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Abstract The main aim of this paper is to accelerate the
Chambolle gradient projection method for total variation
image restoration. In the proposed minimization method
model, we use the well known Barzilai-Borwein stepsize in-
stead of the constant time stepsize in Chambolle’s method.
Further, we adopt the adaptive nonmonotone line search
scheme proposed by Dai and Fletcher to guarantee the
global convergence of the proposed method. Numerical re-
sults illustrate the efficiency of this method and indicate that
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such a nonmonotone method is more suitable to solve some
large-scale inverse problems.
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1 Introduction

Total variation (TV) models have achieved a great suc-
cess in image processing. They have been used in many
applications such as image restoration, image deblurring,
image inpainting (see [2, 13] and references therein). Im-
age restoration, especially for image denoising, forms a
significant preliminary step in many machine vision tasks
such as object detection and recognition. The typical im-
age restoration model was first introduced by Rudin, Os-
her and Fatemi (ROF) in [24]. The ROF model could pre-
serve sharp discontinuities (edges) in an image while re-
moving noise by the following minimization of a func-
tional:

min
u

P (u) :=
∫

Ω

|∇u|dx + λ

2
‖u − f ‖2

2. (1)

Here ∇ is the gradient operator and
∫
Ω

|∇u|dx stands
for the total variation of u. Ω is the domain of definition
of the image, which is assumed to bounded in �n with Lip-
schitz boundary. Usually Ω is simply a rectangle in �2.
f : Ω → � is the degraded image to restore. The minimizer
u of (1) is the restored image we want to compute (see for
instance [11] for a thorough mathematical analysis of this
problem). λ is a weighting parameter which controls the
amount of denoising. | · | represents the Euclidean (�2) norm
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on �2. The total variation of u has the following equivalent
dual form:
∫

Ω

|∇u|dx = max
w∈C1

c (Ω),|w|≤1

∫
Ω

∇u · w

= max
|w|≤1

∫
Ω

−u∇ · w, (2)

where w : Ω → �2 is the dual variable, and ∇· is the di-
vergence operator. The idea of duality has been proposed
first by Chan, Golub and Mulet [14], later by Carter [8]
and Chambolle in [9, 10], and then by Zhu et al. [27–29].
In [14], the authors applied Newton’s method to solve the
primal-dual system of the ROF model. So, their method
was shown to have a locally quadratic convergence rate.
In [22], a non-smooth Newton method is considered and
the achieved convergence is superlinear. In [12], the authors
presented some fast multigrid methods to solve the dual
ROF model. In [29], the authors developed duality-based
gradient projection algorithms and sequential quadratic pro-
gramming algorithms for total variation image restoration
problems. In [9, 10], Chambolle proposed some gradient
descent algorithms, which become popular for their sim-
plicity and fast convergence to medium-accurate visually
satisfactory solutions. There are so many total variation min-
imization algorithms based on Chambolle’s method (e.g.
[1, 3, 21]). In practice, a relatively large number of itera-
tions is still required. In some case, the iterates of Chambolle
gradient descent algorithm slowly approach the minimum,
especial for some very ill conditioned problems. Maybe, the
most disadvantage of Chambolle method is that it requires
the functional value to decrease monotonically at each iter-
ation.

In this paper, we extend Chambolle’s method to non-
monotone descent method for total variation minimization.
We use the well known Barzilai-Borwein stepsize [4] in-
stead of the constant stepsize in Chambolle’s projection al-
gorithm and adopt the adaptive nonmonotone line search
scheme proposed by Dai and Fletcher [16] to guarantee
the global convergence. Numerical results illustrate the effi-
ciency of this scheme and indicate that such a nonmonotone
method is more suitable to solve some large-scale inverse
problems. In Sect. 2, we review Chambolle’s projection
method. Our nonmonotone descent gradient method is pre-
sented in Sect. 3. In Sect. 4, numerical experiments are given
to illustrate the convergence and efficiency of the proposed
method. Finally, we have a conclusion section.

2 The Chambolle Projection Method

In this section we give a review on the Chambolle projection
method for total variation minimization [9]. We first take

some notation and definitions in [9]. We assume that our
images are matrices of size N × N . We denote by X the
Euclidean space �(N×N), and Y = X × X . The space X
and Y will be endowed with the scalar product, defined in
the standard way respectively by

〈s, t〉X =
∑

1≤i,j≤N

si,j ti,j , s, t ∈ X

and

〈p,q〉Y =
∑

1≤i,j≤N

p1
i,j q

1
i,j + p2

i,j q
2
i,j ,

p = (p1,p2), q = (q1, q2) ∈ Y .

To define a discrete total variation, we introduce a discrete
version of the gradient operator ∇ : X → Y , which is de-
fined by

(∇u)i,j = (
(∇u)1

i,j , (∇u)2
i,j

)

with

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N,

0 if i = N,

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < N,

0 if j = N

for i, j = 1, . . . ,N . The discrete total variation of u is then
defined by

T V (u) :=
∑

1≤i,j≤N

|(∇u)i,j |.

