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Abstract The problem of defining appropriate distances be-
tween shapes or images and modeling the variability of nat-
ural images by group transformations is at the heart of mod-
ern image analysis. A current trend is the study of proba-
bilistic and statistical aspects of deformation models, and the
development of consistent statistical procedure for the esti-
mation of template images. In this paper, we consider a set of
images randomly warped from a mean template which has
to be recovered. For this, we define an appropriate statisti-
cal parametric model to generate random diffeomorphic de-
formations in two-dimensions. Then, we focus on the prob-
lem of estimating the mean pattern when the images are ob-
served with noise. This problem is challenging both from a
theoretical and a practical point of view. M-estimation the-
ory enables us to build an estimator defined as a minimizer
of a well-tailored empirical criterion. We prove the conver-
gence of this estimator and propose a gradient descent algo-
rithm to compute this M-estimator in practice. Simulations
of template extraction and an application to image clustering
and classification are also provided.

Keywords Image warping · Template extraction · Random
diffeomorphism · Large deformable models ·
M-estimation · Asymptotic statistics · Clustering

1 Introduction

Image analysis and pattern recognition has been an increas-
ing field of motivation in statistics over the last decade. One
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of the main difficulty comes from the choice of a proper de-
finition for the model generating the images. Several meth-
ods have been investigated, each one dealing with a different
point of view in statistics.

In practice, we always observe noisy images. The noise
may be due either to the measurement devices or to the way
images are generated, which makes their comparison dif-
ficult. One of the main difficulty in image analysis is the
definition of a distance to compare the different observa-
tions. Several choices can be made and recently, originat-
ing in Grenander’s pattern theory [17], new distances have
been investigated. Such distances are based on the use of de-
formation groups to model the variability of natural images
(see e.g. [15, 33, 34]).

In this paper we will mainly be concerned by the esti-
mation of a mean template while observing similar noisy
images. There are not so many results in the statistical liter-
ature dealing with the problem of building appropriate mod-
els to reflect the variability of natural images due to the pres-
ence of local deformations between them. A first attempt in
this direction is the statistical framework based on penalized
maximum likelihood proposed in [16] (see also the discus-
sion therein) to approximate the mean of a set of images.

More recently, [1] have proposed a statistical model using
Bayesian modeling and maximum likelihood estimation in
the context of small parametric deformations. The approach
proposed in [1] yields a consistent estimator of a mean of
a set of images, and shows interesting classification perfor-
mances. An extension of this work [4] uses a stochastic algo-
rithm for approximating a maximum a posterior estimator.
However, in all these non-rigid deformation approaches the
transformations used to model the images variability are not
constrained to be one-to-one, and therefore these approaches
fail in generating diffeomorphic stochastic models. Note that
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a recent work [8] proposes also to use an infinitesimal gradi-
ent descent with respect to the Hausdorff topology to define
the empirical mean and covariance of shapes but without
giving any one-to-one matching between points of random
shapes. Recently, statistical interpretation of the landmark
matching problem with a random model for generating dif-
feomorphisms has been proposed in [28] and [29] but this
approach has not been applied to image template estimation.

On the other hand, numerous works have been pro-
posed to generate diffeomorphisms using flows governed
by appropriate time-dependent vector fields (we refer
to [22, 23, 30, 33] for further details). A current trend is the
study of probabilistic and statistical aspects of deformation
models, and the development of consistent statistical proce-
dure for the estimation of template images. Some works in
this direction [9, 40] have been recently published where the
authors define probabilistic models of shapes or images that
could be used to generate new data.

Our objective is therefore to combine powerful ap-
proaches for generating diffeomorphisms with an automatic
statistical estimation of image mean and deformations. More
precisely, our goal is to provide a statistical model to gen-
erate random images that yield new matching criterions to
align a set of images.

For this, we define a general procedure to generate ran-
dom diffeomorphic deformations, and we consider a statis-
tical model for a set of images randomly warped from an
unknown mean template. We then focus on the estimation
of the mean pattern of these (possibly noisy) images. This
problem is challenging both from a theoretical and a practi-
cal point of view. M-estimation theory (see e.g. [37]) enables
us to build an estimator defined as a minimizer of a well-
tailored empirical criterion. This generic method has been
successfully applied in [20] and [6] to define the Fréchet
mean of a set of curves or to describe central tendency of
random curves. Fields of applications are numerous ranging
from pattern recognition, brain atlas construction and com-
putational anatomy to name but a few (see the various ex-
amples discussed in [15]).

Our contribution is the following. First we propose a new
random diffeomorphic model for noisy images and we prove
the convergence of our estimator to some mean pattern im-
age when the number of observations (images) goes to in-
finity. Our estimator can be interpreted as the Fréchet mean
of a set of images based on a distance involving diffeomor-
phic deformations. Consistency of Fréchet mean for curves
and shapes has been investigated in [6] and [20], but to the
best of our knowledge Fréchet mean for images using diffeo-
morphisms has not been investigated from a statistical point
of view. We also present a new class of matching function-
als that allows to easily incorporate penalization terms to
control the amplitude of the estimated deformations and the
amount of noise in the reconstructed mean pattern. A new

gradient descent algorithm is finally proposed to minimize
such functionals. This approach is also shown to be useful
for clustering and classification problems in pattern recog-
nition.

