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Abstract Interval-valued fuzzy mathematical morphology
is an extension of classical fuzzy mathematical morphology,
which is in turn one of the extensions of binary morphol-
ogy to greyscale morphology. The uncertainty that may exist
concerning the grey value of a pixel due to technical limita-
tions or bad recording circumstances, is taken into account
by mapping the pixels in the image domain onto an inter-
val to which the pixel’s grey value is expected to belong in-
stead of one specific value. Such image representation cor-
responds to the representation of an interval-valued fuzzy
set and thus techniques from interval-valued fuzzy set the-
ory can be applied to extend greyscale mathematical mor-
phology. In this paper, we study the decomposition of the
interval-valued fuzzy morphological operators. We investi-
gate in which cases the [α1, α2]-cuts of these operators can
be written or approximated in terms of the corresponding
binary operators. Such conversion into binary operators re-
sults in a reduction of the computation time and is further
also theoretically interesting since it provides us a link be-
tween interval-valued fuzzy and binary morphology.
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1 Introduction

Many theories have been developed in the domain of image
processing to extract specific information from images such
as edges, patterns, . . . One of these theories is mathematical
morphology, in which an image is transformed into another
image by a morphological operator, using a structuring el-
ement. The basic morphological operators are the dilation,
erosion, opening and closing. The original binary morphol-
ogy [1], for binary (black-white) images, was extended to
greyscale images by two different approaches: (i) the thresh-
old approach [1] and (ii) the umbra approach [2]. In the
first approach, the structuring element still has to be binary;
in the second approach, also greyscale structuring elements
are allowed. Later, a third approach was introduced, inspired
on the observation that greyscale images and fuzzy sets are
modelled in the same way (i.e. as mappings from a universe
U into the unit interval [0,1]): fuzzy mathematical morphol-
ogy [3–5]. Recently, also extensions of fuzzy mathematical
morphology started to get attention [6–9]. In this paper, we
concentrate on an extension based on interval-valued fuzzy
set theory. A pixel is now mapped onto an interval of grey
levels instead of one specific grey level, in this way allowing
uncertainty regarding the measured grey levels.

In this paper, we investigate the relationships between the
[α1, α2]-cuts of the interval-valued fuzzy dilation, erosion,
opening and closing and the corresponding binary opera-
tors. This is first of all interesting from a theoretical point of
view because it provides us a link between interval-valued
fuzzy and binary morphology but secondly also because
such conversion into binary operators is likely to result in
a lower complexity for the calculation or approximation of
the [α1, α2]-cuts. Moreover, the binary dilation and erosion
can be further sped up by a decomposition of the structuring
element.
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The paper is organized as follows: in Sect. 2 we give
in more detail the basic principles of interval-valued fuzzy
mathematical morphology; Sect. 3 investigates the relation-
ships between the [α1, α2]-cuts of the interval-valued fuzzy
morphological operators and the corresponding binary op-
erators in both a continuous and a discrete framework. The
results are discussed in Sect. 4 and the paper is concluded in
Sect. 5.

2 Interval-Valued Fuzzy Mathematical Morphology

2.1 Interval-Valued Fuzzy Sets

An interval-valued fuzzy set [10] is an extension of a clas-
sical fuzzy set [11] that is modelled by a mapping from a
universe U into the unit interval [0,1]. For a fuzzy set F in
a universe U , every element u ∈ U is mapped onto its mem-
bership degree F(u) ∈ [0,1] in the fuzzy set F . Interval-
valued fuzzy sets now allow uncertainty about the member-
ship degree and are given by mappings from a universe U
into the class of closed intervals LI = {[x1, x2]|[x1, x2] ⊆
[0,1]}. Thus, for an interval-valued fuzzy set G in a universe
U , G(u) = [G1(u),G2(u)] ⊆ [0,1], ∀u ∈ U . We will de-
note the class of interval-valued sets over the universe U by
I V F S(U ). Further, we denote the lower and upper bound of
an element x of LI by respectively x1 and x2: x = [x1, x2]
(Fig. 1).

For the partial ordering ≤LI on LI , defined by

x ≤LI y ⇔ x1 ≤ y1 and x2 ≤ y2, ∀x, y ∈ LI , (1)

the structure (LI ,≤LI ) forms a complete lattice [12]. The
infimum and supremum of an arbitrary subset S of LI are
then respectively given by:

infS =
[

inf
x∈S

x1, inf
x∈S

x2

]
, (2)

supS =
[
sup
x∈S

x1, sup
x∈S

x2

]
. (3)

We use the notations 0LI for infLI = [0,0] and 1LI for
supLI = [1,1].

Fig. 1 Graphical representation of LI

Related orderings on LI that we will also use in this paper
are (∀x, y ∈ LI ):

x <LI y ⇔ x ≤LI y and x �= y, (4)

x �LI y ⇔ x1 < y1 and x2 < y2, (5)

x ≥LI y ⇔ y ≤LI x, (6)

x >LI y ⇔ y <LI x, (7)

x 
LI y ⇔ y �LI x. (8)

Interval-valued fuzzy sets have a nice interpretation in the
domain of image processing [9]. A pixel in the image do-
main is no longer mapped onto one specific grey value, but
onto an interval of grey values to which the grey value is ex-
pected to belong. The grey levels of the pixels in a greyscale
image namely can be uncertain. Firstly, in any device, the
captured grey levels are rounded up or down to an element
of a finite set of allowed values. Further, uncertainty may
also arise when several takes of an image result in different
grey levels for some of the pixels. This is sometimes the case
under identical recording circumstances and can certainly be
expected under variable circumstances such as illumination
changes due to clouds covering the sun, . . . Also, the cam-
era or an object in the scenery can slightly shift position in
between takes, which might result in large differences (un-
certainty) in the measured grey level of pixels. Especially
pixels at the edge of an object will suffer from this. Finally,
in the context of mathematical morphology, there might also
exist uncertainty regarding the grey levels in the structuring
element that is used. This structuring element can be chosen
by the user, but in some cases he might not be completely
sure how to estimate the importance or thus weight that is
assigned to a pixel in this structuring element. In this case,
the use of intervals to which the value is likely to belong
instead of choosing one specific value, might offer a solu-
tion. Interval-valued images, where the image domain pix-
els are each mapped onto an interval of grey values (i.e.,
a closed subinterval of [0,1]), now have the same represen-
tation as interval-valued fuzzy sets, which allows us to apply
techniques from interval-valued fuzzy set theory to extend
greyscale mathematical morphology.

Also in other image processing problems such as inverse
halftoning [13], as well as in the context of wavelets [14],
interval-valued representations occur in a natural way. They
have also found to be usefull in edge detection applica-
tions [15]. Further, imprecision in grey levels is also con-
sidered in [16].

As a side note, we also mention that interval-valued fuzzy
set theory is equivalent to intuitionistic fuzzy set theory [17]
as shown in [12].

In the sequel, the universe U is restricted to R
n, corre-

sponding to the coordinates of an n-dimensional image.
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2.2 Interval-Valued Fuzzy Mathematical Morphology

In this paper, we investigate the relationships between the
[α1, α2]-cuts of the interval-valued fuzzy dilation, erosion,
opening and closing and the corresponding binary operators.
Those binary morphological operators are defined as follows
(with the translation Ty(B) of B ⊆ R

n by the vector y ∈ R
n

defined as Ty(B) = {x ∈ R
n|x − y ∈ B}, and the reflection

−B of B given by −B = {−b|b ∈ B}).

Definition 1 [1] Let A,B ⊆ R
n. The binary dilation

D(A,B), the binary erosion E(A,B), the binary closing
C(A,B) and the binary opening O(A,B) are the sets given
by:

D(A,B) = {y|Ty(−B) ∩ A �= ∅},
E(A,B) = {y|Ty(B) ⊆ A},
C(A,B) = E(D(A,B),−B),

O(A,B) = D(E(A,B),−B).

The notions of intersection and inclusion are clearly quite
important in these definitions. Hence, to extend the binary
morphological operators to interval-valued fuzzy ones, it is
needed to extend the underlying Boolean conjunction and
Boolean implication. Moreover, an extension of the Boolean
negation is given below.

Definition 2 [18]

– A negator N on LI is a decreasing LI −LI mapping that
coincides with the Boolean negation on {0,1} (N (0LI ) =
1LI and N (1LI ) = 0LI ).

– A negator N is an involutive negator on LI if (∀x ∈ LI )

(N (N (x)) = x).

The standard negator Ns , defined by Ns([x1, x2]) = [1 −
x2,1 − x1], for all x = [x1, x2] ∈ LI , is an example of an
involutive negator on LI .

Definition 3 [18]

– A conjunctor C on LI is an increasing (LI )2 − LI map-
ping that coincides with the Boolean conjunction on
{0,1}2, i.e., C(0LI ,0LI ) = C(0LI ,1LI ) = C(1LI ,0LI ) =
0LI and C(1LI ,1LI ) = 1LI .

– A conjunctor C is a semi-norm on LI if it satisfies
(∀x ∈ LI )(C(1LI , x) = C(x,1LI ) = x).

– A semi-norm C is a t-norm on LI if it is commutative and
associative.

The conjunctor Cmin, that maps every (x, y) ∈ (LI )2 onto
Cmin(x, y) = [min(x1, y1),min(x2, y2)], is an example of a
t-norm on LI .

Definition 4 [18]

– An implicator I on LI is a hybrid monotonic (LI )2 − LI

mapping (i.e., decreasing in the first argument and in-
creasing in the second argument) that coincides with
the Boolean implication on {0,1}2, i.e., I(0LI ,0LI ) =
I(0LI ,1LI ) = I(1LI ,1LI ) = 1LI and I(1LI ,0LI ) = 0LI .
Every implicator I induces a negator NI defined by
NI (x) = I(x,0LI ),∀x ∈ LI .

– An implicator I is a border implicator on LI if it satisfies
(∀x ∈ LI )(I(1LI , x) = x).

– A border implicator I is a model implicator on LI if it
is contrapositive w.r.t. its induced negator, i.e., (∀(x, y) ∈
(LI )2)(I(x, y) = I(NI (y), NI (x))), and if it fulfills the
exchange principle, i.e., (∀(x, y, z) ∈ (LI )3)(I(x, I(y, z))

= I(y, I(x, z))).

The implicator Imin,Ns
, given by Imin,Ns

(x, y) =
[max(1 − x2, y1),max(1 − x1, y2)], for all (x, y) ∈ (LI )2,
is an example of a model implicator on LI .

