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Abstract Image segmentation can be elegantly solved by
optimum-path forest and minimum cut in graph. Given that
both approaches exploit similar image graphs, some com-
parative analysis is expected between them. We clarify their
differences and provide their comparative analysis from the
theoretical point of view, for the case of binary segmenta-
tion (object/background) in which hard constraints (seeds)
are provided interactively. Particularly, we formally prove
that some optimum-path forest methods from two distinct
region-based segmentation paradigms, with internal and ex-
ternal seeds and with only internal seeds, indeed minimize
some graph-cut measures. This leads to a proof of the neces-
sary conditions under which the optimum-path forest algo-
rithm and the min-cut/max-flow algorithm produce exactly
the same segmentation result, allowing a comparative analy-
sis between them.

Keywords Image segmentation based on optimum-path
forest · Graph-cut segmentation · Image foresting
transform · Graph-based image segmentation

1 Introduction

Discrete Mathematics provides an elegant framework for
image processing, rich of efficient algorithms with proofs of
correctness. As a consequence, many image segmentation
methods have been modeled as graph-search problems.
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Two popular approaches exploit undirected and weighted
image graphs, where the pixels are the nodes, the arcs are de-
fined by an adjacency relation, and the arc weights are sim-
ilarity values computed based on image properties. The first
approach minimizes a functional of the arc weights lead-
ing to a cut in the graph that separates object and back-
ground [9, 10, 41, 49]. The second approach [21], called
image foresting transform (IFT), can reduce segmentation
to the computation of an optimum-path forest according to
a connectivity function, which assigns a value to any path in
the graph, including trivial paths formed by a single node.
That is, considering the maximum value among all possible
paths with terminus at each node, the optimum path is triv-
ial for some nodes, called roots, and the remaining nodes
will have an optimum path coming from their most strongly
connected root, partitioning the graph into an optimum-path
forest (disjoint sets of optimum-path trees). Two distinct
region-based segmentation paradigms, with internal and ex-
ternal seeds (i.e., roots by imposition) and with only internal
seeds, can be solved by IFT. In the first paradigm, internal
and external seeds compete with each other for their most
strongly connected pixels, such that the image is partitioned
into two optimum-path forests—one rooted at the internal
seeds, defining the object, and the other rooted at the exter-
nal seeds, representing the background [16, 30]. The second
paradigm solves segmentation by computing one optimum-
path forest from only internal seeds and applying some other
criterion to cut optimum paths such that the remaining for-
est defines the object [6, 20, 22, 31]. Indeed, both paradigms
can be easily extended to multiple objects, but we will focus
on binary image segmentation (object/background) with in-
teractive seed selection. Some variants have also shown the
importance of a hybrid paradigm [31].

These approaches based on optimum-path forest and
minimum cut in graph are usually regarded to as unrelated.
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Recently, some links between them were clarified for a par-
ticular case, in which an increasing transformation is ap-
plied to all arc weights [1]. The present work advances the
state of the art in graph-based image segmentation by better
clarifying the relation between these approaches. We the-
oretically prove that some IFT-based methods from both
paradigms, with internal and external seeds and with only
internal seeds, indeed minimize some graph-cut measures.
These IFT-based methods are closely related to popular seg-
mentation approaches, such as absolute-fuzzy connectedness
(AFC) [43], relative-fuzzy connectedness (RFC) [39, 45],
iterative relative-fuzzy connectedness (IRFC) [13] and wa-
tershed transforms from markers (WT) [7]. We clarify their
differences and the advantages of the IFT-based approach.
These methods have been successfully used in many appli-
cations [16, 25, 28, 34, 35, 42, 44], which validates the im-
portance of these theoretical results. In view of that, we also
extend the theorem stated in [1] by establishing the neces-
sary conditions to its converse. The results provide better
understanding of the methods and help the selection of the
best algorithm for a given application.

Section 2 presents the basic notions on image graphs and
Sect. 3 presents the concepts about the IFT, which will be
used for image segmentation based on optimum-path forest
in Sect. 4. The approach based on minimum cut in graph
is briefly described in Sect. 5. Sections 6, 7 and 8 present
the theorems and their corresponding proofs. Taking into ac-
count the theoretical results, some comparative analysis in-
volving methods from both approaches is carried out along
the text, but in Sect. 9 the analysis takes into account only
IFT with internal and external seed competition and the min-
cut/max-flow segmentation. Our conclusions are stated in
Sect. 10.

2 Basic Concepts on Image Graphs

A multi-dimensional and multi-spectral image Î is a pair
(I, I) where I ⊂ Zn is the image domain and I(t) assigns
a set of m scalars Ii(t), i = 1,2, . . . ,m, to each pixel t ∈ I .
The subindex i is removed when m = 1.

An adjacency relation A is a binary relation on I . We
use t ∈ A(s) and (s, t) ∈ A to indicate that t is adjacent
to s. Once the adjacency relation A has been fixed, the im-
age Î can be interpreted as a graph (I, A) whose nodes
(or vertices) are the image pixels in I and whose arcs are
the pixel pairs (s, t) in A. We are interested in irreflexive
and symmetric relations. For example, one can take A to
consist of all pairs of pixels (s, t) in the Cartesian product
I × I such that d(s, t) ≤ ρ and s �= t , where d(s, t) denotes
the Euclidean distance and ρ is a specified constant (e.g.,
4-neighborhood, when ρ = 1, and 8-neighborhood, when
ρ = √

2, in case of 2D images).

Each arc (s, t) ∈ A has a fixed weight w(s, t) ≥ 0 which
may be computed from local image and object properties
extracted from I and some global information (e.g., mark-
ers [33]). Graph-cut segmentation methods [10, 41, 49] usu-
ally assign lower weights to arcs across the object’s bound-
ary (i.e., an affinity measure between pixels s and t) while
some methods based on optimum-path forest [30] work
with higher arc weights across the object’s boundary (i.e.,
a dissimilarity measure). However, the latter may be eas-
ily adapted to the first scheme [4] and, therefore, lower
arc weights across the object’s boundary will be considered
without loss of generality. For example, one may use the
complement of a gradient magnitude (i.e., Imax − I (s)+I (t)

2
for a gradient image Î with maximum value Imax ). In this
work we consider only undirected and weighted graphs.
That is, the adjacency relation is symmetric and w(s, t) =
w(t, s) for all (s, t) ∈ A.