This article falls into the following parts. Section 2 deals
with the definition of a new warping model. In Sect. 3, we
state our statistical problem, and we study the asymptotic
properties of various estimators of a mean pattern. In Sect. 4,
we discuss some theoretical and practical aspects of our pro-
cedure, and we compare them with those of the Bayesian
approach of [1]. Section 5 is devoted to the description of
the algorithm needed to construct this estimate. Section 6
presents some experiments with simulated and real images.
We also focus on clustering and classification problems to
illustrate the usefulness of our methodology. We end the pa-
per by a concluding section with a discussion on further de-
velopments of this work.

2 Model for Image Deformation

We start with discussing our random model of image defor-
mation. Consider a two dimensional gray-level image as a
real function defined on a compact set � ⊂ R

2. For sake of
simplicity, we will set � = [0;1]2 and the generic notation
for images will be I : [0;1]2 → R. Assume moreover that
I is a bounded function, which is not too restrictive since
gray-level images typically take values between 0 and 255.

2.1 A Large Deformation Model with O.D.E.

Our goal is to generate a large enough deformation � to
model the variability between observed images, but still be-
ing a diffeomorphism of [0;1]2 in order to provide non am-
biguous point displacements. These deformations will later
be combined with a template I � to generate a set of warped
images, I � ◦ �. For this, we follow the approach proposed
in [41] and [33].

Definition 1 (Diffeomorphism �t
v) Let v be a smooth vec-

tor field from [0;1]2 → R
2 vanishing on the boundary of

this domain i.e.:

v|
∂[0;1]2 = 0. (2.1)

Define a sequence of diffeomorphisms of [0;1]2 denoted by
{�t

v, t ∈ [0;1]}, as the solution of the following ordinary dif-
ferential equation (O.D.E.):

�0
v(x) = x and

d�t
v(x)

dt
= v
(
�t

v(x)
)

(2.2)

where t ranges over [0;1] and x ∈ [0;1]2.
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Fig. 1 A one-dimensional example of two vector fields with different amplitudes (left images) and corresponding diffeomorphisms at time t = 1
(right images)

As we want to have a deformation which remains in [0;1]2,
we have imposed that �1

v |
∂[0;1]2

= Id, meaning that our dif-

feomorphism is the identity at the boundaries of [0;1]2.
Note that in the above definition, the vector field is not
time dependent and in what follows, such vector fields will
be called homogeneous. Moreover, as usual, by smooth we
mean a C∞ function.

The solution at time t = 1 denoted by �1
v of the above

O.D.E. is a diffeomorphic transformation of [0;1]2 gener-
ated by the vector field v, which will be used to model im-
age deformations. One can easily check (see [41]) that the
vanishing conditions (2.1) on the vector field v imply that
�1

v([0;1]2) = [0;1]2 and that �t
v is a diffeomorphism for

all time t ∈ [0,1]. Thus �1
v is a convenient object to gener-

ate diffeomorphisms.
To illustrate the influence of the choice of the vector field

v on the shape of the deformation �1
v , we consider a sim-

ple example in one-dimension (i.e. for v : [0,1] → R which
generates a diffeomorphism of the interval [0,1]). In Fig. 1,
we display two vector fields that have the same support on
[0,1] but different amplitudes, and we plot the correspond-
ing deformation �1

v . One can see that the amount of defor-
mations (measured as the local distance between �1

v and the
identity) depends on the amplitude of the vector field. In
the intervals where v is zero, then the deformation is locally
equal to the identity. Hence, choosing compactly supported
vector fields allows one to generate local deformations.

To generate random diffeomorphisms, we propose to use
a parametric class of diffeomorphisms. Consider an integer
K and some basis functions (not necessarily linearly in-
dependent) ek : R

2 → R
2 whose choice will be discussed

later on. We then decompose the former vector field v on
the set of functions ek = (e1

k, e
2
k). The random deformations

are generated as follows. Let (a1
k , a

2
k ), k = 1, . . . ,K be ran-

dom coefficients drawn independently from a distribution
PA with compact support included in [A,A] for given real
A > 0. Then, we define a random vector field va as

∀x ∈ [0;1]2 va(x) =
(∑K

k=1 a1
k e

1
k(x)

∑K
k=1 a2

k e
2
k(x)

)

. (2.3)

Finally, one has just to run the previously defined O.D.E.
(2.2) to produce a random deformation, �va .

2.1.1 Choice of Prior Distribution PA

Choosing the prior distribution of the coefficients of the
vector field va determines the corresponding deformation.
For example, one can take for PA the uniform distribution
on [−A,A] i.e. ai

k ∼ U[−A,A], i = 1,2. However, it should
mentioned that PA can be any distribution on R provided it
has a compact support. The compact support assumption for
P is mainly used to simplify the proof for the consistency of
our estimator. Hence, the parameter A can be a viewed as an
a priori on the size of the deformations, and be considered
as a kind of regularizing parameter. More discussion on the
role on the parameter A and other regularizing parameters to
control the amplitude of deformations is deferred to Sect. 4.

2.1.2 Choice of Basis Functions ek

In order to get a smooth bijection of [0;1]2, the ek should be
at least differentiable. Such functions are built as follows.
First, we choose a set of one-dimensional B-splines func-
tions (of degree at least 2) whose supports are included in
[0;1]. To form two-dimensional B-splines, the common way
is to use tensor products for each dimension. Recall that to
define B-splines, one has to fix a set of control points and
to define their degree. Further details are provided in [11]
and we will fix these parameters in the section dealing with
experiments.

