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Abstract In this paper, we propose an efficient and ro-
bust method for multiple targets tracking in cluttered scenes
using multiple cues. Our approach combines the use of
Monte Carlo sequential filtering for tracking and Dezert-
Smarandache theory (DSmT) to integrate the information
provided by the different cues. The use of DSmT provides
the necessary framework to quantify and overcome the con-
flict that might appear between the cues due to the occlusion.
Our tracking approach is tested with color and location cues
on a cluttered scene where multiple targets are involved in
partial or total occlusion.

Keywords Multiple targets tracking · Sequential
Monte-Carlo · Dezert-Smarandache theory · Cue
combination

1 Introduction

Visual tracking of moving targets has become one of the pri-
mary research issues in computer vision, due to the increas-
ing demand for reliable activity monitoring and surveillance
systems [1–3]. In order to achieve accurate tracking, sev-
eral cues have been explored in the literature. These cues
include color histogram, edges, motion, camera geometry
(field of view), and velocity. As pointed out by [4], indi-
vidual cues can potentially fail or provide paradoxical in-
terpretations due to the occlusion in cluttered scenes, and
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the changes in the illumination which are unavoidable in
the real world. Numerous methods suggest the use of mul-
tiple cues to increase visual robustness in cases of com-
plex scenes [5, 6]. The integration of the extracted cues into
an object representation has been performed using proba-
bilistic methods [4–7] as well as non-probabilistic methods
[8–11]. Given the prior distributions and the conditional
probabilities, probabilistic methods such as the Bayesian in-
ference offer the most complete, scalable and theoretically
justifiable approach for data fusion. However, in real com-
plex scenes such complete knowledge is difficult to obtain
due to occlusion, background clutter, illumination and cam-
era calibration problems. In [12], an extension of the prob-
abilistic approach is proposed for data fusion; namely the
Dempster-Shafer (DST) theory. The uncertainty and impre-
cision of a body of knowledge are represented via the no-
tion of confidence values that are committed to a single or
a union of hypotheses. The orthogonal sum rule of DST
theory allows the integration of information from differ-
ent sources into a single and overall representation. Unfor-
tunately, Bayesian inference and Dempster-Shafer theories
lack to provide an interesting manner of modeling conflicts
and paradoxical interpretation arising between the differ-
ence information sources. The Bayesian inference assumes
that all sources provide bodies of evidences using the same
objective and universal interpretation of the phenomena un-
der consideration; therefore, it cannot handle conflicts [13].
In most practical fusion applications based on DST theory,
ad-hoc or heuristic techniques must always be added to the
fusion process to manage or reduce the possibility of high
degree conflict between the sources. Otherwise, the fusion
result leads to false conclusions or cannot provide a reliable
result at all. To overcome these limitations, a recent theory of
reasoning with plausible and paradoxical cues has been de-
veloped in [13]. The Dezert-Smarandache Theory (DSmT)
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can be considered as a generalization of the DST theory. In
this paper, we propose a sequential particle filter approach
for multiple targets tracking using multiple cues. The differ-
ent cues are combined using the DSmT theory. If the targets
are partially or completely occluded, the conflicts and para-
doxes that arise between the cues are assessed and used in
the tracking process. The proposed scheme is simple and
provides an effective tracking in cluttered scenes.

2 The Dezert-Smarandache Theory

The Dezert-Smarandache Theory (DSmT) of plausible and
paradoxical reasoning [13] is a generalization of the clas-
sical Dempster-Shafer theory (DST), which allows formal
combining of rational, uncertain and paradoxical sources.
The DSmT is able to solve complex fusion problems where
the DST usually fails, especially when conflicts between
sources become large. In this section, we will first review
the principle of the DST before discussing the fundamental
aspects of the DSmT.