For a given image graph (I, A), a path πt = 〈t1, t2, . . . , t〉
is a sequence of adjacent pixels with terminus at a pixel t .
A path is trivial when πt = 〈t〉. A path πt = πs · 〈s, t〉 indi-
cates the extension of a path πs by an arc (s, t) (Fig. 1a). All
paths considered in this work are simple paths, that is, paths
with no repeated vertices (pixels).

A predecessor map is a function P that assigns to each
pixel t in I either some other adjacent pixel in I , or a dis-
tinctive marker nil not in I —in which case t is said to be
a root of the map. A spanning forest is a predecessor map
which contains no cycles—i.e., one which takes every pixel
to nil in a finite number of iterations (Figs. 1b and 1c, where
R(πt ) is a root node and P(t) is the predecessor node of t

in the path πt ). For any pixel t ∈ I , a spanning forest P de-
fines a path πt recursively as 〈t〉 if P(t) = nil, and πs · 〈s, t〉
if P(t) = s �= nil.

3 Image Foresting Transform (IFT)

A connectivity function computes a value f (πt ) for any path
πt , usually based on arc weights. Let �(I, A, t) be the set of
all paths in the graph (I, A) with terminus at t . In this work,
a path is optimum according to the following definition.

Definition 1 (Optimum path) A path πt is optimum if
f (πt ) ≥ f (τt ) for any other path τt ∈ �(I, A, t).

By taking to each pixel t ∈ I one optimum path with ter-
minus t , we obtain the optimum-path value V (t), which is
uniquely defined by

V (t) = max
∀πt∈�(I,A,t)

{f (πt )}. (1)

The image foresting transform (IFT) algorithm solves the
above optimization problem by dynamic programming [21].
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Fig. 1 (a) Path πt = πs · 〈s, t〉 indicates the extension of path πs by
an arc (s, t). (b) A 4-neighborhood graph showing a path πt (dashed
line) represented in backwards, where P (t) is the predecessor node of

t and R(πt ) is the root pixel. (c) A spanning forest P with two root
nodes, r1 and r2

The IFT takes an image Î , a path-value function f and an
adjacency relation A; and assigns one optimum path πt to
every pixel t ∈ I such that an optimum-path forest P is
obtained—i.e., a spanning forest where all paths are opti-
mum. However, f must be smooth, that is, satisfy Defini-
tion 2, as demonstrated in [21]. The attributes of the forest
include the map V , the roots R(πt ), root labels L(t), and
the predecessor P(t) of t in the optimum path. The image
operators are then reduced to a local processing of these at-
tributes [21]. If we consider ≤ instead of ≥ in Definition 1,
and minimize V (t) in (1), we obtain a dual definition of
optimality. To convert a problem to its dual form, we sim-
ply have to invert the sign of the path-value function (i.e.,
g(πt ) = −f (πt )). It is important to state that the IFT was
originally presented in this equivalent dual form [21]. In this
paper we consider the first schema (Definition 1 and (1)).

Definition 2 (Smooth path-value function) A path-value
function f is smooth if for any pixel t ∈ I , there is an opti-
mum path πt which either is trivial, or has the form τs · 〈s, t〉
where

(C1) f (τs) ≥ f (πt ),
(C2) τs is optimum,
(C3) for any optimum path τ ′

s , f (τ ′
s · 〈s, t〉) = f (πt ).

An interesting property of an optimum-path forest is that
any path starting in a root node is also a complete optimum
path (path-value function must be smooth), according to the
following definition.

Definition 3 (Complete optimum path) A path πtn = 〈t1,
t2, . . . , tn〉 is complete optimum if all paths πti = 〈t1, t2, . . . ,
ti〉, i = 1,2, . . . , n are optimum paths.

Note that, the applications for the image foresting trans-
form (IFT) go beyond region-based image segmentation
[17–19]. In this work, however, we are only interested in
region-based image segmentation by IFT. It is also impor-
tant to state that although we are restricting our analysis to
undirected graphs, the IFT can also handle segmentation us-
ing directed graphs [21].

4 Region-based Segmentation Using IFT

The segmentation of an image is represented by a labeled
image L̂ = (I,L), where L(t) = 1 for object pixels and
L(t) = 0 for background pixels. Each segmentation defines
an induced cut boundary C in the graph.

Definition 4 (Induced cut boundary) The segmentation
given by a labeled image L̂ defines an induced cut bound-
ary in the graph, which is the set C of arcs (s, t) such that
L(s) = 1 and L(t) = 0.

We consider image segmentation from two seed sets, S1

and S0 (S1 ∩ S0 = ∅), containing pixels interactively se-
lected inside and outside the object, respectively. A feasible
segmentation must satisfy these sets of hard constraints.

Definition 5 (Feasible segmentation) The segmentation
given by a labeled image L̂ is feasible if L(t) = 1 for all
t ∈ S1 and L(t) = 0 for all t ∈ S0.

We are interested in the particular case of smooth path-
value functions, the monotonically decremental path-value
function fmin. This function basically assigns to any path πt

the minimum arc-weight along πt . Equation (2) presents it
in the recursive form.

fmin(〈t〉) =
{

wmax + 1 if t ∈ S1 ∪ S0

−∞ otherwise

fmin(πs · 〈s, t〉) = min{fmin(πs),w(s, t)},
(2)

where wmax represents the maximum arc-weight in the
graph and the search for optimum paths is constrained to
start in S1 ∪ S0 (roots by imposition).

There are basically two distinct region-based segmen-
tation paradigms by optimum-path forest, with internal S1

and external S0 seeds and with only internal seeds S1 (i.e.,
S0 = ∅).

4.1 IFT with Only Internal Seeds

This region-based segmentation paradigm solves segmenta-
tion by computing one optimum-path forest from only in-



J Math Imaging Vis (2009) 35: 128–142 131

Fig. 2 (a) A 4-neighborhood graph, where the numbers indicate the
arc weights and the object is the shaded square. Two seeds are selected
inside the object (bigger white dots). (b) An optimum-path forest for
the path-value function defined via (2). The numbers inside the nodes
indicate the values of the optimum paths (1). The object is obtained as
the white dots after using a threshold κ = 3

ternal seeds and applying some pruning criterion to cut op-
timum paths such that the remaining forest defines the ob-
ject [6, 20, 22, 31]. We focus on a particular method of this
paradigm denoted by IFT-CT (IFT segmentation by Connec-
tivity Threshold), which is related to the classical method
called absolute-fuzzy connectedness (AFC) [43].

