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Abstract This paper investigates the image interpolation
problem, where the objective is to improve the resolution
of an image by dilating it according to a given enlargement
factor. We present a novel interpolation method based on Ra-
dial Basis Functions (RBF) which recovers a continuous in-
tensity function from discrete image data samples. The pro-
posed anisotropic RBF interpolant is designed to easily deal
with the local anisotropy in the data, such as edge-structures
in the image. Considering the underlying geometry of the
image, this algorithm allows us to remove the artifacts that
may arise when performing interpolation, such as block-
ing and blurring. Computed examples demonstrate the ef-
fectiveness of the method proposed by visual comparisons
and quantitative measures.

Keywords Radial basis function · Image interpolation ·
Image enlargement · Structure tensor

1 Introduction

A classical problem in image processing is the interpola-
tion of images: given an image, the problem is to find a vi-
sually pleasing enlargement of it without creating checker-
board edges or smearing out the details. Applications of im-
age interpolation techniques range from digital photography
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to video surveillance, satellite image analysis, computer vi-
sion, computer graphics, medical imaging, and many other
important fields. Depending on the application and user, the
interpolation process can be applied to have the ability to
zoom in on a specific part of the image, or just to obtain
high resolution images from a single low-resolution image.

Knowing image intensities at a discrete grid, the interpo-
lation process fits a continuous bivariate function to these
discrete data and estimates the surface values at an arbitrary
high resolution grid to determine the intensity of the high
resolution image.

Let the function f : � → R be our ideal continuous im-
age, defined over a rectangular domain � ∈ R

2. The image
U is a discrete sampling of f at a lattice of �. For computa-
tion purposes, we can think of this lattice as a uniform grid
of positive integers of resolution n1 × n2. Given the low-
resolution image U and a factor s = (s1, s2), s1, s2 > 1, the
interpolation process produces the high resolution image V

of resolution N1 ×N2, where N1 = s1n1 and N2 = s2n2. We
will refer to s as the magnification factor.

There are two types of interpolation methods: linear and
nonlinear ones.

In the simplest linear approach the function f is assumed
to be reconstructed by a convolution kernel φ : R

2 → R, so
that f can be approximated by

f � U ∗ φ. (1)

Several interpolation kernels of finite size have been intro-
duced in the literature, as the approximation of the ideal in-
terpolation kernel (sinc function), which is spatially unlim-
ited. In the discrete setting, the convolution (1) corresponds
to a linear interpolation filter. Linear filters differ in the
choice of φ, which essentially determines how to compute
the weighted average of nearby pixels. Three of the simplest
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linear filters are the nearest-neighbor, bilinear and bicubic
interpolations, which involve a small number of pixel val-
ues and are very fast. For an exhaustive survey, we refer
the reader to [13]. However, most of the linear interpolation
methods fail to capture the edges of the image, and conse-
quently generate interpolated images with ringing artifacts
and jagged aliasing effects along the edges.

A better comprehension of this behavior is obtained by
investigating the spectral contents of images interpolated by
linear algorithms in the frequency domain. The linear algo-
rithms cannot correctly estimate the missing high-frequency
information, which represents the edge structures in the im-
age domain. The high frequency components are simply
suppressed, while the low ones are preserved. This leaves
an image that is essentially blurred around its edges.

It is well-known that taking edge information into ac-
count improves the interpolated image quality since the
human visual perception system makes significant use of
edges. In order to overcome the artifacts of linear methods,
several nonlinear methods have been introduced, which in-
stead of simply interpolating the discrete data, consider the
underlying geometry of the image. These edge-driven meth-
ods provide a significant improvement in the visual qual-
ity by using interpolation which preserves the edge infor-
mation. In one of the earliest papers proposed to reduce
edge artifacts, Jensen and Anastassiou [10] propose to es-
timate the orientation of each edge in the image by using
projections onto an orthonormal basis and the interpolation
process is modified to avoid interpolating across the edges.
An estimate of the high-resolution edge map to iteratively
correct the interpolated pixels has been introduced in [1].
Another interesting approach called data dependent triangu-
lation [18] performs interpolation by dividing every four-
pixel square into two triangles and restricts interpolation
within the triangles. Hwang et al. in [9] use an adaptive
image interpolation approach based on local gradient fea-
tures. Li et al. in [14] propose an edge-directed interpolation
which uses an estimate of the local covariance characteris-
tics at low resolution. In [19] the edges are enhanced and
interpolated by using a quadratic Volterra filter. Guichard et
al. in [8] successfully extended a regularized total variation
approach to the problem of image zooming. Nonlinear meth-
ods also include edge-forming methods that rely on PDE-
based diffusion techniques, see [6, 11, 15]. Other effective
methods have been proposed which perform interpolation in
a transform (e.g. wavelet) domain [2]. These algorithms as-
sume the low-resolution image to be the lowpass output of
the wavelet transform and utilize dependence across wavelet
scales to predict the missing coefficients in the more detailed
scales.