2.1 Principle of Dempster-Shafer Theory

The DST makes inferences from incomplete and uncertain
knowledge by combining additional sources of confidence,
even in the process of partially contradictory sensors. The
DST contains the Bayesian theory of partial belief as a spe-
cial case. In the DST, there is a fixed set of mutually exclu-
sive and exhaustive elements, called the frame of discern-
ment, which is symbolized by Θ = {θ1, θ2, . . . , θN }. The
frame of discernment Θ defines the propositions for which
the sources can provide confidence. Information sources can
distribute mass values on subsets of the frame of discern-
ment, Ai ∈ 2Θ . If an information source can not distinguish
between two propositions Ai and Aj , it assigns a mass value
to the set including both hypotheses (Ai ∪ Aj). The mass
distribution for all hypotheses has to fulfill the following
conditions

0 ≤ m(Ai) ≤ 1

m(φ) = 0 (1)
∑

Ai∈2Θ

m(Ai) = 1

Mass functions m1,m2, . . . ,md from d different sources are
combined with Dempster’s orthogonal rule. The result is
new distribution, m = m1 ⊕ m2 ⊕ · · · ⊕ md , which carries
the joint information provided by the d sources

m(A) = (1 − K)−1
∑

A1,...,Ad∈2Θ

A1∩···∩Ad=A

[
d∏

i=1

mi(Ai)

]
,

for A �= φ (2)

where

K = m(φ) =
∑

A1,...,Ad∈2Θ

A1∩···∩Ad=φ

[
d∏

i=1

mi(Ai)

]

K is a measure of conflict between the sources and it is in-
troduced as a normalization factor. The larger K is, the more
the sources are conflicting and the less sense the combina-
tion has. Two functions can be evaluated to characterize the
uncertainty about the hypotheses A. The belief function, Bel,
measures the minimum uncertainty value about A, whereas,
the plausibility function, Pls, reflects the maximum uncer-
tainty value. Belief and plausibility functions are defined
from 2Θ to [0, 1]

Bel(A) =
∑

Ai∈2Θ

Ai⊆A

m(Ai), Pls(A) =
∑

Ai∈2Θ

Ai∩A�=φ

m(Ai) (3)

These measures, which have been sometimes referred to as
lower and upper probability functions, have the following
properties

Pls(A) = 1 − Bel(¬A)

Bel(A) ≤ P ls(A)

where ¬A is the complementary of A.

2.2 The Dezert-Smarandache Theory (DSmT)

While the DST considers Θ as a set of exclusive elements,
the DSmT relaxes this condition and allows for overlapping
and intersecting hypotheses. This allows for quantifying
the conflict that might arise between the different sources
throughout the assignment of non-null confidence values to
the intersection of distinct hypotheses.

Let Θ = {θ1, θ2, . . . , θn} be a set of n elements which can
potentially overlap. The hyper-power set DΘ is defined as
the set of all composite hypotheses obtained from Θ with ∪
and ∩ operators such that

1. φ, θ1, θ2, . . . , θn ∈ DΘ .
2. If A,B ∈ DΘ , then (A ∪ B) ∈ DΘ and (A ∩ B) ∈ DΘ .
3. No other elements belong to DΘ , except those defined in

1 and 2.

As pointed out by F. Smarandache and Dezert [13], the
cardinality of DΘ is majored by 22n

when the cardinality
of Θ equals n. The generation of the hyper-power set is
closely related to the Dedekind’s problem of enumerating
isotone Boolean functions [14]. Since for any given finite
set Θ, |DΘ | ≥ |2Θ |,DΘ is called the hyper-power set of Θ .

As in the DST, the DSmT defines a map m(.) : DΘ →
[0,1], which assigns to each hypothesis A in DΘ a mass
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function m(A) that satisfies the conditions expressed in (1).
The belief and plausibility functions are defined in the same
way as for the DST

Bel(A) =
∑

Ai∈DΘ

Ai⊆A

m(Ai), Pls(A) =
∑

Ai∈DΘ

Ai∩A�=φ

m(Ai) (4)

The DSmT rule of combination of conflicting and on uncer-
tain sources is given by:

m(A) =
∑

A1,A2,...,Ad∈DΘ

A1∩A2∩···∩Ad=A

d∏

i=1

mi(Ai) (5)

To show the difference between the DST and the DSmT
combination rules, let’s consider an example where Θ =
{θ1, θ2, θ3, θ4}, and two independent sensors provide the fol-
lowing mass functions:

m1(θ1) = 0.7; m1(θ2) = 0.3

m2(θ3) = 0.2; m2(θ4) = 0.8

• The DST rule of combination cannot be applied because:
∀1 ≤ j ≤ 4 : m(θj ) = 0/0.

