space Axioms

We would like to model an uncommitted visual front-end,
that performs linear and shift-invariant operations. Hence,
we assume that each scale level L(·; s) is generated by
convolving the original signal f with a convolution kernel
T (·; s),

L(·; s) = T (·; s) ∗ f (·), (6)

in operator form written

L(·; s) = Tsf (·). (7)

Then, to ensure regularity with respect to scale, we assume
that the family of scale-space kernels T (·; s) forms a semi-
group

T (·; s1) ∗ T (·; s2) = T (·; s1 + s2). (8)
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This condition means that all scale levels are computed from
conceptually similar operations and that, in addition, the
transformation from any fine scale level to any coarser scale
level is of the same form as the transformation from the orig-
inal signal

L(·; s2) = T (·; s2 − s1) ∗ L(·; s1). (9)

Another important consequence of imposing the semi-group
requirement on the family of convolution kernels is that if
we assume reasonable continuity requirements of T with re-
spect to variations of the scale parameter s (see below), then
it follows from a general result in functional analysis [29]
that there exists a limit case operator, the infinitesimal gen-
erator

Af = lim
h↓0

T (·; h) ∗ f − f

h
, (10)

such that the scale-space family satisfies a differential equa-
tion of the form

∂sL(·; s) = lim
h↓0

L(·; t + h) − L(·; s)

h
= A L(·; s). (11)

With regard to differential equations, it is natural to for-
malize the non-enhancement requirement of local extrema
in terms of a sign condition on the derivative of the scale-
space family with respect to the scale parameter. Hence, at
any non-degenerate extremum point over the image domain,
in other words for each local extremum at which the de-
terminant of the Hessian matrix is non-zero, we require the
following conditions3 to hold (see Fig. 1 for an illustration):

∂sL ≤ 0 at any non-degenerate local maximum, (12)

∂sL ≥ 0 at any non-degenerate local minimum. (13)

3.2 Formal Definitions

To be able to use tools from functional analysis, we will ini-
tially assume that both the original signal f and the fam-
ily of convolution kernels T (·; s) are in the Banach space
L2(RN), i.e., f,T (·; t) ∈ L2(RN), with the norm

‖f ‖2
2 =

∫
x∈RN

|f |2 dx. (14)

3The careful reader may note that this formulation of non-enhancement
of local extrema is expressed in terms of “vertical derivatives” ∂s in
scale-space. When the signal is subject to scale-space smoothing, how-
ever, the positions of the local extrema may change with scale by a drift
velocity v. Hence, one could find it more natural to consider derivatives
along such extremum paths ∂s̄ = ∂s + v ∂x instead of “vertical deriva-
tives” ∂s with respect to scale. At the position of a local extremum,
however, the “horizontal component” v ∂x will be zero, and the two
types of definitions are therefore equivalent.

Fig. 1 The non-enhancement condition of local extrema means that
the grey-level value of a local maximum must not increase with scale
and that the grey-level of a local minimum must not decrease

Then also the scale-space representations L(·; s) will be in
the same space, and we can define a family of scale-space
smoothing operators T (s) from L2(RN) to itself by

L(·; s) = T (s) f. (15)

The semi-group structure under convolution transformations
in (8) in combination with the initial condition L(·; 0) = f

imply that we require a semi-group structure on the smooth-
ing operators
{

T (s1) T (s2) = T (s1 + s2),

T (0) = I,
(16)

and in order to ensure sufficient regularity with respect to the
scale parameter, we assume the semi-group to be strongly
continuous (C0) in the sense that

lim
s↓s0

‖(T (s) − T (s0))(f )‖2 = 0 (17)

should hold for each f ∈ L2(RN) and for any s0 ≥ 0 [29,
page 59], [26, page 14], [58, page 4]. In terms of explicit
convolution kernels, this requirement corresponds to conti-
nuity at the origin in the sense that

lim
s↓0

‖T (·; s) ∗ f − f ‖2 = 0 (18)

should hold for every f ∈ L2(RN). Given these assump-
tions, it follows from a general result in functional analysis
[29, page 308], [26, page 14], [58, page 5] that there exists
a limit case operator, the infinitesimal generator

Af = lim
s↓0

T (s) f − f

s
= ∂s T (s) f |s=0 , (19)

such that the scale-space family satisfies a differential equa-
tion of the form

∂sL(·; s) = lim
h↓0

L(·; s + h) − L(·; s)

h

= A(T (s) f (·)) = A L(·; s). (20)

The set of elements f ∈ L2(RN) for which A exists is de-
noted D(A). This set is not empty and never reduces to
the zero element. Actually, D(A) is even dense in L2(RN)
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[29, page 308], [58, page 5]. Hence, the scale-space family
will satisfy a first-order differential equation with respect to
scale.

To ensure sufficient regularity, we will also assume that
the convolution kernels T (·; s) ∈ L1(RN). This assump-
tion implies that for all smooth functions f ∈ C∞(RN) with
compact support, spatial derivatives of the scale-space rep-
resentation L do always exist by

∂xj
L(·; s) = ∂xj

(T (·; s) ∗ f (·) = T (·; s) ∗ (∂xj
f )(·) (21)

even at s = 0. By applying this property recursively, the
scale-space representation of a smooth signal with com-
pact support will also be guaranteed to be smooth, i.e.,
L(·; s) ∈ C∞(RN), also at s = 0.4

In the following, we will show that the requirement of
non-enhancement of local extrema combined with semi-
group structure and regularity properties with respect to the
scale parameter imply that the scale-space family must sat-
isfy a family of parabolic differential equations, in which
the second-order terms are determined by a positive semi-
definite covariance matrix, while the first-order terms may
be arbitrary. Specifically, the result that we shall derive im-
plies that (i) the infinitesimal operator A must be a local op-
erator that depends on local derivatives only, (ii) we cannot
allow for derivatives of higher order than two, and (iii) we
cannot allow for any zero-order term either.

To be able to express the non-enhancement condition in
a context where derivatives of the scale-space representation
with respect to the scale parameter are well-defined point-
wise and not only almost everywhere, we will make a further
requirement explained in more detail in Appendix A that the
semi-group T should obey the following regularity require-
ments with respect to variations of the scale parameter

lim
h↓0

∥∥∥∥ 1

h

∫ h

s=0
T (s)f ds − f

∥∥∥∥
Hk(RN)

= lim
h↓0

∥∥∥∥ 1

h

∫ h

s=0
(T (s) − I )f ds

∥∥∥∥
Hk(RN)

= 0 (22)

for some k > N/2 and for all smooth functions f ∈
L1(Rn) ∩ C∞(RN), where

‖u‖Hk(RN) =
(∫

ω∈RN

(
1 + |ω|2

)k |û(ω)|2dω

)1/2

. (23)

4Usually, one otherwise uses a family of smooth and rapidly de-
creasing smooth convolution kernels for defining derivatives of non-
differentiable functions f , by the theory of Schwartz distributions
∂xj

L(·; s) = ∂xj
(T (·; s) ∗ f (·) = (∂xj

T (·; s)) ∗ f (·). Here, however,
we start by initially weaker assumptions on the family of convolution
kernels, with the aim that the requirement of non-enhancement of local
extrema will then imply stronger restrictions on the scale-space repre-
sentation when combined with a semi-group structure and rather mod-
est regularity requirements on the semi-group with respect to variations
of the scale parameter s.

This continuity condition is referred to as C1 continuity and
is a stronger condition than the more commonly used C0

continuity of semi-groups [29, page 322].
As pre-requisites to the treatment that shall be performed,

let us first summarize the basic algebraic structure in terms
of a definition and a lemma.

Definition 1 (Continuous pre-scale-space representation)
Let f ∈ L2(RN) be a continuous signal and let T (s) with
s ∈ R+ be a strongly continuous semi-group of linear and
shift-invariant operators from L2(RN) to L2(RN) accord-
ing to (16) and (18), where the convolution kernels T (·; s)

are also required to be in L1(RN) and the semi-group is also
for some value k > N/2 required to be C1 continuous with
respect to the L2-based Sobolev norm ‖ · ‖Hk(RN) for all
smooth functions f ∈ L1(RN) ∩ C∞(RN). Then, the one-
parameter family of signals L : R

N × R+ → R given by

L(·; s) = T (s) f (24)

is said to be the continuous pre-scale-space representation
of f generated by T (s).

As we have described in connection with (19) and (11),
this algebraic structure implies that the pre-scale-space rep-
resentation will be differentiable with respect to the scale
parameter and will possess an infinitesimal generator.

Lemma 2 (A continuous pre-scale-space representation is
differentiable) Let L : R

N × R+ → R be the continu-
ous pre-scale-space representation of a signal f ∈ L2(RN).
Then, L satisfies the differential equation

∂sL = A L (25)

for some linear and shift-invariant operator A from L2(RN)

to L2(RN). The scale-space representation L(·; s) of a
smooth function f ∈ C∞(RN) of compact support is smooth
as function over the spatial domain, and smooth functions f

of compact support are in the support D(A) implying that
for smooth functions of compact support the partial deriva-
tives ∂sL(x; s) are well-defined for every (x; s) ∈ R

N × R.

Proof The basic structure follows from [29, page 308] and
our previous treatment. Since L is generated from f by con-
volutions, it follows that A must also be shift-invariant and
commute with the shift operator (S�xf )(x) = f (x − �x).
The operator A does, however, not need to be bounded.

The smoothness of L with respect to space follows from
the assumption of the convolution kernels T (·; s) ∈ L1(RN)

and the discussion in connection with (21). As shown in
Appendix A, the regularity requirements on the semi-group
imply that smooth functions of compact support are in the
domain D(A) of A implying that the partial derivatives
∂sL(x; s) are well-defined for every (x; s) ∈ R

N × R+. �
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This property makes it possible to formulate the previ-
ously indicated scale-space property in terms of derivatives
of the scale-space representation with respect to the scale
parameter, such that the grey-level value in every local max-
imum point must not increase, whereas the grey-level value
in every local minimum point must not decrease.

Definition 3 (Pre-scale-space property: Non-enhancement
of local extrema) A continuous pre-scale-space representa-
tion L : R

N × R+ → R of a smooth signal f ∈ L2(RN) ∩
C∞(RN) is said to possess continuous non-enhancement
pre-scale-space properties, or equivalently not to enhance
local extrema, if for every value of the scale parameter
s0 ∈ R+ it holds that if x0 ∈ R

N is a critical point for the
mapping x → L(x; s0) and if the Hessian matrix at this
point is non-degenerate, then the derivative of L with respect
to s at this point has the same sign as the Hessian matrix, i.e.,

sign∂sL = sign trace HL. (26)

This condition is closely related to the maximum princi-
ple for elliptic and parabolic equations, however, it is not
identical. The maximum principle refers to global prop-
erty of a function concerning the global maximum (or min-
imum), while non-enhancement of local extrema refers to a
local property concerning every local extremum (see Appen-
dix B).

Now we can state that a semi-group of operators gener-
ates is a scale-space family representation if it leads to non-
enhancement of local extrema for any input signal.

Definition 4 (Continuous non-enhancement scale-space rep-
resentation) Let T be a strongly continuous semi-group
of linear and shift-invariant operators from L2(RN) to
L2(RN). Given a signal f ∈ L2(RN), the pre-scale-space
representation L : R

N × R+ → R of f is said to be a con-
tinuous scale-space representation of f if and only if it for
every smooth function f ′ ∈ L2(RN) ∩ C∞(RN) of com-
pact support it holds that the pre-scale-space representation
L′ : R

N × R+ → R of f ′ generated by the semi-group T (s)

obeys non-enhancement of local extrema.

3.3 Necessity and Sufficiency

We shall first show that these conditions by necessity im-
ply that the scale-space family L must satisfy the diffusion
equation.

Theorem 5 (Non-enhancement scale-space for continuous
signals: Necessity) A continuous non-enhancement scale-
space representation L : R

N × R+ → R of a signal f ∈
L2(RN) satisfies a parabolic differential equation

∂sL = 1

2
∇T (�0∇L) − δT

0 ∇L (27)

with initial condition L(·; 0) = f (·) for some positive semi-
definite covariance matrix �0 and some vector δ0.

Proof The proof consists of two parts. The first part has al-
ready been presented in Lemma 2, where it was shown that
a pre-scale-space family obeys a linear differential equation,
where the infinitesimal generator is shift-invariant. Given
the regularity requirements of the semi-group, Lemma 2
also implies that the scale-space representation is guaran-
teed to be smooth as function over the spatial domain and
that smooth functions of compact support are in D(A) im-
plying that the partial derivatives ∂sL(x; s) are well-defined
for every (x; s) ∈ R

N × R+. In the second part, a set of
counterexamples L(x; 0) = f at s = 0 will be constructed
from various simple smooth functions f of compact support
to delimit the class of possible operators.

C.1. The extremum point condition (12) in combination
with definition 4 means that A must be a pure differential
operator. This can be easily understood by studying the fol-
lowing class of counterexamples: Consider a smooth (C∞)
function f1 = fI : R

N → R such that (i) fI has a maximum
point at the origin and the Hessian matrix is negative defi-
nite at the origin, and (ii) for some ε > 0 the test function
is zero fI (x) = 0 outside a smaller circle around the origin
with |x| ≥ ε

2 . Then, we must have Af1 = AfI = C1 ≤ 0.
Fixate this function fI , the value of ε and the operator A.
Consider next the test function

f2 = fI + fE, (28)

where

∇fI (0) = 0, (29)

sign HfI (0) < 0, (30)

fI = 0 when |x| ≥ ε/2, (31)

fE = 0 when |x| ≤ ε (32)

while the function fE may now assume non-zero values out-
side the circular region |x| ≤ ε. Let us initially assume that
AfE = C2 �= 0. Then, if we consider a third test function of
the form f3 = fI + β1fE , we get

∂sf3 = AfI + β1 AfE = C1 + β1 C2. (33)

Obviously, the sign of this expression can be made positive
and (12) be violated by a suitable choice of β1. Hence, for
any ε > 0 we have to require that AfE must be identically
zero for all functions that assume non-zero values outside
the region |x| < ε. In other words, A must be a local op-
erator and Af can only exploit information from f at the
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central point. This means that for any smooth function Af

must be of the form

Af =
∑

ξ∈Z
N+

aξLxξ , (34)

where ξ = (ξ1, ξ2, . . . , ξN ) is a multi-index, aξ ∈ R ∀ξ and
Lxξ = L

x
ξ1
1 x

ξ2
2 ...x

ξN
N

.

C.2. The extremum point condition (12) also means that
AL must not contain any term proportional to L or deriva-
tives of order higher than two. This can be seen by consid-
ering a test function of the form

f4(x) = (x2
1 + x2

2 + · · · + x2
N + β2 xη)χ(x) (35)

for some η = (η1, η2, . . . , ηN) ∈ Z
N with |η| = |η1|+ |η2|+

· · ·+ |ηN | > 2 where χ(x) ≥ 0 is a smooth function of com-
pact support identically equal to one χ(x) = 1 in the disk
|x| ≤ 1 and identically equal to zero χ(x) = 0 outside the
disk |x| ≤ 2. If aξ �= 0 for some ξ ∈ Z

N , it is clear that we
can choose η = ξ and by a suitable choice of β2 we can
make the sign of Af4 arbitrary and hence violate (12). Sim-
ilarly, by considering a test function of the form

f5(x) = (x2
1 + x2

2 + · · · + x2
N + β3)χ(x) (36)

it follows that a0 must be zero. Thus, A can only contain
derivatives of order one and two.

C.3. Concerning the remaining first- and second-order
terms, let us first note that the non-enhancement condition
of local extrema does not impose any constraints on the first-
order terms, since the influence of the first-order terms van-
ishes at critical points.

Regarding the second-order terms, we can next observe
that without loss of generality, the influence of the second-
order terms can be written

∂sL = 1

2
∇T (�0∇L) (37)

for some symmetric matrix �0. Let us next show by counter-
example that �0 must be positive semi-definite, i.e., if �0

would have a strictly negative eigenvalue, then the non-
enhancement property of local extrema would be violated.
Such a violation occurs if we can find a positive definite ma-
trix H such that ∂sL(0; 0) < 0 for L(x; 0) = xT Hx, i.e., if
for a given �0 with both positive and negative eigenvalues,
we could find some positive definite H such that

∂sL = 1

2
∇T (�0∇L) = ∇T (�0Hx)

= trace(�0H) < 0. (38)

To construct such a H , let us assume that �0 has eigen-
vectors e1 . . . eN with associated eigenvalues λ1 . . . λN and
choose H to have the same set of eigenvectors while having
different eigenvalues μ1 . . .μN . Then, from

∂sL = trace(�0H) =
N∑

i=1

μiλi, (39)

where all μi > 0 and at least one λi < 0, it is clear that
we can find a suitable combination of μi > 0 such that
∂sL < 0 and we would thus violate the requirement of non-
enhancement of local extrema. Hence, to guarantee that the
requirement of non-enhancement of local extrema can be
valid, we have to require that all the eigenvalues of �0 are
positive. �

Remark Equation (27) can also be written on the more com-
mon form

∂sL =
N∑

i=1

N∑
j=1

aij Lxixj
−

∑
bi Lxi

, (40)

where the coefficients aij form a positive semi-definite ma-
trix. The reason why we have chosen a parameterization in
terms of �0 and δ0 here is because of the close connections
to Gaussian kernels and velocity adaptation that will be de-
veloped later in Sects. 4–5.

To prove sufficiency, i.e., the reverse statement of Theo-
rem 5, is straightforward and a basic property of parabolic
equations. For completeness, we give the result with an ex-
plicit proof.