We use B-splines functions because they are compactly
supported with a local effect on the knots positions (see [11]
for instance). This local influence is very useful for some
problems in image warping where the deformation must be
the identity on large parts of the images together with a very
local and sharp effect at some other locations. The choice of
the knots and the B-spline functions allows one to control
the support of the vector field and therefore to define a priori
the areas of the images that should be transformed.

In Fig. 2 we display an example of a basis e1
k = e2

k ,
k = 1, . . . ,K for vector fields generated by the tensor prod-
uct of two one-dimensional B-splines (hence K = 4). An ex-
ample of deformation of the classical Lena image is shown
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Fig. 2 Left: two 1D B-splines./
Right: corresponding basis
e1
k : [0,1]2 → R, k = 1, . . . ,4

generated by tensor products of
two 1D B-splines

Fig. 3 Random deformation of
the Lena image with A = 0.1
and A = 0.5

in Fig. 3 with two different sets of coefficients ak sampled
from a uniform distribution on [−A,A] (corresponding to
different values for the amplitude A, a small and a large
one). The amount of deformation depends on the amplitude
of A, while the choice of the B-spline functions allows one
to localize the deformation.

2.2 Random Image Warping Model with Additive Noise

Given a discretization of [0;1]2 as a N1 × N2 square grid of
N = N1N2 pixels, we will generically denote a pixel po-
sition by p. Once the deformation by random parametric
diffeomorphisms with the O.D.E. method are generated, we
can define the general warping model by:

Definition 2 (Noisy Random Deformation of Image) Fix an
integer K and a real A > 0, we define a noisy random defor-
mation of the mean template I � as

Iε,a(p) = I � ◦ �1
va

(p) + ε(p), p ∈ [0,1]2,

where a ∼ P ⊗2K
A and ε is an additive noise independent

from the coefficients a. The new image Iε,a is generated by
deforming the template I � (using the composition rule ◦)
and by adding a white noise at each pixel of the image.

In our theoretical approach, we consider the pixels p as
a discretization of the set [0;1]2 since our applications will
be set up in this framework. It is often the case in the statis-
tical literature on image analysis. However, our model could
be formulated in a continuous setting using the continuous
white noise model and a decomposition of the images in a
wavelet basis as described in Sect. 3.3. This model involves
the use of an integration measure over [0;1]2 instead of
sums over the pixels p of the image, see e.g. [7] for fur-
ther details. Finally, remark that the image I � is considered

as a function of the whole square [0;1]2, giving sense to
I �(�1

u(x)).
In what follows, we denote by �a(p) = �1

va
(p) the solu-

tion of the following equation (starting from pixel p at time
t = 0)

∀p ∈ [0;1]2 �1
va

(p) = p +
∫ 1

0
va(�

t
va

(p))dt. (2.4)

Using this property, we consider now a set of n noisy
images that are random deformations of the same unknown
template I � as follows:

Iai ,εi (p) = I � ◦ �1
ai (p) + εi(p), i = 1, . . . , n, (2.5)

where εi are i.i.d. unknown observation noise and ai are
i.i.d unknown coefficients sampled as P ⊗K×n

A . Our goal is
to estimate the mean template image I �.

2.3 Mathematical Assumptions

For our theoretical study, we will need some mathematical
assumptions:

A1 There exists a constant C such that

|ε| < C.

A2 I � is L-Lipschitz.

Assumption A1 means that the level of noise is bounded
which seems reasonable since we generally observe gray-
level images which take values on a finite discrete set. As-
sumption A2 is more questionable. Indeed it implies that I �

is continuous, which seems impossible for natural models of
images with structural discontinuities (think of the space of
bounded variation (BV) functions for instance). However,
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Fig. 4 Naive mean (right image) of a set of 10 images (mnist database, 28 × 28 pixels images, see [24] for more details on this data set)

one can view I � as a map from all points in [0;1]2 rather
than just a function defined on the pixels. On [0;1]2, it is
more likely to suppose that I � is the result of the convolu-
tion of C∞-filters with captors measurements, which yields
a smooth differentiable map on [0;1]2. We refer to [13] for
further comments on this assumption.

3 Statistical Estimation of a Mean Pattern

Consider a set of n noisy images I1, . . . In. Assume first that
these images are independent realizations from the model
(2.5). We aim at constructing an estimate of the reference
image I �. Without any convex structure on the images, aver-
aging directly the observations is likely to blur the n images
without yielding a sharp “mean shape”. Indeed, computing
the arithmetic mean of a set of images to estimate the mean
pattern does not make sense as the space of deformed images
I ∗ ◦ �1

v and the space of diffeomorphisms are not vectorial
spaces, as shown in Fig. 4. To have a consistent estimation
of I �, one needs to solve an inverse problem as stated in [6]
and [20] derived from the random deformable model (2.4).

In our framework, estimating the pattern I � involves find-
ing a best image that minimizes an energy for the best trans-
formation which aligns the observations onto the candidate.
So, following [37], we will therefore define an estimator of
I � as a minimum of an empirical contrast function Fn (based
on the observations I1, . . . , In) which converges, under mild
assumptions, toward a minimum of some contrast F .