• The DSmT rule of combination gives: m(θ1) = m(θ2) =
m(θ3) = m(θ4) = 0, and m(θ1 ∩ θ3) = 0.14,m(θ1 ∩ θ4) =
0.56,m(θ2 ∩θ3) = 0.06 and m(θ2 ∩θ4) = 0.24. Both plau-
sibility and belief measures are in favor of θ4 which would
be the chosen hypothesis.

The previous example shows a typical case where the classi-
cal DST theory fails to make a decision in a case where two
sources are in a conflicting situation; whereas, the DSmT
provides the necessary framework to deal with the paradox-
ical inputs and to provide the most plausible decision.

3 Sequential Monte Carlo

Sequential Monte Carlo techniques, also know as particle
filtering, were introduced to track multiple objects in clut-
tered scenes [15]. In the following, Xt = (x1, x2, . . . , xt ) is
a first order Markov process that describes the state vector
(location, size, etc.) of the target and Zt = (z1, z2, . . . , zt ) is
the vector of measurements (color, texture, etc.) up to time t .
The tracking is based on the estimation of the posterior state
distribution p(xt |Zt) at each time step. The estimation is
performed using a two step Bayesian recursion [5, 16]. The
first step is prediction,

p(xt |Zt−1) ∝
∫

p(xt |xt−1)p(xt−1|Zt−1)dxt−1 (6)

and the second step is filtering

p(xt |Zt) ∝ p(zt |xt )p(xt |Zt−1) (7)

This recursion requires the specification of the state evo-
lution p(xt |xt−1) and a measurement model linking the
state and the current measurement p(zt |xt ). The basic idea
behind the particle filter is very simple. Starting with a
weighted set of samples

St−1 =
{

s
(n)
t−1,π

(n)
t−1

∣∣∣∣
N∑

n=1

π
(n)
t−1 = 1

}
(8)

representing target candidates and distributed according to
p(xt−1|Zt−1), where x

(n)
t−1 is the state vector of sample n

at time t − 1. Similarly, z
(n)
t−1is the measurement vector of

sample n at time t − 1. In the prediction step new samples
are obtained by propagating each sample according to the
target’s state model, p(xt |xt−1). In the filtering step, each
sample is weighted given the observation and N samples
are drawn with replacement according to πt = p(zt |xt ). In
order to achieve a smooth tracking, the target’s estimate is
defined as the weighted average of the particle set, i.e.

E[St ] =
N∑

n=1

π
(n)
t s

(n)
t

Particle filtering has proven to be very successful for non-
linear and non-Gaussian estimation problems. The tracking
iteration using particle filtering can be summarized as fol-
lows.

Step 1: Select N samples

St−1 =
{

s
(n)
t−1,π

(n)
t−1

∣∣∣∣
N∑

n=1

π
(n)
t−1 = 1

}
(9)

Step 2: Propagate each sample according to

s
(n)
t = H · s(n)

t−1 + w
(n)
t−1 (10)

where H is a square matrix defining the determin-
istic component of the target’s motion model and
w

(n)
t−1 is the random component of the target’s mo-

tion model.
Step 3: Observe the samples and evaluate π

(n)
t = p(z

(n)
t |xt ).

Step 4: Estimate the mean state of St

E[St ] =
N∑

n=1

π
(n)
t s

(n)
t (11)

4 DSmT-Based Tracking

Let’s assume that the number of targets, τ , and the number
of cues, c, are known. Up to time t − 1, each target is as-
sociated with a track {θj }τj=1. At time t , an image frame is
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extracted from the video sequence and a number of mea-
surements are obtained for each target candidate. Thus, the
objective is to combine these measurements in order to de-
termine the best track for each candidate. It is important to
notice that a target candidate, in this paper, refers to a parti-
cle sample. The hyper-power set DΘ defines the set of the
hypotheses for which the different cues can provide confi-
dence values. These hypotheses can correspond to: (1) in-
dividual tracks θj , (2) union of tracks θr ∪ · · · ∪ θs , which
symbolizes ignorance, (3) intersection of tracks θr ∩· · ·∩θs ,
which symbolizes conflict or (4) any tracks combination ob-
tain by ∪ and ∩ operators. The confidence level is expressed
in terms of mass functions {m(n)

t,l (.)}cl=1 that are committed
to each hypothesis and which satisfy the condition in (1).
Given this framework, m