We propose a new adaptive algorithm for image inter-
polation which integrates edge detection information into
an RBF anisotropic interpolation process. More precisely,

we extract the local characteristics from the pixel neighbor-
hood at the low-resolution image using a structure tensor,
which induces a characteristic metric for each pixel. Previ-
ous approaches to edge-directed interpolation quantize the
edge orientation into a finite number of choices (e.g. hori-
zontal, vertical or diagonal) thus affecting the accuracy of
the imposed edge model [7]. Instead, we replace the Euclid-
ean metric with the new one and this gives rise to local
anisotropic RBF interpolants, which are able to continu-
ously adapt their shape according to the pixel metric. We
use the new metric to tune both the shape of the anisotropic
RBFs and the support of the local RBF interpolant to match
an arbitrary oriented edge. A global adaptive RBF interpola-
tion scheme is then able to reconstruct the image by suitably
combining the local contributions.

A global RBF anisotropic interpolation scheme of this
type has been proposed in [4, 5] and applied to the recon-
struction of implicit surfaces from clouds of points. In that
context the surface structures, such as edge, corner or flat
regions, were detected by local covariance structures. When
the data is uniformly distributed on a grid, as in the image in-
terpolation case, it is more natural to use the structure tensor
to estimate the edge orientations in the image.

The isotropic version of the global RBF interpolation
scheme, where the classical Euclidean metric is used, has
been successfully introduced in [3] for the reconstruction
of a surface from bivariate scattered data. When applied
to uniform data grids, this method can be considered a
convolution-based approach to image interpolation and, as
such, it presents all the drawbacks of the linear approaches
to image interpolation.

In the remaining part of this section we introduce the ba-
sic RBF interpolation problem, which is used in Sect. 3 to
discuss the proposed interpolation algorithm.

The radial basis function interpolant F of a given func-
tion f ∈ C(Rd), on a set X = {xi ∈ R

d}i=1,...,N ⊆ R
d of

distinct points, is given by

F(x) =
∑

j=1,...,N

cjϕ(‖x − xj‖2), (2)

where ϕ : R
d → R is a radial function, and the coefficients

are determined by the interpolation conditions

F(xj ) = f (xj ), j = 1, . . . ,N. (3)

Interpolants of the form (2) require that the functions
ϕ belong to a special class of positive definite radial basis
functions. Examples of positive definite RBFs of order 0 are
the inverse multiquadric RBF

ϕ(r) = (r2 + γ 2)−
1
2 (4)

and the Gaussian RBF defined as

ϕ(r) = e− r2
α , (5)
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with shape parameters γ > 0 and α > 0 respectively. The
interpolation problem (3), rewritten in matrix-vector form
as

Ac = f (6)

is uniquely solvable since the interpolation matrix A =
(ϕ(‖xi − xj‖2)),1 ≤ i, j ≤ N is positive definite.

Since the reconstruction quality depends on the density
of the centers xj , a commonly used density-measure for a
set of points X is known as fill distance and is defined as

hr(x) = max
x∈Jr (x)

min
1≤i,j≤N

‖x − xj‖2 (7)

where Jr(x) = {y ∈ R
d/‖y − x‖2 ≤ r}, for some fixed r .

The rest of the paper is organized as follows. The
anisotropic RBF interpolation is analyzed from a spectral
point of view in Sect. 2, while Sect. 3 introduces the adap-
tive anisotropic interpolation scheme. Section 4 describes
the edge-driven metric used. In Sect. 5, we discuss the main
issues of the anisotropic RBF algorithm applied to the im-
age interpolation problem. In Sect. 6 we illustrate the results
obtained by the proposed algorithm, providing a comparison
with well established interpolation methods.

2 Anisotropic RBFs: A Spectral Characterization

In this section we will characterize the anisotropic RBFs in
terms of their spectrum and error estimation for interpola-
tion. This will provide us with a strong motivation for using
them as key ingredients in the local interpolation method in-
troduced in Sect. 3.

The anisotropic RBFs were introduced in [4] in the con-
text of shape preserving surface reconstruction, and further
investigated in [5] as concerning their regularizing property.

The anisotropic radial basis function represents a defor-
mation of the corresponding isotropic RBF as is stated in the
following definition.

Definition 1 Given a set of N pairwise distinct points
X = {xj ∈ R

d}j=1,...,N (denoted by centers), and a d × d

symmetric positive definite matrix T , the anisotropic ra-
dial basis function associated with a radial basis function
�j(·) = ϕ(‖ · −xj‖2) is defined by

�T,j (·) := ϕ(‖ · −xj‖T ), (8)

where ‖x‖T = xT T x. In other words it is a function whose
level sets are hyper-ellipsoids, centered in xj , and associated
with the quadratic form (x − xj )

T T (x − xj ).

The anisotropic RBFs are no longer radial with respect
to the Euclidean norm, but can be considered radial with

respect to the new metric T . The strict relationship be-
tween the anisotropic RBFs and their isotropic counterparts
is highlighted by the following spectral characterization,
provided, for simplicity’s sake, for d = 2.

Proposition 1 Let �̂(ω) = ϕ̂(‖·‖2) be the generalized
Fourier transform of ϕ(‖ · ‖2), and T a given symmetric
2 × 2 positive definite matrix with eigenvalues λ1, λ2, then

�̂T (ω) = 1

λ1λ2
ϕ̂(‖·‖T −1) (9)

is the generalized Fourier transform of �T defined in (8).

