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Abstract Optic flow and stereo reconstruction are impor-
tant examples of correspondence problems in computer vi-
sion. Correspondence problems have been studied for al-
most 30 years, and energy-based methods such as variational
approaches have become popular for solving this task. How-
ever, despite the long history of research in this field, only
little attention has been paid to the numerical approximation
of derivatives that naturally occur in variational approaches.

In this paper we show that strategies from hyperbolic nu-
merics can lead to a significant quality gain in computational
results. Starting from a basic formulation of correspondence
problems, we take on a novel perspective on the mathemati-
cal model. Switching the roles of known and unknown with
respect to image data and displacement field, we use the aris-
ing hyperbolic colour equation as a basis for a refined nu-
merical approach. For its discretisation, we propose to use
one-sided differences in the correct direction identified via
a smooth predictor solution. The one-sided differences that
are first-order accurate are blended with higher-order central
schemes. Thereby the blending mechanism interpolates be-
tween the following two situations: The one-sided method is
employed at image edges which often coincide with edges
in the displacement field. In smooth image parts the higher-
order scheme is used. We apply our new scheme to several
prototypes of variational models for optic flow and stereo
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reconstruction, where we achieve significant qualitative im-
provements compared to standard discretisations.
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1 Introduction

Numerous computer vision applications, such as optic
flow [13] or stereo reconstruction [17], require to solve a
correspondence problem. This comes down to computing a
displacement field which is the mapping that matches pix-
els of two given images. By use of the displacement field,
non-trivial information about the depicted scenes can be ob-
tained. In image sequence analysis the displacement field is
called optic flow field and gives information about the ap-
parent motion in a moving scene. In the stereo context, the
absolute value of vectors in this field is called disparity and
is needed to recover the depth information of a static scene.
For an introduction to these and other related computer vi-
sion topics, see e.g. [17, 30].

Variational Approaches A successful class of techniques
for solving correspondence problems are variational ap-
proaches that find the displacement field as the minimiser of
an energy functional. Those methods have been studied for
almost three decades, starting from the optic flow approach
of Horn and Schunck [16]. During this period of time, many
efforts have been spent to improve the quality of models.
Some influential publications can be found in [3, 6, 7, 21,
23, 25, 28, 31–33, 36].

In order to apply such continuous-scale models to sam-
pled digital images, one has to discretise the occurring im-
age derivatives. This task offers a certain degree of freedom
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in the choice of the derivative approximation. Surprisingly,
this issue has hardly been studied for variational approaches
to correspondence problems. If the discretisation is dis-
cussed at all, most approaches employ “standard” central fi-
nite difference approximations [3, 7, 36]. On the other hand,
for variational approaches to problems like image restora-
tion, more advanced approximation schemes have been con-
sidered for a long time [22, 26].

Our Idea In this paper we explore the use of sophisticated
discretisations of hyperbolic partial differential equations
(HDEs), cf. [12, 18, 19, 29], that are usually relevant for de-
scribing gas or fluid dynamics. We show that the elliptic or
parabolic PDEs arising in correspondence problems incor-
porate HDEs by considering the physics behind a transport
process: Given an initial set of grey values (first image) and
the velocity of transport (displacement), one can compute
the grey values at a later time (second image). One realises
that the role of known and unknown is switched compared to
correspondence problems where the displacement is the un-
known. This is a novel perspective on variational approaches
to correspondence problems.

Our Contribution in Detail In this paper we make use of
the mentioned relation between HDEs and correspondence
problems. Exchanging the roles of known and unknown, we
identify a hyperbolic colour equation as an important model
component. This motivates us to consider one-sided upwind
discretisations of image derivatives, since these are known to
be useful in the context of HDEs. By a dedicated experiment
in Sect. 3.2 we confirm that they can help to improve the
estimation of the displacement field.

In order to obtain a reasonable compromise between
such a first-order upwind approach and a good quality ap-
proximation in smooth regions, we borrow an idea from
the numerics of HDEs: Like in so-called high-resolution
schemes [18, 19, 29], we use low-order (upwind) difference
approximations of image derivatives at image discontinu-
ities but rely on high-order (central) differences in smooth
regions. Note, that we only use the basic idea of the high-
resolution schemes to obtain an adaptive method. Our adap-
tation is based on a smoothness measure that is specifically
tailored to correspondence problems. Also in the choice of
the high-order scheme, our procedure differs significantly
from the usual high-resolution approach for HDEs.

Let us stress that our aim is not to contribute yet another
state-of-the-art model for solving correspondence problems,
but to advocate more suitable discretisations in order to ob-
tain the best possible quality for a given model. By studying
several prototypes of variational frameworks for optic flow
and stereo reconstruction, we show that our approach can
be beneficial for variational approaches to correspondence
problems in general.

Related Work Our paper is the first journal paper con-
cerned with the construction of a sophisticated numerical
scheme for the hyperbolic colour equation that appears in
variational models for correspondence problems. In this, we
significantly extend our recent conference paper [35]. The
most important extensions are: (i) We show a detailed ex-
perimental investigation of the mechanism that leads to im-
proved results. (ii) We give a thorough discussion of the low-
and high-order discretisations of second-order and mixed
partial derivatives that appear in recent optic flow and stereo
methods. (iii) We give a much more detailed account of the
hyperbolic colour equation within variational models.

Paper Organisation In Sect. 2 we sketch the basics of vari-
ational approaches to correspondence problems in computer
vision. After that, we discuss in Sect. 3 the arising hyper-
bolic colour equation and the effects of several discretisa-
tions of it. We also introduce the new adaptive numerical
method there. In Sect. 4, we extend our approach to sev-
eral prototypes of correspondence problems. The paper is
finished by conclusions in Sect. 5.

2 The Variational Approach to Correspondence
Problems

We introduce the setting by describing a classic and readily
extendable variational model for correspondence problems
in computer vision. For simplicity, we consider a 1D signal
sequence f (x, t) where x ∈ � denotes the position in the
interval � ⊂ R and t ≥ 0 denotes time. For correspondence
problems, at least two frames f (x, t) and f (x, t + 1) of the
signal evolution are given.