(n)
t,l (A) express the confidence with

which cue l associates particle n to hypothesis A at time t .
According to DSmT combinational rule in (5), a single map
function m

(n)
t (.) can be derived as follows

m
(n)
t (A) = m

(n)
t,1 ⊕ m

(n)
t,2 ⊕ · · · ⊕ m

(n)
t,c (A) (12)

where m
(n)
t (A) is the overall confidence level with which all

cues associate particle n to hypothesis A at time t . Since the
target candidates are associated with individual tracks, only
single hypotheses (i.e. single tracks) are considered for de-
cision making which is done using the notions of the belief
or plausibility functions

Bel(n)
t (θj ) =

∑

A∈DΘ

θi⊆A

m
(n)
t (A)

(13)
Pls(n)

t (θj ) =
∑

A∈DΘ

θi∩A�=φ

m
(n)
t (A)

where Bel(n)
t (θj ) (resp. Pls(n)

t (θj )) quantifies the confidence
with which particle n is associated to θj at time t using the
notion of belief (resp. plausibility). The confidence levels in
(13) are not used to determine whether a given a candidate is
the best estimate or not of the target, they are rather used to
quantify the weight of the candidate (or particle) as a sam-
ple of the state posterior distribution p(xt |Zt). The DSmT-
based particle filtering algorithm implemented in this paper
is given below.

Step 1: Initialization

– Generate N samples St,j = {s(n)
t,j , π

(n)
t,j }Nn=1 for

each target j = 1, . . . , τ independently, with
π

(n)
t,j = 1

N
.

– Set t = 1.

Step 2: Propagation

– s
(n)
t∗,j = H · s(n)

t−1,j + w
(n)
t−1,j

Step 3: Observation (for each particle)

– Compute {m(n)
t∗,l(A)}cl=1 for A ∈ DΘ

– Compute m
(n)
t∗ (A) for A ∈ DΘ according to (5)

– Calculate the particle weight π
(n)
t∗,j = Bel(n)

t∗ (θj )

(or π
(n)
t∗,j = Pls(n)

t∗ (θj ))

– Normalize the weight: π̃
(n)
t∗,j = π

(n)

t∗,j∑N
n=1 π

(n)

t∗,j

Step 4: Estimation

– Target j = 1, . . . , τ is given by E[St∗,j ] =∑N
n=1 π̃

(n)
t∗,j s

(n)
t∗,j .

Step 5: Resampling (for each target)

– Generate St,j = {s(n)
t,j , π

(n)
t,j }Nn=1 by resampling N

times from St∗,j wherep(s
(n)
t,j = s

(m)
t∗,j ) = π̃

(m)
t∗,j .

Step 6: Incrementing

– t = t + 1, go to step 2.

5 Tracking Multiple Target Using Location and Color

In the following, the particle filtering approach described in
the previous section is applied to perform multiple target
tracking using color and location. These cues are combined
using the DSmT rule to resolve the conflict that might arise
due to occlusion. Color cue is continuously measured from
the scene using an RGB video camera. The location cue is
not directly measured from the scene. Indeed, we consider
the target’s estimated location at time t − 1 as the best avail-
able indication of where the target should be at time t . This
implies that the targets are not moving fast.

The framework described above does not provide the op-
timal condition where the information to be fused originate
from multiple sensors. However, it leads to a conflict be-
tween the location and the color cues at occlusion time. This
is actually the type of tracking scenarios which will allow us
to show how our approach resolves the conflict in order to
achieve an accurate tracking in cluttered scenes.

For the sake of simplicity, let’s assume that the scene con-
tains two targets. we can define DΘ as follows

DΘ = {θ1, θ2, θ1 ∪ θ2} (14)

In (14), θ1 refers the first target, θ2 refers to the second
target and θ1 ∪ θ2 refers to the rest of the scene. Actually,
hypothesis θ1 ∪ θ2 can refer to the background informa-
tion. However, since this latter can change during the track-
ing, we will refer to θ1 ∪ θ2 as the false alarm hypothe-
sis. Beside, θ1 ∩ θ2 �= φ due to the possible occlusion, and
θj ∩ θ1 ∪ θ2 = φ for j = 1,2.
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5.1 The Location Cue