Using the above introduced concepts, the interval-valued
fuzzy morphological operators can be defined. The support
dA of an interval-valued fuzzy set A in R

n, used in the defi-
nition, is given by dA = {x|x ∈ R

n and A(x) �= 0LI )}.

Definition 5 [7] Let C be a conjunctor on LI , let I be
an implicator on LI , and let A,B ∈ I V F S(Rn). The
interval-valued fuzzy dilation DI [C](A,B) and erosion
EI [I](A,B) are the interval-valued fuzzy sets defined for
all y in R

n by (where Ty(dB) = {x ∈ R
n|x − y ∈ dB} and

−dB = {x ∈ R
n| − x ∈ dB})

DI [C](A,B)(y) = sup
x∈Ty(−dB)∩dA

C(B(y − x),A(x)), (9)

and

EI [I](A,B)(y) = inf
x∈Ty(dB)

I(B(x − y),A(x)). (10)

Remark that if y �∈ D(dA,dB), then DI [C](A,B)(y) = 0LI .
With the reflection −B of an interval-valued fuzzy set

B in R
n defined as (−B)(x) = B(−x),∀x ∈ R

n, the defini-
tions of the interval-valued fuzzy closing and fuzzy opening
are then given by:

Definition 6 Let C be a conjunctor on LI , let I be an im-
plicator on LI , and let A,B ∈ I V F S(Rn). The interval-
valued fuzzy closing CI [C, I](A,B) and interval-valued
fuzzy opening OI [C, I](A,B) are the interval-valued fuzzy
sets in R

n given by:

CI [C, I](A,B) = EI [I](DI [C](A,B),−B), (11)

OI [C, I](A,B) = DI [C](EI [I](A,B),−B). (12)



J Math Imaging Vis (2010) 36: 270–290 273

In [20] it is shown that fuzzy morphology is compatible
with binary morphology and that fuzzy morphology is com-
patible with greyscale morphology based on the threshold
approach if we restrict ourselves to semi-norms and border
implicators. The interval-valued fuzzy morphology is com-
patible with the fuzzy morphology and because we want to
preserve also the compatibility with the greyscale morphol-
ogy based on the threshold approach, we will restrict our-
selves in the following to semi-norms and border implicators
on LI . Remark that if also stronger morphological proper-
ties such as the commutativity and the iterativity of the di-
lation are required, the conjunctors will need to be further
restricted to t-norms [19].

2.3 Interval-Valued Fuzzy Morphological Operators
in a Discrete Framework

In practice, when processing images on a computer, two
technical limitations arise: (i) images are stored as matri-
ces with a given number of rows and columns and the image
domain is thus Z

n instead of R
n; and (ii) also the grey levels

are sampled and do not belong to the unit interval [0,1], but
to a finite subchain of it. As a consequence the greyscale in-
tervals used in interval-valued fuzzy morphology belong to
the finite subchain LI

r,s of LI , with LI
r,s = {[ r−k

r−1 , s−l
s−1 ]|k, l ∈

Z and 1 ≤ k ≤ r and 1 ≤ l ≤ s} for given integers r and s.
The interval-valued fuzzy sets that correspond to the im-
age A and the structuring element B consequently belong
to I V F S r,s(Z

n), i.e., the class of all interval-valued fuzzy
sets in Z

n with membership intervals in LI
r,s . If an interval-

valued fuzzy set A belongs to I V F S r,s(Z
n), then, ∀x ∈ Z

n,
A1(x) ∈ Ir = { r−k

r−1 |k ∈ Z and 1 ≤ k ≤ r}. Analogously the

upper bound A2(x) ∈ Is{ s−l
s−1 |l ∈ Z and 1 ≤ l ≤ s}.

Further, the definitions of negators, conjunctors and im-
plicators on the chain LI

r,s are analogous to the correspond-
ing definitions on LI (where now LI

r,s takes the role of LI ).
However, not every operator on LI has a corresponding
operator on LI

r,s . The conjunctor C , given by C(x, y) =
[x1 · y1, x2 · y2] for all x, y ∈ LI , for example, is not de-
fined on LI

r,s due to the fact that the interval with as lower
and upper bound the product of respectively the lower and
upper bounds of two elements of LI

r,s does not necessarily
belong to LI

r,s .
The definitions of the discrete interval-valued fuzzy dila-

tion and erosion can now be written as follows:

Definition 7 Let C be a conjunctor on LI
r,s , let I be an im-

plicator on LI
r,s , and let A,B ∈ I V F S r,s(Z

n). The discrete
interval-valued fuzzy dilation DI [C](A,B) ∈ I V F S r,s(Z

n)

is for all y ∈ Z
n defined by:

DI [C](A,B)(y) = sup
x∈Ty(−dB)∩dA

C(B(y − x),A(x))

=
[

max
x∈Ty(−dB)∩dA

C(B(y − x),A(x))1,

max
x∈Ty(−dB)∩dA

C(B(y − x),A(x))2

]
.

(For y �∈ D(dA,dB), DI [C](A,B)(y) = 0LI .)

The discrete interval-valued fuzzy erosion EI (A,B) ∈
I V F S r,s(Z

n) is for all y ∈ Z
n defined by:

EI [I](A,B)(y) = inf
x∈Ty(dB)

I(B(x − y),A(x))

=
[

min
x∈Ty(dB)

I(B(x − y),A(x))1,

min
x∈Ty(dB)

I(B(x − y),A(x))2

]
.

3 Decomposition of Interval-Valued Fuzzy
Morphological Operators

In this section, the relationships between the [α1, α2]-cuts
of the interval-valued fuzzy morphological operators ap-
plied on interval-valued fuzzy sets and the corresponding bi-
nary operators applied on the [α1, α2]-cuts of those interval-
valued fuzzy sets are investigated. Therefore, we first refresh
the definitions of the different [α1, α2]-cuts.

3.1 The Different [α1, α2]-Cuts

In the definitions of the different [α1, α2]-cuts of an interval-
valued fuzzy set below, the notation ULI stands for ULI =
{[x1, x2] ∈ LI |x2 = 1}.

Definition 8 [21] For [α1, α2] ∈ LI\{0LI }, we define the
weak [α1, α2]-cut A

α2
α1 of an interval-valued fuzzy set A ∈

I V F S(Rn) as:

Aα2
α1

= {x|x ∈ R
n, A1(x) ≥ α1 and A2(x) ≥ α2}

= {x|x ∈ R
n and A(x) ≥LI [α1, α2]}.

For [α1, α2] ∈ LI\ULI , the strict [α1, α2]-cut A
α2
α1

is given
by:

A
α2
α1

= {x|x ∈ R
n, A1(x) > α1 and A2(x) > α2}

= {x|x ∈ R
n and A(x) 
LI [α1, α2]}.

The cases [α1, α2] = 0LI and [α1, α2] ∈ ULI are excluded
for respectively the weak and the strict [α1, α2]-cut. Since
{x|x ∈ R

n, A1(x) ≥ 0 and A2(x) ≥ 0} = R
n and {x|x ∈

R
n and A2(x) > 1} = ∅, these cases don’t yield new infor-

mation.
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Definition 9 For α1 ∈]0,1], the weak α1-subcut Aα1 of an
interval-valued fuzzy set A ∈ I V F S(Rn) is given by:

Aα1 = {x|x ∈ R
n and A1(x) ≥ α1}.

For α2 ∈]0,1], the weak α2-supercut Aα2 is given by:

Aα2 = {x|x ∈ R
n and A2(x) ≥ α2}.

For α1 ∈ [0,1[, the strict α1-subcut Aα1 is given by:

Aα1 = {x|x ∈ R
n and A1(x) > α1}.

For α2 ∈ [0,1[, the strict α2-supercut Aα2 is given by:

Aα2 = {x|x ∈ R
n and A2(x) > α2}.

The cases α1 = 0 and α1 = 1 are excluded for respec-
tively the weak and the strict α1-subcut. Since {x|x ∈
R

n and A1(x) ≥ 0} = R
n and {x|x ∈ R

n and A1(x) > 1} =
∅, these cases don’t yield new information. An analogous
reasoning holds for the weak and strict α2-supercut.

Definition 10 For [α1, α2] ∈ LI\ULI , the weak-strict
[α1, α2]-cut A

α2
α1 of an interval-valued fuzzy set A ∈

I V F S(Rn) is given by:

Aα2
α1

= {x|x ∈ R
n, A1(x) ≥ α1 and A2(x) > α2}. (13)

For [α1, α2] ∈ LI\{1LI }, the strict-weak [α1, α2]-cut A
α2
α1

is
given by:

A
α2
α1

= {x|x ∈ R
n, A1(x) > α1 and A2(x) ≥ α2}. (14)

The cases [α1, α2] ∈ ULI and [α1, α2] = 1LI are excluded
for respectively the weak-strict and strict-weak [α1, α2]-
cut. Since {x|x ∈ R

n and A2(x) > 1} = ∅ and {x|x ∈
R

n and A1(x) > 1} = ∅, these cases don’t yield new infor-
mation.

3.2 Decomposition of the Interval-Valued Fuzzy Dilation

Lemma 1 [22] If C is a semi-norm on LI , then it holds that
C ≤ Cmin, i.e.:

(∀(x, y) ∈ (LI )2)(C(x, y) ≤LI Cmin(x, y)).

Note that lemma 1 does not necessarily hold if C is not a
semi-norm on LI .

Example 1 Let C be the conjunctor defined as:

C(x, y) =
{

0LI if inf(x, y) = 0LI ,

1LI else,
∀(x, y) ∈ (LI )2.

One easily verifies that C is no semi-norm on LI since
e.g. C([1,1], [1/4,1/2]) = 1LI �= [1/4, 1/2] and that C �≤
Cmin since e.g. [1,1] = C([1,1], [1/4,1/2]) >LI Cmin([1,1],
[1/4,1/2]) = [1/4,1/2].

3.2.1 Decomposition by Strict Sub- and Supercuts

Proposition 1 Let A,B ∈ I V F S(Rn), then it holds for re-
spectively all α1 ∈ [0,1[ and all α2 ∈ [0,1[ that:

(i) DI [Cmin](A,B)α1 = D(Aα1 ,Bα1),

(ii) DI [Cmin](A,B)α2 = D(Aα2 ,Bα2).