In order to compute the unknown displacement function
u(x) that maps f from time t to t + 1, we consider the min-
imisation of the energy functional

E(u) =
∫

�

[
(fxu + ft )

2 + αu2
x

]
dx, (1)

where subscripts denote partial derivatives. This model is
identical to a 1D version of the classic optic flow model of
Horn and Schunck [16].

The term (fx u+ft )
2 is called data term and models how

well the displacement u matches the signal sequence f . It is
obtained as follows: We impose that the signal values are
invariant under their displacement, i.e.

f (x + u, t + 1) = f (x, t). (2)

Especially in the context of 2D images, this basic assump-
tion is called brightness constancy assumption [16]. Equa-
tion (2) is nonlinear in u which makes solving for u a dif-
ficult task. This is the motivation to use a first-order Taylor
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series expansion to simplify this problem, which gives the
so-called linearised brightness constancy assumption

fxu + ft = 0, (3)

where we skipped the arguments of the functions. Using
a quadratic penalisation of (3) then yields the data term
from (1). The data term (3) allows to compute the solution

u = − ft

fx

, (4)

if fx �= 0. This is the so-called normal flow. However, in the
presence of noisy signals, and for obtaining a solution in flat
signal regions, additional assumptions are needed. These are
especially crucial in the 2D case where the data term alone
does not allow to compute an unique solution at all (aperture
problem [4]).

One classical additional assumption for tackling the men-
tioned problems is the use of a smoothness term in conjunc-
tion with the data term [16]. The smoothness term models
the assumption of a smoothly varying displacement field by
penalising large derivatives of u. In this way it also allows to
smoothly fill in the displacement field in regions where the
data term is not sufficient. In our energy functional (1), the
term u2

x is the smoothness term, and its contribution to the
energy is steered by a smoothness weight α > 0.

In order to actually compute a minimiser u of the en-
ergy (1), the calculus of variations [11] states that u neces-
sarily has to fulfil the Euler-Lagrange equation

fx(fxu + ft ) − αuxx = 0, (5)

with homogeneous Neumann boundary conditions.

Important Aspects As all effects of importance for us can
be studied at hand of (1), we stick to it for a large part of the
discussion. However, this model can easily be generalised to
energy functionals

E(u) =
∫

�

[M(f,u) + αV (ux)]dx (6)

with more complex data terms M and smoothness terms V ,
and to higher spatial dimensions. In the section devoted
to numerical experiments we also consider such more ad-
vanced models.

3 The Colour Equation and Its Discretisation

Interpreting (3) as a PDE for the temporal evolution of f

leads to a transport process in the form of a hyperbolic
colour equation, cf. [19]. The name of this equation is de-
rived from a specific application in fluid dynamics. There,

for visualising flowlines in a fluid, coloured tracer particles
can be given into the flow. The PDE governing the transport
of the particles is the colour equation. Additionally, it is of-
ten assumed that the fluid moves always in the same way,
i.e. the velocity of the fluid is in a steady state. Therefore,
the velocity function of the colour is varying in space (as
the displacement u in correspondence problems), but not in
time.

As observed, in hyperbolic problems the roles of known
and unknown are switched compared to correspondence
problems. However, we will show in this paper that the same
disretisation principles apply in both cases.

Typically, the colour equation is a PDE given in the
framework of an initial value problem or an initial-boundary
value problem. In our setting, the initial state f (x, t) is
evolved in time. The role of the other given state f (x, t + 1)

will be (i) to determine the displacement direction and (ii) to
provide data for accurate discretisations.

3.1 Discretisation Basics

For solving the Euler-Lagrange equation (5) numerically, we
have to discretise the signal f , the displacement u, and their
derivatives fx , ft and uxx . For this we sample them on a
spatio-temporal discrete grid. This gives the approximations
f k

i ≈ f (xi, tk) and ui ≈ u(xi), where xi := (i − 1
2 )h and

tk := kτ with a spatial grid size h and a time step size τ . In
this paper we only consider two frames f k

i and f k+1
i , and a

temporal sampling of step size τ = 1.
Now we turn to the discretisation of the occurring deriv-

atives and the numerical boundary conditions. To this end
we use the concept of finite differences, cf. [24]. As no-
tation for the approximation of partial derivatives we use
fd(xi, tk) ≈ (fd)ki , where d ∈ {x, xx, t}, to denote the cor-
responding finite difference discretisation.

Temporal Discretisation For the time derivative we use the
forward difference

(ft )
k
i := 1

τ
(f k+1

i − f k
i ), (7)

as this is the only reasonable choice, given the two frames
f k

i and f k+1
i .

Discretisation of First-Order Spatial Derivatives The ap-
proximation of fx offers different possibilities to define
(fx)

l
i , for l ∈ {k, k + 1}. Basic choices are forward, back-

ward and central differences:

D+
x f l

i := 1

h
(f l

i+1 − f l
i ),

D−
x f l

i := 1

h
(f l

i − f l
i−1),

D0
xf

l
i := 1

2h
(f l

i+1 − f l
i−1)

(8)
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where the finite difference operators D+, D− and D0 denote
forward, backward and central differences, respectively.

Note that the approximation error of the one-sided dif-
ferences is in O(h), whereas their central counterparts only
involve an error of O(h2). This, together with the unbiased
stencil orientation, explains why they are a popular “stan-
dard” choice in image processing.

In order to increase the accuracy in computations for cor-
respondence problems one may use averaged differences.
These take into account differences from both time levels k

and k + 1. More specifically, we use second-order averaged
central differences defined as

D0
xf

k+ 1
2

i := 1

2

(
D0

xf
k
i + D0

xf
k+1
i

)
. (9)

In the remainder of this paper such a central difference ap-
proximation will be referred to as a “standard” derivative
approximation. We found empirically that this way to com-
pute centred differences gives slightly better results than us-
ing data only from one of the frames.