Proof The matrix T can be factorized as T = MT M , where

M = 
R, where 
 = [ √
λ1 0
0

√
λ2

]
is the diagonal eigenvalue

matrix, and R is the orthogonal eigenvector matrix. These
matrices represent respectively an anisotropic scaling ma-
trix and a rotation matrix. Since T = RT 
2R, then T −1 =
RT (
2)−1R, then, using the scaling and rotation properties
of the Fourier transform, relation (9) is established. �

Since M represents an affine transformation, it follows
that replacing the Euclidean norm by the T -norm corre-
sponds to applying the Euclidean norm to a deformed spatial
domain. In fact,

‖x‖T =
√

xT T x =
√

xT MT Mx = ‖Mx‖2. (10)

Proposition 1 highlights that the deformation in the spa-
tial domain produces a corresponding deformation in the
frequency domain. This is illustrated in Fig. 1 where an in-
verse multiquadric RBF together with its Fourier transform
(left) is shown. Deformations in the frequency and spatial

Fig. 1 (a) Inverse multiquadric RBF; (b) Anisotropic inverse multi-
quadric RBF; (c) Fourier transform of the inverse multiquadric RBF;
(d) Fourier transform of the anisotropic inverse multiquadric RBF
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domains for the associated anisotropic inverse multiquadric
RBF are shown in Fig. 1(right) for a given T metric.

The spectral characterization of the anisotropic RBFs
provides us with a tool to investigate their interpolation ca-
pabilities.

The anisotropic RBF interpolation to the points (X,f ) ∈
R

d+1 using the new basis functions is constructed by replac-
ing in (6) the matrix A with AT = (ϕ(‖xi −xj‖T ))i,j=1,...,N ,

and solving the linear system

AT c = f. (11)

The unique solvability of the linear system (11) is guar-
anteed by the following result, which generalizes to the asso-
ciated anisotropic �T,j (·) the definition of positive definite
function for �j(·).

Proposition 2 Given a positive definite radial function
� : R

d → R, and a d × d symmetric, positive definite ma-
trix T , then for all sets of pointwise distinct centers X ⊆ R

d ,
the matrix AT = (ϕ(‖xi −xj‖T ))i,j=1,...,N is symmetric and
positive definite, namely �T : R

d → R is positive definite.

Proof According to (10), the solution of the linear system
(11), computed on the original data set X in R

d , is equiva-
lent to the solution of (6) on the transformed data set Y =
MX in R

d , where M is the non singular matrix such that
T = MT M . Hence AT = (ϕ(‖yi − yj‖2))i,j=1,...,N , where
yi ∈ Y ; then AT is positive definite due to the positive defi-
niteness of the considered radial basis function. �

Due to the shown spectral properties of the anisotropic
RBFs, the anisotropic interpolant

FT (x) =
∑

j=1,...,N

cjϕ(‖x − xj‖T ), (12)

allows a better fitting of the data with respect its isotropic
counterpart. In order to give a theoretical justification, we in-
troduce a suitable reproducing-kernel Hilbert space, which
is always generated by any positive definite radial function
�(x) = ϕ(‖x‖) on a domain �, named native space of the
�(x) function. In the isotropic case the following result
holds [16].

Proposition 3 Any translation-invariant Hilbert subspace
of L2(R

d), which admits continuous and linear indepen-
dent point evaluation functionals, is a reproducing kernel
Hilbert space of a symmetric and positive definite L2 func-
tion � : R

d → R, and can be written as a space

H� =
{
f ∈ L2(R

d) :
∫ |f̂ (w)|2

�̂(w)
dw < ∞

}
. (13)

In other words, the native Hilbert space H�, contains the
functions f which are dominated by the function �. Simi-
larly, we can define the native space of the anisotropic RBF
�T on R

d as follows

H�T
=

{
f ∈ L2(R

d) :
∫ |f̂ (w)|2

�̂T (w)
dw < ∞

}
. (14)

The native space H�T
represents an extension of the

space H�, which reduces to H� when T is the identity ma-
trix. Furthermore, we note that, while the space H� is in-
variant under translation and rotation in R

d , H�T
, due to its

anisotropic nature, is only a translation-invariant subspace
of L2(R

d).
We will now exploit the more general nature of the na-

tive space H�T
to explain the improved approximation ca-

pabilities of the interpolant (12). Assume that the function
f belongs to the native space of the radial basis function �,
a bound for the local error f (x) − F(x) is given by

|f (x) − F(x)| ≤ P(x)‖f ‖H� (15)

where P(x) is the power function [17].
When the function f is characterized by high frequency

components, in order to make use of (15), we are forced to
choose small shape constants for inverse multiquadrics and
Gaussian, so that the generalized Fourier transform contains
the same high frequencies as �̂. However, as shown in Ta-
ble 1 in [16], decreasing the shape constants makes the lower
bound of the power function increase and, at the same time,
produces a worse reconstruction.

Instead, if we use the anisotropic RBFs �T , their native
space H�T

contains the f itself, that is, the relation

‖f ‖2
H�T

:= 1

(2π)d

∫ |f̂ (w)|2
�̂T

dw < ∞ (16)

holds, without the need to act on the shape constants. In this
case, the upper bound of the local error reconstruction of
type (15) can be reduced.