Therefore, the discretization of minimization problem (1)
is given by

min
u∈X

T V (u) + λ

2
‖u − f ‖2

X . (3)

Here u,f ∈ X are discretization vectors of related continu-
ous variables, and ‖ · ‖X is the Euclidean norm in X , given
by ‖u‖2

X = 〈u,u〉X . Chambolle showed in [9] that the solu-
tion u of problem (3) should be given by

u = f + π 1
λ

K(−f ), (4)

where π 1
λ

K(·) is the orthogonal projection onto the convex

set 1
λ

K with

K := {∇ · w : w ∈ Y , |wi,j | ≤ 1, ∀i, j = 1, . . . ,N}

and the discrete divergence operator ∇· : Y → X is defined
by ∇· = −∇∗, that is, for any w ∈ Y and u ∈ X , 〈−∇ ·
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w,u〉X = 〈w,∇u〉Y . It is easy to check that the divergence
operator can be defined explicitly as follows:

(∇ · w)i,j =

⎧⎪⎪⎨
⎪⎪⎩

w1
i,j − w1

i−1,j if 1 < i < N,

w1
i,j if i = 1,

−w1
i−1,j if i = N,

+

⎧⎪⎪⎨
⎪⎪⎩

w2
i,j − w2

i,j−1 if 1 < j < N,

w2
i,j if j = 1,

−w2
i,j−1 if j = N.

Hence, computing the solution of (3) hinges on computing
the nonlinear projection π 1

λ
K(−f ), which amounts to solv-

ing the following constrained minimization problem:

min
w∈K

∥∥∥∥f + 1

λ
∇ · w

∥∥∥∥
2

X
with

K := {w : w ∈ Y , |wi,j |2 ≤ 1, ∀i, j = 1, . . . ,N}. (5)

In [8, 27], Carter and Zhu et al derived the constrained
optimization problem (5) by a different way. With the def-
inition of total variation (2), the primal ROF model (1) be-
comes

min
u

max
w∈C1

c (Ω),|w|≤1

∫
Ω

−u∇ · w + λ

2
‖u − f ‖2.

Interchanging the min and max (see e.g., Proposition 2.4 in
[18]), we obtain

max
w∈C1

c (Ω),|w|≤1
min

u

∫
Ω

−u∇ · w + λ

2
‖u − f ‖2.

The inner minimization problem can be solved exactly as
follows

u = f + 1

λ
∇ · w. (6)

We eliminate the primal variable u by the above formula.
Then we are left with the dual problem

max
w∈C1

c (Ω),|w|≤1
D(w) := λ

2

[
‖f ‖2 −

∥∥∥∥f + 1

λ
∇ · w

∥∥∥∥
2]

, (7)

or, equivalently, min|w|≤1
1
2‖λf +∇ ·w‖2. The main advan-

tage of the dual formulation (5) or (7) is that the objective
function is nicely quadratic and hence there is no issue with
non-differentiability as in the primal formulation. However,
the dual problem needs to deal with the constraints on the
dual variable w.

In [9], Chambolle analyzed the Karush-Kuhn-Tucker
conditions for the dual problem (5) and he derived that

the Lagrange multiplier α ∈ X satisfies

αi,j = |(∇(∇ · w + λf ))i,j | ∀i, j = 1, . . . ,N.

Then the Euler-Lagrange equation of the problem (5) can be
presented as follows

−(∇(∇ · w + λf )
)
i,j

+ |(∇(∇ · w + λf ))i,j |wi,j = 0

∀i, j. (8)

He then proposed a semi-implicit gradient descent algo-
rithm:

wk+1 = wk − τ
(−∇(∇ ·wk + λf ) + |∇(∇ ·wk + λf )|wk+1)

(9)

or

wk+1
i,j =

wk
i,j + τ

(∇(∇ · wk + λf )
)
i,j

1 + τ
∣∣(∇(∇ · wk + λf )

)
i,j

∣∣ , ∀i, j, (10)

where τ > 0 is a time step chosen suitably small for conver-
gence. It is clear that the constraints |w| ≤ 1 are automati-
cally handled in Chambolle’s projection algorithm provided
that the initial guess satisfies so. In [9], Chambolle gave a
sufficient condition which ensuring the convergence of the
algorithm.

Theorem 1 Suppose that the parameter 0 < τ ≤ 1/8. Then
1
λ
∇ · wk converges to π 1

λ
K(−f ) as k → ∞.