The estimate of the targets’ locations at time t − 1 is given
by (xt−1,1, yt−1,1) and (xt−1,2, yt−1,2). The likelihood that
a particle s

(n)
t,j , located at (x

(n)
t,j , y

(n)
t,j ) at time t , belongs to

target j = 1,2 is defined according to the location cue as a
Gaussian p.d.f.

p
(n)
t,j = 1√

2πσ
e
− (x

(n)
t,j

−xt−1,j )2+(y
(n)
t,j

−yt−1,j )2

2σ2 (15)

where σ is a bandwidth parameter. Similarly, the likelihood
that a given particle does not belong to θ1 and θ2 is inversely
proportional to the distance between the particle and both
targets. Since DΘ is exhaustive, a particle that does not be-
long to θ1 and θ2 do belong to θ1 ∪ θ2. This leads us to the
definition of a new p.d.f., p

(n)
t,FA, which measures the likeli-

hood that a particle n = 1, . . . ,N is a false alarm hypothesis

p
(n)
t,FA = 1√

2πσ
e
− (dmax−d

(n)
1−2)2

2σ2 (16)

where σ is the bandwidth parameter, dmax is the radius of
a circle centered on the mid-point of targets 1 and 2, and
which contains all the particles used for tracking at the time
t − 1, d

(n)
1−2is the distance separating particle n and the mid-

point

dn
1−2 =

√(
x
(n)
t,1 − xt−1,1 − xt−1,2

2

)2
+

(
y
(n)
t,1 − yt−1,1 − yt−1,2

2

)2

(17)

The mass functions of particle n according to its location are
given by

m
(n)
t,1 (θj ) = p

(n)
t,j

p
(n)
t,1 + p

(n)
t,2 + p

(n)
t,FA

, j = 1,2 (18)

m
(n)
t,1 (θ1 ∪ θ2) = p

(n)
t,FA

p
(n)
t,1 + p

(n)
t,2 + p

(n)
t,FA

(19)

m
(n)
t,1 (φ) = 0 (20)

5.2 The Color Cue

Let’s assume that both target models are known and given
by normalized color histograms {qj (u)}mu=1, where u is a
discrete color index and m is the number of histogram bins.
The normalized color histogram {h(n)

t,j (u)}mu=1 of particle s
(n)
t,j

is calculated from frame t of the image sequence. The likeli-
hood that particle s

(n)
t,j belongs to target j = 1,2 according to

the color histogram is derived from the following Gaussian
p.d.f.

p
(n)
t,j = 1√

2πσ
e
− (d

(n)
t,j

)2

2σ2 , j = 1,2 (21)

where σ is a color bandwidth parameter, d
(n)
t,j is the Bhat-

tacharyya distance between h
(n)
t,j (u) and qj (u) at time t

d
(n)
t,j =

√√√√1 −
m∑

u=1

h
(n)
t,j (u)qj (u) (22)

Let’s define {qFA(u)}mu=1 as the histogram of the scene
from which we subtract the histogram of targets 1 and 2

qFA(u) = max{qscene(u) − q1(u) − q2(u),0} (23)

The likelihood that s
(n)
t,j belongs to the false alarm hypothesis

will be given by

p
(n)
t,FA = 1√

2πσ
e
− (d

(n)
t,FA)2

2σ2 (24)

where

d
(n)
t,FA =

√√√√1 −
m∑

u=1

h
(n)
t,j (u)qFA(u) (25)

The mass functions of particle n according to color can
be evaluated as follows

m
(n)
t,2 (θj ) = p

(n)
t,j

p
(n)
t,1 + p

(n)
t,2 + p

(n)
t,FA

, j = 1,2 (26)

m
(n)
t,2 (θ1 ∪ θ2) = p

(n)
t,FA

p
(n)
t,1 + p

(n)
t,2 + p

(n)
t,FA

(27)

m
(n)
t,2 (φ) = 0 (28)

5.3 The Cue Combination

The combination rule leads to the mass functions m
(n)
t (.)

given in Table 1 where

m
(n)
t (θ1) = m

(n)
t,1 (θ1) · m(n)

t,2 (θ1) (29)

m
(n)
t (θ2) = m

(n)
t,1 (θ2) · m(n)

t,2 (θ2) (30)

m
(n)
t (θ1 ∩ θ2) = m

(n)
t,1 (θ1) · m(n)

t,2 (θ2)