3.1 A New Contrast Function for Estimating a Mean
Pattern

Definition 3 (Contrast Function) Denote by Z = {Z :
[0,1]2 → R} a set of images uniformly bounded (e.g. by
the maximum gray-level). Note that Z does not need to con-
tain the true image I �. Assume also that Z is compact for
the supremum norm on [0;1]2. Then, define VA as the set of
vector fields given by (2.3). An element va in V can thus be
written as

va =
(

K∑

k=1

a1
k e

1
k,

K∑

k=1

a2
k e

2
k

)

, for some ai
k ∈ [−A,A].

Recall that N is the number of pixels. For an image Z ∈ Z ,
a vector field va ∈ VA, and a given reference image I �, we

define the following function f as

f (a, ε,Z) = min
v∈VA

N∑

p=1

(
Ia,ε(p) − Z ◦ �1

v(p)
)2

. (3.1)

Thus f measures the cost of optimally aligning the image
Z onto the image Ia,ε using a diffeomorphic transforma-
tion. Note that this minimum is computed over a finite set of
bounded coefficients [−A;A]2K . Moreover, one can prove
using [42] that this energy is a continuous function of v and
thus of the set of coefficients (ai

k)1�k�K;1�i�2. This mini-
mum is therefore reached at some va ∈ VA. For sake of sim-
plicity, we introduce a notation that corresponds to a dis-
cretized norm over the pixels:

∣∣∣Ia,ε − Z ◦ �1
v

∣∣∣
2

P
=

N∑

p=1

(
Ia,ε(p) − Z ◦ �1

v(p)
)2

.

At last, we define the mean contrast function F given by

F(Z) =
∫

[−A;A]2K×RN

f (a, ε,Z)dP (a, ε)

where dP (a, ε) is the product measure on a and ε.

The interpretation of F(Z) is the following: it measures “on
average” how far an image Z is from the image Ia,ε gen-
erated from our random warping model using an optimal
alignment of Z onto Ia,ε . Our goal is to estimate a mean
pattern image Z� (possibly not unique) which corresponds
to the minimum of the contrast function F when I � is un-
known.

Note that we only observe realizations I1, . . . , In that
have been generated with the parameters a1, . . . , an and
ε1, . . . , εn. To estimate Z�, it is therefore natural to define
the following empirical mean contrast:

Definition 4 (Empirical Mean Contrast) We define the mea-
sure Pn and the empirical contrast Fn as

Pn(a, ε) = 1

n

n∑

i=1

δai ,εi and

Fn(Z) =
∫

f (a, ε,Z)dPn(a, ε).
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Note that even if we do not observe the deformation para-
meters ai and the noise εi , it is nevertheless possible to op-
timize Fn(Z) with respect to Z since it can be written as:

Fn(Z) = 1

n

n∑

i=1

min
vi∈VA

∣∣∣Ii − Z ◦ �1
vi

∣∣∣
2

P
. (3.2)

Note that the expression |I − Z ◦ �1
v|P does not define a

distance between images I and Z since obviously |I − Z ◦
�1

v|P = 0 can occur even if I �= Z. Moreover, this expres-
sion is not symmetric in I and Z.

Moreover, note that in the above equation it is not re-
quired to specify the law PA or the law of the additive noise
to compute the criterion Fn(Z). We then introduce quite nat-
urally a sequence of sets of estimators

Q̂n = arg min
Z∈Z

Fn(Z) (3.3)

and we will theoretically compare the asymptotic behavior
of these sets with the deterministic one

Q0 = arg min
Z∈Z

F(Z). (3.4)

Remark that both sets Q̂n and Q0 are not necessarily re-
stricted to a singleton, but these sets are obviously not in-
variant with respect to any smooth deformation �1

v since
the way we generate diffeomorphisms does not provide any
group structure. Consequently, if Z ∈ Q0, it is not clear
whether Z ◦ �1

v is in Q0 or not. However, for any gener-
ated deformation �1

v , there exists some other vector field v′
such that �1

v ◦ �1
v′ is closed to the identity provided the ba-

sis used to generate the deformation is reach enough. Hence,
even if for any Z ∈ Q0 and any vector field v, Z ◦ �1

v does
not belong necessary to Q0, probably it is possible to find
some other va such that Z ◦ �1

va
is closed enough to Q0.

This uniqueness issues disappear by the addition of a regu-
larization term on the norm of the diffeomorphism as it is
done in Sect. 3.3.

3.2 Convergence of the Estimator

The following theorem gives sufficient conditions to ensure
the convergence of the M-estimator in the sense of Theo-
rem 1. The proof is deferred to Appendix A.

Theorem 1 Assume that conditions A1 and A2 hold, then

Q̂∞ ⊂ Q0 a.s.,

where Q̂∞ is defined as the set of accumulation points of the
Ẑn, i.e. the limits of convergent subsequences Ẑnk

of mini-
mizers Ẑn ∈ Q̂n.

This theorem ensures that the M-estimator, when con-
strained to lie in a fixed compact set of images, converges
to a minimizer Z� of the limit contrast function F(Z). It
seems therefore natural to ask how one chooses the compact
set Z in practice, and also to determine the relationship be-
tween Z� and the mean pattern I �. These problems will be
discussed in the next sections.