In practice, convergence of the Chambolle projection al-
gorithm is generally observed as long as τ < 1/4. An exten-
sion of this algorithm to color images has been proposed in
[7]. Instead of using (10), Chambolle suggested in [10] to
use a simple projected gradient descent method:

wk+1
i,j =

wk
i,j + τ

(∇(∇ · wk + λf )
)
i,j

max{1, |wk
i,j + τ(∇(∇ · wk + λf ))i,j |}

∀i, j. (11)

In [10], Chambolle proved the stability of (11). Applica-
tion of basic results about the projected gradient algorithm
[5] shows that in fact (11) is convergent provided 0 < τ <

1/4. Experiments show that τ = 1/4 seems not optimal,
and a better convergence is obtained for τ = 0.248. Both
Chambolle’s semi-implicit gradient descent algorithm (9)
and Chambolle’s projected gradient algorithm (11) require
the functional value to decrease monotonically at each it-
eration, which made the iterates of Chambolle’s methods
slowly approach the minimum when the minimization prob-
lem is very ill conditioned.
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3 The Nonmonotone Chambolle Projection Algorithms

Motivated to improve Chambolle projection method, we re-
place the constant time step τ by the well-known Barzilai-
Borwein stepsize [4]. In the rest of this paper, we report on
the development and implementation of some nonmonotone
gradient projection algorithms for the image restoration
problem.

Given a starting point w0 and using the notation gk =
∇F(wk), the gradient methods for minw∈�nF (w) are de-
fined by the iteration wk+1 = wk − tkgk, k = 0,1, . . . ,

where the stepsize tk > 0 is determined through an ap-
propriate selection rule. In the classical steepest descent
(SD) method, the stepsize tk > 0 is obtained by minimiz-
ing the function F(w) along the ray {wk − tgk : t > 0}. It
is well-known that the SD method can be very slow when
the Hessian of F(w) is ill-conditioned at a local minimum.
In this case, the iterates slowly approach the minimum in
a zigzag fashion. Early efforts to improve the SD method
gave rise to the development of the conjugate gradient (CG)
method. In 1988, Barzilai and Borwein [4] developed an in-
genious gradient method in which stepsize tk(k > 0) is de-
termined by:

tkBB = 〈sk−1, sk−1〉
〈yk−1, sk−1〉 , (12)

where sk−1 = wk − wk−1 and yk−1 = gk − gk−1. In fact,
tk is derived from an approximately secant equation: tkBB =
arg mint∈� ‖ 1

t
sk−1 −yk−1‖. The BB method performs much

better than the SD method in practice. Especially, when
the objective function is a convex quadratic function and
n = 2, a sequence generated by the BB method converges
R-superlinearly to the global minimizer [4]. For any dimen-
sion convex quadratic function, it is still globally convergent
[23] but the convergence is R-linear [17].

Let w ∈ Y and F(w) := 1
2‖λf + ∇ · w‖2

X . Then gk :=
∇F(wk) = −∇(∇ · wk + λf ). So, we have yk−1 =
−∇(∇· sk−1) and 〈yk−1,sk−1〉Y = 〈−∇(∇· sk−1),sk−1〉Y =
〈−(∇ · sk−1),−(∇ · sk−1)〉X . And then (12) becomes as fol-
lows

tkBB = 〈sk−1, sk−1〉
〈yk−1, sk−1〉 = ‖sk−1‖2

Y
‖∇ · sk−1‖2

X
. (13)

Using the above formula to compute the time step τ in the
Chambolle projection method, we obtain two corresponding
nonmonotone Chambolle projection algorithms as follows.

Nonmonotone Chambolle semi-implicit gradient pro-
jection algorithm:

wk+1
i,j (wk, tk, gk) := wk

i,j − tkgk
i,j

1 + tk|gk
i,j |

,

∀i, j = 1, . . . ,N with tk = tkBB. (14)

Nonmonotone Chambolle projected gradient algo-
rithm:

wk+1
i,j (wk, tk, gk) := wk

i,j − tkgk
i,j

max{1, |wk
i,j − tkgk

i,j |}
,

∀i, j = 1, . . . ,N with tk = tkBB. (15)

The above two nonmonotone Chambolle gradient projec-
tion algorithms cannot ensure the objective functional value
decrease monotonically at each iteration. Therefore, in or-
der to ensure global convergence, it is necessary to modify
the above two algorithms by incorporating some sort of non-
monotone line search [16, 20]. In [16], Dai and Fletcher pro-
posed an adaptive nonmonotone line search. The numerical
results reported in [16] show that this kind of line search
is particularly suitable for BB-like methods in the non-
quadratic case. The method has a reference function value
Fr , and each iteration must improve on the reference value
such that:

F
(
wk+1(wk,βtkBB, gk)

) ≤ Fr + θβ〈gk, dk〉Y , (16)

where dk := wk+1(wk, tkBB, gk) − wk denotes the current
search direction, θ ∈ (0,1) is a given constant and t > 0
is the tried stepsize. During the line search procedure we
need to try a decreasing sequence of values of β , starting
with β = 1, until the test condition (16) is satisfied. Let
us denote by Fbest the current least value of the objective
function over all past iterates, that is, at the k-th iteration
Fbest = min1≤i≤k F (wi). The number of iterations since the
value of Fbest was obtained is denoted by l. Also we de-
fine the candidate function value Fc to be the maximum
value of the objective function since the value of Fbest was
found.