In IFT-CT, seeds are specified inside the object and the
optimum-path value from the seed set is computed to each
pixel, such that the object is obtained by thresholding the
resulting connectivity map V (t) (1). The resulting segmen-
tation is defined as the maximal subset of I , leading to a
feasible segmentation (Definition 5 with S0 = ∅), wherein
all pixels t are reached by optimum paths whose values V (t)

are greater than or equal to a given threshold κ (see Fig. 2).
In AFC [43], the graph is implicitly defined by arcs with

fixed weights computed by a fuzzy affinity relation, which
encodes both the adjacency relation A and the arc weights
w(s, t). While in IFT-CT, the adjacency relation and arc
weights are defined separately. For multiple seeds, a single
linear-time execution of the IFT-CT is enough to compute
the connectivity map V (t). However, given that AFC does
not allow connectivity through zero-weighted arcs, their re-
sults may differ. Now, if we allow different arc weights
for each seed, function fmin is no longer smooth (Defini-
tion 2) [21]. In this case, the object must be defined as the
union of all individual IFT-CT segmentation results, com-
puted for each seed separately [31].

Several other methods exist [6, 20, 22, 31] with different
pruning criteria, aiming to improve IFT-CT. In [31], a vari-
ant is proposed with multiple κ automatic thresholds leading
to greater flexibility. Given that, the IFT algorithm computes
optimum paths progressively from the seeds by extending
optimum paths already computed [21], we have an ordered
region growing from the internal seeds. The analysis of the
induced cut boundaries along this ordered region growing
is exploited as pruning criterion in [22], with the advantage

Fig. 3 (a) A 4-neighborhood graph, where the numbers indicate the
arc weights and the object is the shaded square. Four seeds are selected,
two are inside the object (white dots) and two are in the background
(bigger black dots). (b) An optimum-path forest for the path-value
function defined by (2). The numbers inside the nodes indicate the val-
ues of the optimum paths (1). The label L(s) = 0 (black), or L(s) = 1
(white) of each seed s is propagated to all pixels within its respective
optimum-path tree

of being independent of parameters. However, this region
growing of the IFT from internal seeds may invade the back-
ground (i.e., the leaking problem) before filling the entire
object, causing the methods [22] and IFT-CT to fail and re-
quiring more seeds for correction. With regard to this issue,
the methods [6, 20] are more robust. In these latter methods,
a combinatorial property of the forest is exploited to auto-
matically identify the leaking pixels (boundary parts which
are crossed by optimum paths) and eliminate their subtrees,
such that the remaining forest defines the object [6, 20].

4.2 IFT with Internal and External Seeds

The method IFT-SC (IFT segmentation by Seed Competi-
tion) consists of the computation of an optimum-path forest
P using internal and external seeds, S1 and S0. Its segmen-
tation L̂ is defined as follows, where πt is the optimum path
with terminus t obtained from P .

L(t) =
{

1 if R(πt ) ∈ S1,

0 otherwise.
(3)

From an optimum-path forest we obtain an image parti-
tion, where each seed is root of an optimum-path tree com-
posed by pixels more strongly connected to that seed than to
any other, and ties are broken by some tie-breaking policy as
discussed next. For a given optimum-path forest, the object
is defined as the union of all optimum-path trees rooted at
the internal seeds (see Fig. 3).

As observed in [21], the optimum-path forest may not
be unique. For example, if all paths have the same value,
then any spanning forest will be optimum. Since path values
are usually discrete, multiple solutions are common when
the arc weights are defined in a short range (Figs. 4a–c).
Ties between paths πt and τt from seeds s1 = R(πt ) and
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Fig. 4 (a) A 4-neighborhood graph with one object seed (white dot)
and one background seed (bigger black dot). (b, c) Two possible op-
timum-path forests using (2). The numbers inside the nodes indicate
the values of the optimum paths (1). (d) Two tie zones having values
2 and 4 are shown in gray. The pixel (0,3) with optimum value 0 is
not a tie-zone pixel, since it is unambiguously surrounded by a black
influence zone. Note that, any path leading to this node from the white
dot also has value 0, but these paths are disregarded since they are not
complete optimum

s2 = R(τt ) with the same label ({s1, s2} ⊂ S1 or {s1, s2} ⊂
S0) are never a problem, since they lead to exactly the same
final segmentation result L̂. Hence, any solution in this case
is satisfactory. However, a special care has to be taken in the
case of seeds with different labels, which constitute the basis
of the real tie zones as follows.

Definition 6 (Tie-zone pixel) A pixel t is a tie-zone pixel if
there exist two complete optimum paths πt and τt such that
R(πt ) ∈ S0 and R(τt ) ∈ S1.

The tie zones are informally defined as maximal con-
nected components of tie-zone pixels, while some works just
consider the union of all tie-zone pixels [2]. The following
more precise and formal definition of tie zone for path-value
function fmin will be adopted through the rest of this paper.

Definition 7 (Tie zone) A tie zone is a maximal set T of tie-
zone pixels, which forms a subtree in some optimum-path
forest.

Figure 4d shows an example of tie zones, where the tie
zone pixels are highlighted in gray. Every node t in an
optimum-path forest can be seen as the root of a subtree,

which is composed by all nodes that are reached by opti-
mum paths that pass through t in this optimum-path for-
est. Consider the upper left node as coordinate (0, 0) in
Fig. 4a such that x-coordinates increase from left to right;
and y-coordinates increase from top to bottom. In Fig. 4b,
the nodes (2, 1) and (3, 3) are roots of optimum-path sub-
trees composed by tie-zone pixels. Therefore, we have two
tie zones in Fig. 4d. In this work we assume optimum-path
forests such that each tie zone, that may be reached from dis-
tinct labels (in different optimum-path forests), will receive
just one of the labels. This may be accomplished either by
using a LIFO tie-breaking policy [21], or simply by assign-
ing a fixed label (1 or 0) to all tie zones (Figs. 4b–c). Thus,
when the partition of ambiguous regions is important, this
should be treated by means of a better arc-weight estima-
tion.

The IFT-SC formulation [16, 30] captures the essential
features of the watershed transform from markers (WT) [7],
although there is no unique and precise definition for a wa-
tershed transform in the literature [37]. Indeed, it was proven
that the tie zones of the IFT-SC include all solutions pre-
dicted by many discrete definitions of WT [3]. An extensive
discussion of the theoretical relations among several differ-
ent types of watersheds, and also their relation to minimum
spanning forests can be found in [14].