Discretisation of Second-Order Spatial Derivatives Fi-
nally we have to approximate the second-order spatial deriv-
ative of the displacement function. As this choice is not cru-
cial we propose a simple central approximation

(uxx)i := D−
x

(
D+

x ui

) = 1

h2
(ui+1 − 2ui + ui−1). (10)

Numerical Boundary Conditions Especially in the context
of derivative computations, we have to pay attention to the
boundary conditions employed in the numerics. As discrete
boundary conditions we use homogeneous Neumann bound-
ary conditions, in accordance with the procedure when com-
puting the Euler-Lagrange equation (5). From an imple-
mentation point of view, these boundary conditions are re-
alised by mirroring the signal values at the boundaries of
the signal domain. More precisely, for a signal of length
n, i.e., (f1, f2, . . . , fn−1, fn), we define the dummy values
f0 := f1 and fn+1 := fn at the boundaries.

Multiscale Approach A differential model as given by an
Euler-Lagrange equation is inherently local. This is reflected
in the discretisation, as finite difference stencils for discre-
tised derivatives just include the direct vicinity of a consid-
ered pixel. On the other hand, there is usually the need to
establish correspondences between pixels over larger dis-
tances than covered by a stencil. Therefore, we employ a
multiscale approach that is known as warping; see e.g. [7]
for a detailed discussion. As a consequence, displacements
are in practice always in the order of one pixel at all resolu-
tion levels.

Let us stress, that this strategy not only allows to cap-
ture large displacements, it also influences the discretisation.

If image structures are displaced significantly between two
frames, a discretisation like in (9) would be inaccurate as
it would combine derivatives of completely different loca-
tions. By employing the multiscale approach such discreti-
sations are readily justified.

3.2 Why the Colour Equation is Important

We now present an experiment which shows that an appro-
priate choice of (fx)

k
i is crucial for computing reasonable

displacements u. Consider the two frames of a signal se-
quence in Fig. 1(a). There the signal is displaced by ex-
actly one position to the right in its middle part and stays
unchanged otherwise. This is illustrated in the ground truth
displacement displayed in Fig. 1(b).

Note that this example comprises smooth as well as dis-
continuous signal and displacement regions. This makes it
rather indicative. While the set-up of the experiment is sim-
ple, it is already of practical importance: The signal can be
considered as one horizontal scanline from an orthoparallel
2D stereo problem which we will discuss in Sect. 4.

Let us note that the example also exhibits the so-called
occlusion problem. This arises if a foreground object is
shifted and occludes parts of the background. Thus, one can-
not find any correspondence for the regions that are visible
only in the first frame and are then occluded in the second
frame. In our example this happens at point 9. Therefore,
any computed displacements u will be corrupted at this oc-
clusion. However, while we comment in this way on the ex-
pected computational results, the occlusion problem is not
a topic in the focus of this paper. In practical computations,
the occlusion problem is dealt with separately; see e.g. [8]
and the references therein.

In Fig. 1(c)–(e) we depict the computed displacements
using different discretisations for fx . The displacements
were obtained as the solution of the tridiagonal linear system
of equations that arises from the discretised Euler-Lagrange
equation (5). The smoothness weight was set here to the
small value of α = 10−4 in order to show clearly the in-
fluence of the discretisation of the colour equation.

When comparing the displacements in Fig. 1(c)–(e),
the effect of the discretisation of the colour equation be-
comes obvious. Central differences only perform well in the
smooth signal regions, i.e. at the left and right boundaries. At
discontinuities they produce severe oscillations. One-sided
differences perform either favourably or fail totally. Obvi-
ously, the correct orientation matters here.

When using the correct one-sided difference scheme, the
displacement almost coincides with the ground truth, except
at one point. As indicated above, this is not a fault of the
method, but is caused by the occlusion at the jump in the
displacement. Note that as the displacement of an occluded
point is in general undefined, we assigned in the ground truth
to occluded points the displacement of their right neighbour.
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Fig. 1 Top row: (a) Signal at time k (solid) and k + 1 (dotted).
(b) Ground truth displacement. Bottom row: (c) Displacement com-
puted using standard central differences averaged between level k and

k + 1 (solid), compared to the ground truth (dotted). (d) Same for
one-sided forward differences. (e) Same for one-sided backward dif-
ferences. Arrangements are from left to right

The observed behaviour in our experiment is in accor-
dance with the theory of numerical methods for HDEs
[18, 19]. There, so called upwind schemes are a widely used
concept for the discretisation of transport equations. The
term ‘upwind’ refers to correctly oriented one-sided differ-
ences. The correct orientation of an upwind stencil means
in our case opposite to the displacement direction; see our
experiment.

In the hyperbolic theory, central difference approxima-
tions as in (9) are known to lead to oscillations. They can
even be unconditionally unstable, see e.g. [14, 29] for dis-
cussions. However, since in correspondence problems only
one time step is performed, this instability is ‘only’ observ-
able in terms of oscillations near strong gradients.

Let us remark that the stability of explicit schemes for
HDEs involves a condition on the time step size called CFL
condition [10, 19, 29]. This CFL condition can be translated
into the assumption, that in one time step grey value infor-
mation can only be transported up to one pixel. Therefore,
the CFL condition for HDEs is related to the assumption
of small displacements in correspondence problems. As dis-
cussed earlier, the CFL condition is always satisfied because
we employ the multiscale approach that results in displace-
ments of up to one pixel at all resolution levels.

3.3 The New Scheme

As we have seen, the low-order upwind differences perform
well at signal discontinuities. However, in smooth regions

the higher order of accuracy of central differences will give
a better resolution of the displacement function. Hence, a
natural idea is to combine the two types of schemes by using
the high-order central approximation in smooth signal parts
and upwinding at discontinuities.

This idea has been successfully used for the construc-
tion of so-called high-resolution (HR) methods [19, 29] for
HDEs. They use a nonlinear blending of low- and high-order
approximations, steered by a smoothness measure. In the
classic framework for HDEs, the blending is performed by a
limiter function that can be constructed to result in total vari-
ation stability of the HR scheme. This construction results
in a non-uniform order but effectively in a discretisation of
high quality, which explains the naming of HR methods.