Proof Let A,B ∈ I V F S(Rn), and let α1, α2 ∈ [0,1[.
(i)

y ∈ DI [Cmin](A,B)α1

⇔ DI [Cmin](A,B)(y)1 > α1

⇔ sup
x∈Ty(−dB)∩dA

Cmin(B(y − x),A(x))1 > α1

⇔ (∃x ∈ Ty(−dB) ∩ dA)

(Cmin(B(y − x),A(x))1 > α1)

⇔ (∃x ∈ Ty(−dB) ∩ dA)

(min(B1(y − x),A1(x)) > α1)

⇔ (∃x ∈ Ty(−dB) ∩ dA)

(B1(y − x) > α1 and A1(x) > α1)

⇔ (∃x ∈ Ty(−dB) ∩ dA)

(x ∈ Ty(−Bα1) and x ∈ Aα1)

⇔ Ty(−Bα1) ∩ Aα1 �= ∅
⇔ y ∈ D(Aα1,Bα1).

This proves that DI [Cmin](A,B)α1 = D(Aα1,Bα1).
(ii) Analogous. �

Proposition 2 Let A,B ∈ I V F S(Rn) and let C be a semi-
norm on LI , then it holds for respectively all α1 ∈ [0,1[ and
all α2 ∈ [0,1[ that:

(i) DI [C](A,B)α1 ⊆ D(Aα1 ,Bα1),

(ii) DI [C](A,B)α2 ⊆ D(Aα2 ,Bα2).

Proof (i) The proof is completely analogous to the one from
Proposition 1(i). We only have that due to Lemma 1

(∃x ∈ Ty(−dB) ∩ dA)(C(B(y − x),A(x))1 > α1)

⇓
(∃x ∈ Ty(−dB) ∩ dA)(Cmin(B(y − x),A(x))1 > α1)

only holds in one direction for an arbitrary semi-norm
on LI .

(ii) Analogous. �

The reverse inclusion does not hold in general.
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Example 2 Let [α1, α2] = [1/4,1/2], C(r, s) = [r1 · s1,
r2 · s2] for all r, s ∈ LI , A(x) = [0.3,0.6] for all x ∈ [0,1],
A(x) = 0LI for all x ∈ R\[0,1], B(x) = [0.4,0.7] for all
x ∈ [−1,0] and B(x) = 0LI for all x ∈ R\[−1,0]).

Then on the one hand

0 ∈ D(A0.25,B0.25) = D(A0.5,B0.5) = [−1,1].

On the other hand DI [C](A,B)(0) = [0.12,0.42] and
thus 0 �∈ DI [C](A,B)0.25 and 0 �∈ DI [C](A,B)0.5. As a
consequence DI [C](A,B)0.25 �⊇ D(A0.25,B0.25) and

DI [C](A,B)0.5 �⊇ D(A0.5,B0.5).

Further, the following example illustrates that Proposi-
tion 2 is restricted to semi-norms.

Example 3 Let C be the conjunctor defined in Example 1
(which is not a semi-norm). Further, let A(x) = [1/4,1/2]
for all x ∈ [0,1], A(x) = 0LI for all x ∈ R\[0,1] and
B(x) = 1LI for all x ∈ [−1,0], B(x) = 0LI for all x ∈
R\[−1,0]. Then for all y ∈ D(dA,dB) = [−1,1] it holds
that DI [C](A,B)(y) = 1LI and thus y ∈ DI [C](A,B)0.25

and y ∈ DI [C](A,B)0.5. On the other hand,
from A0.25 = A0.5 = ∅ it follows that D(A0.25,B0.25) =
∅ and D(A0.5,B0.5) = ∅, such that DI [C](A,B)0.25 �⊆
D(A0.25,B0.25) and DI [C](A,B)0.5 �⊆ D(A0.5,B0.5).

Remark that the above decomposition properties for strict
sub- and supercuts remain valid in the discrete framework.

3.2.2 Decomposition by Strict [α1, α2]-Cuts

Proposition 3 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\ULI that:

DI [Cmin](A,B)
α2
α1

⊇ D(A
α2
α1

,B
α2
α1

).

Proof The proof is analogous to the one from Proposition 1.
Only, now we have that

sup
x∈Ty(−dB)∩dA

Cmin(B(y − x),A(x)) 
LI [α1, α2]

⇑
(∃x ∈ Ty(−dB) ∩ dA)

(Cmin(B(y − x),A(x)) 
LI [α1, α2])

only holds in one direction. �

The reverse inclusion does not hold in general.

Example 4 Let [α1, α2] = [0.3,0.7] and let

A(x) =

⎧⎪⎨
⎪⎩

[0.1,0.8], x ∈ [0,0.5[,
[0.5,0.6], x ∈ [0.5,1],
0LI , else

and

B(x) =

⎧⎪⎨
⎪⎩

[0.2,0.9], x ∈] − 0.5,0],
[0.4,0.5], x ∈ [−1,−0.5],
0LI , else.

It then holds that DI [C](A,B)(0) = [0.4,0.8], which
means that 0 ∈ DI [C](A,B)0.7

0.3
.

On the other hand, since A0.7
0.3

= ∅ it holds that

D(A0.7
0.3

,B0.7
0.3

) = ∅, which means that 0 �∈ D(A0.7
0.3

,B0.7
0.3

). As

a consequence DI [C](A,B)0.7
0.3

�⊆ D(A0.7
0.3

,B0.7
0.3

).

The strict [α1, α2]-cut of the interval-valued fuzzy dila-
tion based on the conjunctor Cmin can however always be
constructed from binary dilations as follows.

Proposition 4 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\ULI that:

DI [Cmin](A,B)
α2
α1

= D(Aα1,Bα1) ∩ D(Aα2,Bα2).

Proof Follows from Proposition 1 and the fact that
DI [Cmin](A,B)

α2
α1

=DI [Cmin](A,B)α1 ∩DI [Cmin](A,B)α2 .
�

Due to Lemma 1, Proposition 3 is restricted to the semi-
norm Cmin. For an arbitrary semi-norm C there is no rela-
tion between the strict [α1, α2]-cuts DI [C](A,B)

α2
α1

and the

binary dilation D(A
α2
α1

,B
α2
α1

) as the following example illus-
trates.

Example 5 To illustrate that, for an arbitrary semi-norm
C , it does not hold in general that (∀[α1, α2] ∈ LI\ULI )

(DI [C](A,B)
α2
α1

⊇ D(A
α2
α1

,B
α2
α1

)), Example 4 can be used
again.

For a counterexample of the reverse inclusion we re-
fer to Example 2, where 0 ∈ D(A0.5

0.25
,B0.5

0.25
) = [−1,1]

and DI [C](A,B)(0) = [0.12,0.42], which means that 0 �∈
DI [C](A,B)0.5

0.25
.

The strict [α1, α2]-cut of an interval-valued fuzzy dilation
based on an arbitrary semi-norm C can however always be
approximated by binary dilations.
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Proposition 5 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\ULI that:

DI [C](A,B)
α2
α1

⊆ D(Aα1,Bα1) ∩ D(Aα2,Bα2).

Proof Follows from Proposition 2 and the fact that
DI [C](A,B)

α2
α1

= DI [C](A,B)α1 ∩ DI [C](A,B)α2 . �

Remark that the above decomposition properties for strict
[α1, α2]-cuts remain valid in the discrete framework.

3.2.3 Decomposition by Weak Sub- and Supercuts

In general, there is no relation between the weak sub- and su-
percut DI [C](A,B)α1 and DI [C](A,B)α2 and the binary di-
lations D(Aα1 ,Bα1) and D(Aα2 ,Bα2) for an arbitrary semi-
norm C .

Example 6 To illustrate that in general it does not hold
that DI [C](A,B)α1 ⊆ D(Aα1 ,Bα1), we can use Example 4
again. However, we can now also construct a counterex-
ample based on the fact that for a weak α1-subcut of an
interval-valued fuzzy set A, the inequality A1(x) ≥ α1, that
needs to hold for x ∈ R to belong to Aα1 , is not strict.
Let [α1, α2] = [1/4,1], A(x) = [x/2, x] for all x ∈ [0,1[,
A(x) = 0LI for all x ∈ R\[0,1[, B(x) = 1LI for all x ∈
[−1,0] and B(x) = 0LI for all x ∈ R\[−1,0]. Let C be the
conjunctor defined in Example 2.

It then holds that DI [C](A,B)(0) = [1/2,1], which
means that 0 ∈ DI [C](A,B)0.5.

On the other hand, however, since A0.5 = ∅ also
D(A0.5,B0.5) = ∅ and thus 0 �∈ D(A0.5,B0.5). As a con-
sequence DI [C](A,B)0.5 �⊆ D(A0.5,B0.5). Note that the
above example holds for any semi-norm C , since for any
semi-norm C it holds in the example that C(B(x),A(x)) =
C(1LI ,A(x)) = A(x) for all x ∈]0,1[. (An analogous ex-
ample can be found for weak supercuts. The above results
still hold for the weak α2-supercut where α2 = 1. It then
holds that 0 ∈ DI [C](A,B)1 and D(A1,B1) = ∅.)

In general also DI [C](A,B)α1 �⊇ D(Aα1 ,Bα1). To illus-
trate this, we can use Example 2 again (where the strict
and weak 0.25-subcuts of A and B coincide). Adapt-
ing that example we get that 0 ∈ D(A0.25,B0.25) and
0 �∈ DI [C](A,B)0.25, which leads to DI [C](A,B)0.25 �⊇
D(A0.25,B0.25). (Analogously for weak supercuts.)

For the semi-norm C = Cmin, the following partial result
holds.

Proposition 6 Let A,B ∈ I V F S(Rn), then it holds for re-
spectively all α1 ∈]0,1] and all α2 ∈]0,1] that:

(i) DI [Cmin](A,B)α1 ⊇ D(Aα1 ,Bα1),

(ii) DI [Cmin](A,B)α2 ⊇ D(Aα2 ,Bα2).

Proof Let A,B ∈ I V F S(Rn), and let α1, α2 ∈ ]0,1].
(i) Analogous to the Proof of Proposition 1. Only, now it

holds that:

(∃x ∈ Ty(−dB) ∩ dA)(Cmin(B(y − x),A(x))1 ≥ α1)

⇓
sup

x∈Ty(−dB)∩dA

Cmin(B(y − x),A(x))1 ≥ α1.

(ii) Analogous. �

To illustrate that the reverse inclusion does not hold, we
refer to Example 6.

Proposition 6 remains valid in the discrete framework.
Moreover, in the discrete framework, the result also holds
for arbitrary semi-norms and for Cmin also the reverse inclu-
sion holds.