Theorem 6 (Non-enhancement scale-space for continuous
signals: Sufficiency) Given a semi-definite covariance ma-
trix �0, an arbitrary vector δ0 and any twice continuously
differentiable function f ∈ L2(RN), the solution of the dif-
fusion equation

∂sL = 1

2
∇T (�0∇L) − δT

0 ∇L (41)

with initial condition L(·; 0) = f constitutes a continuous
non-enhancement scale-space representation of f . Specifi-
cally, L obeys

∂sL ≤ 0 at any non-degenerate local maximum, (42)

∂sL ≥ 0 at any non-degenerate local minimum. (43)

Proof The regularity properties of the solution are apparent
from the regularity properties of parabolic differential equa-
tions. To verify non-enhancement of local extrema, con-
sider any non-degenerate local extremum x0 of L at scale s0

with Hessian matrix H0. Using the fact that ∇T (�0∇L) =
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trace(�0H0), we have ∂sL = trace(�0H0) at the critical
point. If x0 is a local minimum then H0 is positive semi-
definite. Since the trace of the product of two positive semi-
definite matrices is greater or equal to zero, it follows that
trace(�0H0) ≥ 0. If x0 is a local maximum, we can apply
similar reasoning to −L. �

To conclude, we can take the results in Theorems 5–6
as a generalized definition of the notion of Gaussian scale-
space.

Definition 7 (Generalized Gaussian scale-space) The (non-
enhancement) scale-space families that are defined from the
solutions of parabolic differential equations of the form (27)
are referred to as generalized Gaussian scale-spaces.

Concerning the regularity properties of the input signal
f , it follows from the strong regularizing properties of the
Gaussian kernel that the solution of (27) will be smooth for
k > 0 for any bounded function f : R

n → R. Hence, for the
purpose of generating a scale-space representation of a real-
world signal f , we can relax the condition on f to f being
bounded.

4 Interpretations

In previous section, we showed that for a linear and shift-
invariant infinitesimal generator A the requirement of non-
enhancement of local extrema in combination with conti-
nuity conditions implies that the scale-space representation
should satisfy a parabolic differential equation of the form

∂sL = 1

2
∇T (�0∇L) − δT

0 ∇L (44)

for some positive semi-definite covariance matrix �0 and
some translation vector δ0. If we take a delta function as in-
put, the interpretation of this evolution equation is that at any
time moment the solution corresponds to a Gaussian ker-
nel with covariance matrix �s = s�0 centered at δs = sδ0.
Thus, we can interpret the impulse response as a gradually
growing elongated Gaussian kernel that moves with veloc-
ity δ0 with respect to the evolution parameter s. In terms
of filtering operations, this scale-space can equivalently be
constructed by convolution with affine and velocity-adapted
Gaussian kernels

g(x; �s, δs) = 1

(2π)N/2
√

det�s

e−(x−δs )
T �−1

s (x−δs )/2,

(45)

which for a given �s = s�0 and a given δs = s δ0 satisfy the
diffusion equation (44). The Fourier transform of this shifted

Gaussian kernel is

ĝ(ω; �s, δs) =
∫

x∈RN

g(x; �s, δs) e−iωT x dx

= eiωT δs−ωT �sω/2. (46)

From the diffusion equation formulation or the Fourier
transform, it can be seen that these shifted and shape-
adapted kernels satisfy the following generalized semi-
group property

g(·; �1, v1) ∗ g(·; �2, v2) = g(·; �1 + �2, v1 + v2). (47)

Transformation property under linear transformations. This
scale-space concept has the attractive property that it is
closed under affine transformations: If two image patterns
fL and fR are related by an affine transformation

fL(ξ) = fR(η) where η = Aξ + b, (48)

and if linear scale-space representations of these images are
defined by

L(·; �L, δL) = g(·; �L, δL) ∗ fL(·), (49)

R(·; �R, δR) = g(·; �R, δR) ∗ fR(·), (50)

then L and R are related by

L(x; �L, δL) = R(y; �R, δR), (51)

where the covariance matrices �L and �R satisfy [51]

�R = A�LAT , (52)

and the velocity terms δL and δR in the Gaussian kernels can
be traded against coordinate shifts in x and y as long as the
following relation is satisfied:

y − δR = A(x − δL) + b. (53)

This property is highly useful in connection with visual
tasks involving image deformations, such as image match-
ing, flow estimation and shape estimation. The closedness
under affine transformation allows for perfect modelling and
matching of image data under first-order approximations of
image deformations due to motion or the perspective map-
ping, and has been explored by e.g. [5, 6, 36, 37, 51, 52, 55,
56, 61, 69].

4.1 Special Cases

The above mentioned relations provide a general structure
for linear scale-space concepts on shift-invariant continu-
ous domains. Specifically, it includes the following special
cases:
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4.1.1 Rotationally Symmetric Linear Scale-Space

If we require the covariance matrix �0 to be a unit matrix,
we obtain the regular (isotropic) Gaussian scale-space [20,
32, 39, 73].

L(x; s) =
∫

ξ∈RN

f (x − ξ) g(ξ ; s) dξ (54)

generated by convolutions with rotationally symmetric
Gaussian kernels

g(x; s) = 1

(2πs)N/2
e−(x2

1+···+x2
N)/2s . (55)

From this scale-space, we can define the multi-scale N-jet
by applying partial derivatives to the scale-space

Lxα = ∂xαL = ∂
x

α1
1 ...x

αN
N

L, (56)

where we have introduced multi-index α = (α1, . . . , αN) to
simplify the notation. Due to the linearity of the diffusion
equation, all these scale-space derivatives Lxα satisfy sim-
ilar scale-space properties in terms of non-enhancement of
local extrema as the original scale-space L. So do also di-
rectional derivatives. In two dimensions, the M :th order di-
rectional derivative in the direction (cosϕ, sinϕ) is given by

∂ϕM L = (cosϕ ∂x + sinϕ ∂y)
ML

=
M∑

k=0

(
M

k

)
cosk ϕ sink ϕ LxkyM−k . (57)

With regard to image deformations, the closedness proper-
ties of this original scale-space are restricted to translations,
rotations and rescalings. This scale-space concept is on the
other hand separable in any orthonormal coordinate system.

4.1.2 Affine Gaussian Scale-Space

If we relax the condition about rotational symmetry, while
keeping a requirement that the corresponding Green’s func-
tion should be mirror symmetric on every line through
the origin (in the sense that the filters h should satisfy
h(−x,−y; s) = h(x, y; s) for every (x, y) ∈ R

2), we ob-
tain the affine Gaussian scale-space representation, gener-
ated by convolution with non-uniform Gaussian kernels

g(x; �s) = 1

(2π)N/2
√

det�s

e−xT �−1
s x/2, (58)

where �s is a symmetric positive definite (covariance) ma-
trix. Besides the requirement of rotational symmetry, the
affine Gaussian scale-space basically satisfies similar scale-
space properties as the linear scale-space. The main differ-
ence is that the affine Gaussian scale-space is closed under
the full group of non-singular affine transformations.

With regard to image processing and computer vi-
sion, this means that image data subjected to affine trans-
formations can be perfectly captured with the extended
class of affine scale-space operations. Specifically, for two-
dimensional images arising as perspective projections of
three-dimensional scenes, this notion of affine image defor-
mations can be used as a first-order linear approximation of
non-linear perspective effects. This scale-space concept has
been studied by [27, 39, 50] and is highly useful when com-
puting surface shape under local affine distortion [51] and
performing affine invariant segmentation [5] and matching
[6, 55, 61, 69]. Combined with derivative operations, it can
also serve as a natural idealized model for filter banks [24,
64] consisting of elongated directional filters [59].

To parameterize the affine Gaussian kernels, let us in the
two-dimensional case consider the covariance matrix deter-
mined by two eigenvalues λ1, λ2 and one orientation β .
Then, the covariance matrix can be written

�′ =
(

λ1 cos2 β + λ2 sin2 β (λ1 − λ2) cosβ sinβ

(λ1 − λ2) cosβ sinβ λ1 sin2 β + λ2 cos2 β

)
.

(59)

Figure 2 shows a few examples of affine Gaussian filter ker-
nels obtained in this way. Directional derivative operators of
any order or orientation can then be obtained by combining
(59) and (57); see Fig. 3.

When computing directional derivatives from elongated
affine Gaussian kernels, it should be noted that it is natural to
align the orientations of the directional derivative operators
(the angle ϕ in (57)) with the orientations of the eigendirec-
tions of the covariance matrix in the affine Gaussian kernels
(the angle β in (59)). This is also the most likely model for
biological vision (see Figs. 18 and 19 in Sect. 6).

4.1.3 Gaussian Spatio-Temporal Scale-Space

While the affine Gaussian scale-space generated by (58)
has essentially the same invariance properties as the spatio-
temporal scale-space representation generated by (45), one
motivation for keeping the velocity term v in (45) arises
when studying time dependent data. On a temporal domain,
the non-zero offset in the Gaussian kernel can be used as
a simplified model of the fact that all computations require
non-zero computation time and time averages can only be
computed from data that have occurred in the past. This re-
quirement of time causality implies that any temporal re-
ceptive field has to be associated with a non-zero time delay.
Moreover, on a spatio-temporal domain, we may want the
receptive fields to follow the direction of motion, in such a
way that the centres and the shapes of the receptive fields are
adapted to the direction of motion; see Fig. 4 for an illustra-
tion. Such velocity adaptation [43] is useful for reducing the



46 J Math Imaging Vis (2011) 40: 36–81

Fig. 2 Examples of affine Gaussian kernels in the two-dimensional
case (λ1 = 16, λ2 = 4, β = π/6,π/3,2π/3)

Fig. 3 Elongated filters obtained by applying first- and second order
directional derivatives to affine Gaussian kernels (λ1 = 16, λ2 = 4,
β = π/6,π/3,2π/3, ϕ = β + π/2)

temporal blur induced by observing objects that move rela-
tive to the camera and is a natural mechanism to include in
modules for multi-scale motion estimation [22, 56] and for
recognizing spatio-temporal activities or events [36, 37]. In
particular, invariance to local Galilean transformations can
be achieved if the filter parameters can be adapted to the
local spatio-temporal image structure [52] (see also Appen-
dix C).

With respect to temporal implementation, however, the
filters in this Gaussian filter class do not respect time causal-
ity in a strict sense. Although the total mass of the filter coef-
ficients that imply access to the future can be made arbitrar-
ily small, by a suitable choice of time delay associated with
the scale parameter in the scale direction, all filters in this
filter class have support regions that cover the entire time
axis and are not suitable for real-time processing of tempo-
ral image data. Nevertheless, they are highly useful as the
simplest possible model for studying properties of temporal
and spatio-temporal scale-spaces. They are also highly use-
ful for off-line processing. We shall later consider the topic
of strict temporal causality in detail in Sect. 5.

Parameterization of shape- and velocity-adapted spatio-
temporal filters. In the case with two spatial dimensions
and one temporal dimension, which will be referred to as

Fig. 4 By adapting the shape and the position of a spatio-temporal
smoothing kernel to the direction of motion, we can compute image
descriptors that are invariant to constant velocity motion. This prop-
erty can for example be used for reducing the effect of motion blur
when computing image descriptors of moving objects at coarse tempo-
ral scales

2+1-dimensional space-time, let us consider a Galilean mo-
tion in the image plane

⎧⎨
⎩

x′ = x + vxt,

y′ = y + vyt,

t ′ = t.

(60)

Then, by transforming the affine covariance matrix in (59)
by such a Galilean transformation, we obtain (using (52))
a spatio-temporal covariance matrix of the form

�′ =
⎛
⎝ λ1 cos2 β + λ2 sin2 β + v2

xλt (λ2 − λ1) cosβ sinβ + vxvyλt vxλt

(λ2 − λ1) cosβ sinβ + vxvyλt λ1 sin2 β + λ2 cos2 β + v2
yλt vyλt

vxλt vyλt λt

⎞
⎠

(61)

Velocity-adapted spatio-temporal derivatives are then given
by

∂x̄ = ∂x, ∂ȳ = ∂y, ∂t̄ = vx ∂x + vy ∂y + ∂t . (62)

Figures 5–6 show spatio-temporal scale-space kernels gen-
erated in this way. Figure 5 shows space-time separable fil-
ters corresponding to v = 0, while Fig. 6 shows correspond-
ing velocity adapted and non-separable filters for a non-zero
velocity v �= 0.

For the specific case with one spatial dimension and one
temporal dimension, we obtain

det�′ = λxλt = sτ, (63)

(X − δ)T �′−1
(X − δ) = (x − vt)2

s
+ (t − δt )

2

τ
(64)



J Math Imaging Vis (2011) 40: 36–81 47

Fig. 5 Space-time separable Gaussian spatio-temporal scale-space
kernels: (top left) Original smoothing kernel g(x, y, t; �,v); (top
right) First-order spatial derivative gx(x, y, t; �,v); (bottom left)
First-order temporal derivative gt (x, y, t; �,v); (bottom right) First-

order temporal derivative of the spatial Laplacian gxxt (x, y, t; �,v)+
gyyt (x, y, t; �,v) (λ1 = λ2 = 16, λt = 4, vx = vy = 0). (Bottom
plane: space (x, y); Vertical axis: time t .)
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Fig. 6 Velocity-adapted and non-separable Gaussian spatio-
temporal scale-space kernels: (top left) Original smoothing ker-
nel g(x, y, t; �,v); (top right) First-order spatial derivative
gx(x, y, t; �,v); (bottom left) First-order temporal derivative

gt̄ (x, y, t; �,v); (bottom right) First-order temporal derivative of
the spatial Laplacian gxxt̄ (x, y, t; �,v) + gyyt̄ (x, y, t; �,v) (λ1 =
λ2 = 16, λt = 4, vx = 2, vy = 0). (Bottom plane: space (x, y); Vertical
axis: time t .)
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Fig. 7 Space-time separable
kernels gxαtγ (x, t; s, τ, δ) up to
order two obtained from the
Gaussian spatio-temporal
scale-space in the case of a
1+1-D space-time (s = 1, τ = 1,
δ = 2). (Horizontal axis: space
x; Vertical axis: time t .)

Fig. 8 Velocity-adapted
spatio-temporal kernels
gx̄α t̄γ (x, t; s, τ, v, δ) up to order
two obtained from the Gaussian
spatio-temporal scale-space in
the case of a 1+1-D space-time
(s = 1, τ = 1, v = 0.75, δ = 2).
(Horizontal axis: space x;
Vertical axis: time t .)

which after insertion into (45) implies that these Gaussian

spatio-temporal kernels assume the form

g(x, t; s, τ, v, δ) = 1√
2πs

e− (x−vt)2
2s

1√
2πτ

e− (t−δ)2
2τ

= g(x − vt; s) g(t; τ, δ). (65)

Figures 7 and 8 show examples of these kernels over a 1+1-
D space-time.

When implementing a velocity-adapted spatio-temporal
scale-space representation in practice, there are different al-
ternatives to consider. The simplest approach is to use the
same velocity vector at all image positions, and is equiv-
alent to global stabilization. More generally, one may also
consider different image velocities at different image po-
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sitions.5 In this way, the corresponding velocity-adapted
spatio-temporal scale-space representations will for appro-
priate values of the velocity parameters correspond to fil-
tering along the particle trajectories. Thereby, the system
will be able to handle multiple moving objects and will also
have the ability to derive a Galilean invariant representation
for each object (see next section for details). Alternatively,
we may at each image position even consider an ensemble
of spatio-temporal filters that are tuned to different image
velocities—a design with close relations to velocity-tuned
receptive fields biological vision (see Sect. 6). Such a paral-
lel treatment of velocity adaption for different image veloc-
ities also has the potential to handle transparent motion.

4.1.4 Galilean Invariant Fixed-Point Property of
Spatio-Temporal Scale-Space

This spatio-temporal scale-space concept implies that spatio-
temporal image data can be smoothed by a family of spatio-
temporal filters that correspond to different spatial scales s,
temporal scales τ and image velocities v. An underlying
intention behind this construction is that the vision system
should be able to handle objects that move with different
velocities relative to the observer. Specifically, if a partic-
ular object moves with image velocity v0, then the spatio-
temporal scale-space representation will for this value of
the velocity parameter correspond to filtering along the di-
rection of motion. In practice, however, we cannot expect
the velocity of the object to be a priori known by the vi-
sion system, which is a major motivation for allowing for a
family of different image velocities in the scale-scale repre-
sentation. This idea is also in good agreement with findings
about velocity-tuned cells in biological vision, that give their
strongest responses around a particular stimulus velocity.

If the image velocity v of the filter does not agree with
the image velocity v0 of the object, it is, however, not guar-
anteed that the corresponding filtered data will be easy to
interpret. Therefore one may ask: Is there a way to deter-
mine from the output from a particular velocity-adapted fil-
ter alone if the output can be regarded as useful or not?

One way of making such judgements of velocity-adapted
data can be derived from a Galilean-invariant fixed-point
property of a notion referred to as Galilean block di-
agonalization of the spatio-temporal second-moment ma-
trix/structure tensor [53], which is a generalization of a cor-
responding affine-invariant fixed-point property of the spa-
tial second-moment matrix/structure tensor [39, Sect. 15.4],
[51]. In Appendix C, we describe how such Galilean-
invariant fixed points can be constructed theoretically and
be detected computationally.

5A spatial counterpart of this idea has been developed in Almansa and
Lindeberg [2], where the spatial covariance matrix in an affine scale-
space representation is allowed to vary in space, to allow for enhance-
ments of local directional image structures in fingerprint images.

5 Time-Causal Spatio-Temporal Scale-Space

While the above mentioned Gaussian spatio-temporal scale-
space model can be successfully used for analyzing off-line
data, it is not suitable for a real-time implementation. In a
real-time scenario, we have to require all scale-space ker-
nels to be strictly time-causal in the sense that they should
not require any access to the future. Fortunately, it is rather
straightforward to adapt the above mentioned theories to be
truly time-causal.