The adaptation of this methodology to our variational
framework gives an adaptive high-resolution-type (HRT)
discretisation scheme for correspondence problems which
is presented in the following. As motivated above, our main
goal in the construction of the HRT method will be to obtain
a better resolution at edges of u and around them.

Before proceeding with the scheme description, let us
give some comments on similarities and differences of our
method to the classic HR schemes, as we do not apply an
off-the-shelf-approach in this paper. While it is very useful
to consider the hyperbolic colour equation as a distinct im-
portant part to be re-interpreted and discretised, the final aim
is to compute the displacement u. Especially, while a non-
oscillatory resolution of edges in u is obviously important as
seen by the experiment in Sect. 3.2, we do not have to spend
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too much attention to structural properties of a discretisa-
tion, such as its total variation stability. This would only be
important for a long-time integration of f , while in our case
f is already given and only two time levels in f need to be
considered.

Measuring Smoothness First we discuss how to determine
the smooth and discontinuous regions of a signal. As indi-
cated, this will be needed in order to steer the blending of the
two considered schemes. Therefore, we introduce a smooth-
ness measure

�i := ∣∣D−
x f k

i − D+
x f k

i

∣∣ + ∣∣D−
x f k+1

i − D+
x f k+1

i

∣∣, (11)

that is close to 0 in smooth regions where backward and
forward differences of f k

i and f k+1
i are almost identical,

and large at discontinuities of fi .
Note that here one of the differences to a usual set-up of a

high-resolution method for HDEs becomes obvious: In cor-
respondence problems one already has the final state of the
evolving signal f at hand, and so we can base our smooth-
ness measure on both f k and f k+1. By the multiscale ap-
proach, such a combination of data from different frames
will not result in mixing data from entirely different loca-
tions.

Determining the Upwind Directions Next we need to de-
termine the appropriate upwind directions for discretising
the colour equation. This is not straight forward, since the
upwind direction depends on the direction of the displace-
ment field, and this is exactly the unknown we aim to com-
pute.

As a possible remedy, we propose to compute a predictor
solution ũ whose sign determines the upwind direction. The
predictor is computed using the high-order standard approx-
imation f H

x of the derivative fx . It is given by the averaged
central difference approximation

(
f H

x

)
i
:= D0

xf
k+ 1

2
i . (12)

In order to avoid oscillations as occurring in the experi-
ment in Sect. 3.2, we use a comparatively large smoothness
weight in this computation (α = 1).

With the help of the predictor solution ũ, the low-order
upwind approximation f L

x of fx is defined as

(
f L

x

)
i
:=

⎧⎪⎨
⎪⎩

D−
x f k

i , if ũi > 0,

D+
x f k

i , if ũi < 0,

(f H
x )i, if ũi = 0.

(13)

Revisiting the experiment from Fig. 1, one confirms that this
definition agrees with the results obtained there.

We compute in (13) the upwind stencils employing
frame k. This is theoretically justified since the linearised

brightness constancy assumption (3) involves a linearisation
at that time level. If we would switch the roles of the frames
k and k +1, then the method would use at pixel i the upwind
stencil pointing in the opposite direction.

The Blending Function Now we define the blending func-
tion �(�i) which realises the switch between high-order
and low-order approximations in accordance to the value
of �i .

The idea is that it shall be close to 1 in smooth signal
regions, which will yield a high-order approximation there.
At discontinuities it shall be close to 0 which will lead to a
low-order upwind approximation that is better suited there.
For the actual choice of �(�i) we propose

�(�i) :=
{

1 − �i, if 0 ≤ �i < 1,

0, else.
(14)

The blending is performed here in a different way than
in the usual set-up of high-resolution schemes for HDEs,
cf. [19, 29] for detailed discussions of the latter setting.
Other blending functions—especially those that are standard
in the field of HDEs—do not lead to better results. We tested
this, but as it turns out to be of no particular use we do not
comment on it in more detail here.

The High-Resolution-Type (HRT) Discretisation Scheme
Now everything is prepared to define the adaptive HRT dis-
cretisation. It reads as

(fx)
k
i := (

f L
x

)
i
+ �(�i)

[(
f H

x

)
i
− (

f L
x

)
i

]
, (15)

using the function �(�i) to blend between the high-order
derivative approximation f H

x and its low-order counter-
part f L

x .

4 Evaluation of the HRT Scheme

Now we elaborate on the developed methodology by apply-
ing it within several prototypes of correspondence problems
in computer vision. The purpose of our broad selection is to
illustrate the benefits of our general concept. We consider:
(i) The classic optic flow model of Horn and Schunck [16]
which we have already discussed in a 1D version in Sect. 2,
(ii) the more recent optic flow method of Brox et al. [7], and
(iii) the variational stereo approach of Slesareva et al. [28].
We will briefly review the models, sketch how to extend our
HRT discretisation scheme for these cases, and discuss com-
putational results in detail.
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4.1 Optic Flow: Basics

For optic flow computation we are given a 2D image se-
quence f (x, y, t) where (x, y)� ∈ �2 denotes the location
within a rectangular image domain �2 ⊂ R

2 and t ≥ 0 de-
notes time. The sought flow field (u, v)� that gives the dis-
placements from time t to t + 1 is found as the minimiser of
the 2D energy functional

E(u,v) =
∫

�2

[M(f,u, v) + αV (∇u,∇v)]dx dy, (16)

where ∇ := (∂x, ∂y)
� denotes the spatial gradient operator.

4.2 Optic Flow: The Classic Method of Horn and Schunck

The brightness constancy assumption in the 2D optic flow
case is given by

f (x + u,y + v, t + 1) = f (x, y, t). (17)

After a first order Taylor linearisation and a quadratic pe-
nalisation one ends up with the data term of Horn and
Schunck [16]:

M(f,u, v) = (fxu + fyv + ft )
2. (18)

Horn and Schunck [16] proposed in addition the quadratic
smoothness term

V (∇u,∇v) = |∇u|2 + |∇v|2. (19)

The corresponding Euler-Lagrange equations are

fx

(
fxu + fyv + ft

) − α
(
uxx + uyy

) = 0, (20)

fy

(
fxu + fyv + ft

) − α
(
vxx + vyy

) = 0. (21)

Discretisation in 2D In order to discretise the occurring
2D images and the flow field, we sample them on a 2D
spatio-temporal discrete grid. For the images, this yields the
approximation f k

i,j ≈ f (xi, yj , tk). Here, xi := (i − 1
2 )hx

and yj := (j − 1
2 )hy for spatial grid sizes hx and hy in x-

and y-direction, respectively. The discretisation of the flow
fields works accordingly.