+ m
(n)
t,2 (θ1) · m(n)

t,1 (θ2) (31)

m
(n)
t (θ1 ∪ θ2) = m

(n)
t,1 (θ1 ∪ θ2) · m(n)

t,2 (θ1 ∪ θ2) (32)
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Table 1 Combination rule for
color and location Location cue Color cue

m
(n)
t,2 (θ1) m

(n)
t,2 (θ2) m

(n)
t,2 (θ1 ∪ θ2)

m
(n)
t,1 (θ1) m

(n)
t (θ1) m

(n)
t (θ1 ∩ θ2) m

(n)
t (φ)

m
(n)
t,1 (θ2) m

(n)
t (θ1 ∩ θ2) m

(n)
t (θ2) m

(n)
t (φ)

m
(n)
t,1 (θ1 ∪ θ2) m

(n)
t (φ) m

(n)
t (φ) m

(n)
t (θ1 ∪ θ2)

m
(n)
t (φ) = m

(n)
t,1 (θ1 ∪ θ2)(m

(n)
t,2 (θ1) + m

(n)
t,2 (θ2))

+ m
(n)
t,2 (θ1 ∪ θ2)(m

(n)
t,1 (θ1) + m

(n)
t,1 (θ2)) (33)

Equation (29) (respectively (30)) is the confidence level
with which both cues associate s

(n)
t,j to target 1 (respectively

target 2). Equation (31) is the conflict value between the cues
for the membership of s

(n)
t,j to target 1 or target 2. Equation

(32) expresses the confidence value with which both cues
agree that the particle corresponds to a false alarm. Equation
(33) quantifies the conflict between the targets and the false
alarm hypothesis.

For the particular case of tracking with two targets using
the frame of discernment in (14), the plausibility and belief
measures are identical. In what follows, they are used to cal-
culate the weight of particle s

(n)
t,j :

π
(n)
t,j = Pls(n)

t (θj ) = Bel(n)
t (θj ) = m

(n)
t (θj ) + m

(n)
t (θ1 ∩ θ2),

j = 1,2 (34)

The generalization of the tracking scheme described in
this section to τ targets can be carried out by defining a
frame of discernment

Θ = {θ1, . . . , θτ , θ1 ∪ · · · ∪ θτ }, (35)

where θj are individual targets and θ1 ∪ · · · ∪ θτ is the false
alarm hypothesis.

6 Experimental Results

The tracking approach is tested on a cluttered scene that con-
tains five walking persons as shown in Fig. 1a. In this figure
each person is surrounded by a rectangle that represents the
initial estimation of the target’s location and size. Since the
objective of this paper is tracking and not target detection,
all the targets (location and size) are initialized manually.

As shown in Fig. 1b, a set of N = 20 particles are ran-
domly generated around each target. A particle n is a rec-
tangle that is represented at time t by its state vector x

(n)
t =

(location, size). An increased number of particles will re-
sult in a smoother tracking, while increasing the processing
time. The frame of discernment is generated according to
(35) with τ = 5. For the location cue, the distance measure

Fig. 1 (a) A cluttered scene with five targets. (b) Initial particles

in (15) is calculated between the centers of particle n at time
t and the estimate of the target location at time t − 1. For
the color cue, the normalized histogram of particle n in (21)
is calculated as the frequency of each color bin within the
rectangle of the particle. The target’s estimate is provided
by the algorithm described in Sect. 4. The tracking result,
shown in Fig. 2, demonstrates that our approach is able to
deal with a cluttered scene, where a relatively large number
of targets are involved in partial or total occlusion.

In order to analyze the behavior of our algorithm during
the phase of occlusion, we performed another test with two
targets only as indicated in Fig. 3.