Remark that Theorem 1 only proves the consistency of
our estimator when the observed images comes from the true
distribution (2.4). This assumption is obviously quite unreal-
istic, since in practice the observed images generally come
from a distribution that is different from the model (2.5).
In Sect. 3.3, we therefore address the problem of studying
the consistency of our procedure when the observed images
Ii, i = 1, . . . , n are an i.i.d. sample from an unknown distri-
bution on R

N (see Theorem 2).

3.3 Penalization through Basis Expansions

The first M-estimator (3.3) minimizes a rough criterion,
hence the minimum Z∗ may be very different from the orig-
inal image I �, leading to very poor estimate. This behav-
ior is well known in statistics, see for instance [36], and
the empirical mean contrast (3.2) has often to be balanced
by a penalty which regularizes the matching criterion. In
a Bayesian framework, it is well known that this penalized
point of view can be interpreted as a special choice of a prior
distributions. In nonparametric statistics, this regularization
often takes the form of a penalized criterion which enforces
the estimator to belong to a specific space satisfying appro-
priate regularity conditions. In our setting one needs to con-
trol both the smoothness of the estimated mean pattern and
the amount of deformation allowed to align a set of images.

3.3.1 Penalization on the Deformations

To impose regularity on the deformations, we propose to add
a penalty term to the matching criterion to exclude unlikely
large warping (see e.g. [2]). For this, let � a symmetric pos-
itive definite matrix, and define

pen1(v) =
2∑

i=1

K∑

k,k′=1

ai
k�k,k′ai

k′ .

This choice for pen1 means that one can incorporate spa-
tial dependencies through the use of the matrix �. Choosing
such a penalty function implies that we do not assume any-
more that all deformations have the same weight, as done in
the original definition of Fn(Z).

3.3.2 Penalization on the Images

To control the smoothness of the mean pattern, we have cho-
sen to expand the images Z ∈ Z into a set of wavelet ba-
sis functions (ψλ)λ∈�, since these functions are well suited
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for image processing (see e.g. [27]) ). Here, the set � can
be finite or not. This means that any image Z can be writ-
ten as Z = Zθ =∑λ∈� θλψλ, where the θλ’s are the coef-
ficients of Z in the wavelet basis. Estimating a noisy image
expanded in a wavelet basis is generally done via an appro-
priate thresholding of its wavelet coefficient, and it is well
known (see [3, 25]) that soft-thresholding estimator corre-
spond to the use of the following penalty function on the
θλ’s

pen2(θ) =
∑

λ∈�

|θλ|.

Soft-thresholding estimators enable to incorporate some
sparsity constraint on the set Z and have good properties for
image smoothing. We could have chosen to follow some de-
composition in some reproducing kernel Hilbert space with
a finite set of control points as in [1]. But to the best of
our knowledge, the effect of penalization in RKHS with a
quadratic penalty is not really well suited to image analy-
sis, whereas soft-thresholding methods have been shown to
produce sparse representation of an image in a wavelet basis
and have thus extremely good approximation and statistical
properties (see e.g. [27]).

Note that other choices of penalty can be studied for prac-
tical applications. In what follows, we provide a general con-
sistency result that is stated for general penalties. Let λ1

and λ2 be two smoothing parameters that we use to bal-
ance the contribution of the empirical mean contrast (3.2)
and the penalties. Then, define the following penalized esti-
mator Ẑn =∑λ∈� θ̂λψλ, with

θ̂n ∈ arg min
θ∈R�

1

n

n∑

i=1

min
vi∈VA

(|Ii − Zθ ◦ �1
vi

|2P + λ1pen1(vi))

+ λ2pen2(θ). (3.5)

The above minimum may not be unique. However, some
special conditions on λ1, λ2 and � could ensure uniqueness
of θ̂n but studying such issue is beyond the scope of this
paper.

Note that high values of λ1 and λ2 impose further regu-
larity constraints on the mean pattern and the deformations.
The numerical advantages of incorporating such penaliza-
tion terms are studied in Sect. 6.3. The effects of adding such
extra terms can also be studied from a theoretical point of
view. If the smoothing parameters λ1 and λ2 are held fixed
(they do not depend on n) then it is possible to study the
converge of θ̂n as n grows to infinity under appropriate con-
ditions on the penalty terms and the set �.

More precisely, we address now the problem of studying
the consistency of our M-estimator when the observed im-
ages (viewed as random vectors in R

N ) come from an un-
known distribution P , that does not necessarily correspond

to the model (2.5). For sake of simplicity we still use the
notation f introduced in (3.1). However within a penalized
framework with unknown P , the dependency on ε disap-
pears, and f is now defined as

f (I,Zθ ) = min
v∈VA

[
‖I − Zθ ◦ �1

v‖2
P + λ1pen1(v)

]

+ λ2pen2(θ), (3.6)

where λ1, λ2 ∈ R
+, pen1(v) := pen1(a) : R

2K → R
+, and

pen2(θ) : R
� → R

+. For any θ that “parametrizes” the im-
age Zθ in the basis (ψλ)λ∈�, let F denote the general con-
trast function

F(Zθ ) =
∫

f (I,Zθ )dP (I), (3.7)

and Fn the empirical one defined as

Fn(Zθ ) = 1

n

n∑

i=1

f (Ii,Zθ ).