The discretised Euler-Lagrange equations (20) and (21)
now lead to a penta-diagonal linear system of equations.
Due to its sparsity, it can be solved by well-known itera-
tive solvers [34]. We employ the successive overrelaxation
(SOR) method.

4.2.1 The HRT Scheme for the Method of Horn and
Schunck

Now we adapt the HRT discretisation scheme from Sect. 3.3
to the 2D optic flow case and the model of Horn and
Schunck.

First of all we need distinct smoothness measures �x , �y

for the x- and the y-direction, respectively. For �x we use
the according expression (11) from the 1D case, and �y is
obtained by using y- instead of x-differences.

The derivative approximations of fx are obtained from
(8). We only need to replace fi+l by fi+l,j , for l ∈
{−1,0,1}. The approximations of fy can be easily obtained
from the x-derivatives by switching the role of i and j . For
ft and uxx , uyy , vxx , vyy we use the corresponding 2D ex-
tension of (7) and (10), respectively.

4.2.2 Numerical Experiments for the Method of Horn and
Schunck

In our first numerical experiment, we compute the flow field
for a simple synthetic sequence we have created, see Fig. 3.
The sequence depicts a rectangle that is displaced by one
pixel to the right and one pixel to the bottom. This motion is
encoded in the ground truth flow field in Fig. 3(c). To visu-
alise flow fields, we use a colour code where colour encodes
the direction and brightness the magnitude of the flow, cf.
Fig. 2. Figure 3 also compares the results obtained with two
different derivative approximations: (i) A standard scheme
and (ii) our proposed adaptive HRT scheme. To measure the
quality of the flow fields, we use the average angular error
(AAE) measure [2] defined as

AAE(u, v, û, v̂) := 1

nxny

·
nx∑
i=1

ny∑
j=1

arccos

(
ui,j ûi,j + vi,j v̂i,j + 1

(u2
i,j + v2

i,j + 1)(û2
i,j + v̂2

i,j + 1)

)
,

(22)

where (û, v̂)� denotes the ground truth flow field, and nx,ny

denote the number of pixels in x- and y-direction, respec-
tively. Note that the AAE measures the average angle be-
tween two spatio-temporal flow vectors. Thus, if the esti-
mated vector is a multiple of the true vector, the angle is
not equal to zero, as often assumed incorrectly. In Fig. 3

Fig. 2 (Color online) Colour code of the displacement vectors
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Fig. 3 (Color online) Results for the method of Horn and Schunck on
our Rectangle sequence. We compare a standard derivative approxima-
tion to our adaptive HRT scheme. First row: (a) First frame. (b) Sec-
ond frame. (c) Ground truth. (d) Difference of the error maps in (g)

and (h). Green marks improvements, red impairments of our HRT
scheme compared to the standard scheme. Second row: (e) Flow field
with a standard derivative approximation. (f) Same with our adaptive
HRT scheme. (g) Error map for (e). (h) Error map for (f)

Table 1 Error measures (AAE) for several sequences using the
method of Horn and Schunck. We compare a standard derivative ap-
proximation to our proposed adaptive HRT scheme

Rectangle Marble Yosemite Street

Standard 31.93◦ 9.11◦ 10.72◦ 9.38◦

HRT 28.40◦ 8.50◦ 9.53◦ 9.00◦

we additionally show two error maps that visualise the AAE
(brighter pixels correspond to larger errors). To ease com-
parison of these maps, we visualise in Fig. 3(d) the differ-
ence of the error maps. Here, green encodes improvements
of the HRT over the standard scheme and red encodes im-
pairments. The brightness of the pixels corresponds to the
magnitude of the error. Inspecting the error maps and their
difference, the expected benefits of the HRT scheme become
obvious: Especially at the lower and right boundary of the
rectangle, i.e. at regions with a large image discontinuity, the
HRT scheme reduces the error. This observation is validated
by the AAE measures that we show in Table 1.

This table also shows the AAE for more complex se-
quences, like the Marble,1 the Yosemite without clouds,2 and

1Available at http://i21www.ira.uka.de/image_sequences.
2Available at http://www.cs.brown.edu/~black/images.html.

the Street sequence.3 For these sequences, a comparison of
error maps resulting from a standard derivative approxima-
tion and our adaptive scheme is shown in Fig. 4. It turns
out that the HRT scheme allows to decrease the errors in re-
gions with strong discontinuities. For Marble this is the case
at the ground floor, for Yosemite we see an improvement at
the lower left boundary, and for Street the error decreases at
the leaves of the tree.

We wish to note that for this and also for the upcoming
experiments, the predictor solution (ũ, ṽ) is now computed
with the same smoothness weight α as the final result. This
becomes possible as the value of α is usually large enough
for standard test sequences.