Now let us describe how to determine the reference func-
tion Fr . Suppose that L is a preset positive integer. Initially,
we can set Fr = +∞. This choice of Fr allows F(wk) ≥
F(w0) on early iterations. If the method can find a better
function value in L iterations, then the value of Fr remains
unchanged. Otherwise, if l = L, we reset the reference func-
tion value Fr to Fc and reset Fc to the current value F(wk).
A more precise statement is presented at the Step 6 of the
NTVM algorithm.

Let P(gk) defined by

P(gk) = wk+1(wk,1, gk) − wk, (17)

where wk+1(wk,1, gk) was defined by (14) or (15) with
tk := 1. Then if ||P(gk)|| = 0, we declare that wk is a con-
strained stationary point. We can show the following prop-
erty.

Proposition 1 If ||P(gk)|| = 0, then wk satisfies the Euler-
Lagrange equation (8).
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Proof In the case where wk+1(wk,1, gk) is computed by

(14), we have
wk

ij −gk
ij

1+|gk
ij | − wk

ij = 0, ∀i, j . So, Euler-Lagrange

equation (8) holds. On the other hand, If wk+1(wk,1, gk) is
computed by (15), then we have

wk
ij − gk

ij − max{1, |wk
ij − gk

ij |}wk
ij = 0, ∀i, j.

When |wk
ij − gk

ij | ≤ 1, we can obtain gk
ij = 0. Otherwise, if

|wk
ij − gk

ij | > 1 while gk
ij �= 0, we can derive that

wk
ij = − 1

|wk
ij − gk

ij | − 1
gk

ij .

Set 1
|wk

ij −gk
ij |−1

= t , and then we have wk
ij = −tgk

ij . Com-

bining 1
|wk

ij −gk
ij |−1

= t with wk
ij = −tgk

ij , it follows that

t (t + 1)|gk
ij | − t = 1. Since gk

ij �= 0 and t > 0, we can get

that t = 1
|gk

ij | . So, −gk
ij + |gk

ij |wk
ij = 0. Therefore, the Euler-

Lagrange equation (8) holds for either case. �

Then our proposed method model can be presented as
follows.

NTVM algorithm—nonmonotone total variation mini-
mization algorithms

Step 1: Given w0 ∈ Y , t0 > 0, integer L ≥ 0, θ ∈ (0,1),
0 < ρmin < ρmax , 0 < λ1 < λ2 < 1. Set Fr = +∞,
Fbest = Fc = F(w0). Set k := 0.

Step 2: If ||P(gk)|| = 0, then stop.
Step 3: Impose tk such that tk ∈ [ρmin, ρmax]; Compute

wk+1(wk, tk, gk) by (14) (or (15)). Set βk = 1 and
dk := wk+1(wk, tk, gk) − wk .

Step 4: If F(wk+1(wk,βkt
k, gk)) ≤ Fr + θβk〈gk, dk〉Y ,

then define tk := βkt
k , update wk+1 :=

wk+1(wk, tk, gk), and go to Step 6.
Step 5: Choose σ ∈ [λ1, λ2], set βk = σβk ,

and go to Step 4.
Step 6: Update the reference function Fr :

If F(wk+1) ≤ Fbest , then
Fbest = Fk+1,Fc = Fk+1, l = 0.

Else Fc = max{Fc,F
k+1}, l = l + 1,

if l = L, then Fr = Fc, Fc = Fk+1, l = 0.

End If
Step 7: Set k := k + 1. Compute tk by the formula (13). Go

to Step 2.

Let F(wi) = max{F(w1),F (w2), . . . ,F (wk0)}, where
k0 denotes the first iteration on which l = L. From the al-
gorithm, we know that the iteration sequence wk remains
in the level set S = {w ∈ Y |F(w) < F(wi)} for all k > 0.
We can show the global convergence for the NTVM algo-
rithm as discussed in [16]. It can be seen that if Fbest is up-
dated an infinite number of times then global convergence

occurs. Assume the contrary that Fbest is unchanged for all
k sufficiently large. In this case there exists an infinite subse-
quence of iterations ki on which l = L and Fr is reset to Fc .
Now Fc < Fr because Fc is a recent value of Fk for which
Fk < Fr . Thus values of Fr that are reset on iteration ki

are strictly monotonically decreasing. Hence there exists a
subsequence on which Fk decreases without bound, which
contradicts the fact that Fbest is unchanged. Recall that the
objective function F(w) is bounded below and g(w) is Lip-
schitz continuous (the Lipschitz constant is bounded by 8,
see [9], p. 92), we have the following theorem. For com-
pleteness, we provide its rigorous proof in the appendix.

Theorem 2 Let {wk} be a sequence generated by the NTVM
algorithm. Then any accumulation point of the sequence
{wk} is a constrained stationary point.

The following property can be found in [29].

Proposition 2 Let {wk} be any sequence with wk ∈ K for
all k = 1,2, . . . such that all accumulation points of {wk} are
stationary points of (5). Then the sequence uk := f + 1

λ
∇ ·

wk converges to the unique solution u∗ of (3) as k → ∞.

So, combining Theorem 2 with Proposition 2, we have
the following global convergence result.