The following theorem, whose proof is deferred to Appen-
dix A, provides sufficient conditions to ensure the consis-
tency of our estimator in the simple case when F(Zθ ) has
a unique minimum at Zθ� for θ ∈ , where  ⊂ R

� is a
compact set, and � is finite.

Theorem 2 Assume that � is finite, that the set of vector
fields v = va ∈ V is indexed by parameters a which belong
to a compact subset of R

2K , that a �→ pen1(va) and θ �→
pen2(θ) are continuous. Moreover, assume that F(Zθ ) has
a unique minimum at Zθ� for θ ∈ , where  ⊂ R

� is a
compact set. Finally, assume that the basis (ψλ)λ∈� and the
set  are such that there exists two positive constants M1

and M2 which satisfy for any θ ∈ 

M1 sup
λ∈�

|θλ| � sup
x∈[0,1]2

|Zθ(x)| � M2 sup
λ∈�

|θλ|. (3.8)

Then, if P satisfies the following moment condition,

∫
‖I‖2∞,NdP (I) < ∞,

where ‖I‖∞,N = maxp=1,...,N |I (p)|, the M-estimator de-
fined by Ẑn = Z

θ̂n
where

θ̂n ∈ arg min
θ∈

Fn(Zθ )

is consistent for the supremum norm of functions defined on
[0,1]2 i.e.

lim
n→∞‖Ẑn − Zθ�‖∞ = 0 a.s.
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Two remarks on the last theorem can be made. First, the
hypothesis on the uniqueness assumption can be substituted
assuming that the set of minimum of F does not have some
accumulation point:

∃η > 0 ∀θ such that ‖θ� − θ‖ < η,

θ �= θ� F (Zθ�) < F(Zθ ).

Secondly, the hypothesis on the existence of M1 and M2 will
be here rather trivial since we will decompose our images in
some finite wavelet basis �.

4 Discussion

4.1 Comparison with a Bayesian Approach

We discuss here the differences and the similarities between
our approach and the Bayesian model proposed in [1].

First, assume that we do not use a penalization term on
the deformations and images (λ1, λ2 are set to 0). Then, an
important question raised by our model is the problem of de-
ciding if the true template I �, used to generate the observed
images, belongs to the set of minimizers of the limit criterion
F(Z) i.e. if I � ∈ Q0 where Q0 = arg minZ∈Z F(Z). Obvi-
ously, the set Q0 depends both on the choice of the com-
pact set Z of candidate images, and on the level of noise.
Determining the distance between an image Z� ∈ Q0 and
the mean pattern I � is rather difficult in the presence of
additive noise. Thus, if we consider a simple model with-
out additive noise, then our limit criterion becomes F(Z) =
Ea minv∈VA

|Ia −Z ◦�1
v|2P where Ia = I � ◦�1

va
. Therefore,

if the set Z contains I �, then the set of global minima of
F(Z) is the “orbit of I �” with respect to the “action” of �1

v .
In this setting our procedure is consistent in the sense as the
number of images grows to infinity then the estimated im-
age is the mean pattern I �. Of course here, we do not have
any group action since the composition �1

v1
◦�1

v2
is not nec-

essarily equal to some �1
w . We thus use the “orbit” term to

design all images I such that I = I � ◦ �1
v .

Now, using penalization terms, the limit criterion be-
comes

F(Zθ ) = Ea min
v∈VA

∣∣∣Ia − Zθ ◦ �1
v

∣∣∣
2

P
+ λ1pen1(v)

+ λ2pen2(θ).

In this case, I � is not guaranteed to be a minimizer of F but
arguing as in Sect. 3.1, if the basis is rich enough, we believe
that arg minF is closed enough to I �.

The approach proposed in [1] can also be interpreted
from the M-estimation point of view. Note that their proofs
of consistency relies on Wald’s theorem which is a clas-
sical technique to prove the convergence of M-estimators,

see e.g. [37]. Their estimated mean template is obtained via
the minimization of an empirical criterion Gn(θ) depend-
ing on an image Z = Zθ =∑B

b=1 θbψb that is decomposed
into a set of basis functions ψb,b = 1, . . . ,B : R

2 → R. It
is shown that as n grows to infinity then arg minθ∈ Gn(θ)

converges to the set arg minθ∈ G(θ) where G(θ) corre-
spond to the limit of Gn(θ) and  is some compact set of pa-
rameters. However, their construction of the criterion G(θ)

and Gn(θ) is derived through Bayesian arguments, which
therefore leads to different matching functionals. More pre-
cisely, in our notations their Bayesian model is the following

I (p) = I ∗(p − uβ(p)) + σε(p), p = 1, . . . ,N, (4.1)

where ε(p) ∼i.i.d. N(0,1), I ∗(p) =∑B
b=1 θ∗

b ψb(p), and uβ

is a deformation field parametrized by set of coefficients β .
If a Gaussian prior is set on β ∼ N(0,�) (which yields ran-
dom deformations), then [1] propose to estimate the coeffi-
cients θ� via maximization of the incomplete likelihood (for
simplicity we assume hereafter that � and σ are known):

q(I |θ) ∝
∫

e− 1
2 |I−Zθ,β |2

P − N
2 log(2πσ 2)− 1

2 βt�−1βdβ, (4.2)

where Zθ,β(p) =∑B
b=1 θbψb(p − uβ(p)) for each pixel p.