Proposition 7 Let A,B ∈ I V F S r,s(Z
n), then it holds for

respectively all α1 ∈]0,1] ∩ Ir and all α2 ∈]0,1] ∩ Is that:

(i) DI [Cmin](A,B)α1 = D(Aα1 ,Bα1),

(ii) DI [Cmin](A,B)α2 = D(Aα2 ,Bα2).

Proof Analogous to the proof of Proposition 6, where now
in the discrete case also

(∃x ∈ Ty(−dB) ∩ dA)(Cmin(B(y − x),A(x))1 ≥ α1)

�
sup

x∈Ty(−dB)∩dA

Cmin(B(y − x),A(x))1 ≥ α1. �

Proposition 8 Let A,B ∈ I V F S r,s(Z
n), then it holds for

respectively all α1 ∈]0,1] ∩ Ir and all α2 ∈]0,1] ∩ Is that:

(i) DI [C](A,B)α1 ⊆ D(Aα1 ,Bα1),

(ii) DI [C](A,B)α2 ⊆ D(Aα2 ,Bα2).

Proof Analogous to the proof of Proposition 7, but for an
arbitrary semi-norm C , so that

DI [Cmin](A,B)(y)1 ≥ α1

⇑
DI [C](A,B)(y)1 ≥ α1

�
y ∈ DI [C](A,B)α1 . �

3.2.4 Decomposition by Weak [α1, α2]-Cuts

In general, there is no relation between the weak [α1, α2]-cut
DI [C](A,B)

α2
α1 and the binary dilation D(A

α2
α1 ,B

α2
α1 ) for an
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arbitrary semi-norm C . To illustrate this, we can use Exam-
ple 6 again, where the weak 0.5-supercut and weak [0.5,1]-
cut of A and B coincide and the results remain valid when
using the weak [0.5,1]-cut.

For the semi-norm C = Cmin, the following partial result
holds.

Proposition 9 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\{0LI } that:

DI [Cmin](A,B)α2
α1

⊇ D(Aα2
α1

,Bα2
α1

).

Proof Analogous to the proof of Proposition 3. �

The reverse inclusion DI [Cmin](A,B)
α2
α1 ⊆ D(A

α2
α1 ,B

α2
α1 )

does not hold in general. To illustrate this, we again refer to
Example 6, where using the weak [0.5,1]-cut instead of the
weak 0.5-subcut doesn’t affect the results.

Remark that the above decomposition properties for
weak [α1, α2]-cuts remain valid in the discrete framework.
Moreover, the weak [α1, α2]-cut of the discrete interval-
valued fuzzy dilation based on the conjunctor Cmin (respec-
tively semi-norm C ) can always be constructed from (re-
spectively approximated by) binary dilations as follows.

Proposition 10 Let A,B ∈ I V F S r,s(Z
n), then it holds for

all [α1, α2] ∈ LI
r,s \ {0LI } and every semi-norm C that:

(i) DI [Cmin](A,B)α2
α1

= D(Aα1 ,Bα1) ∩ D(Aα2 ,Bα2),

(ii) DI [C](A,B)α2
α1

⊆ D(Aα1 ,Bα1) ∩ D(Aα2 ,Bα2).

Proof Follows from Propositions 7 and 8 and the fact
that DI [C](A,B)

α2
α1 = DI [C](A,B)α1 ∩ DI [C](A,B)α2 for

every semi-norm C . �

3.2.5 Decomposition by Strict-Weak and Weak-Strict
[α1, α2]-Cuts

In general, for an arbitrary semi-norm C , there is no rela-
tion between the strict-weak and weak-strict [α1, α2]-cuts
DI [C](A,B)

α2
α1

and DI [C](A,B)
α2
α1 and the binary dilations

D(A
α2
α1

,B
α2
α1

) and D(A
α2
α1 ,B

α2
α1 ).

To illustrate this, an analogous example as in Example 6
can be found.

For the semi-norm C = Cmin, the following partial result
holds.

Proposition 11 Let A,B ∈ I V F S(Rn). It holds for respec-
tively all [α1, α2] ∈ LI\{1LI } and for all [α1, α2] ∈ LI\ULI

that:

(i) DI [Cmin](A,B)
α2
α1

⊇ D(A
α2
α1

,B
α2
α1

),

(ii) DI [Cmin](A,B)α2
α1

⊇ D(Aα2
α1

,Bα2
α1

).

Proof Analogous to the proof of Proposition 3. �

As can be illustrated analogously as in Example 6, the
reverse inclusion does not hold.

Remark that the above decomposition properties for
strict-weak and weak-strict [α1, α2]-cuts remain valid in the
discrete framework. Moreover, the weak-strict and strict-
weak [α1, α2]-cut of the discrete interval-valued fuzzy dila-
tion based on the conjunctor Cmin (respectively semi-norm
C ) can always be constructed from (respectively approxi-
mated by) binary dilations as follows.

Proposition 12 Let A,B ∈ I V F S r,s(Z
n) and let C be a

semi-norm. For all [α1, α2] ∈ LI
r,s \ ULI it holds that:

(i) DI [Cmin](A,B)α2
α1

= D(Aα1 ,Bα1) ∩ D(Aα2 ,Bα2),

(ii) DI [C](A,B)α2
α1

⊆ D(Aα1 ,Bα1) ∩ D(Aα2 ,Bα2).

For all [α1, α2] ∈ LI
r,s \ {1LI } it holds that:

(i) DI [Cmin](A,B)
α2
α1

= D(Aα1 ,Bα1) ∩ D(Aα2 ,Bα2),

(ii) DI [C](A,B)
α2
α1

⊆ D(Aα1 ,Bα1) ∩ D(Aα2 ,Bα2).

Proof Follows from Propositions 1, 2, 7 and 8 and the
fact that DI [C](A,B)

α2
α1 = DI [C](A,B)α1 ∩DI [C](A,B)α2

and DI [C](A,B)
α2
α1

= DI [C](A,B)α1 ∩ DI [C](A,B)α2 for
every semi-norm C . �

3.3 Decomposition of the Interval-Valued Fuzzy Erosion

As mentioned before, every implicator I induces a negator
NI defined by NI (x) = I(x,0LI ), ∀x ∈ LI . Based on this
induced negator, the class of border implicators can be split
into two subclasses.

Definition 11 [23] Let I be a border implicator on LI . I is
called an upper border implicator if NI ≥ Ns ; I is called a
lower border implicator if NI ≤ Ns .

Lemma 2 [23] If I is an upper border implicator on LI ,
then it holds that I ≥ Imin,Ns

, i.e.:

(∀(x, y) ∈ (LI )2)(I(x, y) ≥LI Imin,Ns
(x, y)

= [max(1 − x2, y1),max(1 − x1, y2)]). (15)

The previous lemma does not necessarily hold if I is not
an upper border implicator. Also, a lower border implicator
I doesn’t necessarily satisfy I ≤ Imin,Ns

.

Example 7 Let I be the implicator defined as:

I(x, y) =
{

1LI if inf(x, y) = x,

y else,
∀(x, y) ∈ (LI )2.
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It is easily verified that I is a border implicator on LI , with
induced negator NI given by:

NI (x) = I(x,0LI ) =
{

1LI if x = 0LI ,

0LI else,
∀x ∈ [0,1].

From
{

NI (x) = 0LI and 0LI ≤LI Ns(x), x �= 0LI ,

NI (x) = 1LI = Ns(x), x = 0LI ,

it follows that NI ≤ Ns and thus I is a lower border
implicator. Further, since e.g. I([0.2,0.3], [0.4,0.5]) >LI

Imin,Ns
([0.2,0.3], [0.4,0.5]), while we also have that e.g.

I([0.4,0.5], [0.2,0.3]) <LI Imin,Ns
([0.4,0.5], [0.2,0.3]),

it holds that neither I ≤ Imin,Ns
, nor I ≥ Imin,Ns

.

3.3.1 Decomposition by Weak Sub- and Supercuts

Proposition 13 Let A,B ∈ I V F S(Rn), then it holds for
respectively all α1 ∈]0,1] and all α2 ∈]0,1] that:

(i) EI [Imin,Ns
](A,B)α1 = E(Aα1,B

1−α1),

(ii) EI [Imin,Ns
](A,B)α2 = E(Aα2,B1−α2

).

Proof Let A,B ∈ I V F S(Rn), and let α1, α2 ∈]0,1].
(i) It holds that:

y ∈ E(Aα1 ,B
1−α1)

⇔ Ty(B
1−α1) ⊆ Aα1

⇔ (∀x ∈ Ty(dB))

(B2(x − y) > 1 − α1 ⇒ A1(x) ≥ α1)

⇔ (∀x ∈ Ty(dB))

(B2(x − y) ≤ 1 − α1 or A1(x) ≥ α1)

⇔ (∀x ∈ Ty(dB))

(1 − B2(x − y) ≥ α1 or A1(x) ≥ α1)

⇔ (∀x ∈ Ty(dB))

(max(1 − B2(x − y),A1(x)) ≥ α1)

⇔ inf
x∈Ty(dB)

max(1 − B2(x − y),A1(x)) ≥ α1

⇔ inf
x∈Ty(dB)

Imin,Ns
(B(x − y),A(x))1 ≥ α1

⇔ EI [Imin,Ns
](A,B)1(y) ≥ α1

⇔ y ∈ EI [Imin,Ns
](A,B)α1 .

Thus EI [Imin,Ns
](A,B)α1 = E(Aα1 ,B

1−α1).
(ii) Analogous. �

Proposition 14 Let A,B ∈ I V F S(Rn) and let I be an up-
per border implicator on LI , then it holds for respectively
all α1 ∈]0,1] and all α2 ∈]0,1] that:

(i) EI [I](A,B)α1 ⊇ E(Aα1,B
1−α1),

(ii) EI [I](A,B)α2 ⊇ E(Aα2,B1−α2
).

Proof (i) The proof is completely analogous to the one from
Proposition 13(i). We only have that due to Lemma 2

inf
x∈Ty(dB)

Imin,Ns
(B2(x − y),A1(x))1 ≥ α1

⇓
inf

x∈Ty(dB)
I(B2(x − y),A1(x))1 ≥ α1

only holds in one direction for an arbitrary upper border im-
plicator I on LI .

(ii) Analogous. �

The reverse inclusion does not hold in general.