The above considerations have motivated our proposal
for an adaptive interpolation method applied to the image
interpolation problem. In this case, f represents a bivariate
continuous intensity function, and the high frequency com-
ponents characterize the image ‘edges’. We want to recover
this function preserving such 1D structures. To this aim, we
use the new metric T to deform the function �T , in the spa-
tial domain, along the 1D structure and, in the frequency
domain, orthogonally to the 1D structure. Thus the corre-
sponding generalized Fourier transform suitably fits the be-
havior of the spectrum of the function to be recovered. This
deformation guarantees a better reconstruction of the func-
tion without any drastic changes in the shape constant value
of �T , even if, so far, a sharp bound for the local interpola-
tion error in the case of anisotropic RBFs is not yet available.
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Fig. 2 (a) Inverse multiquadric RBF reconstruction; (b) Fourier trans-
form of the reconstruction; (c) Anisotropic inverse multiquadric recon-
struction; (d) Fourier transform of the anisotropic reconstruction

To support the above theory, in Fig. 2 we show the recov-
ery of a function representing an oblique edge. In Fig. 2(a)
the reconstruction on 6400 points is obtained by solving
an interpolation problem on a data set X of 400 points
using inverse multiquadric RBFs, while the reconstruction
in Fig. 2(c) has been obtained using anisotropic RBFs �T

with shape constant γ = 0.1, as in the isotropic case. The
anisotropic reconstruction better captures the 1D structure of
the function f , while the restored function determined with
the isotropic RBF interpolant shows artifacts and a poorly
defined edge. Moreover, Fig. 2(b) and Fig. 2(d) provide a
qualitative comparison of the Fourier transform image spec-
tra of the reconstructed images, by isotropic and anisotropic
RBF interpolants, respectively. Fig. 2(d) shows a spectrum
shape prolonged similarly to the spectrum of the original
function f , while the Fourier transform in Fig. 2(b) of the
isotropic reconstruction shown in Fig. 2(a) presents spuri-
ous frequencies which lead to a staircase reconstruction of
the edge.

An arbitrary function f is, in general, characterized by
many different 1D structures. If we want to solve the in-
terpolation problem globally, that is by solving a unique
large linear system in form (6), since different 1D struc-
tures lead to different deformations of the anisotropic RBFs,
the interpolation matrix could not longer be symmetric and
definite. Consequently, the unique solvability of the inter-
polation process cannot be guaranteed. In the next section
we show how to overcome this problem by combining dif-
ferent small anisotropic contributions to obtain a feature-
preserving reconstruction of the whole f function.

3 RBF Adaptive Anisotropic Interpolation

An RBF local interpolation method has been proposed in
[12] as useful approach to the reconstruction of unstruc-
tured data sets. In [3] and [4] the RBF interpolation method
has been proposed for the reconstruction of large data sets
exploiting the local nature of the method. This approach is
based on the subdivision of the global domain � into smaller
overlapping domains {�j }j=1,...,N , where the RBF interpo-
lation problem is solved locally. Non-negative weight func-
tions {Wj }j=1,N , with limited support supp(Wj ) ⊆ �j , are

associated with this covering. Then a linear weighted combi-
nation of local solutions is constructed, using these weight-
ing coefficients to obtain a smooth, locally defined global
interpolant.

The local setting of the RBF method, which has been
introduced to overcome the well-known problem of ill-
conditioning, arising in the global RBF interpolation [16],
now turns out to be an optimal solution to match the differ-
ent behaviors of arbitrary functions.

We are now strongly motivated to combine the local in-
terpolation approach with the adaptive anisotropic RBF in-
terpolants which locally capture and preserve the several
1D structures of the function to be reconstructed. Without
loss of generality, we consider that the compact set � =
[1, n1] × [1, n2] ⊂ R

2, the set of distinct nodes p := (i, j),
i = 1, . . . , n1, j = 1, . . . , n2, p ∈ �, and the set of the cor-
responding image integer values Up are given. For each p,
we associate a symmetric positive definite matrix Tp and a
set NQ_neigh(p) containing NQ − 1 suitable Tp-neighbors
of p, as well as p itself. The term Tp-neighbors denotes that
the distance is measured using the norm induced by Tp . The
nodal anisotropic RBF interpolant associated with p on the
set NQ_neigh(p), is defined as

FTp(x) =
∑

p∈NQ_neigh(p)

cpϕ(‖x − p‖Tp ), (17)

where ϕ(·) are positive definite radial basis functions.
The coefficients cp in (17) are computed by solving the

linear system

FTp(p) = Up, ∀p ∈ NQ_neigh(p),

which is uniquely solvable.
Moreover, for each p ∈ �, we identify an ellipsoidal re-

gion of influence �p , centered in p, defined as

�p := {x; ‖x − p‖Tp < ρp}

where ρp is suitably chosen so that the union of the n1 · n2

sets �p represents a covering of �.
The evaluation of the global adaptive anisotropic inter-

polant in a generic point x ∈ � is then given by:

F(x) =
∑

p∈Nx
WTp(x)FTp (x)

∑
p∈Nx

WTp(x)
, (18)

where Nx is the set of indices of all the nodes p s.t.
‖x − p‖Tp < ρp , namely, the nodes whose influence re-
gion �p contains x, and the p-th compactly supported nodal
anisotropic weight function is defined as

WTp(x) =
[
(ρp − ‖x − p‖Tp )+

ρp‖x − p‖Tp

]2

. (19)
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The use of weighted functions WTp that are anisotropic
according to the same metric Tp associated with FTp , allows
us to consider as a contribution to the global interpolant only
the central part of any local reconstruction FTp , which rep-
resents the best fitting. This avoids the oscillations which
eventually perturb the boundary part.