This yields the following MAP estimator

θ̂n = arg min
θ∈

Gn(θ) = arg min
θ∈

−1

n

n∑

i=1

logq(Ii |θ)

and their limit criterion is thus of the form

G(θ) = −E logq(I |θ),

where the expectation is taken over random image I follow-
ing the model (4.1). They also consider the case where the
observed images follows another distribution P which is not
necessarily the one induced by (4.1), and they study the con-
sistency of their M-estimator in this case.

Explicit computation of q(I |θ) requires an integration
over the hidden variables β which can be done numerically
via an EM algorithm, but no analytical formula of this in-
tegral is available. Moreover, a natural question is to ask
whether the true parameter θ� used to generate the observed
images is a minimizer of G(θ). This problem still remains an
open issue since such minimizers depend on θ� in a compli-
cated way, through the law of the noise and the deformation.
Note that this problem is also not solved in [1] or [4] since
their consistency theorems only assert that θ̂n converges to a
minimizer of G(θ).

However, following the arguments in Appendix B of [1],
one can approximate the integral (4.2) by

logq(I |θ) ≈ U(β∗), (4.3)
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Fig. 5 An example of multiscale B-splines φj,�, � = 0, . . . ,2j − 1 with J = 3 and s = 3, ordered left to right, j = 0,1,2

where U(β) = − 1
2 |I − Zθ,β |2P − N

2 log(2πσ 2) − 1
2βt�−1β

and β∗ = arg minU(β). Therefore, using the above approx-
imation and if we eliminate the terms not depending on θ

and β , then

θ̂n ≈ arg min
θ∈

1

n

n∑

i=1

min
βi

(∣∣Ii − Zθ,βi

∣∣2
P + βt�−1β

)

and the limit criterion is therefore of the form:

G(θ) ≈ E min
β

(∣∣I − Zθ,β

∣∣2
P + βt�−1β

)
,

where again the expectation is taken over a random image I

following some distribution P . Hence, using a first order ap-
proximation for the integration over the hidden variable β ,
G(θ) is exactly our matching criterion F(Z) (if the image Z

is decomposed into some set of basis functions), with an ad-
ditional penalty βt�−1β on the parameters controlling the
deformation. These arguments illustrate the classical inter-
pretation of MAP estimate as a penalized likelihood estima-
tor for suitable choices of the a priori distributions. Again,
if we consider a simplest model with no additive noise and
do not impose any penalization on the parameters of the de-
formation, then θ� ∈ arg minG(θ). However, if one keeps
the penalization term βt�−1β , then in the absence of noise
there is no reason to believe that θ� ∈ arg minG(θ) since the
minimizers of G(θ) depends on the balance between image
alignment and the amount of deformation.

4.2 Choice of the Basis Functions for the Vector Field and
the Regularizing Parameter λ1 and λ2

Our estimation procedure obviously depends on the choice
of the basis functions ek = (e1

k, e
2
k) that generate the vec-

tor fields. In our simulations, we have chosen to use ten-
sor products of one-dimensional B-spline organized in a
multiscale fashion. Let s be some integer that represents a
given order of the B-spline and, let J � 1 be some pos-
itive integer. For each scale j = 0, . . . , J − 1, we denote

by φj,�, � = 0, . . . ,2j − 1 the 2j the B-spline functions ob-
tained by taking 2j +s knots points equispaced on [0,1] (see
[11]). This gives a set of functions organized in a multiscale
fashion, and in our numerical experiments we took s = 3
and J = 3 as shown in Fig. 5. Note that as j increases the
support of the B-spline decreases which makes them more
localized.

For j = 0, . . . , J − 1, we then generate a multiscale basis
φj,�1,�2 : [0,1]2 → R, �1, �2 = 0, . . . , J −1 by taking tensor
products the φj,�’s i.e.

φj,�1,�2(x1, x2) = φj,�1(x1)φj,�2(x2).

Then, we take ek = ej,�1,�2 = (φj,�1,�2, φj,�1,�2) : [0,1]2 →
R

2. This makes a total of K =∑J−1
j=0 22j = 22J −1

3 basis
functions.

The assumptions of Theorem 2 impose that the coeffi-
cients used to compute the vector field belong to a compact
subset of R

2K , and this is mainly made to simplify the proof
of the theorem. One could choose to control the amplitude
of the deformations by controlling the size of this compact
set which would then be a way to incorporate some regular-
ization. However, we prefer to leave the size of this set very
large (in practice we do not use any size constraint), and
the amplitude of the deformations is rather control by the
penalty term λ1pen1(v) in (3.6). The parameters λ1 can be
used to prevent huge or not-very-smooth deformations when
searching for an optimal matching. Finding a data-based
choice for λ1 is a challenge and to the best of our knowledge
there does not exist an automatic method for choosing such
regularizing parameter in image warping problems, but we
plan to study this in a future work. Instead, we provide in
our simulations various examples illustrating the influence
of this parameter (see Sect. 6).

For the choice of λ2, we took the so-called universal
threshold (see e.g. [3])

λ2 = 2σ
√

2 ∗ log(N),

where σ denotes some estimation of the standard deviation
of the additive noise and N is the number of pixels. Univer-
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sal thresholding is a standard choice in image denoising that
has good theoretical and numerical properties, and σ can be
easily derived from the wavelet coefficients of a noisy image
at high frequencies resolution (see [27] for further details).