For the sake of clarity, the person on the right (with the
yellow rectangle) is denoted as target 1 and the person on
the left (with the white rectangle) is denoted as target 2.
The tracking sequence is divided into three phases. Phase
1 is the pre-occlusion sequence, phase 2 corresponds to the
occlusion sequence, and phase 3 is the post-occlusion se-
quence. Tracking in phase 2 is challenging due to the close-
ness of the targets, which perturbs the measured cues and
might lead to a false identification. The location cue loses
gradually its ability to separate targets 1 and 2 as they con-
verge to the intersection point. However, the location cue
remains a valid measurement because it is independent from
the relative location of targets with respect to the camera
(occluding or occluded). The color cue is extremely sensi-
tive to the occlusion. During phase 2, target 1 is partially
or totally occluded by target 2. As a result, the color mea-
surement for particles associated with target 1 is corrupted
by the presence of target 2. When the occlusion is total, tar-
get 1 disappears from the scene and the color measurement
becomes invalid. The occlusion affects also the behavior of
particles associated with target 2 since the presence of target
1 in its neighborhood will be interpreted by the algorithm as
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Fig. 2 Tracking of five targets
in a cluttered scene

Fig. 3 First row: Tracking
during the pre-occlusion phase.
Second row: Tracking during
the occlusion phase. Third
row: Tracking during the
post-occlusion phase

a rapid change in the background information. The tracking
performances in phase 3 depend on the outcome of tracking
during phase 2. A successful tracking would result in a cor-
rect identification; whereas, a failure would result in a bad
identification of the occluded target (target 1). As shown in
Fig. 3, the approach proposed in this paper accurately identi-
fies the targets during the three phases of the tracking. This is
due to the effective handling of the conflicting information
provided by the location and color cues during the second
phase of tracking by the DSmT model. Figure 4 shows the
variation of the average value of the confidence levels calcu-
lated on the particles associated with each target during the
tracking.

The confidence level for the occluded target, mavg(θ1),
is high during phases 1 and 3, but it decreases in phase 2
(see Fig. 4a). Indeed, in phases 1 and 3 the color and lo-
cation cues both agree on the identity of the target. How-
ever, in phase 2 the target is occluded and this reduces

the confidence value provided by the color cue. During the
same phase, the location confidence remains high, which ex-
plains the increase in the conflict, mavg(θ1 ∩ θ2), as shown in
Fig. 4b. The belief function, Belavg(θ1), is given in Fig. 4c.
This curve shows the high confidence with which the target
is located despite the occlusion. This is mainly due to the
introduction of the conflict information through the DSmT
model. Figures 4d, 4e and 4f show that the effect of the oc-
clusion on the occluding target is small in comparison with
its effect on the occluded target. The existence of such an
effect can be justified by the presence of target 1 in the im-
mediate neighborhood of target 2, which rapidly modifies
the color measurement for some particles.

Finally, in order to show the importance of modeling and
integrating the targets intersections, we have carried out a
tracking test (see Fig. 5) where θ1 ∩ θ2 is discarded from the
combination rule, i.e.

m
(n)
t (θ1 ∩ θ2) = 0
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Fig. 4 The variation of:
(a) mavg(θ1), (b) mavg(θ1 ∩ θ2),
(c) Belavg(θ1) for the occluded
target. The variation of:
(d) mavg(θ1), (e) mavg(θ1 ∩ θ2),
(f) Belavg(θ1) for the occluding
target where
mavg(θj ) = 1

N

∑N
n=1 m

(n)
t (θj ),

mavg(θ1 ∩ θ2) =
1
N

∑N
n=1 m

(n)
t (θ1 ∩ θ2), and

Belavg(θj ) = 1
N

∑N
n=1 Bel(n)

t (θj )

Fig. 5 Tracking using Bayesian
inference

π
(n)
t,j = Pls(n)

t (θj ) = Bel(n)
t (θj ) = m

(n)
t (θj )

= m
(n)
t,1 (θj ) · m(n)

t,2 (θj )

This framework is equivalent to the Bayesian inference
where confidence levels are associated only with single hy-
potheses. Figure 5 shows that the occluding target was accu-
rately tracked; however, the occluded target was lost due to
the occlusion.

7 Conclusion

In this paper, we addressed the problem of tracking multiple
targets in a cluttered scene using multiple cues. Within this

framework, we developed a model that combines the classi-
cal particle filtering approach and the novel DSmT theory.
A set of particles is used to track each target. The DSmT
model assigns confidence level values for the membership
of each particle. This membership takes into consideration
the conflict between the cues during the occlusion phase,
allowing thus a better tracking. The experimental results
demonstrated the effectiveness of the model in case of mul-
tiple targets tracking using location and color and its interest
in cluttered scenes.
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