Finally, we want to evaluate if the upwind directions were
correctly estimated using the predictor solution. In Fig. 5 we
visualise the errors by greyscale maps. Here, black pixels
mark locations where the upwind directions were correctly
estimated, i.e. the sign of the predictor solution equals the
sign of the ground truth flow. The grey pixels mark locations
with an error in the direction estimation. The brightness of
the pixels corresponds to the magnitude of the ground truth
flow at this location. The latter is motivated by the obser-
vation that errors in the upwind direction estimation are on
the one hand hardly avoidable, but also less harmful, if the
flow is very small. Inspecting the error maps in Fig. 5, we

3Available at http://of-eval.sourceforge.net.

http://i21www.ira.uka.de/image_sequences
http://www.cs.brown.edu/~black/images.html
http://of-eval.sourceforge.net
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Fig. 4 (Color online) Results for the method of Horn and Schunck
on several sequences. We compare a standard derivative approxima-
tion to our proposed adaptive HRT scheme. From top to bottom: Mar-
ble, Yosemite without clouds and Street sequence. From left to right:

First frame, error map with a standard derivative approximation, same
for our adaptive HRT scheme, difference of the two error maps (green
marks improvements, red impairments of our HRT scheme compared
to the standard scheme)

Fig. 5 (Color online) Error in the estimated upwind directions for the
sequences shown in Fig. 4. Black pixels mark correct direction. Grey
pixels mark errors, where the brightness encodes to the magnitude of

the ground truth flow at the corresponding location. From left to right:
Marble, Yosemite without clouds and Street sequence
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verify that the computed predictor allows for a very reliable
estimation of the correct upwind directions. Note that we
do not show an error map for our previous experiment in
Fig. 3 as the error is zero there. For the upcoming experi-
ments, we also refrain from showing error maps for the up-
wind direction as this is difficult when using the proposed
multiscale framework where flow increments are computed
at each level.

4.3 Optic Flow: The Method of Brox et al.

A more recent and also more accurate optic flow method is
the one of Brox et al. [7]. It extends the already presented
approach of Horn and Schunck in several ways as briefly
sketched in the following.

Data Term and Smoothness Term Brox et al. propose the
data term M(f,u, v) given by

�M

(|f (x + u,y + v, t + 1) − f (x, y, t)|2

+ γ |∇f (x + u,y + v, t + 1) − ∇f (x, y, t)|2). (23)

Let us review its innovations compared to the data term of
Horn and Schunck (18). (i) To handle large displacements,
the linearisation in the data term is postponed to the numer-
ical part. There, a coarse-to-fine multiscale warping frame-
work is used that computes small flow increments on each
warping level via a linearised approach. The sum of all these
increments then gives the final flow field. (ii) In addition
to the brightness constancy assumption, also the gradient
constancy assumption is imposed. It models the assumption
that image gradients are invariant under their displacement,
i.e., ∇f (x + u,y + v, t + 1) = ∇f (x, y, t), which renders
the approach robust under varying illumination conditions.
The contribution of the gradient constancy assumption to the
data term is steered by the parameter γ > 0. (iii) Finally,
a robust penaliser function �(s2) is used. This function
is preferably positive, increasing, subquadratic and strictly
convex in s. Whereas the first properties ensure robustness
w.r.t. outliers caused by noise or occlusions, the latter guar-
antees that a unique minimum of the underlying energy ex-
ists. Brox et al. propose �M(s2) := √

s2 + ε2, with a small
regularisation parameter ε = 0.001. This results in a modi-
fied differentiable L1 penalisation.

The smoothness term uses the same penaliser as the data
term:

V (∇u,∇v) = �V (|∇u|2 + |∇v|2), (24)

where �V (s2) = �M(s2). This comes down to total vari-
ation (TV) penalisation [26], and yields a discontinuity-
preserving behaviour.

Euler-Lagrange Equations We first introduce in accor-
dance to [7] the abbreviations

f∗∗ := ∂∗∗f (x + u,y + v, t + 1), (25)

fz := f (x + u,y + v, t + 1) − f (x, y, t), (26)

f∗z := ∂∗f (x + u,y + v, t + 1) − ∂∗f (x, y, t), (27)

where ∗∗ ∈ {x, y, xx, xy, yy},∗ ∈ {x, y}, and the variable
z is used to emphasise the use of temporal differences in
contrast to temporal derivatives. Using these abbreviations,
the Euler-Lagrange equations for the method of Brox et al.
are given by

� ′
M

(
f 2

z + γ (f 2
xz + f 2

yz)
) · (fxfz + γ (fxxfxz + fxyfyz))

− α div
(
� ′

V

(|∇u|2 + |∇v|2)∇u
) = 0, (28)

� ′
M

(
f 2

z + γ (f 2
xz + f 2

yz)
) · (fyfz + γ (fyyfyz + fxyfxz))

− α div
(
� ′

V

(|∇u|2 + |∇v|2)∇v
) = 0. (29)

To solve above equations, we follow the strategy proposed
in [7]. Here, two nested fixpoint iterations are performed,
which reduce the problem to the solution of a series of sys-
tems of linear equations. For an efficient solution of the lat-
ter, we use the multigrid framework proposed by Bruhn et
al. [9].

4.3.1 The HRT Scheme for the Method of Brox et al.

Inspecting the Euler-Lagrange equations (28) and (29),
we realise that due to the use of the gradient constancy
assumption, also the second order and mixed derivatives
fxx, fyy, fxy, fxz and fyz occur.

First of all, this requires to define a smoothness measure
for the mixed xy-direction. Given the smoothness measures
�x and �y , we define the mixed expression as �xy := �x +
�y .

Second Order Derivative Approximations More involved
are the high-order and the (one-sided) low-order approxima-
tions of the second order derivatives. These are now briefly
presented, relying on the finite difference operators defined
in (8).

High-Order The high-order approximations of fxx and
fyy are defined in accordance to (10).

The mixed derivative fxy = ∂yfx is approximated in the
finite difference case as

(fxy)
k
i,j := D0

y

(
D0

xf
k
i,j

) = D0
y

(
f k

i+1,j − f k
i−1,j

2hx

)

= f k
i+1,j+1 − f k

i−1,j+1 − (f k
i+1,j−1 − f k

i−1,j−1)

4hxhy

.

(30)
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An averaged version taking into account both time levels is
then obtained via

(fxy)
k+ 1

2
i,j := 1

2

(
D0

y

(
D0

xf
k
i,j

) + D0
y

(
D0

xf
k+1
i,j

))
. (31)

Similarly, we define fxz as

(fxz)
k
i,j := D+

z

(
D0

xf
k
i,j

)

= 1

2hx

(
f k+1

i+1,j − f k+1
i−1,j − (f k

i+1,j − f k
i−1,j )

)
, (32)

where D+
z f k

i,j := f k+1
i,j − f k

i,j denotes the temporal differ-
ence. Analogously we proceed for fyz.