Example 8 Let A(x) = [0.3,0.5] for all x ∈ [0,1], B(x) =
[0.5,0.7] for all x ∈ [0,1] and A(x) = B(x) = 0LI for
all x ∈ R\[0,1]. Let I be the following generalisation
of the Łukasiewicz implicator: IL(x, y) = [min(1,1 −
x2 + y1),min(1,1 − x1 + y2)], ∀(x, y) ∈ (LI )2. It can be
verified that this implicator is an upper border implicator.

It then holds that EI [IL](A,B)(0) = [0.6,1] and thus
0 ∈ EI [IL](A,B)0.4 and 0 ∈ EI [IL](A,B)0.6.

On the other hand, E(A0.4,B
0.6) = E(A0.6,B0.4) =

E(∅, [0,1]) = ∅ and thus 0 �∈ E(A0.4,B
0.6) and 0 �∈

E(A0.6,B0.4), from which it follows that EI [I](A,B)0.4 �⊆
E(A0.4,B

0.6) and EI [I](A,B)0.6 �⊆ E(A0.6,B0.4).

Further, Proposition 14 is also restricted to upper border
implicator as the following example shows.

Example 9 Let [α1, α2] = [0.3,0.4], A(x) = [0.4,0.5] for
all x ∈ [0,0.5], A(x) = [0.2,0.3] for all x ∈]0.5,1], B(x) =
[0.7,0.8] for all x ∈ [0,0.5], B(x) = [0.4,0.5] for all x ∈
]0.5,1] and A(x) = B(x) = 0LI for all x ∈ R\[0,1]. Let I
be the lower border implicator from Example 7.

It then holds that EI [I](A,B)(0) = [0.2,0.3], which
means that 0 �∈ EI [I](A,B)0.3 and 0 �∈ EI [I](A,B)0.4.

On the other hand, E(A0.3,B
0.7) = E(A0.4,B0.6) =

E([0,0.5], [0,0.5]) = {0}. Consequently EI [I](A,B)0.3 �⊇
E(A0.3,B

0.7) and EI [I](A,B)0.4 �⊇ E(A0.4,B0.6).

Remark that the above decomposition properties for
weak sub- and supercuts remain valid in the discrete frame-
work.
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3.3.2 Decomposition by Weak [α1, α2]-Cuts

In general, for an arbitrary upper border implicator I , there
is no relation between the weak [α1, α2]-cut EI [I](A,B)

α2
α1

and the binary erosion E(A
α2
α1 ,B

1−α1

1−α2
). This is illustrated in

the following example.

Example 10 To illustrate that it does not always hold that

EI [I](A,B)
α2
α1 ⊆ E(A

α2
α1,B

1−α1

1−α2
), we can use Example 8

again. For [α1, α2] = [0.4,0.6], the weak [0.4,0.6]-cut and
the weak 0.4-subcut and 0.6-supercut coincide and the re-
sults remain valid for the weak [0.4,0.6]-cut.

In general also EI [I](A,B)
α2
α1 �⊇ E(A

α2
α1 ,B

1−α1

1−α2
). Let

I be Imin,Ns
, [α1, α2] = [0.3,0.4], A(x) = [0.4,0.5] for

all x ∈ [0,0.5] and A(x) = [0.2,0.3] for all x ∈]0.5,1],
B(x) = [0.7,0.8] for all x ∈ [0,0.5] and B(x) = [0.4,0.8]
for all x ∈]0.5,1].

For the binary erosion we find that E(A
α2
α1,B

1−α1

1−α2
) =

E([0,0.5], [0,0.5]) = {0}. Further, it also holds that
EI [Imin,Ns

](A,B)(0) = [0.2,0.5] �≥LI [α1, α2]. As a con-

sequence, EI [Imin,Ns
](A,B)

α2
α1 �⊇ E(A

α2
α1 ,B

1−α1

1−α2
).

For the upper border implicator I = Imin,Ns
, the follow-

ing partial result holds.

Proposition 15 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\{0LI } that:

EI [Imin,Ns
](A,B)α2

α1
⊆ E(Aα2

α1
,B

1−α1

1−α2
).

Proof Let A,B ∈ I V F S(Rn) and [α1, α2] ∈ LI\{0LI }. It
holds that:

y ∈ E(Aα2
α1

,B
1−α1

1−α2
)

⇔ Ty(B
1−α1

1−α2
) ⊆ Aα2

α1

⇔ (∀x ∈ Ty(dB))

((B1(x − y) > 1 − α2 and B2(x − y) > 1 − α1)

⇒ (A1(x) ≥ α1 and A2(x) ≥ α2))

⇔ (∀x ∈ Ty(dB))

((B1(x − y) ≤ 1 − α2 or B2(x − y) ≤ 1 − α1) or

(A1(x) ≥ α1 and A2(x) ≥ α2))

⇔ (∀x ∈ Ty(dB))

((1 − B1(x − y) ≥ α2 or 1 − B2(x − y) ≥ α1) or

(A1(x) ≥ α1 and A2(x) ≥ α2))

⇐ (∀x ∈ Ty(dB))

(max(1 − B2(x − y),A1(x)) ≥ α1 and

max(1 − B1(x − y),A2(x)) ≥ α2)

⇔ (∀x ∈ Ty(dB))

(Imin,Ns
(B(x − y),A(x)) ≥LI [α1, α2])

⇔ inf
x∈Ty(dB)

Imin,Ns
(B(x − y),A(x)) ≥LI [α1, α2]

⇔ EI [Imin,Ns
](A,B)(y) ≥LI [α1, α2]

⇔ y ∈ EI [Imin,Ns
](A,B)α2

α1

This proves that EI [Imin,Ns
](A,B)

α2
α1 ⊆ E(A

α2
α1,B

1−α1

1−α2
). �

The reverse inclusion does not hold as illustrated in Ex-
ample 10.

The weak [α1, α2]-cut of the interval-valued fuzzy ero-
sion based on the implicator Imin,Ns

can however always be
constructed by binary erosions as follows.

Proposition 16 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\{0LI } that:

EI [Imin,Ns
](A,B)α2

α1

= E(Aα1 ,B
1−α1) ∩ E(Aα2,B1−α2

). (16)

Proof Follows from Proposition 13 and the fact that

EI [Imin,Ns
](A,B)α2

α1

= EI [Imin,Ns
](A,B)α1 ∩ EI [Imin,Ns

](A,B)α2 . (17)

�

Analogously, an interval-valued fuzzy erosion based an
upper-border implicator I can be approximated by binary
erosions.

Proposition 17 Let A,B ∈ I V F S(Rn), then it holds for all
[α1, α2] ∈ LI\{0LI } that:

EI [I](A,B)α2
α1

⊇ E(Aα1,B
1−α1) ∩ E(Aα2 ,B1−α2

).

Proof Follows from Proposition 14 and the fact that
EI [I](A,B)

α2
α1 = EI [I](A,B)α1 ∩ EI [I](A,B)α2 . �

Remark that the above decomposition properties for
weak [α1, α2]-cuts remain valid in the discrete framework.

3.3.3 Decomposition by Strict Sub- and Supercuts

In general, there is no relation between the strict sub- and
supercuts EI [I](A,B)α1 and EI [I](A,B)α2 and the binary
erosions E(Aα1,B

1−α1) and E(Aα2,B1−α2) for an arbitrary
upper border implicator I . This is illustrated in the follow-
ing example.
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Example 11 To show that the inclusions EI [I](A,B)α1 ⊆
E(Aα1,B

1−α1) and EI [I](A,B)α2 ⊆ E(Aα2,B1−α2) do
not always hold for an arbitrary upper border implicator I ,
we can use Example 8 again, where working with strict sub-
and supercuts instead of weak sub- and supercuts does not
affect the results.

In general also EI [I](A,B)α1 �⊇ E(Aα1,B
1−α1) and

EI [I](A,B)α2 �⊇ E(Aα2,B1−α2). Let I be Imin,Ns
, α1 =

0.5, A(x) = [ 2−x
2 ,1] for all x ∈]0,1], B(x) = [0.7,0.8] for

all x ∈]0,1] and A(x) = B(x) = 0LI for all x ∈ R\]0,1].
For the binary erosion we find E(Aα1 ,B

1−α1) = E(]0,1],
]0,1]) = {0}.

Further, it also holds that EI [Imin,Ns
](A,B)(0) =

[0.5,1], which means that 0 �∈ EI [Imin,Ns
](A,B)0.5.

Consequently, EI [Imin,Ns
](A,B)α1 �⊇ E(Aα1,B

1−α1).
An analogous example can be found for strict α2-

supercuts.

For the upper border implicator I = Imin,Ns
, the follow-

ing partial result holds.

Proposition 18 For A,B ∈ I V F S(Rn) it holds for respec-
tively all α1 ∈ [0,1[ and all α2 ∈ [0,1[ that:

(i) EI [Imin,Ns
](A,B)α1 ⊆ E(Aα1,B

1−α1),

(ii) EI [Imin,Ns
](A,B)α2 ⊆ E(Aα2,B1−α2).

Proof Let A,B ∈ I V F S(Rn), and let α1, α2 ∈ [0,1[.
(i) Analogous to the proof of Proposition 13. However,

now we only have that for all y ∈ R:

inf
x∈Ty(dB)

max(1 − B2(x − y),A1(x)) > α1

⇓
(∀x ∈ Ty(dB))(max(1 − B2(x − y),A1(x)) > α1)

(ii) Analogous. �

The reverse inclusion does not hold as illustrated in Ex-
ample 11.

Proposition 18 remains valid in the discrete framework.
Moreover, in the discrete framework, the result also holds
for arbitrary lower border implicators and for Imin,Ns

also
the reverse inclusion holds.

Proposition 19 For A,B ∈ I V F S r,s(Z
n) it holds for re-

spectively all α1 ∈]0,1] ∩ Ir and all α2 ∈]0,1] ∩ Is that:

(i) EI [Imin,Ns
](A,B)α1 = E(Aα1,B

1−α1),

(ii) EI [Imin,Ns
](A,B)α2 = E(Aα2,B1−α2).

Proof Analogous to the proof of Proposition 18, where now
in the discrete case also

(∀x ∈ Ty(dB))(max(1 − B2(x − y),A1(x)) > α1)

�
inf

x∈Ty(dB)
max(1 − B2(x − y),A1(x)) > α1. �

Proposition 20 For A,B ∈ I V F S r,s(Z
n) it holds for re-

spectively all α1 ∈]0,1] ∩ Ir and all α2 ∈]0,1] ∩ Is that:

(i) EI [I](A,B)α1 ⊇ E(Aα1,B
1−α1),

(ii) EI [I](A,B)α2 ⊇ E(Aα2,B1−α2).