Corollary 1 Let {wk} be a sequence generated by the
NTVM algorithm. Then there exists a subsequence {wkn}
such that ukn := f + 1

λ
∇ ·wkn converges to the unique solu-

tion u∗ of (3) as n → ∞.

4 Numerical Experiments

4.1 Comparisons to Chambolle Gradient Methods

In this subsection, the numerical results are presented to
demonstrate the comparison results of our proposed non-
monotone total variation minimization (NTVM) algorithms
with Chambolle gradient projection algorithms for image
denoising. The simulations are preformed in Matlab 7.4
(R2007a) on a PC with an Intel Core 2 Duo CPU at 3.0 GHz
and 2 GB of memory. The noisy images are generated
by adding Gaussian noise to the clean images using the
MATLAB function imnoise, with variance parameter set to
0.01. The fidelity parameter λ is taken to be 0.053 through-
out the experiments. In the NTVM algorithm, we fix t0 =
1/‖g(w0)‖, L = 5, θ = 10−4, ρmax = 1/ρmin = 1010, σ =
0.5. To assess the restoration performance qualitatively, we
use the PSNR (peak signal to noise ratio) defined as

PSNR = 10 log10
2552

1
MN

∑
i,j (u

r
i,j − u∗

i,j )
2
,
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Fig. 1 The value of tkBB in the
denoising for “shape” by
NTVM algorithm

where ur
i,j and u∗

i,j denote the pixel values of the restored
image and the original image, respectively.

We test the following four algorithms:

– Chambolle: Chambolle’s semi-implicit gradient descent
method (10) with τ = 0.248.

– PGCS: Chambolle’s projected gradient method (11) with
the constant step τ = 0.248.

– NChambolle: Nonmonotone Chambolle’s semi-implicit
gradient projection method with the adaptive nonmono-
tone line search (16), i.e. the NTVM algorithm with
wk+1(·) computed by (14).

– NTVM: Nonmonotone Chambolle’s projected gradient
method with the adaptive nonmonotone line search (16),
i.e. the NTVM algorithm with wk+1(·) computed by (15).

The stopping criterion of these four methods are

||P(gk)|| ≤ 10−6||P(g0)||.

First we check the sequence of {tkBB} generated by the
NTVM algorithm for denoising “shape” image and we ob-
serve from the Fig. 1 that most of the values of tkBB less
than 0.25 and there does not exist four sequential points with
tkBB > 0.25.

In order to test the speed of the algorithms more fairly, the
experiments are repeated for 10 different random noise sam-
ples of each image and the average of the 10 results is given
in the Table 1. We report the number of iterations (Niter) and
the CPU time (in second) required for the whole denoising
process and the PSNR of the recovered image.

Notice from the Table 1 that the NTVM method is about
three times faster than the Chambolle method while the
PSNR values attained by these four methods are very sim-
ilar. Figures 2 and 3 display the nonmonotone descent be-

Table 1 Numerical results

Image Algorithm Niter PSNR CPU time

shape Chambolle 709.7 23.854 2.627

128 × 128 NChambolle 368.5 23.854 1.641

PGCS 565.5 23.854 2.180

NTVM 176.7 23.854 0.816

lena Chambolle 355.8 27.867 7.938

256 × 256 NChambolle 190.9 27.866 5.431

PGCS 274.2 27.864 6.328

NTVM 98.4 27.864 2.895

brain MRI Chambolle 585.1 29.410 65.537

512 × 512 NChambolle 303.5 29.409 44.006

PGCS 465.9 29.408 52.934

NTVM 154.9 29.408 22.775

man Chambolle 425.1 28.288 207.227

1024 × 1024 NChambolle 217.9 28.287 138.836

PGCS 333.6 28.285 164.595

NTVM 121.1 28.285 78.105

earth Chambolle 425.8 26.876 882.497

2048 × 2048 NChambolle 220.1 26.875 608.292

PGCS 341.0 26.873 719.828

NTVM 108.9 26.873 306.289

havior for the NChambolle and NTVM method which indi-
cate that such a kind of nonmonotone methods is a great
improvement over the original method of Chambolle, es-
pecially for some large-size images. Figure 4 displays the
restoration results by the NTVM method. The numerical
experiments show that the NTVM method can restore cor-
rupted image quite well in an efficient manner.
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Fig. 2 Relative norm of
projected gradient v.s. Iteration
for denoising “man”

Fig. 3 Relative norm of
projected gradient v.s. CPU time
for denoising “earth”
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Fig. 4 The noisy image (f ),
the restored image (u), and the
removed noise (− 1

λ
∇ · w) via

NTVM. The first row is the
results for “brain MRI” image,
the second row is for “man”
image and the third row is for
“earth” image

4.2 Comparisons to Some Recent Efficient Algorithms

Recently, there are several methods regarded as particu-
larly efficient for total variation image restoration. One is
split Bregman method [19], which uses functional splitting
and Bregman iteration for constrained optimization. They
provided a freely available C++ code (SplitBregman) with
Matlab mex interface at the web.1 Similar to split Bregman
iteration, an alternating minimization algorithm was pro-
posed in [25], where the authors developed a fast algorithm
for total variation based deconvolution (FTVd). Their Mat-
lab code is available on-line.2 The other related approach is
Nesterov algorithm [26], which is an efficient scheme for
convex optimization that allows to obtain a solution of pre-
cision ε in O( 1

ε
) iterations. Very recently, a public-domain

software for total variation image reconstruction via Nes-
terov algorithm was developed by Dahl, Hansen, Jensen
et al. [15]. Their code is available at the web.3 In this sub-
section, we would like to compare NTVM method with the
above three efficient algorithms for solving total variational
image denoising.