The method IFT-SC is also closely related to relative-
fuzzy connectedness (RFC) [39, 45]. However, in RFC the
tie zones are left unassigned to either background or fore-
ground. Apart from this way to handle ties in RFC, the main
difference between these approaches resides in the fact that
in RFC the optimum-path values (defined as strength of con-
nectedness in [45]) from the internal and external seeds are
computed independently for each seed. Hence, it is not pos-
sible to guarantee that the computed paths from one seed
are complete optimum (Definition 3) in relation to the other
seeds (i.e., in RFC an optimum path from a seed s1 to a tar-
get pixel t may pass through a region having pixels more
strongly connected to some other seed s2). This signifi-
cantly increases the number of ties, causing holes within
the objects, and the iterative relative-fuzzy connectedness
(IRFC) [13] was proposed to circumvent this problem. It is
basically an iterative refinement strategy that imposes addi-
tional constraints based on the results from previous itera-
tions. What it essentially does is to penalize paths that are
not complete optimum in relation to the other seeds. Thus,
disregarding the divergences in the treatment of ties, IFT-SC
and IRFC should give similar segmentation results, but be-
ing the IFT-SC simpler and faster due to the simultaneous
label propagation from all seeds.

In fact, the main motivation for IFT-SC was to eliminate
the choice of κ in IFT-CT, favoring the simultaneous seg-
mentation of multiple objects. Actually RFC can be viewed
as AFC with automatically calculated thresholds, one for
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each object [12]. On the other hand, some variants have
shown the importance of a hybrid IFT-based method which
includes competition among internal and external seeds, and
simultaneous automatic computation of multiple κ values
per object [31]. The IFT can also extend these methods, by
using a more general definition for strength of connected-
ness based on smooth path-value functions [21] (e.g., ad-
ditive function [5, 36]) or even based on non-smooth path-
value functions (e.g., non-fixed arc weights [26]). However,
in the last case, the IFT results into a spanning forest which
may not be optimal [21].

5 Graph-cut Segmentation

Approaches for graph-cut segmentation are based on objec-
tive functions that measure some global property of the ob-
ject’s boundary from the arc-weight assignment (Sect. 2).
The idea is to assign weights to the arcs such that the min-
imum of this objective function (a graph-cut measure) cor-
responds to the desired segmentation (i.e., a cut boundary
whose arcs connect the nodes between object and back-
ground).

Wu and Leahy [50] were the first to introduce a solu-
tion for graph cut using as measure the sum of the arc
weights in the cut boundary (4). Their cut measure has the
bias toward small boundaries and other objective functions,
such as average cut [15], mean cut [48], average associ-
ation [40], normalized cut [41], ratio cut [49], and energy
functions [9, 10, 27] have been proposed to circumvent this
problem.

E1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w(s, t) (4)

Unfortunately, the problem of segmenting a desired ob-
ject in a given image cannot be simply reduced to finding a
minimum of an objective function in the entire search space,
since false-cut boundaries due to similarities between object
and background are very common in practice. Indeed it was
verified that even in a reduced search space that includes the
desired cut from the user’s point of view, it does not always
correspond to the minimum cut [22].

In view of this, two different strategies have been pro-
posed in the literature. One produces a hierarchical partition
tree by recursively applying an unsupervised graph-cut al-
gorithm inside each partition obtained from the previous it-
eration and then delegating the object recognition for a high-
level method that analyzes this tree in a second step [41, 49].
The second strategy incorporates hard constraints (seed pix-
els) to reduce the search space [9, 10]. Although the second
strategy is mostly used in interactive segmentation, where
the hard constraints are provided by mouse clicks and drags,
the hard constraints may be implemented by probabilistic

models (e.g., brain atlases in MRI [25, 29]) in order to
achieve automatic segmentation. Hence, the difference be-
tween these strategies, when used for single object segmen-
tation, is basically when the recognition is made: a posteri-
ori or a priori.

One of the main problems in the first strategy is that the
minimum cut in a generic graph is NP-hard, when we con-
sider the entire search space [41, 49]. Heuristic solutions still
present poor computational performance [24] and their re-
sults are sometimes far from the desired one [11]. The sec-
ond strategy can benefit from the rich set of fast recognition
approaches available in the literature [32, 47, 51], which
give the object’s approximate whereabouts and location in
the image, providing the hard constraints, and avoiding this
expansive tree computation. But on the other hand, the re-
sults may be heavily affected by premature errors during this
automatic setting of hard constraints. In fact, Sects. 6 and 7
prove that IFT-SC and IFT-CT (Sect. 4) are indeed graph-cut
approaches under the second strategy.

In the second strategy, we have graph-cut methods [9, 10]
that extend the work of Wu and Leahy [50] by adding
two terminal nodes (source and sink) to the image graph,
which represent object and background, respectively. These
nodes are directly connected to all pixels by arcs whose
weights reflect penalties for assigning a pixel to object and
background based on region properties (probability maps).
A min-cut/max-flow algorithm from source to sink [23] is
then used to compute the minimum-cut boundary according
to the following equation:

E2(L̂) = E1(L̂)

+ λ

⎛
⎝ ∑

∀s∈I| L(s)=1

Po(s) +
∑

∀t∈I| L(t)=0

Pb(t)

⎞
⎠ (5)

where Po(s) and Pb(t) are the complement of the probabil-
ity maps Po(s) and Pb(t) that measure how well the inten-
sities of pixels s and t fit into a known intensity model (i.e.,
histogram) of the object and background, respectively.