Proof Analogous to the proof of Proposition 19, but for an
arbitrary upper border implicator I , so that

EI [Imin,Ns
](A,B)1(y) > α1

⇓
EI [I](A,B)1(y) > α1

�
y ∈ EI [I](A,B)α1 . �

3.3.4 Decomposition by Strict [α1, α2]-Cuts

In general, for an arbitrary upper border implicator I , there
is no relation between the strict [α1, α2]-cut EI [I](A,B)

α2
α1

and the binary erosion E(A
α2
α1

,B
1−α1
1−α2

). To illustrate this, we
can use Examples 8 and 10 again, where working with strict
[α1, α2]-cuts instead of respectively weak sub- and super-
cuts and weak [α1, α2]-cuts does not effect the results.

For the upper border implicator I = Imin,Ns
, the follow-

ing partial result holds.

Proposition 21 Let A,B ∈ I V F S(Rn), then it holds that
for all [α1, α2] ∈ LI\ULI that:

EI [Imin,Ns
](A,B)

α2
α1

⊆ E(A
α2
α1

,B
1−α1
1−α2

).

Proof Analogous to the proof of Proposition 15. Only, now
it holds for all y ∈ R that:

inf
x∈Ty(dB)

Imin,Ns
(B(x − y),A(x)) 
LI [α1, α2])

⇓
(∀x ∈ Ty(dB))(Imin,Ns

(B(x − y),A(x)) 
LI [α1, α2])
This however does not change the result. �

To illustrate that the reverse inclusion does not hold, we
refer to Example 10, where using strict [α1, α2]-cuts instead
of the weak [α1, α2]-cuts does not affect the results.

Remark that the above decomposition properties for strict
[α1, α2]-cuts remain valid in the discrete framework. More-
over, the strict [α1, α2]-cut of the discrete interval-valued
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fuzzy erosion based on the implicator Imin,Ns
(respectively

upper-border implicator I ) can always be constructed from
(respectively approximated by) binary erosion as follows.

Proposition 22 For A,B ∈ I V F S r,s(Z
n) it holds for all

[α1, α2] ∈ LI
r,s \ ULI and every upper border implicator I

that:

(i) EI [Imin,Ns
](A,B)

α2
α1

= E(Aα1,B
1−α1) ∩ E(Aα2,B1−α2),

(ii) EI [Imin,Ns
](A,B)

α2
α1

⊇ E(Aα1,B
1−α1) ∩ E(Aα2 ,B1−α2).

Proof Follows from Propositions 19 and 20. �

3.3.5 Decomposition by Weak-Strict and Strict-Weak
[α1, α2]-Cuts

In general, for an arbitrary upper border implicator I , there
is no relation between the weak-strict and the strict-weak
[α1, α2]-cuts EI [I](A,B)

α2
α1 and EI [I](A,B)

α2
α1

and the re-

spective binary erosions E(A
α2
α1,B

1−α1
1−α2

) and E(A
α2
α1

,B
1−α1

1−α2
)

respectively. To illustrate this, we can use Examples 8
and 10 again, where working with weak-strict and strict-
weak [α1, α2]-cuts instead of respectively weak sub- and su-
percuts and weak [α1, α2]-cuts does not effect the results.

For the upper border implicator I = Imin,Ns
, the follow-

ing partial result holds.

Proposition 23 Let A,B ∈ I V F S(Rn), then it holds for re-
spectively all [α1, α2] ∈ LI\ULI and all [α1, α2] ∈ LI\{1LI }
that:

(i) EI [Imin,Ns
](A,B)α2

α1
⊆ E(Aα2

α1
,B

1−α1
1−α2

),

(ii) EI [Imin,Ns
](A,B)

α2
α1

⊆ E(A
α2
α1

,B
1−α1

1−α2
).

Proof (i) Analogous to the proof of Proposition 15. Only,
now it holds for all y ∈ R that:

inf
x∈Ty(dB)

Imin,Ns
(B(x − y),A(x))1 ≥ α1 and

inf
x∈Ty(dB)

Imin,Ns
(B(x − y),A(x))2 > α2

⇓
(∀x ∈ Ty(dB))(Imin,Ns

(B(x − y),A(x))1 ≥ α1 and

Imin,Ns
(B(x − y),A(x))2 > α2)

This however does not change the result.
(ii) Analogous. �

To illustrate that the reverse inclusion does not hold, we
refer to Example 10 again, where working with weak-strict
or strict-weak [α1, α2]-cuts instead of weak [α1, α2]-cuts
does not affect the results.

Remark that the above decomposition properties for
weak-strict and strict-weak [α1, α2]-cuts remain valid in the
discrete framework. Moreover, the weak-strict and strict-
weak [α1, α2]-cut of the discrete interval-valued fuzzy ero-
sion based on the implicator Imin,Ns

(respectively upper-
border implicator I ) can always be constructed from (re-
spectively approximated by) binary erosion as follows.

Proposition 24 Let A,B ∈ I V F S r,s(Z
n) and let I be an

upper border implicator. For all [α1, α2] ∈ LI
r,s \ ULI it

holds that:

(i) EI [Imin,Ns
](A,B)α2

α1

= E(Aα1,B
1−α1) ∩ E(Aα2,B1−α2),

(ii) EI [I](A,B)α2
α1

⊇ E(Aα1,B
1−α1) ∩ E(Aα2 ,B1−α2).

For all [α1, α2] ∈ LI
r,s \ 1LI it holds that:

(i) EI [Imin,Ns
](A,B)

α2
α1

= E(Aα1,B
1−α1) ∩ E(Aα2,B1−α2

),

(ii) EI [I](A,B)
α2
α1

⊇ E(Aα1,B
1−α1) ∩ E(Aα2 ,B1−α2

).

Proof Follows from Propositions 13, 14, 19 and 20. �

3.4 Decomposition of the Interval-Valued Fuzzy Closing
and Opening

We first prove the following lemma:

Lemma 3 Let A ∈ I V F S(Rn) and let [α1, α2] ∈ LI , then
it holds that:

(i) α2 ∈]0,0.5] ⇒ Aα2 ⊇ Aα2 ⊇ A1−α2
,

(ii) α1 ∈ [0.5,1[ ⇒ Aα1 ⊆ A1−α1 ⊆ A1−α1 ,

(iii) α2 ∈ [0,0.5[ ⇒ Aα2 ⊇ A1−α2 ,

(iv) α1 ∈]0.5,1] ⇒ Aα1 ⊆ A1−α1 .

Proof (i) α2 ∈]0,0.5]

x ∈ A1−α2
⇔ A1(x) > 1 − α2

⇒ A2(x) ≥ A1(x) > 1 − α2 ≥ α2

(i.e. x ∈ Aα2)

⇒ A2(x) ≥ α2 (i.e. x ∈ Aα2).
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(ii) α1 ∈ [0.5,1[
x ∈ Aα1 ⇔ A1(x) > α1

⇒ A2(x) ≥ A1(x) > α1 ≥ 1 − α1

(i.e. x ∈ A1−α1)

⇒ A2(x) ≥ 1 − α1 (i.e. x ∈ A1−α1).

(iii) α2 ∈ [0,0.5[
x ∈ A1−α2 ⇔ A1(x) ≥ 1 − α2

⇒ A2(x) ≥ A1(x) ≥ 1 − α2 > α2

(i.e. x ∈ Aα2).

(iv) α1 ∈]0.5,1]
x ∈ Aα1 ⇔ A1(x) ≥ α1

⇒ A2(x) ≥ A1(x) ≥ α1 > 1 − α1

(i.e. x ∈ A1−α1). �

3.4.1 Decomposition by Weak Sub- and Supercuts

Proposition 25 Let I be an upper border implicator on LI

and let A,B ∈ I V F S(Rn), then it holds for all α1 ∈]0,1]
that:

(i) CI [Cmin, I](A,B)α1 ⊇ E(D(Aα1 ,Bα1),−B1−α1),

(ii) OI [Cmin, I](A,B)α1 ⊇ D(E(Aα1 ,B
1−α1),−Bα1),

and for all α2 ∈]0,1] that:

(iii) CI [Cmin, I](A,B)α2 ⊇ E(D(Aα2 ,Bα2),−B1−α2
),

(iv) OI [Cmin, I](A,B)α2 ⊇ D(E(Aα2 ,B1−α2
),−Bα2).

Proof As an example we prove (i). Let I be an upper border
implicator on LI , let A,B ∈ I V F S(Rn) and let α1, α2 ∈
]0,1]. From respectively Propositions 13, 6, and because the
binary erosion is increasing in its first argument, we have
that:

CI [Cmin, I](A,B)α1 = EI [I](DI [Cmin](A,B),−B)α1

⊇ E(DI [Cmin](A,B)α1 ,−B1−α1)

⊇ E(D(Aα1 ,Bα1),−B1−α1).

(ii), (iii) and (iv) follow analogously from Propositions 6,
13, and because the binary dilation and the binary erosion
are increasing in their first argument. �

The previous result allows us to derive, under the restric-
tion of α2 ∈]0,0.5], a lower bound for the weak α2-supercut
of the interval-valued fuzzy closing and opening in terms of
the binary closing and opening.

Proposition 26 Let I be an upper border implicator on LI

and let A,B ∈ I V F S(Rn), then it holds for all α2 ∈]0,0.5]
that:

(i) CI [Cmin, I](A,B)α2 ⊇ C(Aα2 ,Bα2),

(ii) CI [Cmin, I](A,B)α2 ⊇ C(Aα2 ,B1−α2
),

and:

(iii) OI [Cmin, I](A,B)α2 ⊇ O(Aα2 ,Bα2),

(iv) OI [Cmin, I](A,B)α2 ⊇ O(Aα2 ,B1−α2
).

Proof As an example, we prove (i). Let I be an upper
border implicator on LI , let A,B ∈ I V F S(Rn) and let
α2 ∈]0,0.5]. From Proposition 25, Lemma 3 and the fact
that the binary erosion is decreasing in its second argument,
it follows that:

CI [Cmin, I](A,B)α2 ⊇ E(D(Aα2 ,Bα2),−B1−α2
)

⊇ E(D(Aα2 ,Bα2),−Bα2)

= C(Aα2 ,Bα2).