The function F(x) is a continuous interpolant that fol-
lows the local anisotropies of the data. If the data are the
intensity values of a discrete n1 × n2 image, this interpolant
allows us to resize the image by an arbitrary real factor. In
Sect. 5 we provide an efficient algorithm which computes
F(x) using only local evaluations.

A fundamental ingredient in this new approach is the
choice of the suitable metric that models the local data
anisotropy. This choice will be discussed in Sect. 4 for the
specific case of image data sets.

4 Edge-driven Metric for Anisotropic Interpolation

Several image interpolation methods have shown to be quite
effective, due to the fact that they incorporate the edge-
structure information into the interpolation process. In gen-
eral, in image processing applications, the knowledge about
edge orientation is important to successfully detect high-
resolution structures. As shown in Sect. 2, a tool to easily
capture the edge orientation is the Fourier transform which
highlights high frequencies across the edge and low fre-
quencies along the edge. In the spatial domain, the edge
orientation is well captured by the local coherence mea-
sure of the image structures. The coherence descriptor has
been applied for the analysis of coherent flow-like struc-
tures, and it has recently become a well-known tool for im-
age processing and texture analysis [20, 21]. From a math-
ematical point of view it can be accomplished in a natural
way by means of the structure tensor (second-moment ma-
trix) as follows.

Consider a rectangular image domain �, and let a grey-
level image I (x) be represented by a bounded mapping
I : � → R. A simple edge descriptor is then given by ∇Iσ ,
the gradient of a Gaussian-smoothed version of I :

Iσ := (Kσ ∗ I )(x)

where σ > 0, the Gaussian constant, denotes the scale un-
der which the details are ignored. Even if ∇Iσ is useful for
detecting edges, it is unsuited to finding general structures
in images, since it is not invariant to sign changes, see [20].
A better descriptor is provided by the tensor product

J0(∇Iσ ) := ∇Iσ ⊗ ∇Iσ ,

which is a symmetric and positive semi-definite matrix with
eigenvectors parallel and orthogonal to ∇Iσ , respectively.

The corresponding eigenvalues |∇Iσ |2 and 0 describe the
contrast in the eigendirections. The structure tensor is then
obtained by applying a componentwise convolution with a
Gaussian Kρ :

Jρ(∇Iσ ) := (Kρ ∗ J0(∇Iσ )) (20)

where ρ ≥ 0 represents the integration scale reflecting the
characteristic size of the structures. The matrix Jρ is sym-
metric positive semi-definite and its eigenvalues μ1 ≥ μ2

integrate the variation of the grey values within a neighbor-
hood of size O(ρ). They describe the average contrast in the
corresponding eigendirections v1 and v2. The orientation of
the eigenvector v2, corresponding to the smaller eigenvalue,
represents the direction of lowest fluctuations, the so-called
coherence orientation. In this way, constant areas are char-
acterized by μ1 = μ2 = 0, while edges give μ1 � μ2.

The normalized coherence value which measures the
anisotropic structures within a window of scale ρ is thus
defined as

c = (μ1 − μ2)
2

max{μ1,μ2} , c ∈ [0,1]. (21)

In our approach we first address the problem of detect-
ing coherent structures in images, and then we use this in-
formation to design a suitable metric which drives the RBF
anisotropic interpolation.

To this aim, we define the sharpness function τ(·) as

τ(c) = e−c, 0 ≤ c ≤ 1, (22)

for each pixel of I , and we use this function to continuously
adapt the metric to the local edge strength. In fact, in order
to adapt the interpolation process to the local behavior of the
image, we model the anisotropy of the RBF by constructing
the matrix T as a function of the local image structures. This
matrix has the same eigenvectors as Jρ and its eigenvalues
are given by

λ1 = 1, λ2 = g(τ(c)), (23)

where g(·) : [1, e] → [1,m],m ≥ 1, is a monotone increas-
ing function such that g(1) = 1, and it suitably adapts its
values to the anisotropy. Therefore,

T = [v1 v2 ]
[

λ1 0
0 λ2

][
vT

1

vT
2

]
. (24)

A local homogeneous area of an image, named isotropic
region, is characterized by a sharpness function τ(0) = 1,
and therefore the T -metric is reduced to be the Euclidean
metric, while areas with strong edges are characterized by
τ(1) = e and by a g(·) function which can emphasize the
anisotropy. According to the choice of g(·), this can guaran-
tee that the continuity of the sharpness function carries over
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to the anisotropic interpolation process. We will describe our
choice of g(·) in Sect. 6.

Remark Using an RBF interpolant, the reconstruction qual-
ity is well-known to be affected by the choice of the shape
parameter in the definition of the RBF, such as γ for the
inverse multiquadrics in (4). The choice of this parame-
ter value represents a critical problem in RBF interpolation
which, so far, has no optimal solution. We can exploit the
role of the sharpness function to estimate a suitable γ value
to model the shape of the basis functions according to the
local anisotropy. We can choose to set up a new γτ propor-
tional to the sharpness function as follows:

γτ = γ
1

τ 2
.

This choice has worked well for the numerical tests
where each local interpolation uses data scaled on the do-
main [0,1]2 and γ = 1.

In a similar way the shape parameter α in (5) for a
Gaussian RBF can be suitably adapted to obtain an edge-
driven reconstruction.

5 Anisotropic RBF Enlargement Algorithm

In this section we present an algorithm for an arbitrary en-
largement of a given input image U based on the global
adaptive RBF interpolation scheme described in Sect. 3.