If the method fails in detecting the desired boundary, the
user can impose the arc weights with source and sink by se-
lecting seed pixels inside and outside the object [10]. The
running time of these algorithms is still polynomial [9] (i.e.,
typically O(mn2) where m is the number of arcs and n

is the number of nodes). It also has an ad-hoc parameter
λ ≥ 0 which specifies the relative importance of the region
properties term versus the boundary properties term. If λ is
low their cut becomes the same as in Wu and Leahy [50],
which has a bias toward small boundaries, and if λ is high
the method becomes very dependent on the probability maps
(Figs. 5b, c). Moreover, the obtained segmentation (Fig. 5d)
is not guaranteed to be connected with the seed sets in the
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Fig. 5 (a) An image of peppers.
(b, c) The probability maps Po

and Pb for the bigger pepper at
the top. (d) The segmentation by
graph-cut using (5) with λ = 2.
(e, f) Graph-cut results using (6)
with increasing power values, 2
and 5, respectively

image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I, A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I, A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)
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Fig. 6 The dashed line represents a segmentation by an optimum-path
forest with the arc (a, b) in its cut boundary. The sets of nodes A and
B represents internal and external seeds respectively

Fig. 7 A 1D example. All pixels in the tie zone are reached by paths
from A and B with the same optimum value 3. If this tie zone is labeled
to the background (set B) then a is reached from A with fmin(πa) = 6
and b is reached from B with fmin(πb) = 3. Note that w(a,b) = 3
and (10) is valid (3 < 6 and 3 ≤ 3)

When all tie zones are labeled to the background, the first
inequality in (10) can be proved by contradiction as follows.
If w(a,b) ≥ fmin(πa) then fmin(πa · 〈a, b〉) = fmin(πa).
There are two possibilities, the extension of path πa by
arc (a, b) has value fmin(πa) > fmin(πb), or it has value
fmin(πa) ≤ fmin(πb). If the first case is true, then πb is
not optimum leading to a contradiction. In the second case,
we have that fmin(πb · 〈b, a〉) = min{fmin(πb),w(b, a)} ≥
fmin(πa), since w(a,b) ≥ fmin(πa) and fmin(πa) ≤
fmin(πb), but this is invalid according to (8). Therefore,
w(a,b) < fmin(πa) is the only valid configuration. The
second inequality in (10) may also be proved by con-
tradiction. If w(a,b) > fmin(πb) then fmin(πb · 〈b, a〉) =
fmin(πb), and a should belong to the background, other-
wise fmin(πa) > fmin(πb) and b could not belong to the
background since fmin(πa · 〈a, b〉) > fmin(πb). But a in the
background leads to a contradiction proving the second in-
equality given in (10). See Fig. 7 for an example in 1D.

Equation (9) can be proven in a similar way when all tie
zones are labeled to the object.

Theorem 1 (Optimum-path forest cut in IFT-SC) Any seg-
mentation L̂ defined by an optimum-path forest with path-
value function fmin and with a single label value for each
tie zone (Definition 7) minimizes the graph-cut measure E3

defined by (11) among all possible segmentation results (De-
finition 5).

E3(L̂) = max
∀(s,t)∈A| L(s)=1,L(t)=0

w(s, t) (11)

Proof We will prove the theorem in the case when all tie
zones are labeled to the background, the other case having
essentially identical proof. Let Emin be the minimum value
of E3 defined by (11) among all segmentation results satis-
fying the sets of hard constraints S1 and S0 (Definition 5).
Let Csc be the cut boundary induced (Definition 4) by a seg-
mentation L̂ obtained through IFT-SC with path-value func-
tion fmin and let (a, b) be the arc with maximum weight
w(a,b) in Csc (that is, E3(L̂) = w(a,b)). For any path πt ,
let Arc(πt ) be the set of all arcs within πt , or the empty set
if πt is a trivial path.

Any optimum cut Cmin, which minimizes the graph-cut
measure E3 defined by (11) among all possible feasible
segmentations, must contain at least one arc from the set
Arc(πa) ∪ {(a, b)} ∪ Arc(πb) in order to disconnect object
and background seeds (Fig. 6). There are three possibilities:

1. Cmin ∩ Arc(πa) is not empty.
2. Cmin ∩ Arc(πb) is not empty.
3. (a, b) ∈ Cmin.

In case 1, the path πa will have one arc (x, y) ∈ Cmin.
From (11) we may conclude that w(x,y) ≤ Emin and
also that fmin(πa) ≤ Emin by the definition of fmin (2).
Putting everything together with (10) we have w(a,b) <

fmin(πa) ≤ Emin, which implies that E3(L̂) < Emin. But
this is not possible according to the definition of Emin.

In case 2, the path πb will have one arc in Cmin and there-
fore we may conclude, in a way analogous to what was done
in case 1, that fmin(πb) ≤ Emin.

fmin(πb) ≤ Emin (12)

Assuming that Theorem 1 is false we have:

w(a,b) > Emin (13)

By combining the above hypothesis with (10), we have
fmin(πa) > Emin. Since w(a,b) > Emin and fmin(πa) >

Emin, from the definition of fmin (2), it is also easy to see
that:

fmin(πa · 〈a, b〉) = min{fmin(πa),w(a, b)} > Emin (14)

From (12) we finally obtain:

fmin(πa · 〈a, b〉) > Emin ≥ fmin(πb) (15)

But from these results, we reach a contradiction because
πb will not be an optimum path if (15) holds. Therefore,
hypothesis (13) with case 2 is false.

In case 3, from (a, b) ∈ Cmin we have that w(a,b) ≤ Emin

(11). But w(a,b) < Emin is not possible according to the
definition of Emin. Hence, we have that w(a,b) = Emin as
we wanted to prove (Theorem 1). �
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Fig. 8 (a) A 4-neighborhood graph with one internal seed (white dot)
and one external seed (bigger black dot). (b, c) Two optimum segmen-
tation candidates for E3 (11) satisfying the hard constraints. (d) The
chosen solution by optimum-path forest using (2), where the numbers
inside the nodes indicate the values of the optimum paths (1)

For L̂ to be a segmentation by IFT-SC under the stated
conditions, Theorem 1 is necessary but not sufficient. Fig-
ures 8a–d illustrate this aspect. Figure 8a shows an im-
age graph with two seed pixels. Figures 8b and 8c show
two possible segmentation results, satisfying these hard con-
straints. Both have the same optimum cut E3(L̂) = 5 (11),
but only Fig. 8c corresponds to a segmentation by IFT-SC
(Fig. 8d). Fortunately, there is another cut property that gives
a stronger characterization of an optimum-path forest seg-
mentation by IFT-SC.

Theorem 2 (Piecewise optimum property in IFT-SC) Let
Csc be any cut boundary induced by a segmentation L̂ de-
fined by an optimum-path forest with path-value function
fmin and with a single label for each tie zone (Definition 7).
Let E3 be also defined for a set of arcs X as E3(X ) =
max∀(s,t)∈X {w(s, t)}. For any subset Csub ⊂ Csc, let C sub be
defined as Csc\Csub. Any non-empty subset Csub ⊂ Csc mini-
mizes E3(X ) among all possible set of arcs X whose union
X ∪ C sub defines an induced cut boundary of a feasible seg-
mentation (Definition 5).