(ii), (iii) and (iv) follow in an analogous way from Propo-
sition 25, Lemma 3 and the fact that the binary dilation is
increasing in both its arguments and the binary erosion is
increasing in its first argument and decreasing in its second
argument. �

The above results for weak sub- and supercuts remain
valid in the discrete framework. Since we had found a new
relationship for the decomposition by weak sub- and su-
percuts of the interval-valued fuzzy dilation in the discrete
framework compared to the continuous framework, also a
new relationship can be found for the interval-valued fuzzy
closing and opening.

Proposition 27 Let C be a semi-norm on LI
r,s and I an up-

per border implicator on LI
r,s and let A,B ∈ I V F S r,s(Z

n),
then it holds for all α1 ∈]0,1] ∩ Ir that:

(i) CI [Cmin, Imin,Ns
](A,B)α1

= E(D(Aα1,Bα1),−B1−α1),

(ii) CI [Cmin, I](A,B)α1 ⊇ E(D(Aα1 ,Bα1),−B1−α1),

(iii) CI [C, Imin,Ns
](A,B)α1

⊆ E(D(Aα1,Bα1),−B1−α1),

(iv) OI [Cmin, Imin,Ns
](A,B)α1

= D(E(Aα1,B
1−α1),−Bα1),
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(v) OI [Cmin, I](A,B)α1 ⊇ D(E(Aα1 ,B
1−α1),−Bα1),

(vi) OI [C, Imin,Ns
](A,B)α1

⊆ D(E(Aα1,B
1−α1),−Bα1),

and for all α2 ∈]0,1] ∩ Is that:

(i) CI [Cmin, Imin,Ns
](A,B)α2

= E(D(Aα2,Bα2),−B1−α2
),

(ii) CI [Cmin, I](A,B)α2 ⊇ E(D(Aα2 ,Bα2),−B1−α2
),

(iii) CI [C, Imin,Ns
](A,B)α2

⊆ E(D(Aα2,Bα2),−B1−α2
),

(iv) OI [Cmin, Imin,Ns
](A,B)α2

= D(E(Aα2,B1−α2
),−Bα2),

(v) OI [Cmin, I](A,B)α2 ⊇ D(E(Aα2 ,B1−α2
),−Bα2),

(vi) OI [C, Imin,Ns
](A,B)α2

⊆ D(E(Aα2,B1−α2
),−Bα2).

Proof Follows in an analogous way as in the proof of Propo-
sition 25 from Propositions 7, 8, 13, 14 and the fact that the
binary dilation is increasing in its first and second argument
and that the binary erosion is increasing in its first argument
and decreasing in its second argument. �

The previous result allows us to derive, under the restric-
tion of α1 ∈ ]0.5,1]∩Ir , an upper bound for the weak subcut
of the interval-valued fuzzy closing and opening in terms of
the binary closing and opening.

Proposition 28 Let C be a semi-norm on LI
r,s and let A,B ∈

I V F S r,s(Z
n), then it holds for all α1 ∈]0.5,1] ∩ Ir that:

(i) CI [Cmin, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,Bα1),

(ii) CI [Cmin, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,B

1−α1),

(iii) CI [C, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,Bα1),

(iv) CI [C, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,B

1−α1),

(v) OI [Cmin, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,Bα1),

(vi) OI [Cmin, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,B

1−α1),

(vii) OI [C, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,Bα1),

(viii) OI [C, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,B

1−α1),

Proof Follows in an analogous way as in the proof of Propo-
sition 26 from Proposition 27 and Lemma 3 and the fact that

the binary dilation is increasing in its first and second ar-
gument and that the binary erosion is increasing in its first
argument and decreasing in its second argument. �

The result also allows us to derive, under the restriction
of α2 ∈]0,0.5] ∩ Is , a lower bound for the weak supercut
of the interval-valued fuzzy closing and opening in terms of
the binary closing and opening.

Proposition 29 Let I be an upper border implicator on
LI

r,s and let A,B ∈ I V F S r,s(Z
n), then it holds for all

α2 ∈]0,0.5] ∩ Is that:

(i) CI [Cmin, Imin,Ns
](A,B)α2 ⊇ C(Aα2 ,Bα2),

(ii) CI [Cmin, Imin,Ns
](A,B)α2 ⊇ C(Aα2 ,B1−α2

),

(iii) CI [Cmin, I](A,B)α2 ⊇ C(Aα2 ,Bα2),

(iv) CI [Cmin, I](A,B)α2 ⊇ C(Aα2 ,B1−α2
),

(v) OI [Cmin, Imin,Ns
](A,B)α2 ⊇ O(Aα2 ,Bα2),

(vi) OI [Cmin, Imin,Ns
](A,B)α2 ⊇ O(Aα2 ,B1−α2

),

(vii) OI [Cmin, I](A,B)α2 ⊇ O(Aα2 ,Bα2),

(viii) OI [Cmin, I](A,B)α2 ⊇ O(Aα2 ,B1−α2
).

Proof Follows in an analogous way as in the proof of Propo-
sition 26 from Proposition 27 and Lemma 3 and the fact that
the binary dilation is increasing in its first and second ar-
gument and that the binary erosion is increasing in its first
argument and decreasing in its second argument. �

3.4.2 Decomposition by Weak [α1, α2]-Cuts

For the conjunctor Cmin and the implicator Imin,Ns
, the weak

[α1, α2]-cuts of the discrete interval-valued fuzzy closing
and opening can be found as a combination of binary di-
lations and erosions. For an arbitrary semi-norm C and an
arbitrary upper border implicator I analogous approxima-
tions exist.

Proposition 30 Let C be a semi-norm on LI
r,s and I an up-

per border implicator on LI
r,s and let A,B ∈ I V F S r,s(Z

n),
then it holds for all [α1, α2] ∈ LI

r,s \ {0LI } that:

(i) CI [Cmin, Imin,Ns
](A,B)α2

α1

= E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2 ,Bα2),−B1−α2
),

(ii) CI [Cmin, I](A,B)α2
α1

⊇ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2
),
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(iii) CI [C, Imin,Ns
](A,B)α2

α1

⊆ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2
),

(iv) OI [Cmin, Imin,Ns
](A,B)α2

α1

= D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2
),−Bα2),

(v) OI [Cmin, I](A,B)α2
α1

⊇ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2
),−Bα2),

(vi) OI [C, Imin,Ns
](A,B)α2

α1

⊆ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2
),−Bα2).

Proof Follows from Proposition 27. �

3.4.3 Decomposition by Strict Sub- and Supercuts

Proposition 31 Let C be a semi-norm on LI and let A,B ∈
I V F S(Rn), then it holds for all α1 ∈ [0,1[ that:

(i) CI [C, Imin,Ns
](A,B)α1 ⊆ E(D(Aα1,Bα1),−B1−α1),

(ii) OI [C, Imin,Ns
](A,B)α1 ⊆ D(E(Aα1 ,B

1−α1),−Bα1),

and for all α2 ∈ [0,1[ that:

(iii) CI [C, Imin,Ns
](A,B)α2 ⊆ E(D(Aα2 ,Bα2),−B1−α2),

(iv) OI [C, Imin,Ns
](A,B)α2 ⊆ D(E(Aα2 ,B1−α2),−Bα2).

Proof Follows in an analogous way as in the proof of Propo-
sition 25 from Propositions 18 and 2 and the fact that the
binary dilation is increasing in its first and second argument
and that the binary erosion is increasing in its first argument
and decreasing in its second argument. �

The previous result allows us to derive, under the restric-
tion of α1 ∈ [0.5,1[, an upper bound for the strict α1-subcut
of the interval-valued fuzzy closing and opening in terms of
the binary closing and opening.

Proposition 32 Let C be a semi-norm on LI and let A,B ∈
I V F S(Rn), then it holds for all α1 ∈ [0.5,1[ that:

(i) CI [C, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,Bα1),

(ii) CI [C, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,B

1−α1),

and:

(iii) OI [C, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,Bα1),

(iv) OI [C, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,B

1−α1).

Proof Follows in an analogous way as in the proof of Propo-
sition 26 from Proposition 31 and Lemma 3 and the fact that
the binary dilation is increasing in its first and second ar-
gument and that the binary erosion is increasing in its first
argument and decreasing in its second argument. �

The above results for strict sub- and supercuts remain
valid in the discrete framework. Since we had found a new
relationship for the decomposition by strict sub- and su-
percuts of the interval-valued fuzzy erosion in the discrete
framework compared to the continuous framework, also a
new relationship can be found for the interval-valued fuzzy
closing and opening.

Proposition 33 Let C be a semi-norm on LI
r,s and I an up-

per border implicator on LI
r,s and let A,B ∈ I V F S r,s(Z

n),
then it holds for all α1 ∈ [0,1[ ∩ Ir that:

(i) CI [Cmin, Imin,Ns
](A,B)α1

= E(D(Aα1,Bα1),−B1−α1),

(ii) CI [Cmin, I](A,B)α1 ⊇ E(D(Aα1 ,Bα1),−B1−α1),

(iii) CI [C, Imin,Ns
](A,B)α1

⊆ E(D(Aα1,Bα1),−B1−α1),

(iv) OI [Cmin, Imin,Ns
](A,B)α1

= D(E(Aα1,B
1−α1),−Bα1),

(v) OI [Cmin, I](A,B)α1 ⊇ D(E(Aα1 ,B
1−α1),−Bα1),

(vi) OI [C, Imin,Ns
](A,B)α1

⊆ D(E(Aα1,B
1−α1),−Bα1),

and for all α2 ∈ [0,1[ ∩ Is that:

(i) CI [Cmin, Imin,Ns
](A,B)α2

= E(D(Aα2,Bα2),−B1−α2),

(ii) CI [Cmin, I](A,B)α2 ⊇ E(D(Aα2 ,Bα2),−B1−α2),

(iii) CI [C, Imin,Ns
](A,B)α2

⊆ E(D(Aα2,Bα2),−B1−α2),

(iv) OI [Cmin, Imin,Ns
](A,B)α2

= D(E(Aα2,B1−α2),−Bα2),

(v) OI [Cmin, I](A,B)α2 ⊇ D(E(Aα2 ,B1−α2),−Bα2),

(vi) OI [C, Imin,Ns
](A,B)α2

⊆ D(E(Aα2,B1−α2),−Bα2).
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Proof Follows in an analogous way as in the proof of Propo-
sition 25 from Propositions 1, 2, 19, 20 and the fact that the
binary dilation is increasing in its first and second argument
and that the binary erosion is increasing in its first argument
and decreasing in its second argument. �

The previous result allows us to derive, under the restric-
tion of α1 ∈ [0.5,1[∩Ir , an upper bound for the strict subcut
of the interval-valued fuzzy closing and opening in terms of
the binary closing and opening.