Time-recursive update rule over time t . Following Linde-
berg and Fagerström [49] we would like the scale-space
model to be based on time-causal scale-space kernels that
lead to a limited internal memory that is successively up-
dated with regard to novel contents. Furthermore, following
Fagerström [17] we are seeking a scale-space representation
that at any time moment to be computed from a continu-
ous semi-group structure over time. Thus, given any spatio-
temporal signal f (x, t) over space-time (x, t), we embed
this signal into a scale-space representation L using a com-
plementary spatial scale parameter s and a complementary
temporal scale parameter τ that it is to be updated according
to the following time-recursive formulation6

L(x, t2; s2, τ )

=
∫

ξ∈RN

∫
ζ≥0

T (x − ξ, t2 − t1; s2 − s1, τ, ζ )

L(ξ, t1; s1, ζ ) dζ dξ, (66)

where T now in combination with L generates a two-
parameter cascade structure over both spatial scales s and
time t (however NOT over temporal scales τ ). In analogy
with the spatial scale-space concept, we require the alge-
braic structure to correspond to convolutions over the spatial
domain (x, ξ ) and with regard to spatial scales s. We require
the algebraic structure to be similar to a cascade structure
over time t , using the temporal scales (τ , ζ ) as an internal
temporal buffer. For reasons that will be apparent later, how-
ever, we do not require the updating rule over time to be a
true convolution over temporal scales, but a more general
integral formulation. Notably, this update rule makes it pos-
sible to compute the representation at any coarser scale s2

and/or any later time moment t2 from the representation at
any finer scale s1 and any earlier time moment t1, with the

6Please, note that this formulation is only preliminary. In addition to
an update rule on the scale-space representation L, the updating rela-
tion must also specify how new information from the input signal f

should be incorporated. We will return to this topic in a more precise
manner later, in (113). The purpose of this preliminary formulation is
to provide a first intuitive start towards the formalism that will follow
in terms of differential equations.
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arguments of the updating kernel depending only on the dif-
ferences s2 − s1 in scale and t2 − t1 in time. For the update
rule over temporal scales as referred to by τ and ζ , however,
we do not require a similar structure.

Joint two-parameter semi-group structure over spatial scales
s and time t . Let us now turn to the problem of expressing
a spatio-temporal scale-space representation L : R

N ×R+ ×
R

2+ → R of a spatio-temporal signal f : R
N × R+ → R de-

fined for all spatial positions x and all positive times t ≥ 0
and with two scale parameters (s, τ ) ∈ R

2+. As combined
boundary and initial condition, we take L(x, t; 0,0) =
f (x, t), and in terms of transformations from the origi-
nal spatio-temporal signal f , we assume that the spatio-
temporal scale-space can be obtained by a convolution over
space x and time t that respects temporal causality over
time.

L(x, t; s, τ )

=
∫ t

u=0

∫
ξ∈RN

f (ξ,u)h(x − ξ, t − u; s, τ ) dξ du. (67)

Initially, we assume that both the original signal f and the
convolution kernel h are in the Banach space X = L2(RN ×
R+). Then, also all scale-space representations L will be
in this space. To ensure sufficient regularity, we do also as-
sume that the smoothing functions T (x, t; s, τ, ζ ) in the
time recursive formulation (66) and that convolution ker-
nels h(x, t; s, τ ) in the transformation (67) from the orig-
inal spatio-temporal signal are to be absolute integrable, i.e.,
in L1(RN × R+).

To describe this algebraic structure in terms of operators,
let us introduce a two-parameter family of bounded linear
operators T (s, t) from X to X, denoted T (s, t) ∈ O(X),

L(·, t; s, ·) = T (s, t)L(·,0; 0, ·), (68)

where a two-parameter semi-group condition on the opera-
tor T over spatial scales s and time t implies that T must
satisfy

{
T (s1, t1) T (s2, t2) = T (s1 + s2, t1 + t2),

T (0,0) = I.
(69)

We require this semi-group to be strongly continuous (C0)
in the sense that

lim
(s,t)↓(s0,t0)

‖(T (s, t) − T (s0, t0))(f )‖2 = 0 (70)

should hold for each f ∈ X and for any (s0, t0) ≥ 0, where
the limit operation (s, t) ↓ (s0, t0) should be interpreted so
as to hold for all paths ((s − s0)

2 + (t − t0)
2) → 0 to the

origin for which s ≥ s0 and t ≥ t0.

For this two-parameter semi-group, we define the infin-
itesimal generator as the linear transformation A : R

2+ →
O(X) that satisfies

A(α1, α2)L = (A1, A2)

(
α1

α2

)
L = α1 A1L + α2 A2L (71)

for all L ∈ X and all (a1, a2) ∈ R
2+, where A1 and A2 are the

infinitesimal generators of the one-parameter semi-groups
T (s,0)s≥0 and T (0, t)t≥0 respectively, defined in turn from

A1L = lim
h↓0

T (h,0)L − L

h
= ∂sL, (72)

A2L = lim
k↓0

T (0, k)L − L

k
= ∂tL. (73)

Specifically, the directional derivative of the semi-group in
any direction u = (α1, α2) is

DuL = lim
h↓0

T (α1h,α2h)L − L

h
(74)

and for all u = (α1, α2) ∈ R
2+ and all f ∈ X we have for

k > 0 and t > 0 that

Du T (s, t) f = (α1 ∂s + α2 ∂t ) T (s, t) f

= (α1 A1 + α2 A2) T (s, t) f

= A(α1, α2) T (s, t) f, (75)

where the domain of the operator Au = α1 A1 + α2 A2 is
dense in X for all (α1, α2) ∈ R

2+ [1, pages 405, 407, 409].
To ensure that pointwise derivatives with respect to the

scale parameters exist for all points (x, t; s, τ ) ∈ R
N ×

R+ × R
2+ given any smooth function f of compact sup-

port as input, we do also require the semi-group should for
some k > (N + 1)/2 be C1 continuous with respect to the
L2-based Sobolev norm ‖ · ‖Hk(RN×R+) in the sense that for
all connected regions � ∈ R

2+ that shrink to zero in such a
way that the maximum distance ρ(�) between a point in �

and the origin tends to zero

lim
ρ(�)↓0

∥∥∥∥∥
∫
(s,t)∈�

T (s, t) f d�∫
(s,t)∈�

d�
− f

∥∥∥∥∥
Hk(RN×R+)

= 0 (76)

should be required to hold for all smooth functions f ∈
L1(RN × R+) ∩ C∞(RN × R+).

This algebraic structure constitutes a natural general-
ization of the corresponding framework for one-parameter
semi-groups in Sect. 3.2; see Definition 11 and Lemma 12
in Appendix E for more formal statements.

Evolution properties over time t and scale s. From this
analysis we can in analogy with Lemma 2 conclude that the
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spatio-temporal scale-space representation L should be dif-
ferentiable with respect to scale s and time t and satisfy the
following two differential equations

∂sL = A1L, (77)

∂tL = A2L (78)

for some infinitesimal generators A1 and A2. Specifically,
the second equation reflects a time-recursive formulation
where the temporal scales τ are now treated as an internal
temporal memory buffer, which is not explicitly but only im-
plicitly updated by the temporal evolution. In this respect,
the relationship between time t and temporal scale τ is re-
versed compared to the relationship between space x and
spatial scale s.

Our next step is to investigate how the notion of non-
enhancement of local extrema affects the choice of possi-
ble infinitesimal generators A1 and A2 and thus the class
of possible operators Ts,t with their associated admissible
spatio-temporal scale-space representation L. A natural way
to formulate the notion of non-enhancement of local extrema
in a time-recursive spatio-temporal setting is as follows: If
a point (x0, t0; s0, τ0) is a local maximum over the spatial
coordinates x ∈ R

N and the temporal scale τ , then the di-
rectional derivative of L in an arbitrary (forward) direction
u in (s, t)-space must be negative. Similarly, if the point is a
local minimum, then the directional derivative must by pos-
itive. In other words:

∂uL ≤ 0 at any non-degenerate local maximum, (79)

∂uL ≥ 0 at any non-degenerate local minimum. (80)

Since the directional derivative ∂uL in a direction u =
(α1, α2) in (s, t)-space can be written

∂uL = α1 ∂sL + α2 ∂tL (81)

and the sign condition on ∂uL is required to hold for all non-
negative α1 and α2, it follows that we have to require that

∂sL ≤ 0 and ∂tL ≤ 0

at any non-degenerate local maximum, (82)

∂sL ≥ 0 and ∂tL ≥ 0

at any non-degenerate local minimum. (83)

see Definitions 13 and 14 in Appendix E for more detailed
statements.

From a similar way of reasoning as in the proof of Theo-
rem 5, we can then conclude that the infinitesimal generators
A1 and A2 must correspond to linear combinations of first-
and second-order derivatives, where the second-order deriv-
atives are determined from positive semi-definite covariance

matrices �1 and �2. In other words, the scale-space repre-
sentation L should satisfy:

∂sL = 1

2
∇T

x,τ

(
�1∇x,τL

) − δT
1 ∇x,τL, (84)

∂tL = 1

2
∇T

x,τ

(
�2∇x,τL

) − δT
2 ∇x,τL, (85)

where in this setting, the gradient operator ∇x,τ contains
derivatives with respect to both the spatial coordinates x and
the temporal scale τ ; see Lemma 15 in Appendix E for a
proof.

If we want the spatial scale parameter s to be a pure
spatial scale parameter, however, it is natural to require the
first evolution equation for ∂sL to be independent of explicit
derivatives with respect to τ ; otherwise temporal phenom-
ena would influence the definition of spatial scales. Thus,
we reduce the first term in A1 to

∇T
x,τ�1∇x,τL = ∇T

x �1∇x, (86)

where the restricted gradient operator ∇x corresponds to dif-
ferentiation with respect to the spatial coordinates x only.
To avoid an unessential translation with respect to the spa-
tial domain, we can apply similar reflection symmetry argu-
ments as in Sect. 4.1 to set δ1 = 0.

Similarly, if we want the temporal scale parameter τ to
correspond to a pure temporal scale parameter, it is natural
to require those second-order terms in the second evolution
equation that depend on explicit derivatives with respect to
x to be zero. Then, only one second-order term with deriva-
tives with respect to τ remains non-zero, leading to a single
term of the form 1

2∂ττL. Concerning the first-order terms,
we do not want the temporal evolution to be dependent on
the temporal history and thus not dependent on the temporal
scale τ . Therefore, we set the first-order term with respect
to τ to zero, implying that the first-order term will only con-
tain partial derivatives with respect the spatial coordinates x.
What will remain of A2 will therefore be an operator of the
form

A2L = 1

2
∂ττL − δT

2 ∇xL, (87)

where we in a moment will rename the x component of δ2

into v. To conclude, we have shown that given the require-
ment of non-enhancement of local extrema and comple-
mentary regularity and symmetry requirements, the spatio-
temporal scale-space representation should satisfy the fol-
lowing evolution equations:

∂sL = 1

2
∇T

x (�∇xL), (88)

∂tL = −vT ∇xL + 1

2
∂ττL. (89)
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Definition 16 and Theorems 17–18 in Appendix E give pre-
cise statements of the corresponding necessity and suffi-
ciency results. Hence, for an original signal of dimension-
ality N + 1, the time-causal scale-space representation will
(at least) comprise N + 3 dimensions.7

In terms of integral expressions, it can be shown8

that the solutions of these equations with initial condition
L(x,0;0, τ ; �,v) = 0 and combined boundary and initial
condition L(x, t;0,0; �,v) = f (x, t) can be written

L(x, t; s, τ ; �,v)

=
∫ t

u=0

∫
ξ∈RN

f (ξ,u)h(x − ξ, t − u; s, τ ; �,v)dξ du,

(90)

where the notation with double semi-colons in the list of
variables indicates that s and τ are parameters while � and
v are meta-parameters. The convolution kernel h is in turn
given by

h(x, t; s, τ ; �,v) = gN(x − vt; s; �)φ(t; τ), (91)

where

gN(x − vt; s; �)

= 1

(
√

2πs)N
√

det�
e−(x−vt)T �−1(x−vt)/2s , (92)

φ(t; τ) = 1√
2π t3/2

τ e−τ 2/2t . (93)

This form of time-causal spatio-temporal scale-space has
also been derived by Fagerström [17] in the special case
when � = I , however, starting from different arguments of
scale invariance. The additional degree of freedom in the
spatial covariance matrix � obtained here has the additional
advantage that it allows for non-isotropic smoothing kernels
over the spatial domain, which may be useful when dealing

7If the full group of spatial covariance matrices � and velocity vectors
v is considered as well, the dimensionality of the affine- and velocity-
adapted scale-space will be dim(x) + dim(t) + dim(�) + dim(v) +
dim(τ ) = N + 1 + N(N + 1)/2 + N + 1 = (N2 + 5N + 4)/2. To
handle such high-dimensional scale-spaces in practice, some sorts of
intelligent search strategies are obviously required, such as combina-
tions of lower-dimensional subgroups. The shape adaptation and ve-
locity adaptation algorithms constitute examples of such simplifying
search strategies. With a massively parallel architecture, such as in bi-
ological vision, however, one could afford to represent a richer family
of affine-adapted and/or velocity-adapted filters than would be possible
to handle with a serial computer. We will return to this subject, when
we describe relations to biological vision in Sect. 6.
8This result follows from the fact that gN(x − vt; s; �,δ) in (45)
satisfies the differential equation (44), which (with δ = 0) implies
that gN(x − vt; s; �)φ(t; τ) in (91) satisfies (88). Similarly, since
φ(t; τ) according to (205) is a solution of (201), it follows that
gN(x − vt; s; �)φ(t; τ) is a solution of (89); see Lindeberg [48].

with local image deformations over time and when consid-
ering motion boundaries.

Figure 9 shows examples of the kernel h with spatio-
temporal derivatives computed from it in the space-time
separable case with v = 0. Figure 10 shows correspond-
ing velocity-adapted kernels for non-zero velocities v with
velocity-adapted temporal derivatives computed from a lin-
ear combination of temporal derivatives and spatial deriva-
tives

∂t̄ = ∂t + vT ∇x. (94)

Before proceeding with detailed analysis of this scale-space
it can be mentioned that it will be shown in Sect. 5.1.4 that
the spatial extent of these kernels is determined by the spa-
tial covariance matrix �, while the temporal extent is pro-
portional to τ 2.

5.1 Properties of the Time-Causal Spatio-Temporal
Scale-Space

We can note that there are many structural similarities be-
tween this time-causal spatio-temporal scale-space concept
and the previously considered Gaussian spatio-temporal
scale-space. First of all, due to the linearity, the property
of non-enhancement of local extrema carries over to any
spatio-temporal derivative. Hence, all spatio-temporal deriv-
atives satisfy corresponding scale-space properties as the
original scale-space. Furthermore, with the evolution deriv-
atives ∂sL and ∂tL over spatial scales s and over time t given
by (88) and (89), it holds that the directional derivative ∂uL

in any direction u = (α,β) in (s, t) space (according to (81))
can be written

∂uL = α ∂sL + β ∂tL

= α

2
∇T

x �∇xL + β

2
∂ττL − β vT ∇xL. (95)

Thus, there is a very close similarity between these equa-
tions and the differential equations (44) governing the previ-
ously considered Gaussian spatio-temporal scale-space con-
cept.

With regard to temporal causality, which is necessary
in a real-time setting, it follows from (89) in combination
with (94) that velocity-adapted temporal derivatives of L,
i.e., ∂n

t̄
L, can be computed from derivatives over temporal

scales (i.e., the internal temporal memory) ∂n
ττL according

to

∂t̄ = 1

2
∂ττ , (96)

thus without need for any additional temporal buffering than
the information already contained in the time-causal spatio-
temporal scale-space.
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Fig. 9 Time-causal and space-time separable spatio-temporal scale-
space kernels: (top left) Original smoothing kernel h(x, y, t; �,v, τ);
(top right) First-order spatial derivative hx(x, y, t; �,v, τ); (bot-
tom left) First-order temporal derivative ht (x, y, t; �,v, τ); (bot-

tom right) First-order temporal derivative of the spatial Laplacian
hxxt (x, y, t; �,v, τ) + hyyt (x, y, t; �,v, τ) (λ1 = λ2 = 16, τ = 2,
vx = vy = 0). (Bottom plane: space (x, y); Vertical axis: time t .)
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Fig. 10 Time-causal and velocity-adapted (non-separable) spatio-
temporal scale-space kernels: (top left) Original smoothing ker-
nel h(x, y, t; �,v, τ); (top right) First-order spatial derivative
hx(x, y, t; �,v, τ); (bottom left) First-order velocity-adapted tem-

poral derivative ht̄ (x, y, t; �,v, τ); (bottom right) First-order
velocity-adapted temporal derivative of the spatial Laplacian
hxxt̄ (x, y, t; �,v, τ) + hyyt̄ (x, y, t; �,v, τ) (λ1 = λ2 = 16, τ = 2,
vx = 3/4, vy = 0). (Bottom plane: space (x, y); Vertical axis: time t .)
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5.1.1 Relations to Regular Gaussian Smoothing

We can note that there is also a very close link to regular
Gaussian smoothing. By inspection, it can be seen that the
time-causal spatio-temporal smoothing can be interpreted as
a first-order derivative with respect to temporal scale τ of a
one-dimensional Gaussian over temporal scales, i.e.,

φ(t; τ) = −∂τ g(τ ; t), (97)

and an N -dimensional Galilean-transformed affine Gaussian
kernel

gN(x − vt; �) = 1

(
√

2π)M
√

det�
e−(x−vt)T �−1(x−vt)/2

(98)

over space x. For sake of convenience, we will henceforth
change to the following notation:

L(x, t; �,v, τ)

=
∫ t

u=0

∫
ξ∈RN

f (ξ,u)h(x − ξ, t − u;�,v, τ) dξ du,

(99)

where

h(x, t; �,v, τ) = gN(x − vt; �)φ(t; τ), (100)

gN(x; �) = 1

(
√

2π)N
√

det�
e−xT �−1x/2, (101)

φ(t; τ) = −∂τ g1(τ ; t) = 1√
2π t3/2

τ e−τ 2/2t . (102)

Please, note the shift of the order of the arguments between
φ and g1 in (102).