We test the following four algorithms:

– NTVM with the stopping condition ||P(gk)|| ≤
10−3||P(g0)||.

– Nesterov: Nesterov TVdenoise algorithm with τ = 0.8.

1http://www.math.ucla.edu/~tagoldst/code.html.
2http://www.caam.rice.edu/~optimization/L1/ftvd/.
3http://www.netlib.org/numeralgo in the file na28 or http://www2.
imm.dtu.dk/~pch/mxTV/index.html.

– SplitBregman with μ = 0.053 and the stopping tolerance
parameter tol = 10−3.

– FTVdG: modified FTVd algorithm in which the linear
blurring matrix reduces to the identity matrix and μ = 25.

The noisy images are generated by adding white Gaussian
noise to the clean images with standard deviation
σ = 25. The restoration results for “lena” and “Brain-
MRI” are shown in Figs. 6 and 7. The detailed computa-
tional times (Sec) and PSNR values (dB) are listed in Ta-
ble 2. Although these four algorithms use deferent stop-
ping criterion, we can see that they attain some similar
PSNR values. As can be seen from Table 2 and Fig. 5,
SplitBregman algorithm has the best computational per-
formance and NTVM algorithm is very competitive to
FTVdG algorithm, both of which are faster than Nesterov
algorithm.

5 Conclusion

In this paper we have proposed some nonmonotone to-
tal variation minimization (NTVM) algorithms. The main
contribution of this paper is the development of two non-
monotone Chambolle algorithms that use well known
Barzilai-Borwein (BB) formula for calculating time step-
size coupled with the adaptive nonmonotone line search pro-
posed by Dai and Fletcher. The NTVM method is shown to
be globally convergent. Numerical results indicate that the
NTVM method is an improvement over the original method.
For some large-scale test images, the NTVM algorithm
runs about 3 times faster than the Chambolle projection

http://www.math.ucla.edu/~tagoldst/code.html
http://www.caam.rice.edu/~optimization/L1/ftvd/
http://www.netlib.org/numeralgo
http://www2.imm.dtu.dk/~pch/mxTV/index.html
http://www2.imm.dtu.dk/~pch/mxTV/index.html
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Fig. 5 Computational times of the test algorithms for denoising 5 test images in Table 2

Fig. 6 Comparisons of image
denoising for “Lena” via
NTVM/Nesterov/SplitBregman/FTVdG
algorithm, respectively

method, i.e. it saves about 60% CPU time than the Cham-

bolle method, which indicates, such kind of nonmonotone

method is more suitable than the monotone descent method

to solve some large-scale inverse problems. We also give

some comparisons to illustrate that NTVM is very compet-

itive to some efficient algorithms for total variation restora-

tion. Further applications to image reconstruction, such as

deconvolution, inpainting and multiscale decompositions

could be our topics in the future work.
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Appendix: Proof of Convergence of NTVM Algorithm

The aim of this section is to give the sketch of the proof
of Theorem 2. We denote P as the projection operator onto
K and define the scaled projected gradient gt (w) = P [w −



152 J Math Imaging Vis (2009) 35: 143–154

Fig. 7 Comparisons of image
denoising for “BrainMRI” via
NTVM/Nesterov/SplitBregman/FTVdG
algorithm, respectively

Table 2 Computational times and PSNR values

Image Algorithm PSNR CPU time

shape SplitBregman 23.846 0.047

128 × 128 FTVdG 22.332 0.203

Nesterov 22.562 0.516

NTVM 23.883 0.078

lena SplitBregman 27.860 0.203

256 × 256 FTVdG 28.027 0.547

Nesterov 27.659 1.594

NTVM 27.865 0.641

brain MRI SplitBregman 29.515 0.906

512 × 512 FTVdG 29.493 2.203

Nesterov 29.537 9.469

NTVM 29.510 2.953

man SplitBregman 28.376 3.188

1024 × 1024 FTVdG 28.676 15.656

Nesterov 28.297 29.234

NTVM 28.387 12.844

earth SplitBregman 26.938 12.969

2048 × 2048 FTVdG 27.462 66.734

Nesterov 27.134 119.859

NTVM 26.948 61.672

tg(w)] − w for all w ∈ K and t ∈ (0, ρmax]. We will use the
following lemma about the property of the scaled projected
gradient, which can be found in [6].