Proposition 34 Let C be a semi-norm on LI
r,s and let A,B ∈

I V F S r,s(Z
n), then it holds for all α1 ∈ [0.5,1[ ∩ Ir that:

(i) CI [Cmin, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,Bα1),

(ii) CI [Cmin, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,B

1−α1),

(iii) CI [C, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,Bα1),

(iv) CI [C, Imin,Ns
](A,B)α1 ⊆ C(Aα1 ,B

1−α1),

(v) OI [Cmin, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,Bα1),

(vi) OI [Cmin, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,B

1−α1),

(vii) OI [C, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,Bα1),

(viii) OI [C, Imin,Ns
](A,B)α1 ⊆ O(Aα1 ,B

1−α1),

Proof Follows in an analogous way as in the proof of Propo-
sition 26 from Proposition 33 and Lemma 3 and the fact that
the binary dilation is increasing in its first and second ar-
gument and that the binary erosion is increasing in its first
argument and decreasing in its second argument. �

The result also allows us to derive, under the restriction
of 0 ≤ α2 < 0.5, a lower bound for the strict supercut of the
interval-valued fuzzy closing and opening in terms of the
binary closing and opening.

Proposition 35 Let I be an upper border implicator on
LI

r,s and let A,B ∈ I V F S r,s(Z
n), then it holds for all

α2 ∈ [0,0.5[ ∩ Is that:

(i) CI [Cmin, Imin,Ns
](A,B)α2 ⊇ C(Aα2 ,Bα2),

(ii) CI [Cmin, Imin,Ns
](A,B)α2 ⊇ C(Aα2 ,B1−α2),

(iii) CI [Cmin, I](A,B)α2 ⊇ C(Aα2 ,Bα2),

(iv) CI [Cmin, I](A,B)α2 ⊇ C(Aα2 ,B1−α2),

(v) OI [Cmin, Imin,Ns
](A,B)α2 ⊇ O(Aα2 ,Bα2),

(vi) OI [Cmin, Imin,Ns
](A,B)α2 ⊇ O(Aα2 ,B1−α2),

(vii) OI [Cmin, I](A,B)α2 ⊇ O(Aα2 ,Bα2),

(viii) OI [Cmin, I](A,B)α2 ⊇ O(Aα2 ,B1−α2).

Proof Follows in an analogous way as in the proof of Propo-
sition 26 from Proposition 33 and Lemma 3 and the fact that
the binary dilation is increasing in its first and second ar-
gument and that the binary erosion is increasing in its first
argument and decreasing in its second argument. �

3.4.4 Decomposition by Strict [α1, α2]-Cuts

For the conjunctor Cmin and the implicator Imin,Ns
, the strict

[α1, α2]-cuts of the discrete interval-valued fuzzy closing
and opening can be found as a combination of binary di-
lations and erosions. For an arbitrary semi-norm C and an
arbitrary upper border implicator I analogous approxima-
tions exist.

Proposition 36 Let C be a semi-norm on LI
r,s and I an up-

per border implicator on LI
r,s and let A,B ∈ I V F S r,s(Z

n),
then it holds for all [α1, α2] ∈ LI

r,s \ ULI that:

(i) CI [Cmin, Imin,Ns
](A,B)

α2
α1

= E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2 ,Bα2),−B1−α2),

(ii) CI [Cmin, I](A,B)
α2
α1

⊇ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2),

(iii) CI [C, Imin,Ns
](A,B)

α2
α1

⊆ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2),

(iv) OI [Cmin, Imin,Ns
](A,B)

α2
α1

= D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2 ,B1−α2),−Bα2),

(v) OI [Cmin, I](A,B)
α2
α1

⊇ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2),−Bα2),

(vi) OI [C, Imin,Ns
](A,B)

α2
α1

⊆ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2),−Bα2).

Proof Follows from Proposition 33. �

3.4.5 Decomposition by Weak-Strict and Strict-Weak
[α1, α2]-Cuts

For the conjunctor Cmin and the implicator Imin,Ns
, the strict

[α1, α2]-cuts of the discrete interval-valued fuzzy closing
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and opening can be found as a combination of binary di-
lations and erosions. For an arbitrary semi-norm C and an
arbitrary upper border implicator I analogous approxima-
tions exist.

Proposition 37 Let C be a semi-norm on LI
r,s and I an up-

per border implicator on LI
r,s and let A,B ∈ I V F S r,s(Z

n).
For all [α1, α2] ∈ LI

r,s \ ULI it holds that:

(i) CI [Cmin, Imin,Ns
](A,B)α2

α1

= E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2 ,Bα2),−B1−α2),

(ii) CI [Cmin, I](A,B)α2
α1

⊇ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2),

(iii) CI [C, Imin,Ns
](A,B)α2

α1

⊆ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2),

(iv) OI [Cmin, Imin,Ns
](A,B)α2

α1

= D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2),−Bα2),

(v) OI [Cmin, I](A,B)α2
α1

⊇ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2),−Bα2),

(vi) OI [C, Imin,Ns
](A,B)α2

α1

⊆ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2),−Bα2).

For all [α1, α2] ∈ LI
r,s \ 1LI it holds that:

(i) CI [Cmin, Imin,Ns
](A,B)

α2
α1

= E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2 ,Bα2),−B1−α2
),

(ii) CI [Cmin, I](A,B)
α2
α1

⊇ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2
),

(iii) CI [C, Imin,Ns
](A,B)

α2
α1

⊆ E(D(Aα1,Bα1),−B1−α1)

∩ E(D(Aα2,Bα2),−B1−α2
),

(iv) OI [Cmin, Imin,Ns
](A,B)

α2
α1

= D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2
),−Bα2),

(v) OI [Cmin, I](A,B)
α2
α1

⊇ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2
),−Bα2),

(vi) OI [C, Imin,Ns
](A,B)

α2
α1

⊆ D(E(Aα1,B
1−α1),−Bα1)

∩ D(E(Aα2,B1−α2
),−Bα2).

Proof Follows from Propositions 27 and 33. �

4 Discussion

The conversion of the [α1, α2]-cut of an interval-valued
fuzzy morphological operator into binary operations on the
[α1, α2]-cuts of the image and structuring element may re-
sult in a reduction of the time needed to compute such
[α1, α2]-cut. For example, in the calculation of the binary
dilation of a binary image A by a binary structuring ele-
ment B , an element y ∈ R

n can be considered to belong
to this dilation as soon as one element in Ty(−B) also be-
longs to A. The other elements in Ty(−B) don’t need to be
checked anymore. For the calculation of the interval-valued
fuzzy dilation, all elements in Ty(−dB) need to be consid-
ered to find the supremum over those elements. Addition-
ally, the binary dilation (respectively erosion) of an image
can be further sped up by a decomposition of the structur-
ing element [24, 25], which is especially useful for image
processing systems. An analogous reasoning holds for the
erosion.

As was shown in the previous sections, we only had
equalities for the conjunctor Cmin and the implicator Imin,Ns

.
For arbitrary semi-norms and upper border implicators only
approximations that are not necessarily equalities could be
found. As an example, we will illustrate the approximation
in Proposition 10 on the camera image. In Fig. 2, three dif-
ferent takes of this scene are given: a cloudy, a sunny and
a slightly shifted take. Due to different recording circum-
stances and a shift in position of the objects in the image,
there is uncertainty concerning the grey values in the image.
To take this uncertainty into account, an image pixel is not
mapped onto one specific grey value, but onto an interval of
grey values to which its grey value is expected to belong.
The lower bound (respectively the upper bound) of such in-
terval is chosen as the lowest (respectively the highest) grey
level over the three takes. These lower bound and upper
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Fig. 2 Three different takes on the camera image: cloudy (upper),
sunny (middle) and shifted (lower)

bound image are given in Fig. 3 together with a represen-
tation of the difference between the two. The larger this dif-
ference (more white in the difference image), the wider the
corresponding interval and the larger the uncertainty at the
considered pixel position. Consider e.g. the interval-valued
structuring element

B =
⎡
⎢⎣

[0.6,0.8] [0.7,0.9] [0.6,0.8]
[0.7,0.9] [1,1] [0.7,0.9]
[0.6,0.8] [0.7,0.9] [0.6,0.8]

⎤
⎥⎦ , (18)

where the underlined element corresponds to the origin. For
this structuring element, we are certain that the central pixel
should get the weight 1. On the other hand, the importance

Fig. 3 Lower bound image (upper), upper bound image (middle) and
difference image (lower) of the interval-valued camera image

of e.g. the pixel above the central pixel is thought to lie
somewhere between 0.7 and 0.9, but there exists some un-
certainty.

The lower bound image, the upper bound image and
the difference image of the interval-valued fuzzy dila-
tion (based on the conjunctor C(x, y) = [max(0, x1 +
y1 − 1),max(0, x2 + y2 − 1)],∀x, y ∈ Z

n) of the camera
image by the above structuring element are then given in
Fig. 4. The weak [0.4,0.6]-cut of this dilation and the bi-
nary approximation determined in Proposition 10(ii) are fi-
nally given in Fig. 5. We see that we get a rather rough
approximation.
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Fig. 4 Lower bound image (upper), upper bound image (middle) and
difference image (lower) of the dilated interval-valued camera image

5 Conclusion

In this paper we have revealed the relationships between the
different [α1, α2]-cuts of the interval-valued fuzzy morpho-
logical operators and the corresponding binary operators.
We investigated both the general continuous case and the
discrete case, which is the practical case. Indeed, in practice,
we deal with a sampled image domain and a sampled range
of grey values, resulting in interval-valued fuzzy sets from
I V F S r,s(Z

n). In the discrete case, the [α1, α2]-cuts of the
interval-valued fuzzy dilation based on the conjunctor Cmin,
the erosion based on the implicator Imin,Ns

, and the open-
ing and closing based on those two can always be written
in terms of binary operators. For other semi-norms and up-

Fig. 5 Weak [0.4,0.6]-cut of the dilated interval-valued camera image
(upper) and binary approximation (lower)

per border implicators, we found an approximation in terms
of binary operators. Such conversion into binary operators
provides us a link between interval-valued fuzzy and binary
morphology and may be useful to reduce the computation
time.
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