5.1.2 Transformation Properties

This velocity- and shape-adapted spatio-temporal scale-
space concept is closed under

– rescalings of the spatial and temporal dimensions,
– Galilean transformations in space-time and
– affine transformations in the spatial domain.

Scaling transformations over space and/or time. To verify
the first one of these properties, let us rescale the spatial and
temporal domains by scaling factors a and b, i.e., given a
spatio-temporal signal f (x, t) introduce a rescaled signal

f ′(x′, t ′) = f (x, t) with x′ = a x and t ′ = b t, (103)

where a and b are non-zero scalar entities. Then, with

�′ = a2�, v′ = b

a
v and τ ′ = √

b τ (104)

the time-causal spatio-temporal scale-space representations
of f and f ′ are related according to

L′(x′, t ′; �′, v′, τ ′) = L(x, t; �,v, τ) (105)

with L given by (99) and L′ defined by

L′(x′, t ′; �′, v′, τ ′)

=
∫ t ′

u′=0

∫
ξ ′∈RN

f ′(ξ ′, u′) gN(x′ − v′t ′; �′)

φ(t ′; τ ′) dξ ′ du′. (106)

Galilean transformations in space-time. Concerning the
Galilean transformation property, let us next given any
spatio-temporal signal f (x, t) and any velocity vector w de-
fine a Galilean transformed signal by

f ′′(x′′, t ′′) = f (x, t), where

x′′ = x − w t and t ′′ = t. (107)

Then, provided that

�′′ = �, v′′ = v + w and τ ′′ = τ (108)

the spatio-temporal scale-space representations of f and f ′′
are also equal

L′′(x′′, t ′′; �′′, v′′, τ ′′) = L(x, t; �,v, τ). (109)

Affine transformation over the spatial domain. Finally,
concerning the affine transformation property, it follows
from (51) and (52) that if we have two spatio-temporal sig-
nals f ′′′ and f that are related by f ′′′(x′′′, t ′′′) = f (x, t)

with x′′′ = Ax and t ′′′ = t and where A is a non-singular
N × N matrix, then the time-causal spatio-temporal scale-
space representations of f and f ′′′ are related according to

L′′′(x′′′, t ′′′; �′′′, v′′′, τ ′′′) = L(x, t; �,v, τ) (110)

if

�′′′ = A�AT , v′′′ = v and τ ′′′ = τ. (111)

General implications. To conclude, these results show that
this spatio-temporal scale-space satisfies natural transforma-
tion properties that allow it to handle

– image data acquired with different spatial and/or temporal
sampling rates,

– image structures of different spatial and/or temporal ex-
tent,

– objects with different distances from the camera,
– the linear component of relative motions between the

camera and objects in the world, and
– the linear component of perspective deformations.

Similar properties hold also for the Gaussian spatio-temporal
scale-space in Sect. 4.1.3.
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5.1.3 Temporal Cascade-Recursive Formulation

When computing a spatio-temporal scale-space representa-
tion at time t2 > t1, a very attractive property is if this can
be done in a time-recursive manner, such that it sufficient to
use the following sources of information:

– the internal buffer of the spatio-temporal scale-space rep-
resentation L at time t1, and

– information about the spatio-temporal input data f during
the time interval [t1, t2].

This property means that it is sufficient to use the internal
states of the spatio-temporal scale-space representation as
internal memory, and we do not need to have any comple-
mentary buffer of what else has occurred in the past.

Such a property can indeed be established for the time-
causal scale-space representation, based the fact that the
time-causal scale-space kernel φ(t; τ) satisfies the follow-
ing time-recursive cascade smoothing property over a pure
temporal domain (derived in (210) and (214) in Appen-
dix D.3)

φ(t2; τ) =
∫ ∞

ζ=0
φ(t1; ζ )(g(τ − ζ ; t2 − t1)

− g(τ + ζ ; t2 − t1)) dζ. (112)

From this relation it follows that the time-causal spatio-
temporal scale-space representation satisfies the following
cascade-recursive structure over time t and spatial scales s:

L(x, t2; s2, τ )

=
∫

ξ∈RN

∫
ζ≥0

T (x − ξ, t2 − t1; s2 − s1, τ, ζ )

L(ξ, t1; s1, ζ ) dζ dξ

+
∫

ξ∈RN

∫ t2

u=t1

B(x − ξ, t2 − u; s2, τ )

f (ξ,u) dξ du, (113)

where the kernel T for updating the internal memory repre-
sentation L is given by

T (x, t; s, τ, ζ ) = gN(x − vt; s) (g(τ − ζ ; t)
− g(τ + ζ ; t)) (114)

and the kernel B for incorporating new knowledge from the
input signalf at the boundary is

B(x, t; s, τ ) = gN(x − vt; s)φ(t; τ). (115)

Please, note that we have here dropped the arguments for the
meta-parameters � and v in order to simplify the notation.

5.1.4 Properties of the Time-Causal Smoothing Functions

To describe the evolution properties over temporal scales τ

is however somewhat different than for the Gaussian spatio-
temporal scale-space. While the integral of h over space-
time is finite
∫ ∞

t=0

∫
x∈RN

h(x, t; �,v, τ) dx dt = 1, (116)

we cannot compute the first- and second-order moments of
h over time t , since the corresponding integrals do not con-
verge
∫ ∞

t=0

∫
x∈RN

t h(x, t; �,v, τ) dx dt → ∞, (117)

∫ ∞

t=0

∫
x∈RN

t2 h(x, t; �,v, τ) dx dt → ∞. (118)

Hence, we cannot parameterize the time-causal kernels h in
terms of mean vectors and covariance matrices over space-
time, as is a natural approach for most other spatio-temporal
scale-spaces. Nevertheless, we can compute the position in
space-time of the local maximum of h(x, t; �,v, τ)

(
x̂

t̂

)
= 1

3

(
v

1

)
τ 2 (119)

and make another definition of the effective temporal extent
of the time-causal kernel from the values tt/2,1 < t1/2,2 for
which the one-dimensional purely temporal time-causal ker-
nel φ(t; τ) assumes half its maximum value

φ(tt/2,1; τ) = φ(tt/2,2; τ) = 1

2
φ(t̂; τ) (120)

with the approximate estimates

tt/2,1 ≈ 0.145 τ 2, tt/2,2 ≈ 1.046 τ 2 (121)

that lead to the following measure of the temporal width of
the one-dimensional time-causal scale-space kernel

�t = tt/2,2 − tt/2,1 ≈ 0.900 τ 2. (122)

We can also define the temporal delay according to

δ =
∫ ∞
t=0 t φ2(t; τ) dt∫ ∞
t=0 φ2(t; τ) dt

= τ 2. (123)

Both the temporal width and the temporal delay of the
time-causal scale-space kernel are hence proportional to the
square of the temporal scale parameter τ (see Figs. 11–12
for illustrations).

To visualize the temporal response properties of the one-
dimensional time-causal kernel φ(t; τ), we can also com-
pute the response to a step function fstep(t) = H(t) = 1 for
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Fig. 11 Graphs of the one-dimensional time-causal scale-space ker-
nels φ(t; τ) for τ = 1,2 and 4

Fig. 12 Illustration of the definition of the width of the time-causal
kernel from the values tt/2,1 < t1/2,2 for which the time-causal kernel
(here with τ = 1) assumes half its maximum value

t > 0 and fstep(t) = H(t) = 0 for t < 0

Lstep(t; τ) = erfc

(
τ√
2t

)
(124)

and to a linear ramp framp(t) = t (see Fig. 13)

Lramp(t; τ) = (t +τ 2) erfc

(
τ√
2t

)
−e− τ2

2t

√
2

π
τ
√

t . (125)

We can also compute the spatial mean x̄ and the spatial co-
variance matrix C(x, x) of the composed spatio-temporal
kernel h(x, t; �,v, τ) according to

x̄ =
∫
x∈RN x h(x, t; �,v, τ) dx∫
x∈RN h(x, t; �,v, τ) dx

= vt, (126)

C(x, x) =
∫
x∈RN xxT h(x, t; �,v, τ) dx∫

x∈RN h(x, t; �,v, τ) dx
− x̄x̄T = s �.

(127)

Fig. 13 The response dynamics of the one-dimensional time-causal
scale-space kernel φ(t; τ) to (top) a unit step function and (bottom) a
linear ramp at temporal scale τ = 1

In other words, (i) the spatial shape of the spatio-temporal
kernel h(x, t; �,v, τ) is described by the spatial covariance
matrix �, (ii) the temporal extent is proportional to τ 2 and
(iii) the velocity vector v specifies the orientation of the ker-
nel in space-time.

5.1.5 Behaviour over Temporal Scales τ

Under variations of the temporal scale parameter τ , it can
be noted that the explicit expression for the time-causal ker-
nel φ(t; τ) is self-similar with regard to the ratio τ/

√
t .

This means that the time-causal kernels will be self-similar
over temporal scales, as reflected in the scaling property in
(104)–(105). With the Laplace transform of the purely tem-
poral part of the time-causal kernel defined by

(Lφ)(p; τ) = φ̄(p; τ) =
∫ ∞

t=0
φ(t; τ) e−ptdt

=
∫ ∞

t=0

1√
2π t3/2

τ e−τ 2/2t e−ptdt

= e−√
2p τ , (128)

it can be seen that the result of multiplying two such Laplace
transforms is of the form
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Fig. 14 The spatio-temporal scale-space L representation of an image
is a function over space x ∈ R

N , time t ∈ R+, spatial scale s ∈ R+ and
temporal scale τ ∈ R+, with a spatial covariance matrix � ∈ R

N2
and

an image velocity vector v ∈ R
N as meta parameters. With the tem-

poral scale parameter τ treated as an internal state variable in addition
to (the here invisible) space x, we can describe this spatio-temporal
scale-space representation as a two-parameter semi-group that obeys
non-enhancement of local extrema over spatial scale s and time t , and
with a both time-causal and time-recursive update rule over time t . If
we on the other hand treat space-time (x, t) as the internal state, we ob-
tain another two-parameter semi-group over spatial scales s and tem-
poral scales τ , which obeys non-enhancement of local extrema with
increasing spatial scales s while only scale invariance over temporal
scales τ

φ̄(p; τ1) φ̄(p; τ2) = e−√
2p τ1e−√

2p τ2 = e−√
2p (τ1+τ2)

= φ̄(p; τ1 + τ2) (129)

corresponding to the linear semi-group structure of φ(t; τ)

under additions of the temporal scale parameter τ . Thus, the
time-causal kernels also form a semi-group over temporal
scales with regard to one-sided and finite support convolu-
tion operations

φ(·; τ1) ∗̃φ(·; τ2) = φ(·; τ1 + τ2) (130)

of the form

(f ∗̃g)(t) =
∫ t

u=0
f (u)g(t − u)du

=
∫ t

u=0
f (t − u)g(u)du. (131)

This property carries over to a corresponding semi-group
property of the time-causal spatio-temporal kernels under
convolutions over space-time

(h(·, ·; �1, τ1) ∗ h(·, ·; �2, τ2))

= h(·, ·; �1 + �2, τ1 + τ2) (132)

which means that the spatio-temporal derivatives obey the
following cascade smoothing property

L(·, ·; �2, τ2)

= h(·, ·; �2 − �1, τ2 − τ1) ∗ L(·, ·; �1, τ1). (133)

Along the direction of temporal scales τ , however, this semi-
group does not obey non-enhancement of local extrema
with increasing temporal scales, only scale invariance (see
Fig. 14).

5.2 Temporal Derivatives with Respect to Transformed
Time

When computing temporal derivatives of time-causal spatio-
temporal kernels, the temporal derivative operator reduces
to temporal derivatives of the one-dimensional time kernel
φ(t; τ). For space-time separable kernels with v = 0 we
have

∂xαtγ h(x, t; s, τ ) = ∂xαtγ (g(x; s)φ(t; τ))

= gxα (x; s)φtγ (t; τ) (134)

while for velocity-adapted kernels the corresponding velocity-
adapted spatio-temporal derivatives are given by

∂xα t̄γ h(x, t; s, τ, v) = ∂xα t̄γ (g(x − vt; s)φ(t; τ))

= gxα (x − vt; s)φtγ (t; τ). (135)

Hence, we can reveal many of the temporal response prop-
erties of the composed spatio-temporal kernels h(x, t; s, τ )

and h(x, t; s, τ, v) by studying the temporal derivatives of
the one-dimensional time-causal kernel φ(t; τ).

In this subsection, we shall follow this notion and extend
the regular temporal derivative operator ∂t by a transformed
derivative operator ∂t ′ with respect to a transformed time.
The motivation for this extension is that the time-causal ker-
nels are highly asymmetric over time, which means that it
may be more natural to consider temporal derivatives with
respect to a transformed time axis

t ′ = ϕ(t), (136)

where ϕ should be a monotonically increasing function, we
can in particular consider a self-similar logarithmic transfor-
mation

t ′ = log

(
t

t0

)
(137)

or a self-similar power law

t ′ = tα. (138)

The derivative operation ∂t ′ with respect to logarithmic time
will then related to the regular temporal derivative operator
∂t according to
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Fig. 15 Temporal smoothing kernels that can be used in the mod-
elling of space-time separable spatio-temporal receptive fields, with
their first- and second-order derivatives displayed as well: (top row)
Time-shifted Gaussian kernel g(t; τ, δ) = 1/

√
2πτ exp(−(t −δ)2/2τ)

with τ = 1 and δ = 4; (second row from top) The time-causal ker-
nel φ(t; τ) = 1/

√
2πt3 τ exp(−τ 2/2t) with τ = 1; (third row from

top) The time-causal kernel φ(t; τ) = 1/
√

2πt3 τ exp(−τ 2/2t) con-
sidered in the previous row, but with derivatives computed with re-
spect to square root time t ′ = √

t ; (bottom row) The time-causal ker-
nel φ(t; τ) = 1/

√
2πt3 τ exp(−τ 2/2t) considered in the previous

row, but with derivatives computed with respect to logarithmic time
t ′ = log(t/t0) with t0 = 2

∂t ′ = 1

ϕ′(t)
∂t (139)

which for the logarithmic time transformation implies

∂t ′ = t

t0
∂t (140)

and for the power law t ′ = tα

∂t ′ = t1−α

α
∂t . (141)

The third and fourth rows in Fig. 15 show the result of com-
puting first- and second-order temporal derivatives from the
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Fig. 16 Space-time separable
kernels hxαtγ (x, t; s, τ, v) up to
order two obtained from the
time-causal spatio-temporal
scale-space in the case of a
1+1-D space-time (s = 1, τ = 2)
and with temporal derivatives
computed with respect to a
self-similar transformation of
the temporal axis ∂t ′ ∼ tκ ∂t ,
here with κ = 1/2. (Horizontal
axis: space; Vertical axis: time.)

time-causal smoothing kernel in this way. For comparison,
we also show derivatives of the Gaussian temporal kernel
and regular temporal derivatives of the time-causal kernel.

As we can see, the change of temporal variable by a
self-similar monotonically increasing transformation does
not change the position of the zero-crossing for the first-
order derivative; it only leads a multiplication by linear
time-dependent scalar factor. For the second-order deriva-
tive, however, the behaviour is qualitatively different. The
regular first-order derivative of the time-causal kernel has
two peaks and one interior zero-crossing, while the second-
order derivative with respect to transformed time has three
clearly visible peaks and two internal zero-crossings, as a
second-order scale-space derivative kernel should have.

For these reasons, we will henceforth consider this gen-
eralized notion of temporal derivatives with respect to trans-
formed time when studying temporal derivative responses of
highly asymmetric smoothing kernels. Indeed, for both the
logarithmic transformation and for the power law the trans-
formed derivative operator is of the form

∂t ′ ∼ tκ∂t , (142)

and we will refer to this operator as temporal derivatives
with respect to self-similarly transformed time. It can be
shown that this definition is compatible with spatio-temporal
scale invariance for scale selection based on local extrema
over temporal scales of scale-normalized derivatives (manu-
script in preparation). Specifically, the value κ = 1/2 can be
motivated both from theoretical considerations and agree-
ment with biological receptive fields. Figure 16 and 17

show corresponding spatio-temporal derivative operators for
a 1+1-D space-time.