We suppose that in a general application setting the orig-
inal and the desired image resolutions are given and we can
even ignore the enlargement factor. The input image U of
size n1 × n2 is thus scaled into the target image V of size
N1 × N2, so that the scaling factor s = (s1, s2) is given by
s1 = N1/n1 and s2 = N2/n2 .

The ARBF enlargement algorithm is based on the com-
putation of a real bivariate function F : � → R, which in-
terpolates the values of the image U . This function is then
evaluated on the N1 × N2 finest grid in � of points x =
(x, y), where x = ( i

s1
,

j
s2

), i = 1, . . . ,N1, j = 1, . . . ,N2. At
each point x corresponds a pixel q := (i, j), i = 1, . . . ,N1,
j = 1, . . . ,N2 on the finest grid. The values Vq , obtained
evaluating the associated points x, represent the grey-level
intensities of the enlarged image V .

The main steps of the algorithm are the following. The
preliminary STEP 1 computes and stores the coherence val-
ues as in (21), by means of the structure tensor, for each pixel
p ∈ U . These coherence values are then used in STEP 2 to
construct the matrix Tp defining the metric for each pixel
p ∈ U . We observe that the matrix Tp does not need to be
stored. Moreover, in STEP 2, for each pixel p ∈ U , we set
up all the required information used to perform the local

interpolation (STEP 2.1) and we evaluate (STEP 2.2) the
local interpolant in all the points x of the refined grid that
belong to its influence region, together with the associated
weights. This avoids the storing of all the interpolation co-
efficients. In this way, for all the points in the refined grid
all the weighted local contributions are summed up. In the
final step (STEP 3), all the accumulated local contributions
are finally normalized according to (18).

Fig. 3 Image interpolated by the ARBF algorithm using a scaling ×4
of a 128×128 original image; some circular and ellipsoidal �p regions
are shown

Algorithm 1 ARBF enlargement algorithm

INPUT: U image of size n1 × n2, size N1,N2 for V

OUTPUT: V image of size N1 × N2

s1 = N1/n1, s2 = N2/n2

STEP 1 Compute the sharpness function τ( ) for each pixel
of U

STEP 2 For each pixel p in U

Compute the metric Tp

Compute NQ_neigh(p) in U according to Tp

Evaluate ρp to identify �p

STEP 2.1 Local Interpolation:
Compute FTp(·) by (17)
STEP 2.2 Evaluation:
Compute the set Qp = {x ∈ �p}
For each x of Qp

Vq = Vq + FTp(x)WTp(x)

Zq = Zq + WTp(x)

end for
end for
STEP 3 For each point x on the finest grid

Vq = Vq/Zq

end for
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Fig. 4 Enlargement ×4 of
viviani image, c = 0.005:
(a) 128 × 128 initial image
(b) coherence map
(c) 512 × 512 original U0 image
(d) bilinear interpolation
(e) bicubic interpolation
(f) ARBF interpolation

Remark 1 Since we want to guarantee that the union of the
subdomains �p represents a covering of �, we can simply
define �p by choosing

ρp ≥ max
p∈Ip∩�

‖p − p‖Tp

where Ip = {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)}.

In Fig. 3 a 512 × 512 image reconstruction is shown to
illustrate the adaptivity of the proposed ARBF algorithm.
Some circular and ellipsoidal regions of influence �p are
shown in Fig. 3. They are used to consider only the central
part of FTp(·) (see the local interpolation step in the ARBF
enlargement algorithm). Fig. 3 emphasizes the capacity of

capturing the local behavior of the image in a given pixel p,
using the metric Tp: the method uses circular regions �p in
correspondence of flat areas, while differently shaped ellip-
soidal regions are used around the edges.

Remark 2 A simplified version of the ARBF algorithm can
be obtained replacing the Tp metric by the classical Euclid-
ean norm. This leads to a reduction in the computational cost
but we loose the improvements in the reconstruction of the
image features. This suggests an hybrid approach to achieve
a better tradeoff between visual quality and computational
complexity. An ARBF interpolation is applied only for pix-
els around edges identified by the sharpness function τ( ),
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Fig. 5 Enlargement ×4 of
clocks image, c = 0.00125:
(a) 128 × 128 initial image
(b) coherence image
(c) 512 × 512 original U0 image
(d) bilinear interpolation
(e) bicubic interpolation
(f) ARBF interpolation

while the simplified RBF interpolation is employed else-
where.

Remark 3 A different scenario could instead require to start
from a coarse resolution image U and obtain several images
V with different resolutions. In this case, instead of apply-
ing the ARBF algorithm for every enlarged V , it is certainly
more efficient to compute and store the coefficients of every
local interpolant for each p ∈ U , and then evaluate, for each
different enlargement factor, the associated interpolated im-
age V .