For example in Fig. 8, if we consider all arcs in the cut ex-
cept the arc with weight 5 as being the subset, then the next
greatest arc has value 4 in Fig. 8b and value 2 in Fig. 8c.
A valid IFT-SC segmentation will be one with the lower
value (Fig. 8d).

Fig. 9 Two possible optimum cut boundaries are shown, both with
optimum value in (11) given by w(a,b). The dashed lines represent
the boundary pieces at issue, with greatest weights given by w(u1, v1)

and w(u2, v2) respectively

Proof We will prove the theorem in the case when all tie
zones are labeled to the background, the other case hav-
ing essentially identical proof. Let C sub be a subset of the
arcs of Csc. Let’s consider two arbitrary sets of arcs X1

and X2 such that Xi ∪ C sub defines a feasible segmentation
(Definition 5), for i = 1,2. Let the arcs (u1, v1) ∈ X1 and
(u2, v2) ∈ X2 be arcs with maximum weight within these
sets (Fig. 9). Theorem 2 states that a set Xi with lower
maximum-weight should be selected. There are two cases,
w(u1, v1) < w(u2, v2) or w(u1, v1) > w(u2, v2).

In the first case we have that w(u1, v1) < w(u2, v2) and
according to the theorem X1 should be picked. Let’s prove
by contradiction and assume that X2 is the optimum-path
forest result by IFT-SC. From (10) we know that the op-
timum path to pixel u2 from the internal seeds satisfies
w(u2, v2) < fmin(πu2) and from the hypothesis w(u1, v1) <

w(u2, v2), we may conclude that w(u1, v1) < fmin(πu2).
But πu2 must pass through X1 which implies a contradic-
tion, since fmin(πu2) ≤ w(u1, v1) by (2).

Similarly, in the second case we have that w(u1, v1) >

w(u2, v2) and according to the theorem X2 should be
picked. By assuming its logical negation we get a contra-
diction like before by similar arguments. Hence, Theorem 2
holds as we wanted to prove. �

It is important to state that some graph-cut measures,
such as the mean cut [48] (16), are not piecewise optimum
(see Fig. 10). In these measures, changes in one part of the
boundary have a global effect, changing the understanding
of what is best in other parts. This instability is undesirable
in interactive segmentation, because the user loses control
over segmentation when local interventions for correction
may modify other parts where the user was already satis-
fied with the segmentation results. Therefore, the piecewise
optimum property is indeed very important.

E4(L̂) = E1(L̂)∑
∀(s,t)∈A| L(s)=1,L(t)=0 1

(16)
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Fig. 10 Two possible segmentation results on the same
4-neighborhood graph, both satisfying the hard constraints (big-
ger white and black dots). (a) The optimum solution with minimum
mean cut (4×5+8×1)

12 = 2.33. (b) The second solution has worse mean

cut (4×5+4×0)
8 = 2.50. Since 4×0

4 < 8×1
8 we may conclude that this

graph-cut measure is not piecewise optimum

7 IFT-CT as a Graph-cut Approach

For a given image graph (I, A), the segmentation L̂ ob-
tained by the IFT-CT with a connectivity threshold κ , is fea-
sible (Definition 5) with respect to the internal seeds in S1,
and its induced cut Cct has the following property:

E3(L̂) < κ (17)

Equation (17) states that all arcs in the cut Cct have values
lower than κ . From the definition of IFT-CT, we have that
fmin(πa) ≥ κ for any interior pixel a and optimum path πa .
If we assume that the above property (17) is false, then we
have at least one arc (a, b) ∈ Cct such that w(a,b) ≥ κ . From
the definition of fmin (2) we have that:

fmin(πa · 〈a, b〉) = min{fmin(πa),w(a, b)} (18)

Since fmin(πa) ≥ κ and w(a,b) ≥ κ , the above equation im-
plies that fmin(πa · 〈a, b〉) ≥ κ . But from the definition of
IFT-CT, this also implies that pixel b must belong to the ob-
ject leading to a contradiction. Therefore, the property given
in (17) is true.

Figure 11 shows that there may be more than one feasi-
ble segmentation (Definition 5) with induced cut boundary
satisfying this property. Both results in Figs. 11b and 11d
have E3(L̂) = 3 which is lower than κ = 4. In fact, the IFT-
CT segmentation L̂ is always given by the smallest region
possessing the property given in (17) (Fig. 11b). To under-
stand this, note that, the IFT-CT segmentation may be ob-
tained by removing from the original image graph (I, A)

all arcs whose weights are lower than κ , and by taking then
the maximal connected components in the resulting graph,
such that they contain at least one seed pixel. This can be
accomplished by a simple breadth-first search from the in-
ternal seeds in the remaining graph. Since any cut satisfying
property (17) will have all of its arcs removed, the breadth-
first search will stop when the first cut with this property

Fig. 11 (a) A 4-neighborhood graph with one internal seed (white dot)
and one external seed (bigger black dot). (b, c) The IFT-CT results
from the internal seed with κ = 4 and κ = 3, respectively. Note that,
κ = 4 gives the IFT-CT result with lowest E3 value satisfying all ini-
tial hard constraints (E3(L̂) = 3). (d) The result by IFT-SC also has
E3(L̂) = 3. However, it is quite different from the IFT-CT due to the
piecewise optimum property (Theorem 2)

is found. In fact, the implementation which thresholds the
connectivity map V (t) is more suitable for interactive seg-
mentation, because the user may change the value of κ with
real-time response. That is, the map V (t) encodes all possi-
ble IFT-CT results for any value of κ (Figs. 11b, c).

Therefore, the cut Cct can be finally defined using the
characterization from Theorem 3.

Theorem 3 (Optimum-path forest cut in IFT-CT) The seg-
mentation L̂ defined by the IFT-CT in a graph with fixed arc
weights and using path-value function fmin minimizes the
graph-cut measure E5 defined by (19) among all segmen-
tation results satisfying the internal hard constraints in S1

(Definition 5 with S0 = ∅).