Low-Order In the low-order upwind case, the sign of the
predictor shall decide which one-sided difference should
be used: We consider ũ for x-derivatives and ṽ for y-
derivatives, respectively.

For approximating fxx we make use of the corresponding
upwind difference for fx :

ũ > 0 : (fxx)
k
i,j := D−

x

(
D−

x f k
i,j

)
, (33)

ũ < 0 : (fxx)
k
i,j := D+

x

(
D+

x f k
i,j

)
. (34)

For ũ = 0, we use the corresponding high-order approxima-
tion. For fyy , we proceed accordingly, taking into account
the predictor ṽ.

For the mixed derivative fxy we have to use the two pre-
dictors ũ and ṽ. If a predictor is equal to zero, we use the cor-
responding high-order approximation, and if it is non-zero,
its sign determines which one-sided upwind approximation
to use. This leads to the case distinction summarised in Ta-
ble 2. If ũ = 0 and ṽ = 0 holds, we again use the high-order
approximation of fxy .

For fxz we use the same approach as presented above
in the high-order case but just use one-sided upwind differ-

Table 2 Upwind-type (one-sided) discretisations of the mixed deriva-
tive fxy

Case Discretisation of (fxy)ki,j

ũ = 0, ṽ > 0 D−
y

(
D0

xf k
i

)

ũ = 0, ṽ < 0 D+
y

(
D0

xf k
i

)

ũ > 0, ṽ = 0 D0
y

(
D−

x f k
i

)

ũ < 0, ṽ = 0 D0
y

(
D+

x f k
i

)

ũ > 0, ṽ > 0 D−
y

(
D−

x f k
i

)

ũ > 0, ṽ < 0 D+
y

(
D−

x f k
i

)

ũ < 0, ṽ > 0 D−
y

(
D+

x f k
i

)

ũ < 0, ṽ < 0 D+
y

(
D+

x f k
i

)

ences for approximating fx . This gives

ũ > 0 : (fxz)
k
i,j := D+

z

(
D−

x f k
i,j

)
,

ũ < 0 : (fxz)
k
i,j := D+

z

(
D+

x f k
i,j

)
.

(35)

Accordingly we proceed for fyz.

4.3.2 Numerical Experiments for the Method of Brox et al.

We now show experiments for our adaptive HRT scheme
used within the method of Brox et al. [7]. Due to the post-
poned linearisation, the robust data term and the discontinu-
ity-preserving smoothness term, this method achieves rea-
sonable results for more difficult sequences, like the ones
from the popular Middlebury database [1].4

In Fig. 6, we show results for the Urban3 sequence. We
see that also for the method of Brox et al., the HRT scheme
allows to improve the results at locations with strong discon-
tinuities (marked in the images). In this context, we also re-
fer to Fig. 7 where we show a plot of the gradient magnitude

Fig. 6 (Color online) Results for the method of Brox et al. on the Ur-
ban3 sequence. We compare a standard derivative approximation to
our proposed adaptive HRT scheme. First row: (a) Reference frame
(frame 10). (b) Ground truth flow field. Second row: (c) Flow field
with a standard derivative approximation. (d) Same with our adaptive
HRT scheme. Third row: (e) Error map with a standard derivative ap-
proximation. (f) Same with our adaptive HRT scheme. Boxes indicate
regions of significantly better results with the HRT scheme

4Available at http://vision.middlebury.edu/flow/data/.

http://vision.middlebury.edu/flow/data/
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Fig. 7 Plot of the gradient magnitude for the Urban3 sequence. Left
(a): Reference frame. Right (b): Corresponding gradient magnitude,
scaled to the range from 0 to 255. The boxes indicate regions where the
HRT scheme performs significantly better than the standard approach,
cf. Fig. 6. We observe that these are regions featuring strong gradients

Table 3 Error measures (AAE) for several Middlebury sequences and
the method of Brox et al. We compare a standard derivative approxima-
tion scheme to a pure upwind scheme (�(�i) = 0), and our proposed
adaptive HRT scheme

Standard Upwind HRT

Rubberwhale 3.69◦ 4.87◦ 3.55◦

Hydrangea 2.18◦ 2.39◦ 2.16◦

Dimetrodon 1.94◦ 3.06◦ 1.88◦

Grove 2 2.49◦ 3.13◦ 2.46◦

Grove 3 6.17◦ 6.75◦ 6.21◦

Urban 2 2.84◦ 3.77◦ 2.74◦

Urban 3 5.71◦ 4.58◦ 4.11◦

Venus 4.79◦ 4.58◦ 4.45◦

to support the latter observation. The qualitative improve-
ment is confirmed by the corresponding AAE measures in
Table 3. This table also lists other Middlebury sequences and
gives errors for an upwind scheme only using one-sided low-
order approximations (�(�i) = 0). Analysing the results in
Table 3 shows: (i) For 7 out of the 8 test sequences, the
HRT scheme improves the quality over the standard scheme.
Only for Grove 3, the standard scheme is slightly better.
(ii) For the considered complex sequences, the blending be-
tween high-order and low-order approximations of the HRT
scheme gives significantly better results than a pure upwind
scheme. Note that for some sequences, e.g. Dimetrodon, the
upwind scheme produces significantly worse results. This
occurs in sequences with large smooth areas in the images.
There, central derivative approximations are best suited.
Consequently, an upwind scheme that uses the less appro-
priate first-order approximation gives bad results.

Let us also stress in this context, that the basic method of
Brox et al. gives already results of low errors. Therefore, im-
provements in the order documented here are considerable.

4.4 Stereo Vision: Basics

The task of stereo reconstruction is also a correspondence
problem, similar to optic flow.

In the stereo context, we are given an image pair fl(x, y),

fr(x, y), denoting the left and right view of a static scene,
respectively. The absolute value of the displacement field
(u, v)� between fl and fr is called disparity d . As the dis-
parity is directly related to the depth of the corresponding
scene point, it is a fundamental part of 3D reconstruction
methods, cf. [15].