6 Relations to Biological Vision

In a comprehensive review, DeAngelis et al. [11] present an
overview of temporal response properties of receptive fields
in the central visual pathways. Foremost, the authors point
out the limitations of defining receptive fields in the spatial
domain only, and emphasize the need to characterize recep-
tive fields in the joint space-time domain, in order to de-
scribe how a neuron processes the visual image. Then, for
basic cell types in the LGN and the striate cortex, they es-
sentially describe the spatio-temporal response characteris-
tics as follows:

LGN neurons: The neurons in the LGN have approxi-
mately circular center-surround organization in the spatial
domain (see Fig. 18(a)) and most receptive fields are sep-
arable in space-time. There are two main classes of tem-
poral responses for such cells: In a “non-lagged cell” the
first temporal lobe is the largest one (Fig. 20(a)) whereas
for a “lagged cell” the second lobe dominates (Fig. 20(b)).
Such temporal response properties are typical for first- and
second-order temporal derivatives of a time-causal tempo-
ral scale-space representation (see Fig. 15).9 The spatial re-

9For the first-order temporal derivative of a time-causal temporal scale-
space kernel, the first peak is usually strongest, whereas for certain
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Fig. 17 Velocity-adapted
spatio-temporal kernels
h

x̄α t̄ ′γ (x, t; s, τ, v) up to order
two obtained from the
time-causal spatio-temporal
scale-space in the case of a
1+1-D space-time (s = 1, τ = 2,
v = 0.75) and with temporal
derivatives computed with
respect to self-similar
transformation of the temporal
axis ∂t ′ ∼ tκ ∂t , here with
κ = 1/2. (Horizontal axis:
space; Vertical axis: time.)

sponse, on the other hand, shows a high similarity to a Lapla-
cian of a Gaussian.

Within the above mentioned spatio-temporal scale-space
theory, we can model the qualitative shape of these circular
center-surround receptive fields in the LGN as:

hLGN(x, y, t; s, τ )

= ±(∂xx + ∂yy) g(x, y; s) ∂t ′n h(t; τ), (143)

where

– the sign determines whether the cell is of type “on-center-
off-surround” or “off-center-on-surround”,

– the parameter n = 1,2 describes the order of differentia-
tion with respect to time,

– g(x, y; s) is an isotropic smoothing kernel in the spatial
domain generated by the rotationally symmetric Gaussian
scale-space concept with spatial scale parameter s,

– h(t; τ) is a temporal smoothing kernel over time t with
temporal scale parameter τ ,

– the operator ∂t ′ denotes differentiation with respect to a
possibly transformed temporal axis according to a self-
similar transformation ∂t ′ ∼ tκ ∂t , where κ = 0 corre-
sponds to regular temporal derivatives, κ = 1 corresponds
to the computation of temporal derivatives with respect to
logarithmic time, and κ ∈ ]0,1[ corresponds to tempo-

classes of time-causal temporal smoothing kernel, the second peak
may be the most dominant for second-order temporal derivatives (see
Fig. 15).

ral derivatives with respect to a power law transformation
t ′ = tα with κ = 1 − α.

Figure 19(a) shows an illustration of the spatial response
properties of such a receptive field. Figure 15 shows exam-
ples of different kernels that can be used for modelling the
temporal smoothing component for this class of space-time
separable filters.

Note: In all illustrations in Sect. 6, where spatial and
spatio-temporal derivative expressions are aligned to bio-
logical data, the unit for the spatial scale parameter s corre-
sponds to [degrees2] of visual angle, the units for the tempo-
ral scale parameter τ in the Gaussian spatio-temporal scale-
space representation is [milliseconds2], while the units for
the temporal scale parameter τ in the time-causal spatio-
temporal scale-space representation is [√milliseconds]. For
image velocities v of velocity-adapted filters, the units are
[degrees/millisecond].

Simple cells: For simple cells in the striate cortex, the
receptive fields are oriented in the spatial domain (see
Fig. 18(b)). The spatial component of such cells can be mod-
elled by directional derivatives of affine Gaussian kernels
according to (58), (59) and (57); see Fig. 19(b):

hspace(x, y; s)

= (cosϕ ∂x + sinϕ ∂y)
m

(
1

2π
√

det�s

e−xT �−1
s x/2

)
.

(144)



J Math Imaging Vis (2011) 40: 36–81 63

Fig. 18 Examples of receptive field profiles in the spatial domain as
reported by DeAngelis et al. [11]. (a) Receptive fields in the LGN
have approximately circular center-surround responses in the spatial
domain. In terms of Gaussian derivatives, this spatial response pro-
file can be modelled by the Laplacian of the Gaussian ∇2g(x; t)

(see Fig. 19(a)). (b) Simple cells in the cerebral cortex do usually
have strong directional preference in the spatial domain. In terms of
Gaussian derivatives, this spatial response can be modelled as a direc-
tional derivative of an elongated affine Gaussian kernel (see Fig. 19(b)).
(c) Complex cells are non-linear and do not obey the superposition
principle

In the joint space-time domain, the spatio-temporal response
properties range from separable (Fig. 22) to strongly insep-
arable (Fig. 24), where a majority exhibit marked space-
time inseparability. The temporal profile is reported to be
typically biphasic, although some cells are reported to have
monophasic or triphasic responses.

In terms of temporal derivatives, a biphasic behaviour
arises from first-order derivatives, a monophasic behaviour
from zero-order derivatives and a triphasic behaviour from
second-order derivatives. Concerning the oriented spatial re-
sponse characteristics, there is a high similarity with direc-
tional derivatives of Gaussian kernels (Young [75]).

In fact, for all these linear receptive fields, spatio-
temporal filters with qualitatively similar response charac-
teristics can be generated by applying Cartesian or
directional partial derivative operators of low orders to the
spatio-temporal filters obtained from the spatio-temporal
scale-space framework outlined in Sects. 4 and 5.

Fig. 19 (left) The Laplacian of an isotropic two-dimensional
Gaussian smoothing kernel over a spatial domain
∇2g(x, y; s) = (x2 + y2 − 2s)/(2πs3) exp(−(x2 + y2)/2s)

with here s = 0.4 can be used as a model for the circular cen-
ter-surround responses in the LGN illustrated in Fig. 18(a).
(right) First-order directional derivatives of anisotropic affine
Gaussian kernels, here aligned to the coordinate directions
∂xg(x, y; �) = ∂xg(x, y; λx,λy) = − x

λx
1/(2π

√
λxλy) exp(−x2/2λx

− y2/2λy) and here with λx = 0.2 and λy = 2, can be used as a model
for simple cells with a strong directional preference as illustrated in
Fig. 18(b)

Figures 21, 23, and 25 show a few examples of separa-
ble and inseparable kernels obtained in this way for a 1+1-
dimensional space-time, based on the general models

hGaussian(x, t; s, τ, v, δ) = ∂m
x̄ ∂n

t̄
g(x, t; s, τ, v, δ), (145)

htime-causal(x, t; s, τ, v) = ∂m
x̄ ∂n

t̄ ′h(x, t; s, τ, v) (146)

with space-time tilted spatio-temporal derivative operators
∂x̄ = ∂x and ∂t̄ = v ∂x + ∂t and with the transformed self-
similar temporal derivative operator according to ∂t ′ ∼ tκ ∂t .

Motion selectivity. Concerning motion selectivity, DeAn-
gelis et al. [11] report that most cortical neurons are quite
sensitive to stimulus velocity and the speed tuning is more
narrow than for LGN cells. Simple cells with inseparable
receptive fields have directional preference while cells with
space-time separable receptive fields do not. Moreover, the
preferred direction of motion corresponds to the orientation
of the filter in space-time.

This structure is nicely compatible with velocity adapta-
tion, as described in Sects. 4.1.3–4.1.4, 5 and Appendix C.
Within the above mentioned terminology, separable recep-
tive fields correspond to spatio-temporal scale-space ker-
nels without velocity adaptation, while inseparable recep-
tive fields correspond to kernels that are explicitly adapted
to non-zero velocities.

The directional preference of the cells in the spatial do-
main can, in turn, be controlled by the covariance matrix
of the affine Gaussian scale-space concept as outlined in
Sect. 4.1.2. We obtain receptive fields without directional
preference in the spatial domain if we set the covariance
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matrix � = s I proportional to the unit matrix, and space-
time separable receptive fields if we in addition choose the
velocity adaptation vector v equal to zero. Assuming that
the influence of � and v can be neglected (e.g. by setting
� proportional to the unit matrix and v to zero), the filter
shape will then be determined solely by the spatial scale s

and the temporal scale λ. Conversely, we can construct in-
separable kernels with strong directional preference by ap-

Fig. 20 Examples of space-time separable receptive field profiles in
the LGN as reported by DeAngelis et al. [11]. There are two main
categories of such cells; (a) for a non-lagged cell, the first temporal
lobe dominates, while (b) for a lagged cell the second temporal lobe
is strongest. In terms of the spatio-temporal receptive field model pre-
sented in this paper, non-lagged cells can be modelled by first-order
temporal derivatives, while the shape of lagged cells resembles sec-
ond-order temporal derivatives (see Fig. 21). (Horizontal dimension:
space x; Vertical dimension: time t .)

propriate combinations of the covariance matrix � and the
velocity adaptation vector v.

The above mentioned fact that a majority of the cells are
inseparable in space-time is indeed nicely compatible with a
description in terms of a multi-parameter scale-space as out-
lined in Sect. 4. If the vision system is to give a reasonable
coverage of a set of filter parameters � and v, then the set of
filters corresponding to space-time separable receptive fields
(corresponding to the filter parameters v = 0) will be much
smaller than the set of filters allowing for non-zero values of
the mixed parameters over space and time.

Complex cells. Besides the above mentioned linear recep-
tive fields, there is a large number of early non-linear recep-
tive fields that do not obey the superposition principle and
which are referred to as complex cells. The response profile
of such a cell in the spatial domain is typically of the form
illustrated in Fig. 18(c).

In their study of spatio-temporal receptive field prop-
erties, DeAngelis et al. [11] also report a large num-
ber of complex cells with non-linear response profiles in
the joint space-time domain; see Fig. 26 for an exam-
ple. Within the framework of the presented spatio-temporal
scale-space concept, it is interesting to note that non-linear
receptive fields with qualitatively similar properties can
be constructed by squaring first- and second-order deriv-
ative responses and summing up these components [34].
Provided that the filters are appropriately normalized, we

Fig. 21 Space-time separable
kernels obtained from the
spatio-temporal scale-space
concepts: (upper left) Gaussian
spatio-temporal kernel
gxxt (x, t; s, τ, δ) = gxx(x; s) gt (t; τ, δ)

with s = 0.4, τ = 302, δ = 60;
(upper right) Gaussian
spatio-temporal kernel
gxxtt (x, t; s, τ, δ) = gxx(x; s) gtt (t; τ, δ)

with s = 0.3, τ = 352, δ = 120;
(lower left) Time-causal
spatio-temporal kernel
hxxt ′h(x, t; s, τ ) = gxx(x; s)φt ′ (t; τ, δ)

with s = 0.4, τ = 17;
(lower right) Time-causal
spatio-temporal kernel
hxxt ′t ′h(x, t; s, τ ) = gxx(x; s)φt ′t ′ (t; τ, δ)

with s = 0.4, τ = 25. For the
time-causal kernels, the
temporal derivatives have been
computed using the transformed
temporal derivative operator
∂t ′ ∼ tκ ∂t , here with κ = 1/2.
Compare the qualitative shapes
of these kernels with the kernels
in with Fig. 20. (Horizontal
dimension: space x; Vertical
dimension: time t .)
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can then construct a quasi quadrature measure over a one-
dimensional either spatial or temporal domain as [42]

QL = L2
ξ + C L2

ξξ = sL2
x + C s2L2

xx, (147)

where ∂ξ = √
s ∂x denotes normalized derivatives with re-

spect to normalized coordinates ξ = x/
√

s [44] and where
the constant C can be determined either to minimize the
amount of ripples in the operator response (C = 2/3 ≈
0.667) or from scale selection properties (C = e/4 ≈ 0.670).
In the case of operating on a 1+1-D space-time with a
Gaussian spatio-temporal scale-space, and with normalized

Fig. 22 Examples of space-time separable receptive field profiles
in the striate cortex as reported by DeAngelis et al. [11]: (a) a
non-lagged cell reminiscent of a first-order temporal derivative in time
and a first-order derivative in space (compare with Fig. 23(a)) (b) a
non-lagged cell reminiscent of a first-order temporal derivative in time
and a second-order derivative in space (compare with Fig. 23(b)). (Hor-
izontal dimension: space x; Vertical dimension: time t .)

derivatives over scale-normalized time λ = t/
√

τ according
to ∂λ = √

τ ∂t or more generally ∂λ = τγ/2 ∂t , we can then
consider the following generalizations of the quasi quadra-
ture measure:10

10In the first spatio-temporal quasi quadrature entity Q1L, the square
of the first-order derivative L2

ξ in the corresponding one-dimensional
measure QL has been replaced by the squared gradient magnitude
L2

ξ +L2
λ in space-time, while the square of the second-order derivative

L2
ξξ has been replaced by the Frobenius norm L2

ξξ + 2L2
ξλ + L2

λλ of
the Hessian matrix computed over a scale-normalized space-time. For
this entity to respond, it is sufficient that there are significant variations
in the signal over either space or time. The second spatio-temporal
quasi quadrature measure Q2L has been defined as the product of cor-
responding quasi quadrature measures over pure space L2

ξ +C L2
ξξ and

pure time L2
λ + C L2

λλ. Therefore, this entity will only generate re-
sponses when there simultaneously occur variations in the signal over
both space and time. Hence, the operator Q2L will be much more
selective than Q1L. Finally, the third entity Q3L has been defined
from spatio-temporal derivative operators with high degree of quali-
tative similarity to biological receptive fields, and with a similar spirit
of summing up squares of Gaussian derivative operator responses that
correspond to first- and second-order derivatives with respect to space
and time. Since all the primitives in Q3L contain derivatives with re-
spect to both space and time, this entity will only generate significant
responses if there are significant variations over both space and time.
For all of these quasi quadrature entities, we can compute the deriv-
atives either from a space-time separable spatio-temporal scale-space
or a velocity-adapted scale-space. In the latter case, the entire operator
will therefore be tuned to a particular stimulus velocity. The illustra-
tions in Fig. 27 have, however, been computed with space-time separa-
ble derivative operators.

Fig. 23 Space-time separable
kernels obtained from the
spatio-temporal scale-space
concepts: (upper left) Gaussian
spatio-temporal kernel
gxt (x, t; s, τ, δ) = gx(x; s) gt (t; τ, δ)

with s = 0.3, τ = 402, δ = 100;
(upper right) Gaussian
spatio-temporal kernel
gxxt (x, t; s, τ, δ) = gxx(x; s) gt (t; τ, δ)

with s = 0.3, τ = 602, δ = 150;
(lower left) Time-causal
spatio-temporal kernel
hxt ′ (x, t; s, τ ) = gx(x; s)φt ′ (t; τ, δ)

with s = 0.4, τ = 17;
(lower right) Time-causal
spatio-temporal kernel
hxxt ′ (x, t; s, τ ) = gxx(x; s)φt ′ (t; τ, δ)

with s = 0.4, τ = 22. For the
time-causal kernels, the
temporal derivatives have been
computed using the transformed
temporal derivative operator
∂t ′ ∼ tκ ∂t , here with κ = 1/2.
Compare the qualitative shapes
of these kernels with the kernels
in Fig. 22. (Horizontal
dimension: space x; Vertical
dimension: time t .)
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Q1L = L2
ξ + L2

λ + C (L2
ξξ + 2L2

ξλ + L2
λλ)

= sL2
x + τL2

t + C (s2L2
xx + 2sτL2

xt + τ 2L2
t t ), (148)

(Q2L)2 = (L2
ξ + C L2

ξξ )(L
2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx)(τL2
t + C τ 2L2

t t ), (149)

Q3L = L2
ξλ + C L2

ξξλ + C L2
ξλλ + C2 L2

ξξλλ

= sτL2
xt + C s2τL2

xxt + C sτ 2L2
xtt + C2 s2τ 2L2

xxtt .

(150)

Fig. 24 Examples of non-separable receptive field profiles in the stri-
ate cortex as reported by DeAngelis et al. [11]: (a) a receptive field
reminiscent of a second-order derivative in tilted space-time (compare
with the left column in Fig. 25) (b) a receptive field reminiscent of a
third-order derivative in tilted space-time (compare with the right col-
umn in Fig. 25). (Horizontal dimension: space x; Vertical dimension:
time t .)

For the time-causal scale-space, we can express correspond-
ing scale-normalized operators as

Q1L = L2
ξ + L2

λ + C (L2
ξξ + 2L2

ξλ + L2
λλ)

= sL2
x + τL2

t + C (s2L2
xx + 2sτL2

xt ′ + τ 2L2
t ′t ′),

(151)

(Q2L)2 = (L2
ξ + C L2

ξξ )(L
2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx)(τL2
t ′ + C τ 2L2

t ′t ′), (152)

Q3L = L2
ξλ + C L2

ξξλ + C L2
ξλλ + C2 L2

ξξλλ

= sτL2
xt ′ + C s2τL2

xxt ′

+ C sτ 2L2
xt ′t ′ + C2 s2τ 2L2

xxt ′t ′ , (153)

where the temporal derivatives ∂t ′ with respect to self-
similarly transformed time are related to derivatives with re-
spect to regular time according to ∂t ′ ∼ tκ∂t .11

11In analogy with the computation of multi-scale second-moment de-
scriptors Gårding and Lindeberg [25], we can apply a second convo-
lution stage determined by integration scale parameters to the com-
putation of the local pointwise derivative descriptors Qi in order to
suppress local ripples. For the quasi quadrature entities derived from
the Gaussian spatio-temporal scale-space, we do of course choose a
non-causal Gaussian spatio-temporal kernel, while we for the corre-
sponding entities derived from the time-causal spatio-temporal scale-
space choose a time-causal spatio-temporal kernel for the second-stage
integration smoothing.