E5(L̂) =
∑

∀s∈I| L(s)=1

1 + U
(
E3(L̂) − κ

)
· N (19)

where U is the unit step function (U (x) = 1 if x ≥ 0, and 0
otherwise) and N is the total number of nodes/pixels. The
second term in (19) acts as a penalty which makes impracti-
cable cuts that do not satisfy property (17). Among all pos-
sible results satisfying property (17), the first term in (19)
guarantees the selection of the one with smallest area.
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Fig. 12 (a) A gradient image of the ventricles with thick edges. (b) The result of IFT-CT by the selection of the best κ . (c) An improved result is
obtained by IFT-SC. (d) The XOR operation of the labels (in black) indicates a considerable divergence

From Fig. 11 it is clear that, this cut Cct does not have
the piecewise optimum property with respect to E3 (Theo-
rem 2), since it always choose the smallest region. In real
applications, if the arc weights are computed based on a
thick gradient (Fig. 12a), this may result in the lost of a nar-
row band around the object (Figs. 12b–d). In this sense, it
seems that a non-maximal suppression to thin the edges is
an adequate preprocessing that should be adopted in IFT-
CT. Therefore, the results of IFT-SC are in general differ-
ent from the ones obtained by IFT-CT for any threshold κ

(Figs. 11b–d and Figs. 12b, c). Another clear difference is
regarding to the presence of holes inside the objects, which
may appear in IFT-CT.

8 The Link with the Min-cut/Max-flow Algorithm

A min-cut/max-flow algorithm from source to sink [23],
with the internal seeds in S1 connected to the source and
the external seeds in S0 connected to the sink, computes a
cut boundary which minimizes the graph-cut measure E1

defined by (4) among all possible segmentation results (i.e.,
method [10] with parameter λ = 0). The same algorithm can
be used to minimize Ẽ1 (6).

The graph-cut measures E1 (4) and Ẽ1 (6) naturally
lead to optimum solutions, that are also piecewise optimum.
That is, for a given feasible segmentation L̂, its induced cut
boundary C is optimum, only if any of its subsets is also op-
timum. For example, for a cut C , let Y ⊂ C be a fixed subset
that is known to be part of the optimum solution. Let K be
the sum of all arc weights within this fixed set Y . The cut C
will be optimum only if X = C\Y is also optimum:

Emin = min
∀C

⎧⎨
⎩

∑
∀(s,t)∈C

w(s, t)

⎫⎬
⎭

= min
∀X

⎡
⎣ ∑

∀(s,t)∈X
w(s, t) +

∑
∀(s,t)∈Y

w(s, t)

⎤
⎦

= min
∀X

⎧⎨
⎩

∑
∀(s,t)∈X

w(s, t)

⎫⎬
⎭ + K

Finally, assuming Theorems 1 and 2, the next theorem
completes the link between IFT-SC and graph-cut segmen-
tation based on the min-cut/max-flow algorithm, by estab-
lishing the necessary conditions under which they produce
exactly the same result (i.e., the converse of a theorem pre-
sented in [1]). As shown in Sect. 5, the variant Ẽ1 can cir-
cumvent the undesirable bias of the graph-cut measure E1

toward small boundaries and avoid the need to compute
probability maps (Figs. 5e, f). Indeed, this and other simi-
lar variants (increasing transformations) have been used in
practice to improve graph-cut segmentation by emphasiz-
ing the differences between low and high arc weights [29].
However, the next theorem indicates that such transforma-
tions make the graph-cut segmentation to behave like IFT-
SC, with more or less intensity, depending on which trans-
formation is used.

Theorem 4 (Equivalence for increasing transformation) Let
L̂sc be a segmentation by IFT-SC with path-value function
fmin and let L̂flow be a segmentation computed by a min-
cut/max-flow algorithm, using the same sets of hard con-
straints S1 and S0 in the graph (I, A). In the absence of
tie zones (Definition 7), there exists a real finite number m

such that, for any n ≥ m, the segmentation results L̂sc and
L̂flow are exactly the same when L̂flow is computed by using
w̃(s, t) = [w(s, t)]n as arc weights.

Proof By raising arc weights w(s, t) to the power of n

(n > 1), we obtain new arc weights w̃(s, t), preserving the
order (20) and emphasizing their differences (21).

w(s, t) > w(u, v) ⇔ w̃(s, t) > w̃(u, v) (20)

w(s, t)

w(u, v)
= K ⇔ w̃(s, t)

w̃(u, v)
= Kn (21)
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Let Ẽ3 be the graph-cut measure E3 (11) obtained from
Theorem 1 but with w̃(s, t) in the place of w(s, t):

Ẽ3(L̂) = max
∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

= max
∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (22)

For any two distinct segmentation results L̂1 and L̂2, it is
easy to see that:

E3(L̂1) < E3(L̂2) ⇔ Ẽ3(L̂1) < Ẽ3(L̂2) (23)

This is a direct consequence of the order being preserved
(20) and, therefore, the optimum-path forest segmentation
results with path-value function fmin are not affected by this
increasing transformation [1].

As we increase the value of n, the arc-weight ratio
changes exponentially (21). Clearly there will be a point
(n ≥ m) where any arc weight w̃(s, t) will be greater than
the sum of all other arc weights w̃(u, v) having lower values
(24) and (25).
∑

∀(u,v)| w̃(u,v)<w̃(s,t) w̃(u, v)

w̃(s, t)

=
∑

∀(u,v)| w̃(u,v)<w̃(s,t)

[
w(u,v)

w(s, t)

]n

(24)

Since w(u,v)/w(s, t) < 1 it is easy to see that:

lim
n→∞

∑
∀(u,v)| w̃(u,v)<w̃(s,t)

[
w(u,v)

w(s, t)

]n

= 0 (25)

Therefore, for any two distinct segmentation results L̂1

and L̂2, we may conclude an important result when n ≥ m:

Ẽ3(L̂1) < Ẽ3(L̂2) ⇒ Ẽ1(L̂1) < Ẽ1(L̂2) (26)

If the left-hand side of (26) is true, then there is an arc
in the cut boundary of L̂2 with higher weight than all arcs
in the cut of L̂1. This arc alone has greater value than the
sum given in Ẽ1(L̂1) (6). Therefore, disregarding the cases
when Ẽ3(L̂1) = Ẽ3(L̂2), we may conclude that, under the
declared conditions, minimizing Ẽ3 or Ẽ1 should lead to the
same results.