In contrast to optic flow, the displacements in the stereo
context cannot be arbitrary. In fact, the corresponding point
of a pixel in the first image has to lie on a specific line,
the epipolar line [15], in the second image. For simplicity,
we restrict ourselves to a basic, but often considered sce-
nario: If the two cameras are orthoparallel to each other, or
if the image pair has been rectified beforehand, the displace-
ments are purely horizontal. This allows to reformulate the
stereo problem as an optic flow problem with zero vertical
displacement (v = 0).

4.5 Stereo Vision: The Method of Slesareva et al.

The variational stereo method of Slesareva et al. [28] is
based on the optic flow approach of Brox et al., but enforces
corresponding pixels to lie on the epipolar lines. In our or-
thoparallel scenario, the method of Slesareva et al. can thus
be obtained from the optic flow method of Brox et al. (see
Sect. 4.3) by setting v = 0.

In order to use the notation from the optic flow case, we
consider the left and right images as two snapshots of an
image sequence taken at time t and t + 1, respectively. For-
mally, fl(x, y) ≡ f (x, y, t) and fr(x, y) ≡ f (x, y, t + 1).
This yields the energy functional

E(u) =
∫

�2

[M(f,u) + αV (∇u)]dx dy, (36)

whose minimiser u gives the sought disparity by d = |u|.
The data term M(f,u) reads as

�M

(|f (x + u,y, t + 1) − f (x, y, t)|2

+ γ |∇f (x + u,y, t + 1) − ∇f (x, y, t)|2), (37)

and the smoothness term is given by

V (∇u) = �V (|∇u|2). (38)

To minimise the energy (36), one solves the single Euler-
Lagrange equation

� ′
M

(
f 2

z + γ (f 2
xz + f 2

yz)
) · (fxfz + γ (fxxfxz + fxyfyz))

− α div
(
� ′

V

(|∇u|2)∇u
) = 0, (39)

using the abbreviations

f∗∗ := ∂∗∗f (x + u,y, t + 1), (40)
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fz := f (x + u,y, t + 1) − f (x, y, t), (41)

f∗z := ∂∗f (x + u,y, t + 1) − ∂∗f (x, y, t), (42)

where ∗∗ ∈ {x, xx, xy} and ∗ ∈ {x, y}. The solution of (39)
is in accordance to the solution of (28).

The adaption of the HRT scheme works in accordance to
the optic flow case described in Sect. 4.3.1.

4.5.1 Numerical Experiments for the Method of Slesareva
et al.

Our final experiments show that our adaptive HRT scheme
is also beneficial for variational stereo. As test data, we used
stereo pairs from the Middlebury stereo page [27].5 To mea-
sure the quality of the disparity estimates, we use the bad
pixel error (BPE) [27]. It gives the percentage of pixels that
deviate more than a threshold δd from the ground truth û,
yielding the definition

BPE(u, û, ) := 100

nxny

nx∑
i=1

ny∑
j=1

T (|ui − ûi | > δd), (43)

where T (b) = 1 if b = true, and 0 else. As proposed in [27],
we set δd = 1.

In Fig. 8, we show results for the Plastic pair. Again,
the HRT scheme improves the results at locations with large
discontinuities, which are marked in the bad pixel maps in
Fig. 8(e) and (f). The corresponding BPE measures are sum-
marised in Table 4 that, as before, lists also other Middle-
bury pairs and errors for an upwind scheme. Similar to the
optic flow case, the HRT scheme gives the best results, com-
pared to a standard and a pure upwind scheme.

5 Summary and Conclusion

Our paper is the first approach that exploits the structural re-
lationship between data terms in variational approaches for
correspondence problems and hyperbolic differential equa-
tions. This has led to novel sophisticated numerical schemes
for the approximation of spatial image derivatives in corre-
spondence problems. It relies on the idea to switch the role
of known and unknown data in the data term, which leads
to a hyperbolic colour equation. This equation is discretised
with specific upwind schemes that are appropriate for the
application to correspondence problems.

Note that our goal was not to introduce novel, more accu-
rate models, which has been done in numerous publications
in the last three decades. Our goal was to introduce a new
class of better discretisations. They can be useful for all ap-
proaches that formulate correspondence problems in terms

5Available at http://vision.middlebury.edu/stereo/data/.

Fig. 8 Results for the method of Slesareva et al. on the Plastic pair.
We compare a standard derivative approximation to our proposed adap-
tive HRT scheme. First row: (a) Left image. (b) Ground truth. Second
row: (c) Disparity with a standard derivative approximation scheme.
(d) Same with our adaptive HRT scheme. Third row: (e) Bad pixel
map with a standard derivative approximation scheme (bad pixels are
black). (f) Same with our adaptive HRT scheme

Table 4 Error measures (BPE) for several Middlebury image pairs
and the method of Slesareva et al. We compare a standard derivative
approximation scheme to a pure upwind scheme (�(�i) = 0), and our
proposed adaptive HRT scheme

Standard Upwind HRT

Plastic 25.85% 21.35% 18.85%

Tsukuba 7.76% 7.59% 7.58%

Venus 3.06% 2.78% 2.77%

Teddy 17.45% 16.94% 16.75%

Cones 15.34% 15.34% 15.32%

of differential expressions. In order to illustrate this general
benefit, we have applied it to three prototypical methods:
The optic flow approaches of Horn and Schunck [16] and of
Brox et al. [7], and the stereo method of Slesareva et al. [28].
Our experiments demonstrate that the novel discretisations
allow to improve the quality of results in a similar order as
is usually obtained by model improvements.

http://vision.middlebury.edu/stereo/data/
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Although we have focused on variational models, we are
convinced that these numerical ideas are more general and
can also be useful for other differential methods for corre-
spondence problems in computer vision. Part of our ongo-
ing research is thus concerned with testing if our proposed
schemes also yield better discretisations for local methods.
These methods do not use a smoothness term but assume
constancy of the flow field in some local neighbourhood.
Popular examples for such methods are the Lucas-Kanade
method [20], the structure tensor approach of Bigün et al. [5]
and their numerous variants.
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