Fig. 25 Non-separable
spatio-temporal receptive fields
obtained by applying
velocity-adapted second- and
third-order derivative operations
in space-time to spatio-temporal
smoothing kernels generated by
the spatio-temporal scale-space
concept. (upper left) Gaussian
spatio-temporal kernel
gxx(x, t; s, τ, v, δ) with
s = 0.5, τ = 502, v = 0.006,
δ = 100; (upper right) Gaussian
spatio-temporal kernel
gxxx(x, t; s, τ, v, δ) with
s = 0.5, τ = 602, v = 0.006,
δ = 130; (lower left)
Time-causal spatio-temporal
kernel hxx(x, t; s, τ, v) with
s = 0.4, τ = 15, v = 0.006;
(lower right) Time-causal
spatio-temporal kernel
hxxx(x, t; s, τ, v) with s = 0.4,
τ = 15, v = 0.006. Compare the
qualitative shapes of these
kernels with the kernels in
Fig. 24. (Horizontal dimension:
space x; Vertical dimension:
time t .)
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Fig. 26 Response profile of a complex cell in the joint space-time do-
main as reported by DeAngelis et al. [11]. Within the framework of the
spatio-temporal scale-space framework presented in this paper, such a
response property can be obtained by a quasi-quadrature combination
of first- and second-order receptive fields; see Fig. 27. (Horizontal di-
mension: space x; Vertical dimension: time t .)

Figure 27 shows the result of computing the response
of these quasi quadrature measures to a delta function over
a 1+1-D space-time. Note that this type of computational
structure is nicely compatible with results by Valois et al.
[70], who show that first- and second-order receptive fields
typically occur in pairs that can be modelled as approximate
Hilbert pairs.

7 Summary and Discussion

We have presented a generalized theory for Gaussian scale-
space representation of spatial and/or spatio-temporal data.
Starting from a general condition about non-creation of spu-
rious structures with increasing scales formalized in terms
of non-enhancement of local extrema, a complete charac-
terization has been given of the semi-groups of convolution
transformations that obey this requirement on different types
of image domains. The resulting theory comprises the ex-
isting continuous scale-space theory on symmetric spatial
domains, with extensions to non-symmetric spatial domains
as well as spatio-temporal domains. Specifically, we have
shown that this combination of scale-space axioms makes it
possible to axiomatically derive the notions of:

– rotationally symmetric Gaussian scale-space on isotropic
spatial domains,

– affine Gaussian scale-space on anisotropic spatial do-
mains,

– Gaussian spatio-temporal scale-space on non-causal spatio-
temporal domains, and

– time-causal spatio-temporal scale-space on time-causal
spatio-temporal domains.

A main message is that a much richer structure of affine as
well as spatio-temporal filters can be obtained if we start

Fig. 27 The response of different spatio-temporal quasi
quadrature measures to a delta function. (left) Computed
for a spatio-temporal Gaussian g(x, t; s, τ, δ) according
to (top) Q1 g = s g2

x + τg2
t + C (s2g2

xx + 2sτg2
xt + τ 2g2

t t );
(middle) Q2

2 g = (s g2
x + s2g2

xx)(τg2
t + C τ 2g2

t t ); (bottom)
Q3 g = (sτg2

xt + C s2τg2
xxt + C sτ 2τg2

xtt + C2 s2τ 2g2
xxtt )

with s = 1.2, τ = 252, δ = 90, C = e/4. (right) Com-
puted for the time-causal kernel h(x, t; s, τ ) according to
(top) Q1 h = s h2

x + τh2
t + C (s2h2

xx + 2sτh2
xt + τ 2h2

t t );
(middle) Q2

2 h = (sh2
x + s2h2

xx)(τh2
t + C τ 2h2

t t ); (bottom)
Q3 h = (sτh2

xt + C s2τh2
xxt + C sτ 2τh2

xtt + C2 s2τ 2h2
xxtt ) with

s = 1.2, τ = 252, δ = 90, C = e/4. (Horizontal dimension: space x;
Vertical dimension: time t .)

from a reformulation of Koenderink’s causality requirement
into non-enhancement of local extrema, and then relax the
requirement of spatial symmetry that was prevalent in the
earliest scale-space formulations as well as most follow-up
works.

In companion works, such affine and spatio-temporal
scale-spaces have been shown to be highly useful for differ-
ent tasks in computer vision, by allowing the vision system
to take into explicit account as well as to compensate for the
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following type of image transformations that arise when a
vision system observes a real world:

– affine transformations arising from the first-order lin-
earized component of the perspective mapping, and

– Galilean transformations arising because of relative mo-
tions between the observer and objects in the world.

Indeed, by considering more general covariance matrices for
anisotropic handling of different dimensions and as well as
spatial and/or spatio-temporal derivative operators applied
to corresponding filters, a much richer family of filter shapes
can be generated than from rotationally symmetric Gaussian
filters. All these generalized derivative filters do also obey
non-enhancement of local extrema as well as a transfer of
the semi-group property into a cascade smoothing property.
We have also showed that the resulting spatial as well as
spatio-temporal derivative operations have high similarities
to receptive fields recorded from biological vision. The treat-
ment does hence show that a very rich and general set of vi-
sual front-end operations can be obtained from a unified and
generalized Gaussian scale-space theory.

Of course, we do not exclude the possibilities of consid-
ering other types of non-Gaussian scale-space theories, such
as the self-similar scale-space families arising from (3) or
its affine generalization ĥ(ω; s) = e−α|Bω|p , where B is a
non-singular N × N matrix. In this context we would, how-
ever, like to stress that the generalized Gaussian scale-space
theory presented in this paper constitutes a particularly con-
venient class with most attractive properties. For example,
compared to the Poisson kernel in (4), the Gaussian smooth-
ing filter decreases much faster towards infinity and faster
than any polynomial, which implies a very strong regular-
izing property for any scale-space derivative. Compared to
the α-scale-spaces, the Gaussian scale-spaces have classi-
cal infinitesimal generators, straightforward closed-form ex-
pressions in the spatial domain and obey non-enhancement
of local extrema. The Gaussian scale-spaces are also maxi-
mally uncommitted in the sense that their smoothing kernels
have maximum entropy.

Concerning more technical contributions, we have also
analysed the time-causal spatio-temporal scale-space in
more detail, regarding the temporal cascade structure it sat-
isfies over time and as well as specific properties of the
corresponding time-causal spatio-temporal derivative ker-
nels, which differ from the properties of the more commonly
used Gaussian spatio-temporal derivatives. We have more-
over shown how temporal derivatives with respect to self-
similarly transformed time can be defined, resulting in the
formulation of a novel analogue to normalized derivatives
for time-causal temporal or spatio-temporal scale-spaces.

We propose that this generalized Gaussian scale-space
framework constitutes both a natural, theoretically well-
founded and general basis to consider (i) when designing

visual front-end operations for computer vision systems and
(ii) when modelling some of the earliest processing stages
in biological vision.

Acknowledgements I would like to thank the anonymous reviewers
for valuable comments and suggestions that improved this presenta-
tion as well as Prof. Anders Szepessy and Prof. Per Sjölin for valuable
discussions about Sobolev spaces.

Earlier versions of this work in less general form have been pre-
sented in Lindeberg [41] regarding rotationally symmetric linear scale-
space and in Lindeberg [43] and [45] regarding non-causal spatio-
temporal scale-space. The current paper generalizes and unifies these
works for continuous signals defined over spatial, non-causal spatio-
temporal and time-causal spatio-temporal domains.

Appendix A: Continuity Requirements on the
Semi-group with Respect to Scale

When deriving the necessity of the form of the scale-space
representation, we use a condition about non-enhancement
of local extrema expressed in terms of a sign condition on
the derivative ∂sL(x0; s0) at local extrema x0 of the scale-
space representation L with respect to the scale parameter s

at any scale s0. While the notion of strong C0 continuity of
the semi-group T in (17) implies that L(·; s) = T (s) f sat-
isfies the differential equation ∂sL = AL and that the deriv-
ative exists almost everywhere for a dense subset of func-
tions f in the Banach space X over which the semi-group is
defined, this structure does not necessarily implies that the
partial derivative ∂sL(x0; s0) is well-defined pointwise for
every (x0; s0) ∈ R

N × R+. In this appendix, we will ex-
press a sufficient condition on the semi-group T such that
the derivative of the scale-space representation L with re-
spect to the scale parameter is well-defined for smooth func-
tions f of compact support. We start by expressing a basic
lemma that will make it possible for us to define the infini-
tesimal generator for a specific set of functions f r ∈ X. This
result will then be used for approximating general functions
f ∈ X using Sobolev norms.

Lemma 8 (Explicit form of infinitesimal generator for a sub-
set of functions f r ∈ X) Let X be a Banach space, and let
T (s) be a semi-group of operators from X to X. For any
x ∈ X, let

f r = C(r)f = 1

r

∫ r

s=0
T (s)f ds. (154)

Then, provided that the semi-group T satisfies the C0 conti-
nuity requirement that

lim
r↓0

‖C(r)f − f ‖X = 0 (155)

should hold for every f ∈ X, it follows that for every r > 0,
we have that C(r)f ∈ D(A) for every f ∈ X and the result
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of applying the infinitesimal generator of the semi-group to
f r is

Af r = lim
h→0

T (h) − I

h
f r = T (r)f − f

r
. (156)

Proof Consider

T (h)f r − f r

h
= 1

rh

(
T (h)

∫ r

s=0
T (s)f ds

−
∫ r

s=0
T (s)f ds

)

= 1

rh

∫ r

s=0
T (s + h)f ds −

∫ r

s=0
T (s)f ds.

(157)

Then, by a change of variables in the first integral we have

T (h)f r − f r

h
= 1

rh

(∫ r+h

s=h

T (s)f ds −
∫ r

s=0
T (s)f ds

)

(158)

which by an inspection of the intervals over which the inte-
gration is performed can be written

T (h)f r − f r

h
= 1

r

(
1

h

∫ r+h

s=r

T (s)f ds

− 1

h

∫ h

s=0
T (s)f ds

)
. (159)

Due to the assumption (155) in combination with (159) it
therefore follows that

T (h)f r − f r

h
→ T (r)f − f

r
(160)

when h → 0. Hence, we know for sure that f r ∈ D(A) with

Af r = T (r)f − f

r
. (161)

(Please, note that there is no limit operator in this expres-
sion.) Specifically, it holds that

( T (h) − I

h
− A

)
f r

= 1

r

(
1

h

∫ h

s=0
T (s + r)f ds − 1

h

∫ h

s=0
T (s)f ds

)

− T (r)f − f

r
. (162)

�

Our aim is then to use an equality with an L2-based
Sobolev norm12 to estimate the maximum norm of the de-
viation between the difference approximation (T (h)− I )/h

and the infinitesimal generator in (162).

Lemma 9 (Maximum norm estimate from L2-based Sobolev
norm) Given any function u ∈ L1(RN)∩L2(RN), define its
Fourier transform by

û(ω) =
∫

x∈RN

u(x) e−iωx dx (163)

and let for any k > N/2 (where k is not required to be an
integer)

‖u‖Hk(RN) =
(∫

ω∈RN

(
1 + |ω|2)k |û(ω)|2 dω

)1/2

(164)

denote the L2-based Sobolev norm of u of order k. Then,
we can estimate the maximum norm of u from its L2-based
Sobolev norm by

‖u‖L∞(RN) ≤ C‖u‖Hk(RN), (165)

where the constant C does only depend on k and N and not
on u.

Proof Consider

|u(x)| =
∣∣∣∣
∫

ω∈RN

e−iωx û(ω)dω

∣∣∣∣ ≤
∫

ω∈RN

|û(x)|dω

=
∫

ω∈RN

(
1 + |ω|2)−k/2(1 + |ω|2)k/2|û(ω)|dω

(166)

which by the Schwartz inequality and the definition of the
L2-based Sobolev norm ‖u‖Hk(RN) can be overestimated by

|u(x)| ≤
(∫

ω∈RN

(
1 + |ω|2)−k

dω

)1/2

(∫
ω∈RN

(
1 + |ω|2)k |û(ω)|2 dω

)1/2

=
(∫

ω∈RN

(
1 + |ω|2)−k

dω

)1/2

‖u‖Hk(RN)
(167)

provided that the integral

∫
ω∈RN

(
1 + |ω|2)−k

dω =
∫ ∞

R=0

C′(N)RN−1

(1 + R2)k
dR = C2

(168)

12See e.g. [23, Chap. 6] for an introduction to Fourier based Sobolev
norms as used here.
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converges. By the use of N -dimensional spherical co-
ordinates, where C′(N) denotes the area of an N − 1-
dimensional unit hypersphere, it is clear that the latter inte-
gral converges provided that N −1−2k < −1, i.e., provided
that k > N/2. �

Using this Sobolev inequality, we will estimate

∥∥∥∥
( T (h) − I

h
− A

)
f

∥∥∥∥
L∞(RN)

≤ C

∥∥∥∥
( T (h) − I

h
− A

)
f

∥∥∥∥
Hk(RN)

(169)

and prove differentiability with respect to s and that the in-
finitesimal generator A is well-defined for smooth functions
f of compact support given certain regularity requirements
on the semi-group T by showing that

lim
h↓0

∥∥∥∥
( T (h) − I

h
− A

)
f

∥∥∥∥
Hk(RN)

= 0. (170)

Lemma 10 (Existence of infinitesimal generator for smooth
functions with bounded support) Let T be a linear semi-
group corresponding to convolution kernels T (·; s) ∈
L1(RN) that satisfies the continuity requirement that for
some value of k > N/2

lim
h↓0

∥∥∥∥
∫ h

s=0

(T (s) − I )

h
f ds

∥∥∥∥
Hk(RN)

= 0 (171)

should hold for all smooth functions f ∈ L1(RN)∩C∞(RN).
Then, smooth (C∞) functions f with bounded support are
in the domain D(A) and for such functions the derivative
∂sL(x; t) = (AL)(x; s) exists for every (x; s) ∈ R

N ×R+.

Proof Given the estimate (169), let us for any smooth func-
tion f with bounded support consider

∥∥∥∥
( T (h) − I

h
− A

)
f

∥∥∥∥
Hk(RN)

≤
∥∥∥∥
( T (h) − I

h
− A

)
(f − f r)

∥∥∥∥
Hk(RN)

+
∥∥∥∥
( T (h) − I

h
− A

)
f r

∥∥∥∥
Hk(RN)

(172)

with f r according to (154), where we from equations (160)
and (161) in combination with the assumption (171) know
that

lim
h↓0

∥∥∥∥
( T (h) − I

h
− A

)
f r

∥∥∥∥
Hk(RN)

= 0 (173)

for every r > 0. From (162) it follows that

( T (h) − I

h
− A

)
(f − f r)

= 1

h

∫ h

s=0

(T (s + r) − T (s))(f − f r)

r
ds

− (T (r) − I )(f − f r)

r

= 1

h

∫ h

s=0

T (s)(T (r) − I )(f − f r)

r
ds

− (T (r) − I )(f − f r)

r

= 1

h

∫ h

s=0

(T (s) − I )(T (r) − I )(f − f r)

r
ds. (174)

Returning to the definition of f r , we have that

f r − f = 1

r

∫ r

s′=0
T (s′)f ds′ − f =

∫ r

s′=0

T (s′) − I

r
f ds′

(175)

and we can write

( T (h) − I

h
− A

)
(f r − f )

= 1

h

∫ h

s=0

∫ r

s′=0

(T (s) − I )(T (r) − I )(T (s ′) − I )

r2
f ds ds ′.

(176)

A sufficient condition for

lim
h↓0

∥∥∥∥ 1

h

( T (h) − I

h
− A

)
f

∥∥∥∥
L∞(RN)

= 0 (177)

in (169) and for f to be in D(A) is therefore that

lim
h↓0

∥∥∥∥ 1

h

∫ h

s=0

∫ r

s′=0

(T (s) − I )(T (r) − I )(T (s′) − I )

r2
f ds ds′

∥∥∥∥
Hk(RN )

= 0 (178)

should hold for some k > N/2, some r > 0 and all functions
f of compact support in combination with (171); also for all
functions f of compact support. By rewriting (178) into

lim
h↓0

∥∥∥∥ 1

h

(∫ h

s=0
(T (s) − I ) ds

)

(∫ r

s′=0

(T (r) − I )(T (s′) − I )

r2
ds′

)
f

∥∥∥∥
Hk(RN)

= 0

(179)
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by noting that T (s) is a bounded operator and r > 0 is not
required to tend to zero, then we can see that the operator

U =
∫ r

s′=0

(T (r) − I )(T (s′) − I )

r2
ds′ (180)

will also be a bounded operator. Since the operator T corre-
sponds to a convolution kernel T (·; s) ∈ L1(RN), the oper-
ator U does also preserves smoothness. Given that f has
bounded support, it follows that U f will be in L1(RN).
Hence, a sufficient condition for (179) to hold can also be
expressed as the requirement that

lim
h↓0

∥∥∥∥ 1

h

(∫ h

s=0
(T (s) − I ) ds

)
f ′

∥∥∥∥
Hk(RN)

= 0 (181)

should for some k > N/2 hold for all smooth functions
f ′ ∈ L1(RN) ∩ C∞(RN). The latter condition is similar to
the notion of C1 continuity of the semi-group, although here
being expressed in terms of the Sobolev norm ‖ · ‖Hk(RN).
For a general Banach space, the notion of C1 continuity is a
stronger condition than C0 continuity [29, page 322]. �

Appendix B: Non-enhancement of Local Extrema vs.
the Maximum Principle

This appendix describes relationships between non-enhance-
ment of local extrema as formulated in Definition 3 and the
maximum principle.

The strong maximum principle for parabolic or elliptic
differential equations states that if a function assumes its
maximum in the interior of the domain, then the function
must be a constant [15, pages 330–333, 375–377]. The weak
maximum principle on the other hand says that the maxi-
mum of the function is to be found on the boundary, but
may also occur in the interior [15, pages 327–329, 368–
370]. Corresponding results can be expressed for minima.