The case Ẽ3(L̂1) = Ẽ3(L̂2) always happens in the pres-
ence of tie zones. In Fig. 13, suppose that C1 has Ẽ3 =
w̃(a1, b1) and C2 has Ẽ3 = w̃(a2, b2). If both boundaries
have optimum Ẽ3 values, then w̃(a1, b1) = w̃(a2, b2) and
the entire region comprised in between these two nested
boundaries, C1 and C2, could be a tie zone. Although, both
boundaries are optimum according to Ẽ3 (22), in general
only one is with respect to Ẽ1 (6), depending on the val-
ues of the second greatest arcs w̃(u1, v1) and w̃(u2, v2). We

Fig. 13 Two nested cut boundaries C1 and C2, with the same optimum
cut value Ẽ3 (22) are shown. The weights w̃(a1, b1) and w̃(a2, b2) are
the maximum within their respective boundaries. The shaded area is a
tie zone since w̃(a1, b1) = w̃(a2, b2)

cannot guarantee that the best regarding to Ẽ1 (6) will be
chosen by the optimum-path forest algorithm. For example,
if all tie zones are assigned to the background, then C1 will
be always chosen. Therefore, the equivalence between these
methods cannot be verified in the presence of tie zones. �

Even in the absence of tie zones, the case Ẽ3(L̂1) =
Ẽ3(L̂2) may still happen as occurred in Fig. 8. However,
in this case, the optimum Ẽ1 solution is guaranteed by the
piecewise optimum property (Theorem 2). For instance, for
n = 2, Fig. 8c has Ẽ1 = 34 and Fig. 8b has Ẽ1 = 43. In
practice, tie zones are usually represented by a few pixels
for suitable arc-weight assignment, which makes this result
really relevant.

9 Comparative Analysis Between the Main Paradigms

Several comparisons among methods were already made
along the previous sections. In this section, we restrict our
attention to IFT-SC and the min-cut/max-flow segmentation.
From the theoretical point of view, Theorem 4 states that, in
the absence of tie zones, the IFT-SC (11) is a particular case
of the min-cut by max-flow (6). Therefore, we have here an
important intersection between the frameworks of the IFT
and the max-flow approach.

As pointed by Allène et al. [1], the value of power n

in (6) acts as a smoothing term. However, in practice, if we
decrease n, many important saliences are lost, such as the
cow’s paws in Fig. 14. Note also that if smooth boundary is
an important issue, it always can be done on a second step
by a shape filtering [19]. Therefore, the main advantage of
Ẽ1 over E3 concerns the E3 worst case, when the desired cut
has some arcs with maximum weight (i.e., gradient with per-
fect gaps (Fig. 15a)). In Ẽ1 these arcs are avoided as much as
possible by the selection of shortest cuts within the areas of
low image contrast (Fig. 15b), while E3 may fail if the seeds
are provided closely inside and outside the gaps (Fig. 15c).

On the other hand, Theorem 4 indicates that, in the ab-
sence of tie zones, the tricks used to improve the results
of the min-cut/max-flow algorithm by employing transfor-
mations which emphasize the weight differences [29], lead
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in fact to approximations of the IFT-SC segmentation. The
minimum cut by the max-flow algorithm has also its own
implementation drawbacks. First, efficient implementations
usually consider discrete arc weights and, therefore, the
method may suffer from integer overflow as we increase the
value of power n. For example, note that the best result of
max-flow given in Fig. 14d required n = 7. A second is-
sue is related to its efficiency, while IFT-based methods have
linear-time implementations [21], the max-flow algorithm is
still polynomial [9] and is not extensive to simultaneous seg-
mentation of multiple objects [1]. Therefore, from the op-
posite point of view, the max-flow segmentation under the
equivalence conditions (Theorem 4) is, in fact, a limited im-
plementation of IFT-SC, which does not output neither the
forest P nor the map V (t); it only gives the label image L̂.

Although the absence of tie zones (Definition 7) seems
to be a very strong assumption, we have noted for several
real images that the tie zones either do not appear or are
represented by a few pixels, when we use a suitable arc-
weight estimation [33]. In fact, an upper bound for the error
of assuming Theorem 4 always true for a sufficiently high
value of n is given by the tie zones, which can be computed

Fig. 14 (a) The segmentation by IFT-SC using (2). (b–d) Results of
the min-cut/max-flow algorithm with increasing power values, 1, 3
and 7 respectively

as well. Note that a local optimization of Ẽ1 restricted to
these tie zones can further solve the problem.

10 Conclusions

We presented a self-contained paper with theoretical proofs
of important existing connections between relevant segmen-
tation methods of the literature. It was proven that some
existing IFT-based methods indeed minimize the graph-cut
measures E3 and E5 (Theorems 1, 2 and 3). It was also
shown that the absence of tie zones is the necessary condi-
tion to the converse of the theorem stated in [1] (Theorem 4).
However, it is important to note that the relations presented
here only apply to the path-value function fmin and that the
applications of the IFT go much beyond this particular class
of operator [21].

Theorem 1 shows that IFT-SC provides optimum seg-
mentation results from two points of view: as an optimum-
path forest and as a minimum cut in the graph accord-
ing to measure E3, which can take into account both im-
age and object properties by using the arc weights as de-
scribed in [33]. Theorem 2 shows that this optimality is even
stronger, given that it is also piecewise optimum. These re-
sults give the theoretical foundations to explain the great
success and popularity of IFT-SC [16, 30] and its related
methods (e.g., WT [7], RFC [39, 45], IRFC [13]). The con-
nectivity between pixels is a key concept, which is naturally
exploited by IFT-based methods. More recently, it has also
been used to overcome graph-cut shortcomings in a com-
bined approach, called DijkstraGC [46]. Apart from such
hybrid approaches, it was shown that, to fix the undesirable
bias of the min-cut algorithm toward small boundaries, we
must change the graph topology or change the arc weights
by employing some increasing transformation that penalizes
arcs with high weights. The first solution comes with its own
drawbacks, as discussed in Sects. 5 and 9, while the second
solves the bias problem nicely and can be used even when it
is hard to obtain good probability maps for object and back-
ground [29]. On the other hand, Theorem 4 indicates that
these transformations are in fact making the min-cut seg-
mentation to behave like IFT-SC, with more or less inten-
sity, depending on which increasing function is used. This
indicates that segmentation methods based on the min-cut

Fig. 15 (a) A synthetic gradient
image with gaps. (b) The result
of min-cut/max-flow algorithm.
(c) The segmentation by IFT-SC
using (2)
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algorithm should compare their approaches with IFT-SC in
order to justify the use of a more computationally expensive
algorithm, especially for 3D applications, or at least men-
tion IFT-SC as a related method. Our paper clarifies many
of these aspects, presenting the definitions and theorems in
a natural flow of evolution.

As future work, we intend to investigate ways to mini-
mize tie zones by suitable arc-weight assignment and to in-
corporate shape and appearance model for automatic image
segmentation.
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