Lemma 1 For all w ∈ K and t ∈ (0, ρmax], it holds that

〈g(w),gt (w)〉 ≤ −1

t
‖gt (w)‖2 ≤ − 1

ρmax
‖gt (w)‖2. (18)

If wk is not a constrained stationary point, then by
Lemma 1, 〈g(wk), dk〉 ≤ − 1

ρmax
‖gtk (w)‖2 < 0, i.e., the

search direction is a descent direction. Hence, a stepsize
satisfying (16) will be found after a finite number of trials.
So, NTVM algorithm is well defined. Recall that g(w) is
Lipschitz continuous (the Lipschitz constant L is bounded
by 8, see [9], p. 92), we have the following useful lemma.

Lemma 2 Let βk satisfies condition (16) in NTVM algo-
rithm, then for all k > 0

βk ≥ min

{
1,

2(1 − θ)λ1

L

|〈g(wk), dk〉|
‖dk‖2

}
. (19)

Proof If β = 1 satisfies condition (16), then we have βk = 1.
Otherwise, there exists σ ∈ [λ1, λ2] for which βk

σ
> 0 fails

to satisfy condition (16), it follows that

F

(
wk + βk

σ
dk

)
> Fr + θ

βk

σ
〈g(wk), dk〉

> F(wk) + θ
βk

σ
〈g(wk), dk〉.

On the other hand, by the mean-value theorem and the Lip-
schitz condition, we have

F

(
wk + βk

σ
dk

)
− F(wk)
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=
∫ βk

σ

0
〈(g(wk + tdk) − g(wk)), dk〉dt + βk

σ
〈g(wk), dk〉

≤ L

2

(
βk

σ

)2

‖dk‖2 + βk

σ
〈g(wk), dk〉.

Therefore, combining the above two inequalities, we can ob-
tain that (19) holds. �

We are now in position to prove Theorem 2.

Proof By contradiction. If the conclusion of Theorem 2
does not hold, we denote w̄ an accumulation point of {wk},
and relabel {wk} a subsequence converging to w̄. For all
k > 0, we have 〈g(wk), dk〉 ≤ −ε for some ε > 0. As shown
in Sect. 3, in this case, there exists an infinite subsequence
I such that for ki ∈ I , the values of Fr on iterations ki are
strictly monotonically decreasing. Let F

ki
r denote the value

Fr on iterations ki . Then we can derive straightforward that

F(wki+1) ≤ Fki
r + θβki

〈g(wki ), dki 〉

≤ Fk0
r + θ

ki∑
j=k0,j∈I

βj 〈g(wj ), dj 〉.

From Lemmas 1 and 2, we have 〈g(wk), dk〉 ≤ − 1
ρmax

‖dk‖2

and βk ≥ min{1,
2(1−θ)λ1

Lρmax
}. So, we can derive that

Fk0
r − F(wki+1) ≥ θ

ki∑
j=k0,j∈I

βj |〈g(wj ), dj 〉|

≥ θε

ki∑
j=k0,j∈I

min

{
1,

2(1 − θ)λ1

Lρmax

}
.

Since F(w) is bounded below, let i → ∞, we get ∞ >

F
k0
r − F(wki+1) → ∞. This is a contradiction. Hence the

result of Theorem 2 holds. The proof is completed. �

References

1. Aubert, G., Aujol, J.F.: A variational approach to removing multi-
plicative noise. SIAM J. Appl. Math. 68, 925–946 (2008)

2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image
Processing. Applied Mathematical Sciences, vol. 147. Springer,
Berlin (2002)

3. Aujol, J.F.: Some algorithms for total variation based image
restoration. Report CLMA 2008-05 (2008)

4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods.
IMA J. Numer. Anal. 8, 141–148 (1988)

5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific,
Nashua (1999)

6. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral
projected gradient methods on convex sets. SIAM J. Optim. 10,
1196–1211 (2000)

7. Bresson, X., Chan, T.: Fast dual minimization of the vectorial total
variation norm and applications to color image processing. Tech-
nical report, UCLA CAM Report 07-25 (2007)

8. Carter, J.L.: Dual methods for total variation-based image restora-
tion. Ph.D. thesis, University of California at Los Angeles (2001)
(Advisor: T.F. Chan)

9. Chambolle, A.: An algorithm for total variation minimization and
applications. J. Math. Imaging Vis. 20, 89–97 (2004)

10. Chambolle, A.: Total variation minimization and a class of binary
MRF models. In: EMMCVPR 05. Lecture Notes in Computer Sci-
ences, vol. 3757, pp. 136–152. Springer, Berlin (2005)

11. Chambolle, A., Lions, P.L.: Image recovery via total variation
minimization and related problems. Numer. Math. 76, 167–188
(1997)

12. Chan, T., Chen, K., Carter, J.L.: Iterative methods for solving the
dual formulation arising from image restoration. Electron. Trans.
Numer. Anal. 26, 299–311 (2007)

13. Chan, T., Shen, J.: Image Processing and Analysis—Variational,
PDE, Wavelet, and Stochastic Methods. Philadelphia, SIAM
(2005)

14. Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method
for total variation-based image restoration. SIAM J. Sci. Comput.
20, 1964–1977 (1999)

15. Dahl, J., Hansen, P., Jensen, S., Jensen, T.: Algorithms and soft-
ware for total variation image reconstruction via first-order meth-
ods. Numer. Algorithms (2009, to appear)

16. Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods
for large-scale box-constrained quadratic programming. Numer.
Math. 100, 21–47 (2005)

17. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and
Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)

18. Ekeland, I., Témam, R.: Convex Analysis and Variational Prob-
lems. SIAM Classics in Applied Mathematics. SIAM, Philadel-
phia (1999)

19. Goldstein, T., Osher, S.: The split Bregman method for L1 regu-
larized problems. UCLA CAM Report 08-29 (2008)

20. Grippo, L., Sciandrone, M.: Nonmonotone globalization tech-
niques for the Barzilai-Borwein gradient method. Comput. Optim.
Appl. 23, 143–169 (2002)

21. Huang, Y.M., Ng, M.K., Wen, Y.W.: A fast total variation method
for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40
(2009)

22. Ng, M.K., Qi, L., Yang, Y.F., Huang, Y.M.: On semismooth New-
ton methods for total variation minimization. J. Math. Imaging
Vis. 27, 265–276 (2007)

23. Raydan, M.: On the Barzilai and Borwein choice of steplength for
the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

24. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based
noise removal algorithms. Physica D 60, 259–268 (1992)

25. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating mini-
mization algorithm for total variation image reconstruction. SIAM
J. Imaging Sci. 1, 248–272 (2008)

26. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for to-
tal variation minimization under constraints in image processing.
SIAM J. Sci. Comput. 31, 2047–2080 (2009)

27. Zhu, M.: Fast numerical algorithms for total variation based image
restoration. Ph.D. thesis, University of California at Los Angeles,
July 2008 (Advisor: T.F. Chan)

28. Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient al-
gorithm for total variation image restoration. Technical report,
UCLA CAM Report 08-34 (2008)

29. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for
total variation image restoration. Technical report, UCLA CAM
Report 08-33 (2008)



154 J Math Imaging Vis (2009) 35: 143–154

Gaohang Yu received his Ph.D. de-
gree in Computational Mathematics
at Sun Yat-Sen University in 2007.
From 2007 to 2009, he taught in
Sun Yat-Sen University. Then he
joined the School of Mathematics
and Computer Science at the Gan-
Nan Normal University as an As-
sociate Professor. He is currently a
postdoctoral fellow at the Depart-
ment of Applied Mathematics, the
Hong Kong Polytechnic University.
His research interests include opti-
mization theory and methods, and
image processing.

Liqun Qi received his B.S. in Com-
putational Mathematics at Tsinghua
University in 1968, his M.S. and
Ph.D. degree in Computer Sciences
at University of Wisconsin-Madison
in 1981 and 1984, respectively. Pro-
fessor Qi has taught in Tsinghua
University, China, University of
Wisconsin-Madison, USA, Univer-
sity of New South Wales, Australia,
and The City University of Hong
Kong. He is now Chair Professor
of Applied Mathematics and Head
of Department of Applied Mathe-

matics at The Hong Kong Polytechnic University. Professor Qi has
published more than 170 research papers in international journals.
He established the superlinear and quadratic convergence theory of

the generalized Newton method, and played a principal role in the de-
velopment of reformulation methods in optimization. Professor Qi’s
research work has been cited by the researchers around the world. Ac-
cording to the authoritative citation database www.isihighlycited.com,
he is one of the world’s most highly cited 300 mathematicians during
the period from 1981 to 1999. Professor Liqun Qi was elected as a
foreign member of the Peterovskaya Academy of Arts and Sciences,
Russia in 2003. He received the Hong Kong Polytechnic University
President’s Awards for Excellence Performance/Achievements, based
upon Research and Scholarly Activities in 2004. Professor Qi is the
editor or an associate editor of eight international journals. He has
chaired more than ten international conferences and workshops held at
Australia, Italy, Hong Kong and the Mainland China. In 2005, Profes-
sor Qi introduced the concept of eigenvalues for higher order tensors,
which now has applications in medical engineering, statistical data
analysis and solid mechanics.

Yuhong Dai is Professor at Acad-
emy of Mathematics and Systems
Science, Chinese Academy of Sci-
ences. His major research interest
is theory and numerical method for
nonlinear programming. Recently,
he also studies some special op-
timization problems arising from
some practical fields.

http://www.isihighlycited.com

	On Nonmonotone Chambolle Gradient Projection Algorithms for Total Variation Image Restoration
	Abstract
	Introduction
	The Chambolle Projection Method
	The Nonmonotone Chambolle Projection Algorithms
	Numerical Experiments
	Comparisons to Chambolle Gradient Methods
	Comparisons to Some Recent Efficient Algorithms

	Conclusion
	Acknowledgements
	Appendix: Proof of Convergence of NTVM Algorithm
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