For our purpose of defining a scale-space representation,
however, we cannot a priori assume that the scale-space
should be generated by a parabolic or elliptic differential
equation. Hence, it is of general interest to perform a study
without a priori preconceptions regarding the form of the
evolution equation. Moreover it should be noted that the
maximum principle refers to global properties of the func-
tion, while non-enhancement of local extrema refers to lo-
cal properties. For a general evolution equation, one may
hence conceive situations where the global maximum of a
function has to occur at the boundary, while some other lo-
cal maximum point (which is not the local maximum) may
nevertheless be enhanced (see Fig. 28). Therefore, one may
express maximum principles for differential equations that
do not obey non-enhancement of local extrema, such as the
simple differential equation

∂tL = −L (182)

Fig. 28 For a general evolution process, one may conceive cases
where the global maximum (minimum) always has to decrease (in-
crease), while local extrema may nevertheless be enhanced. This fig-
ure gives a schematic sketch of the sign of derivative with respect to
the evolution parameter s for an evolution equation of the form (187),
where the central local maximum marked indicated by a bold arrow
will violate non-enhancement of local extrema provided that the sup-
port region of the weight function w is sufficiently wide

with initial condition L(x; 0) = f (x). From the solution
L(x; t) = e−t f (x) it is obvious that at a negative maximum
over x will always increase with t and the value at a positive
minimum over x will always decrease with t . This example
hence shows that the assumption of non-enhancement of lo-
cal extrema leads to a different set of smoothing processes
than the maximum principle would lead to.

B.1 A Formal Connection Given the Assumption of a
Local Process

Still, however, there is an at least formal connection between
non-enhancement of local extrema and the maximum prin-
ciple. If we assume that the scale-space should be governed
by a partial differential equation with a linear operator AL

that corresponds to a local operator (in terms of derivatives
at the central point only), then we can use similar arguments
as in step C.2 in the proof of Theorem 5 to show that AL

must not contain derivatives of order higher than two. If we
use a test function of the form

f4(x) = (−x2
1 − x2

2 − · · · − x2
N + β2 xη)χ(Kx), (183)

where χ(x) is defined in a similar way as in the text fol-
lowing (35), then we can choose β2 and K in such a way
that f4(x) ≤ 0∀x and AL(0) ≥ 0. Thus, the maximum prin-
ciple would be violated, because the maximum of the solu-
tion would be greater than zero and would not occur at the
boundary of the domain.

Given the complementary assumption of a local process,
the requirement of the maximum principle to hold does,
however, not yield an offset a0 equal to zero in the evolution
equation as the requirement of non-enhancement of local ex-
trema leads to. If we allow ourselves to reparameterize the
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scale parameter in the evolution equation by the following
change of variables

L̃ = e−a0sL (184)

and if L is a solution of

∂sL =
∑

0<|η|≤2

aη∂xηL + a0L (185)

as would be obtained from the maximum principle, then the
transformed representation L̃ is a solution of

∂sL̃ =
∑

0<|η|≤2

aη∂xη L̃ (186)

which agrees with the form of evolution equations ob-
tained from non-enhancement of local extrema. In this re-
spect, there is a close formal relationship between non-
enhancement of local extrema and the maximum principle.
Given the requirement of the maximum principle to hold,
it should, however, be emphasized that non-enhancement of
local extrema would not be guaranteed to hold in the original
domain, only in some transformed domain.

B.2 A More Fundamental Difference in Terms of Local vs.
Non-local Processes

In the above mentioned analysis, we made a complementary
assumption that the evolution equation should be determined
by a local evolution equation. In our previous treatment in
Sect. 3, such a local form of the evolution process was es-
tablished from the assumption of non-enhancement of local
extrema in step C.1 in the necessity proof underlying The-
orem 5. A very notable difference between the maximum
principle and non-enhancement of local extrema, however,
is that the maximum principle allows for non-local evolu-
tion processes, where the minimum and maximum values
have to occur at the boundary, whereas non-enhancement of
local extrema is violated for such evolution processes. Con-
sider, for example, an evolution equation of the form

∂sL(x; s) =
∫ ∞

ξ=−∞
w(ξ) (L(x − ξ ; s) − L(x; s)) dξ,

(187)

where w is a non-negative smooth C∞ function with
bounded L1 norm. From the averaging interpretation of
this process, it is evident that if x0 is a global maximum
(minimum) of the mapping x → L(x; s0), then L(x0 −
ξ ; s) − L(x0; s0) will always be negative (positive), which
means that ∂sL(x0; s0) is guaranteed to be negative (pos-
itive). Hence, this evolution process satisfies a maximum
(minimum) principle in the sense that the global maxi-
mum (minimum) of the mapping x → L(x; s0) is always

guaranteed to decrease (increase). This property in turn
means that the global maximum (minimum) of the mapping
(x, s) → L(x; s) has to occur at the boundary of the (x, s)

domain. There is, however, no guarantee concerning the sign
of ∂sL(x; s) at local extrema of the mapping x → L(x; s0),
and an evolution process of this form may therefore violate
non-enhancement of local extrema (see Fig. 28 for an illus-
tration).

Thus, an evolution process that obeys the maximum prin-
ciple does not even have to be local, in the sense that the
right-hand side in the evolution equation (187) may depend
on values of L at several points, while the result in The-
orem 5 shows that a smoothing process that obeys non-
enhancement of local extrema always has to be local and
be determined by a second-order parabolic operator.

B.3 Fourth-Order Evolution Equations

Maximum principles can also be stated for certain types of
fourth-order elliptic equations (Dunninger [14], Zhang and
Zhang [79]), such as

(∇2)2L + L = 0, (188)

which are, however, not within the class of non-enhancement
scale-spaces that we shall consider. In connection with
the problem of choosing between candidate smoothing
processes, it may also be highly relevant to ask if, for ex-
ample, a fourth-order evolution equation of the form13

∂sL = −(∇2)2L (189)

could be regarded as a possible model for generating a scale-
space? The solutions of this equation may, however, have
non-intuitive properties in the sense that positivity may be
violated and local ripples may be amplified [7, page 366].
The latter fourth-order process can be ruled out by both the
maximum principle and non-enhancement of local extrema.

Appendix C: Galilean-Invariant Fixed Points in
Gaussian Spatio-Temporal Scale-Space

The subject of this appendix is to describe one way to make
appropriate selection of velocity parameters for interpreting
the results in a multi-parameter spatio-temporal scale-space
representation in a general situation when there is no a pri-
ori information of the motion of observed objects relative to
the observer. The method that will be proposed is based on
the definition of Galilean invariant fixed points constructed
by normalizing local spatio-temporal image patterns by a

13The minus sign is needed here to make this equation dissipative in
L2 [7, page 371].
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method referred to as Galilean block diagonalization and by
comparing and adapting the velocity parameter based on lo-
cal spatio-temporal image measurements.

C.1 Basic Definitions

Consider a spatio-temporal image sequence f (p) = f (x, t)

defined over R
N × R with spatio-temporal scale-space rep-

resentation L(p; �) given by L(·; �,δ) = g(·; �,δ) ∗
f (·), where g denotes the spatio-temporal Gaussian kernel

g(x; �,δ) = 1

(2π)(N+1)/2
√

det�
e−(p−δ)T �−1(p−δ)/2,

(190)

with a spatio-temporal covariance matrix � of the form (61)
and with time delay δ.

Given any velocity vector u, define a Galilean trans-
formed image f ′′ by f ′(p′′) = f (p), where p′′ = G(u)p

and G(u) denotes a Galilean transformation with image ve-
locity u. Moreover, define the spatio-temporal scale-space
representation L′′ of f ′′ according to L′′(·; �′′, δ′′) =
g(·; �′′, δ′′)∗f ′′(·). Then, from the transformation property
of the Gaussian scale-space under Galilean transformations,
which in turn originates from the corresponding transforma-
tion property under affine transformations (51), it follows
that L′′(p′′ �′′, δ′′) = L(p; �,δ) provided that the covari-
ance matrices satisfy �′′ = G� GT and that the time delays
are equal δ′′ = δ.

C.2 Spatio-Temporal Second-Moment Matrix/Structure
Tensor

Let us next define velocity-adapted spatio-temporal second-
moment matrices (structure tensors) of L and L′′ according
to

μ(p; �1,�2, δ1 + δ2)

=
∫

q∈R(N+1)

(∇L(q; �1, δ1))(∇L(q; �1, δ1))
T

g(p − q; �2, δ2) dq, (191)

μ′′(p′′; �′′
1 ,�′′

2 , δ′′
1 + δ′′

2 )

=
∫

q ′′∈R(N+1)

(∇L′′(q ′′; �′′
1 , δ′′

1 ))(∇L′′(q ′′; �′′
1 , δ′′

1 ))T

g(p′′ − q ′′; �′′
2 , δ′′

2 ) dq ′′, (192)

where δ1 and δ2 denote the time constant in the first and
second stages of scale-space smoothing, respectively. Then,
from the general transformation property of second-moment
matrices under affine transformations [39, Sect. 15.3], [51],

if follows that the second-moment matrices μ and μ′′ are
related according to

μ′′ = G−T (u)μG−1(u). (193)

C.3 Galilean Block Diagonalization

Our next step is to introduce the notion of Galilean block
diagonalization, which corresponds to finding the unique
Galilean transformation that transforms the spatio-temporal
second-moment matrix to block diagonal form with all
mixed purely spatio-temporal components being zero μ′

x1t
=

μ′
x2t

= · · · = μ′
xN t = 0 [52]

μ′ =

⎛
⎜⎜⎜⎜⎜⎝

μ′
x1x1

μ′
x1x2

. . . μ′
x1xN

0
μ′

x1x2
μ′

x2x2
. . . μ′

x2xN
0

...
...

. . . 0
μ′

x1xN
μ′

x2xN
. . . μ′

xNxN
0

0 0 0 0 μ′
t t

⎞
⎟⎟⎟⎟⎟⎠

. (194)

Such a block diagonalization can be obtained if the velocity
vector u satisfies
⎛
⎜⎜⎜⎝

μ′
x1x1

μ′
x1x2

. . . μ′
x1xN

μ′
x1x2

μ′
x2x2

. . . μ′
x2xN

...
...

. . .

μ′
x1xN

μ′
x2xN

. . . μ′
xNxN

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2
...

uN

⎞
⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎝

μx1t

μx2t

...

μxN t

⎞
⎟⎟⎟⎠ (195)

with the solution

u = −{μxx}−1{μxt } (196)

i.e., structurally similar equations as are used for computing
optic flow according to the method by Lukas and Kanade
[54]. This is a very general approach for normalizing local
spatio-temporal image patterns, which also applies to spatio-
temporal patterns that cannot be modelled by a Galilean
transformation of an otherwise temporally stationary spatial
pattern.

C.4 Galilean Invariant Property of Galilean
Diagonalization

In view of the above mentioned definition of the notion
of Galilean block diagonalization of the spatio-temporal
second-moment matrix, let us next return to the previously
stated general transformation property (193) of the Gaussian
spatio-temporal scale-space under Galilean transformations.
Given a certain spatio-temporal pattern L around a point p
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in space-time, let us assume that we have a Galilean trans-
formation G(u) that transforms μ′′ into block diagonal form

μ′′ = G−T (u)μG−1(u). (197)

Let us moreover assume that the original spatio-temporal
image pattern L is transformed by some unknown Galilean
transformation with velocity vector v into a transformed
scale-space representation L′. From (193), it then fol-
lows that the spatio-temporal second-moment matrix μ

for this transformed image pattern can be written μ′ =
G−T (v)μG−1(v). This transformed spatio-temporal second-
moment matrix can in turn be brought to a Galilean block
diagonalized form by a velocity vector w such that μ′′ =
G−T (w)μ′ G−1(w). By combining the last two expres-
sions, we thus obtain

μ′′ = G−T (w)G−T (v)μG−1(v)G−1(w). (198)

Since Galilean transformation matrices satisfy G−1(v) =
G(−v) as well as G(v + w) = G(v)G(w), it follows that

μ′′ = G−T (v + w)μG−1(v + w) (199)

and we have that the Galilean transformation G(w) =
G(u − v) will bring the second-moment matrix μ′ of the
transformed pattern into block diagonal form. Thus, the
property of Galilean block diagonalization is preserved un-
der Galilean transformations. Specifically, the velocity vec-
tor associated with the Galilean transformation, that brings a
second-moment matrix into block diagonal form, is additive
under superimposed Galilean transformations.

Therefore, if we normalize local space-time structures us-
ing a local Galilean transformations determined from the re-
quirement that the second-moment matrix should be block
diagonal, it follows that the result after normalization will al-
ways be the same, irrespective of any superimposed Galilean
transformation. From this view-point, the notion of Galilean
block diagonalization leads to a canonical Galilean invari-
ant way of normalizing local spatio-temporal image struc-
tures.14

14Note that although a similar result could be expected from the view-
point of optic flow computations according to the method by Lukas
and Kanade [54], we have in this proof not made any assumption that
the local spatio-temporal image structures within the support region of
the window function should represent a local translational model. (The
optic flow estimation method by Lukas and Kanade is derived from
such an assumption.) Therefore this result applies to arbitrary types
of space-time structures and spatio-temporal events. The only assump-
tion we have made above is that the purely spatial component of the
second-moment matrix is non-singular, i.e., that det{μxx} �= 0. If this
assumption is violated, then the velocity vector u in the Galilean trans-
formation G(u) that diagonalizes the spatio-temporal second-moment
matrix μ is not uniquely determined, and we have a situation with a
local aperture problem. This indeterminacy will, however, not effect
the Galilean normalization, since the indeterminacy will not effect the
transformed pattern.

C.5 Fixed-Point Property: Adaptation of the Velocity
Vectors to the Local Spatio-Temporal Image Structure

A pre-requisite for carrying out the proofs underlying the
transformation properties above is that the spatio-temporal
covariance matrices used for computing the second-moment
matrices are related according to �′′ = G(u)� GT (u)

and �′ = G(v)� GT (v). Thus, perfect Galilean invariance
can only be expected if the shapes of the spatio-temporal
smoothing kernels are coupled. Otherwise, the transforma-
tion properties will only be approximate. From this view-
point, a scale-space concept that allows for velocity adapta-
tion for any image velocity can therefore be motivated from
the desire of achieving true Galilean invariance.

We can formally test if true Galilean invariance has been
achieved by checking if the velocity estimate û accord-
ing to (196) agrees with the velocity v of the velocity-
adapted spatio-temporal filters used for computing the esti-
mate. Then, the image measurements are in agreements with
the assumptions used for computing them. In practice, an
operational criterion of the form

‖û − v‖ ≤ ε (200)

can therefore be expected to sort out stable spatio-temporal
image descriptors from unstable ones, with the interpreta-
tion that if this condition is satisfied, then the velocity pa-
rameter in the scale-space representation could be regarded
as approximately matching an average velocity estimate for
the local spatio-temporal image pattern [53].

In an actual implementation based on a limited set of fil-
ter parameters, we can also iteratively adapt the velocity pa-
rameter to previous image measurements and stop the iter-
ations when the increments are below a threshold. Provided
that this iterative velocity adaption procedure converges, the
resulting image descriptors will then be Galilean invariant.

An underlying assumption for the iterative velocity adap-
tation approach to be applicable is that the velocity estimates
are stationary over time intervals longer than combined tem-
poral delay δ1 + δ2 corresponding to the time constants of
the first- and second-layer scale-space filters. If the veloc-
ity estimates vary strongly on a much shorter time scale, the
results of iterative velocity adaptation may, however, be un-
predictable.

Let us finally remark that although the analysis in this ap-
pendix concerns the Gaussian spatio-temporal scale-space,
a corresponding treatment can be performed for the time-
causal spatio-temporal scale-space. Moreover, besides a
Galilean invariant representation based on a single velocity
parameter, there is also a potential in exploring represen-
tations based multiple values of the velocity parameter in
a corresponding manner as multiple orientations of spatial
receptive fields may be used in an advantageous manner in
spatial vision.
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Appendix D: Solutions for the Time-Causal
Spatio-Temporal Scale-Space

In this section, we will study the solution of diffusion equa-
tions on semi-infinite domains, with emphasis on how time-
dependent boundary conditions influence the temperature
distribution in the interior. This type of physical model arises
in time-causal scale-spaces on temporal and spatio-temporal
domains. To simplify the treatment, let us begin with a sim-
plified case with one temporal dimension and no spatial di-
mensions.

Please note that this treatment is given for introductory
and tutorial purposes. For a detailed account of the solutions
of the diffusion equation in different types of solids, please
refer to Carslaw and Jaeger [9]. A difference compared to
classical heat diffusion, however, is that we will here later
consider diffusion over two temporal dimensions; one for
the spatial scale parameter s and one for the ordinary time t .

D.1 Pure Temporal Time-Causal Scale-Space

Consider the solution of the diffusion equation

∂tL = 1

2
Lττ (201)

on a semi-infinite solid with initial condition L(0; τ) =
L0(τ ) and a time-dependent boundary condition L(t; 0) =
f (t). This equation describes how an initial heat distribu-
tion L0(τ ) evolves over time t in an infinite solid with τ > 0
while also being strongly influenced by a time varying tem-
perature f (t) at the boundary τ = 0. With regard to a tempo-
ral scale-space representation, the temperature distribution
at a non-infinitesimal distance τ from the boundary τ = 0
will be interpreted as the time-causal scale-space represen-
tation of a temporal signal f (t) at coarser time scales τ .

In [9, Sect. 14.2] it is shown that the solution of this one-
dimensional equation can be written

L(t; τ) =
∫ ∞

ζ=0
L0(ζ )(g(τ − ζ ; t) − g(τ + ζ ; t)) dζ

+
∫ t

u=0
f (u)φ(t − u; τ) du (202)

where

g(τ ; t) = 1√
2πt

e−τ 2/2t and

φ(t; τ) = 1√
2π t3/2

τ e−τ 2/2t .