Remark 4 In [6] an anisotropic edge-enhancing strategy is
applied as a post-process of linear image zooming meth-

ods. This approach could suggest to interpolate the im-
age by standard bilinear/bicubic interpolation and then post
processing the interpolated image by the anisotropic diffu-
sion proposed by [20]. This procedure differs from the pro-
posed ARBF interpolation process for computational effort
and quality results. In fact, a post-process requires a much
more computational expensive work since the structure ten-
sor is determined for each pixel in the enlarged image and
the anisotropic PDE model is then solved on the same do-
main. Moreover, the edge diffusion process enhances the
ringing artifacts produced by a poor linear/bicubic interpo-
lation and is not able to preserve the details that the poor
interpolation has suppressed.
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Fig. 6 Enlargement ×4 of
lena image, c = 0.0125:
(a) 128 × 128 initial image
(b) coherence map
(c) 512 × 512 original U0 image
(d) bilinear interpolation
(e) bicubic interpolation
(f) ARBF interpolation

6 Numerical Results

In this section we compare the results obtained by using the
ARBF enlargement algorithm with those obtained by the
bilinear and the bicubic interpolation methods. In order to
judge the magnification quality and analyze the reconstruc-
tion errors, we use a fine resolution image U0 to generate a
lower resolution version U of it. Then we apply a method to
enlarge U and compare the enlarged image V with the fine
resolution image U0. This seems to be a reasonable way to
measure the reconstruction quality.

To validate our algorithm we have chosen several alter-
native quantitative measurements related to picture quality
widely used in the literature. In particular, to assess the

quality of the reconstruction we have used both the Peak
Signal-to-Noise Ratio (PSNR) and the Percentage Edge Er-
ror (PEE), which are functions of the original image U0 and
the reconstructed image V .

The PSNR measure is given by

PSNR(U0,V ) = 20 log10
255

RMSE(U0 − V )
dB, (25)

where RMSE is the root mean squared errors. The PSNR is
widely used in image processing to evaluate reconstructed
image fidelity. Since it is well known that the PSNR does
not necessarily reflect the observer’s visual perception of the
reconstruction, the PEE is used to measure the goodness of
the edge reproduction in the interpolated image.
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According to [9] the PEE is defined by

PEE(U0,V ) = ES(U0) − ES(V )

ES(U0)
× 100, (26)

where ES(U0) and ES(V ) are the edge strengths of the orig-
inal image and interpolated image, respectively, and it has
been computed by the Euclidean norm of the gradient of the
image, approximated by a central finite difference second or-
der scheme. The PEE measures how close the interpolated
image details are to the original image. A PEE positive value
means that the interpolated image is over-smoothed, while
negative values reveals the presence of spurious edges in the
interpolated image. Due to the discrete approximation used
to compute the PEE measure, it does not always express a
right visual quality. The optimal quantitative measurements
to capture the visual quality of the results are still an open
problem.

To better appreciate the effects of the RBF anisotropic
method we have considered both images with sharp edges
and high local contrast and photograph-like images. The re-
ported examples give us a qualitative and quantitative com-
parison on four images labelled by viviani, clocks,
lena and A-char.

High quality images U0 of size 512 × 512 are considered
for each numerical example. The initial images U to be en-
larged are obtained by the original images U0 using the re-
size tool of GIMP (the GNU Image Manipulation Program).
An initial image of 256×256 has been generated to produce
an interpolated image by an enlargement factor (EF) = ×2;
when EF = ×4 the initial image presents a size of 128×128
pixels, while when EF = ×8 the initial image is defined by
64 × 64 pixels.

The ARBF algorithm can be applied to obtain arbitrary
resolution enhancements, even if the reported examples con-
sider only positive integer values for si , with s1 = s2, si > 1.

For each example, we show the coherence map associ-
ated with the image U that has to be enlarged. The coher-
ence map is a binary image obtained by thresholding the
coherence values obtained for U with respect to the c value.
Our numerical tests has been performed with values of c

ranging from 0.00125 to 0.05. The regions affected by the
anisotropic approach correspond to white pixels in the co-
herence map.

In order to reduce the computational complexity, we con-
sider in (23) the function g(·) as follows

g(τ(c)) =
{

1 if c < c

3τ(c) otherwise
(27)

where c is the threshold value used.
The effectiveness of the ARBF algorithm is shown by ap-

plying an enlargement factor EF = ×4 to initial images U of
size 128 × 128 for the viviani, clocks and lena im-
ages. The original U0 images of size 512×512 are shown in

Fig. 7 Enlargement ×8 of A-char image, c = 0.05: (a) 64 × 64 ini-
tial image (b) coherence map (c) 512 × 512 original U0 image (d) bi-
linear interpolation (e) bicubic interpolation (f) ARBF interpolation

Fig. 4(c), Fig. 5(c) and Fig. 6(c), while the enlarged V im-
ages resulting by applying the ARBF algorithm are shown in
Fig. 4(f), Fig. 5(f) and Fig. 6(f). For comparison, in Fig. 4(d),
Fig. 5(d), Fig. 6(d) and Fig. 4(e), Fig. 5(e), Fig. 6(e) the in-
terpolated images obtained by the bilinear interpolation and
bicubic interpolation, respectively, are illustrated.

Figure 7 shows the results of an interpolation with en-
largement factor EF = ×8 of the A-char image shown in
Fig. 7(a). The latter is obtained by reducing the font bitmap
of size 512 × 512 of 256 grey-levels shown in Fig. 7(c).
In this example, the image presents strong, well-defined
edges separating smooth regions. We display in Fig. 7(f)
the 512 × 512 image enlarged by the ARBF algorithm,
while the images shown in Fig. 7(d) and Fig. 7(e) are ob-
tained by applying bilinear and bicubic interpolation, re-
spectively.

The visual quality comparison is accomplished by quan-
titative analysis reported in Tables 1, 2, 3, 4, where we com-
pare the PSNR and PEE measures obtained by the ARBF al-
gorithm for different enlargement factors (EF) with the cor-
responding values obtained by the bilinear (BL), and bicubic
(BC) algorithms. The PSNR-values for images determined
by the ARBF algorithm are the highest, and also the PEE
values, in general, show a slight improvement with respect
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Fig. 8 (a) Portion of size
64 × 64 of the clocks image
of size 256 × 256; (b) zoom ×8
by NEDI algorithm; (c) zoom
×8 by bilinear; (d) zoom ×8 by
bicubic; (e) zoom ×8 by ARBF
interpolation, c = 0.005

Table 1 viviani image; PSNR and PEE as function of the enlarge-
ment factor EF using different interpolation methods (Bilinear BL,
Bicubic BC, Anisotropic RBF ARBF)

EF BL BC ARBF

PSNR PEE PSNR PEE PSNR PEE

×2 30.71 11.10 31.34 1.80 31.73 5.43

×4 25.71 35.67 26.05 28.19 26.41 23.01

×8 22.70 41.24 22.93 35.75 22.83 44.05

to the results obtained by the other techniques. However,
what really motivates the ARBF approach, is the visual qual-
ity of the interpolated images. In particular, the ARBF ap-
proach eliminates the pixelization effects, which occur due
to the variation of high-contrast areas, and it reduces the

Table 2 clocks image; PSNR and PEE as function of the enlarge-
ment factor EF using different interpolation methods (Bilinear BL,
Bicubic BC, Anisotropic RBF ARBF)

EF BL BC ARBF

PSNR PEE PSNR PEE PSNR PEE

×2 29.45 22.03 30.41 14.58 31.33 11.28

×4 23.75 42.08 24.17 36.03 24.50 30.85

×8 20.48 60.95 20.66 57.57 20.76 52.85

blurring effect by sharpening the edges, resulting with vi-
sually more pleasing images. From a visual judgment the
contribution of the metric Tp in the edge reconstruction us-
ing ARBF algorithm is clear, while staircase effects are still
present in the linear reconstructions.
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Fig. 9 (a) Portion of size
64 × 64 of the lena image of
size 128 × 128; (b) zoom ×8 by
NEDI algorithm; (c) zoom ×8
by bilinear; (d) zoom ×8 by
bicubic; (e) zoom ×8 by ARBF
interpolation, c = 0.0125

Table 3 lena image; PSNR and PEE as function of the enlargement
factor EF using different interpolation methods (Bilinear BL, Bicubic
BC, Anisotropic RBF ARBF)

EF BL BC ARBF

PSNR PEE PSNR PEE PSNR PEE

×2 32.12 31.68 33.06 24.82 33.78 20.11

×4 27.01 49.31 27.42 44.54 27.82 40.60

×8 23.37 61.49 23.55 58.29 23.64 55.19

We observe that all the considered interpolation algo-
rithms have been penalized by the aliasing generated by the
reduction method we applied to get U from U0. This reduc-
tion method has allowed us to perform comparisons with the
original high resolution image. However, it is not possible to

Table 4 A-char image; PSNR and PEE as function of the enlarge-
ment factor EF using different interpolation methods (Bilinear BL,
Bicubic BC, Anisotropic RBF ARBF)

EF BL BC ARBF

PSNR PEE PSNR PEE PSNR PEE

×2 27.92 0.66 28.67 −0.75 29.89 −1.22

×4 22.90 0.93 23.26 −0.32 23.75 −2.18

×8 19.73 1.75 20.17 2.08 20.52 −0.14

perform exact recovery of an initial image from its aliased
version. This problem arises when we need to represent a
coarser version of an image. To overcome this problem, in
the last two examples we show the results of an enlarge-
ment EF = ×8 by the interpolation methods on a selected
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region of size 64 × 64 from the original U0 images lena,
of size 512 × 512, and clocks, of size 256 × 256. The
selected details are illustrated in Fig. 8(a) and Fig. 9(a). In
Fig. 8(e) (Fig. 9(e)) the enlarged image V obtained by the
ARBF algorithm applied to Fig. 8(a) (Fig. 9(a)) is shown.
The interpolated image resulting by applying the anisotropic
interpolation does not present the staircase effects clearly
visible on the boundaries of the interpolated images ob-
tained by the standard bilinear and bicubic methods illus-
trated in Fig. 8(c) (Fig. 9(c)) and Figs. 8(d) (Fig. 9(d)), re-
spectively. Figs. 8(b)–9(b) include the comparison with the
publicly available NEDI algorithm which implements the
edge-directed interpolation method discussed in [14]; the re-
sults still suffer from noticeable artifacts and lost of details.

7 Conclusions

When linear interpolation methods are used for the image
enlargement problem by a large factor, the resulting image is
affected by ringing and blurring artifacts. To avoid this prob-
lems, we have presented a nonlinear interpolation method
working for an arbitrary enlargement factor, which is based
on the following three ingredients: the use of anisotropic ra-
dial basis functions, the introduction of a structure tensor
driven metric, and the application of an adaptive anisotropic
interpolation approach. An efficient combination of these
ideas, has allowed us to realize a successfully interpolation
method with inherent edge-enhancement properties. The
various numerical examples presented show the effective-
ness of the proposed approach, and the comparison with the
most popular linear interpolation methods demonstrates sig-
nificant improvement both on objective measures, and on
visual quality of the interpolated images.
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