(203)

As can be seen, this solution consists of two terms. The
first term describes how the initial heat distribution L0(τ )

evolves over time t in such a way that the influence of this
heat distribution will be kept to zero at the boundary τ = 0.

For this reason of keeping the boundary influence to zero,
an artificial distribution of negative heat sinks −L0(−τ) has
been introduced on the negative τ axis, manifested in terms
of the addition of a negative Gaussian in the convolution ex-
pression. The second term describes how the time dependent
boundary condition f (t) at τ = 0 spreads into the heat con-
ducting medium. Specifically, the kernel φ(t −u; τ) arising
in this term describes how an amount of heat f (u) at the
boundary at time t − u spreads over time t into the medium
at a penetration depth τ from the boundary. Due to the lin-
earity of the diffusion equation, these two solutions can be
superimposed, and the resulting solution will satisfy both
the initial condition and the boundary condition. While one
could in general initiate a temporal or spatio-temporal scale-
space concept over time t with an initial distribution over
temporal scales τ , we will henceforth simplify the treatment
by setting the initial condition to zero and focus on the latter
boundary component of the solution only. Thus, with initial
condition L(0; τ) = L0(τ ) = 0 we will consider

L(t; τ) =
∫ t

u=0
f (u)φ(t − u; τ) du (204)

with

φ(t; τ) = 1√
2π t3/2

τ e−τ 2/2t (205)

as the solution for the boundary-dependent part of the diffu-
sion equation with the time-dependent boundary condition
L(t; 0) = f (t).

By verification, it can be shown that φ(t; τ) satisfies the
diffusion equation. More easily, by observing that φ(t; τ) =
−∂τ g(τ ; t) we can also immediately see that φ(t; τ) has to
satisfy the diffusion equation, since the Gaussian g(τ ; t) is
a solution of the diffusion equation and the operator ∂τ used
for computing φ from g is a linear operator.

D.2 Fulfillment of the Boundary Condition

To verify that L according to (204) satisfies the boundary
condition L(t; 0) = f (t), we can start from the explicit in-
tegral expression

L(t; τ) = 1√
2π

∫ t

u=0
f (u)

τ

(t − u)3/2
e−τ 2/2(t−u) du (206)

and perform a change of variables by [9]

μ = τ√
2(t − u)

with u = t − τ 2

2μ2
and du = τ 2

μ3
dμ (207)

which transforms the integral expression into

L(t; τ) = 2√
π

∫ ∞

μ=τ/
√

2t

f

(
t − τ 2

2μ2

)
e−μ2

dμ. (208)
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If we would allow ourselves to take limits inside the integral,
we would obtain

lim
τ↓0

L(t; τ) = lim
τ↓0

2√
π

∫ ∞

μ=τ/
√

2t

f

(
t − τ 2

2μ2

)
e−μ2

dμ

= 2√
π

∫ ∞

μ=0

(
lim
τ↓0

f

(
t − τ 2

2μ2

))
e−μ2

dμ

= 2√
π

∫ ∞

μ=0
f (t) e−μ2

dμ

= f (t)
2√
π

∫ ∞

μ=0
e−μ2

dμ = f (t) (209)

and the fulfillment of the boundary condition would be
proven. A more detailed proof showing that this conclusion
can indeed be made valid is given in [48].

D.3 Temporal Cascade-Recursive Structure Over Time

In addition to the cascade smoothing property over tempo-
ral scales τ , the time-causal scale-space also obeys a re-
cursive structure over time t . If we start from the general
expression for the solution of the diffusion equation over
a semi-infinite solid in (202), and let the initial condition
be the temporal scale-space representation at time t1, i.e.,
L0(ζ ) = L0(τ ) = L(t1; τ), then we can write the temporal
scale-space representation L(t2; τ) at time t2, i.e., after a
time increment t2 − t1 as

L(t2; τ) =
∫ ∞

ζ=0
L(t1; ζ )(g(τ − ζ ; t2 − t1)

− g(τ + ζ ; t2 − t1)) dζ

+
∫ t2

u=t1

f (u)φ(t2 − u; τ) du. (210)

If we at time t = t2 consider t = t1 as a divider of the history,
we can from this expression explicitly see how L(t1; ζ ),
when considered as a representation over all temporal scales
ζ works as an internal memory of what has happened be-
fore t = t1. This information is updated by integration with
two shifted Gaussians, one of these negative, each with vari-
ance t2 − t1. The novel contribution of information between
t = t1 and t2 is incorporated into the temporal scale-space
representation L by convolving the input signal f with the
time-causal scale-space kernel φ(t; τ). If we in turn com-
bine this expression with the definition of L(ti; τ)

L(ti; τ) =
∫ ti

u=0
f (u)φ(ti − u; τ) du (211)

and divide the integral for computing L(ti; τ) over the in-
tervals [0, t1] and [t1, t2] we obtain
∫ t1

u=0
f (u)φ(t2 − u; τ) du +

∫ t2

u=t1

f (u)φ(t2 − u; τ) du

=
∫ ∞

ζ=0

(∫ t1

u=0
f (u)φ(t1 − u; ζ ) du

)

(g(τ − ζ ; t2 − t1) − g(τ + ζ ; t2 − t1)) dζ

+
∫ t2

u=t1

f (u)φ(t2 − u; τ) du. (212)

By changing the order of integration in the middle integral
and then identifying first the integrals over the interval [0, t1]
∫ t1

u=0
f (u)φ(t2 − u; τ) du

=
∫ t1

u=0
f (u)

(∫ ∞

ζ=0
φ(t1 − u; ζ ) (g(τ − ζ ; t2 − t1)

− g(τ + ζ ; t2 − t1)) dζ

)
du (213)

and then also identifying the arguments of these integrals
with the complementary motivation that this relation should
hold for all sufficiently regular f , we can after replacing the
arguments ti − u by ti state that

φ(t2; τ) =
∫ ∞

ζ=0
φ(t1; ζ ) (g(τ − ζ ; t2 − t1)

− g(τ + ζ ; t2 − t1)) dζ. (214)

This is the time-recursive cascade smoothing property of the
time-causal scale-space kernel φ(t; τ) over time t .

Appendix E: Formal Statements Concerning the
Time-Causal Spatio-Temporal
Scale-Space

This appendix contains formal statements for the time-
causal spatio-temporal scale-space analogous to Defini-
tion 1, Lemma 2, Definitions 3, 4 and Theorem 5 in Sect. 3.2
regarding the generalized Gaussian scale-space; please refer
to Sect. 5 for an overview.

Definition 11 (Continuous time-causal pre-scale-space rep-
resentation) Let f ∈ L2(RN × R+) be a continuous spatio-
temporal signal and let T (s, t) with (s, t) ∈ R

2+ be a
strongly continuous two-parameter semi-group of linear and
shift-invariant operators from L2(RN × R+) to L2(RN ×
R+) according to
{

T (s1, t1) T (s2, t2) = T (s1 + s2, t1 + t2),

T (0,0) = I (215)

and (70), where the semi-group corresponds to a spatio-
temporal convolution operation of the form (67) with the
convolution kernels h(x, t; s, τ ) ∈ L1(RN × R) and the
smoothing functions T (x, t; s, τ, ζ ) in the time-recursive
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update rule (66) also being in L1(RN × R). The semi-group
is also required to be C1 continuous with respect to the L2-
based Sobolev norm ‖ · ‖Hk(RN×R+) in the sense that for all
connected regions � ∈ R

2+ near the origin that shrink to zero
in such a way that the maximum distance ρ(�) between a
point in � and the origin tends to zero

lim
ρ(�)↓0

∥∥∥∥∥
∫
(s,t)∈�

T (s, t)f d�∫
(s,t)∈�

d�
− f

∥∥∥∥∥
Hk(RN×R+)

= 0 (216)

should for some k > (N + 1)/2 be required to hold for
all smooth functions f ∈ L1(RN × R+) ∩ C∞(RN × R+).
Then, the two-parameter family of signals L : R

N × R+ ×
R

2+ → R given by

L(·, t; s, ·) = T (s, t)L(·,0; 0, ·) (217)

with boundary condition L(x, t; 0,0) = f (x, t) and com-
bined initial and boundary condition L(x,0; 0, τ ) =
L0(x; τ) is said to be a continuous time-causal pre-scale-
space representation of f generated by T (s, t).

Lemma 12 (A continuous time-causal pre-scale-space rep-
resentation is differentiable) Let L : R

N × R+ × R
2+ → R

be the continuous time-causal pre-scale-space representa-
tion of a smooth spatio-temporal signal f ∈ L2(RN ×R+)∩
C∞(RN × R+). Then, L satisfies a two-parameter differ-
ential equation with regard to the parameters of the semi-
group with the directional derivative of the semi-group in
direction u = (α1, α2) given by

Du L = (α1 A1 + α2 A2)L (218)

for some linear and shift-invariant operators A1 and A2

from L2(RN × R+) to L2(RN × R+).

Proof Follows from results in [1, page 407] reviewed in
connection with (71)–(75) in Sect. 5. �

Definition 13 (Time-causal pre-scale-space property: Non-
enhancement of local extrema) A time-causal continuous
pre-scale-space representation L : R

N × ×R+R
2+ → R of a

smooth signal f ∈ L2(RN ×R+)∩C∞(RN ×R+) is said to
possess continuous non-enhancement pre-scale-space prop-
erties, or equivalently not to enhance local extrema, if for
any time t0 ∈ R+ and any scale s0 ∈ R+ it holds that if
(x0, τ0) ∈ R

N × R+ is a critical point for the mapping
(x, τ ) → L(x, t0; s0, τ ) and if the Hessian matrix Hx,τ with
respect to both space x and temporal scales τ at this point is
non-degenerate, then the (semi-group) directional derivative
of L in any direction u = (α1, α2) in (s, t) space at this point
has the same sign as the Hessian matrix, i.e.,

sign∂uL = sign trace Hx,τL. (219)

Remark The definition of local extrema underlying this
definition, i.e., local extrema of the mapping (x, τ ) →
L(x, t0; s0, τ ) for every scale s0 ∈ R+, means that these lo-
cal extrema can be detected from the always available inter-
nal buffer over (x; s, τ ) at any time moment t0 and do not
imply any explicit references to the future t > t0 or the past
t < t0. In this respect, the notion of non-enhancement of lo-
cal extrema for the time-causal spatio-temporal scale-space
differs from the notion of non-enhancement of local extrema
for the Gaussian spatio-temporal scale-space, where non-
enhancement of local extrema is expressed in terms of local
extrema of the mapping (x, t) → L(x, t; s0, τ0).

Definition 14 (Time-causal continuous non-enhancement
scale-space representation) Let T (s, t) be a strongly contin-
uous two-parameter semi-group of linear and shift-invariant
operators from L2(RN × R+) to L2(RN × R+). Given
a spatio-temporal signal f ∈ L2(RN × R+), the pre-
scale-space representation L : R

N × R+ × R
2+ → R of f

is said to be a time-causal continuous scale-space repre-
sentation of f if and only if it for every smooth function

f ′ ∈ L2(RN × R+) ∩ C∞(RN × R+) of compact support
and for every initial condition L(x,0; 0, τ ) = L0(x; τ)

it holds that the time-causal pre-scale-space representation
L′ : R

N × R+ × R
2+ → R of f ′ generated by T (s, t) obeys

non-enhancement of local extrema.

Lemma 15 (Time-causal non-enhancement scale-space for
continuous signals: Necessity I) A continuous time-causal
non-enhancement scale-space representation L : R

N ×R+×
R

2+ → R of a spatio-temporal signal f ∈ L2(RN × R+)

satisfies the following system of parabolic differential equa-
tions

∂sL = 1

2
∇T

x,τ

(
�1∇x,τL

) − δT
1 ∇x,τL, (220)

∂tL = 1

2
∇T

x,τ

(
�2∇x,τL

) − δT
2 ∇x,τL, (221)

with boundary condition L(x, t 0,0) = f (x, t) for some
positive semi-definite (spatial) covariance matrices �1 and
�2 and some velocity vectors δ1 and δ2.

Proof A proof that the evolution property over spatial scales
s has to be of the form in (220) can be performed by con-
structing a similar set of counterexamples from functions
fi(x, t) = fi(x) i = 1..5 with fi(x) given by the five func-
tions used for constructing counterexamples in the proof of
Theorem 5.

A proof that the evolution property over time t has to
be of the form in (221) can be performed by constructing a
similar set of counterexamples determined by L0(x; τ) =
fi(τ ) with fi(τ ) determined by the five counterexamples in
the proof of Theorem 5.
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The existence of derivatives with respect to space x as
used in the first part of the proof follows from the assump-
tion of the convolution kernels h(x, t; s, τ ) in (67) being in
L1(RN × R), which implies that we for smooth functions f

with compact support have

∂xj
(h(·; s, τ ) ∗ f (·)) = h(·; s, τ ) ∗ (∂xj

f )(·)). (222)

The existence of derivatives with respect to temporal scale
τ as used in the second part of the proof follows from the
assumption of the smoothing functions T (·, t; s, τ, ·) in the
time recursive formulation (66) being in L1(RN × R). �

Out of this family of differential equations, it is not nec-
essarily the case that all differential equations give rise to
reasonable evolution processes with regard to interpretations
in terms of spatial scales and temporal scales. More gener-
ally, given a two-parameter semi-group, one may also con-
ceive different ways of parameterizing the same semi-group.
In addition to the above mentioned structural conditions, we
would, however, also would like to have the ability to inter-
pret the first parameter s in the two-parameter semi-group as
a spatial scale parameter and the second parameter t as reg-
ular time t . We say that a parameterization is on standard
form if such an interpretation is possible.

Definition 16 (Standard form for the spatio-temporal scale-
space) A system of partial differential equations describing
a spatio-temporal scale-space representation L : R

N ×R+ ×
R

2+ → R of a spatio-temporal signal f ∈ L2(RN × R+) is
said to be on standard form if

(i) the parameter s can be interpreted as a spatial scale pa-
rameter in the sense that the evolution equation over s

does not explicitly depend on derivatives with respect
to temporal scale τ ,

(ii) the evolution over spatial scales s does not imply any
translation in space in the sense that the coefficients of
the first-order derivatives with respect to space x and
temporal scale τ are zero,

(iii) the evolution equation over spatial scales s is station-
ary over time in the sense that the coefficients do not
depend on time t ,

(iv) the evolution equation over time t should not be af-
fected by the spatial scales in the sense that the coef-
ficients of the second-order derivatives with respect to
space x must be zero,

(v) the evolution equation over time t does not involve tem-
poral scale dependent translation in time in the sense
that the coefficient of the first-order derivative with re-
spect to temporal scale τ is zero.

Given these conditions, the evolution equations reduce to
a simpler form:

Theorem 17 (Time-causal non-enhancement scale-space for
continuous signals: Necessity II) A continuous time-causal
non-enhancement scale-space representation L : R

N ×R+×
R

2+ → R of a spatio-temporal signal f ∈ L2(RN × R+) on
standard form satisfies the following system of parabolic
differential equations

∂sL = 1

2
∇T

x (�0∇xL), (223)

∂tL = −vT ∇xL + 1

2
∂ττL (224)

with initial condition L(x, t 0,0) = f (x, t) for some posi-
tive semi-definite (spatial) covariance matrix �0 and some
velocity vector v.

Proof Lemma 15 implies that the spatio-temporal scale-
space representation has to satisfy the evolution equa-
tions (220) and (221).

Property (i) implies that ∇T
x,τ�1∇x,τL reduces to

∇T
x,τ�1∇x,τL. From property (ii) it follows that δ1 = 0.

From property (iii) we have that �1 does not depend on
time t .

From property (iv) we obtain that ∇T
x,τ (�2∇x,τL) re-

duces to ∂ττL. Property (v) implies that δT
2 ∇x,τL reduces

to δT
2 ∇xL and we can rename the x component of δ2 into

v. �

Theorem 18 (Time-causal non-enhancement scale-space for
continuous signals: Sufficiency) Given a semi-definite (spa-
tial) covariance matrix �0, an arbitrary vector v and any
twice continuously differentiable function f ∈ L2(RN ×
R+), the solution of the diffusion equation

∂sL = 1

2
∇T

x (�0∇xL), (225)

∂tL = −vT ∇xL + 1

2
∂ττL (226)

with boundary condition L(x, t 0,0) = f (x, t) does for
every combined initial and boundary condition L(x,0; 0, τ )

= L0(x; τ) constitute a time-causal continuous non-
enhancement scale-space representation of f . Specifically,
for any (forward) direction u in (s, t) space L obeys

∂uL ≤ 0 at any non-degenerate local maximum, (227)

∂uL ≥ 0 at any non-degenerate local minimum. (228)

Proof If (x0, τ0) is a local extremum of the mapping
(x, τ ) → L(x, t0; s0, τ ), then x0 is also a local extremum of
the mapping x → L(x, t0; s0, τ ). From Theorem 6 it then
follows that ∂sL ≤ 0 if the point is a local maximum and
∂sL ≥ 0 if the point is a local minimum.

Similarly, if (x0, τ0) is a local extremum of the mapping
(x, τ ) → L(x, t0; s0, τ ), then τ0 is also a local extremum of
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the mapping τ → L(x, t0; s0, τ ). From Theorem 6 it then
follows that ∂tL ≤ 0 if the point is a local maximum and
∂tL ≥ 0 if the point is a local minimum.

Since ∂uL = α1∂sL + α2∂tL, where α1, α2 ≥ 0 for a
forward direction in (s, t) space, we have that sign∂uL =
sign trace Hx,τL and the result follows. �
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