4.3 Further Refinements of the Model

Our matching criterion to compare the alignment of two im-
ages is based on the sum of the square difference between
the pixels of the images, which corresponds somehow to a
Gaussian prior for the additive noise ε. However, one can
use other matching criterion to compare images. Indeed one
can check that it is possible to adapt our proofs of consis-
tency of the M-estimators, if one replaces the discretized
norm over the pixels:

∣∣∣Ia,ε − Z ◦ �1
v

∣∣∣
2

P
=

N∑

p=1

(
Ia,ε(p) − Z ◦ �1

v(p)
)2

by any criterion of the form L(Ia,ε,Z ◦ �1
v) where L :

R
N × R

N → R
+ is a real function which satisfies appro-

priate smoothness and convexity conditions.
Moreover, a set images may also present intensity varia-

tions, but our model does not take this into account. A nice
extension for future investigation would be to incorporate an
amplitude parameter in the estimation procedure to account
for possible intensity variations between images.

5 Practical Computation of the M-Estimator

5.1 Algorithm for Mean Pattern Estimation

We describe an iterative procedure to compute the penalized
M-estimator (3.5) . Given n images I1, . . . , In, recall that we
have to find an image Ẑn =∑λ∈� θ̂λψλ, with

θ̂n = arg min
θ∈R�

1

n

n∑

i=1

min
vi∈VA

(∣∣
∣Ii − Zθ ◦ �1

vi

∣∣
∣
2

P
+ λ1pen1(vi)

)

+ λ2pen2(θ).

In order to handle the two minimization steps, we use an
alternative iterative procedure that works as follows:

Initialization m = 0: start with an initial guess Z(0). The
choice of Z(0) is discussed in Sect. 5.3.

Iteration m � 1: repeat the following steps:

• for i = 1, . . . , n, compute an optimal deformation �âm
i

which corresponds to the vector field

vâm
i

= arg min
vi∈V

∣∣
∣Ii − Z(m−1) ◦ �1

vi

∣∣
∣
2

P
+ λ1pen1(vi). (5.1)

One may wonder how to compute such a minimum. In
what follows, we will provide a gradient descent algo-
rithm to solve this issue (see Sect. 5.2)

• Then, compute the image Z̃(m) that minimizes:

Z̃(m) = arg min
Z∈Z

n∑

i=1

∣∣
∣Ii − Z ◦ �âm

i

∣∣
∣
2

P
︸ ︷︷ ︸

:=Em

.

If one does not constrained the images Z to belong to a
specific set, then Z̃(m) can be easily found using a change
of variable since it can be remarked that

Em �
n∑

i=1

∫

[0;1]2

(
Ii − Z̃(m) ◦ �âm

i

)2
(x)dx.

The last approximation is due to the fact that Em is com-
puted for the discrete measure on the pixels of the im-
age, and not exactly on the whole set [0;1]2. Changes of
variables in the last n integrals by u = �âm

i
(x) yield the

expression:

Em �
n∑

i=1

∫

[0;1]2

(
Ii ◦ �âm

i
− Z̃(m)

)2
(u)

× |det Jac(�−1
âm
i
)(u)|du

�
∫

[0;1]2

n∑

i=1

(
Ii ◦ �âm

i
− Z̃(m)

)2
wi(u)du.

The solution of this least square problem is the classical
weighted average using the coefficients wi . The value of
the solution Z(m) at any pixel p, is thus given by

Z̃(m)(p) =
∑n

i=1 wi(p)Ii ◦ �−1
âm
i
(p)

∑n
i=1 wi(p)

, (5.2)

where wi(p) = |det Jac(�−1
âm
i
)(p)|.

Then, apply wavelet soft thresholding with universal
threshold to Z̃(m) to finally obtain a denoised image Z(m).

5.2 A New Matching Algorithm between Two Images

The minimization step (5.1) is a crucial point in the above
described algorithm. It consists of finding an optimal defor-
mation between two images using a specific parametrization
of a set of vector fields. Below, we describe a gradient de-
scent algorithm with an adaptive step to perform the mini-
mization (5.1) which yields a new matching algorithm be-
tween two images.

To simplify the presentation, we took in our simulations
the identity matrix for � in the formulation of pen1. Remark
that this choice does not take into account the presence of
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correlations between the element of the spline basis. An-
other choice would be � = G−1 where G is the Gram matrix
with entries given by inner products of the spline basis func-
tion ei

k . This choice would correspond to a uniform prior on
deformations.

Given two images I and Z, one thus needs to optimize
the following term

�I,Z =
∣∣∣I − Z ◦ �1

va

∣∣∣
2

P
+ λ1

2∑

i=1

K∑

k

|ai
k|2

with respect to a = (ai
k)k,i , k = 1 . . .K and i ∈ {1,2}. In

the above expression, va is given as (2.3). To implement a
gradient descent algorithm, one needs to compute

∂�I,Z

∂ai
k

= −2
N∑

p=1

[I (p) − Z(�1
va

(p))]

×
〈
∇Z�1

va
(p);

∂�1
va

(p)

∂ai
k

〉
+ 2λ1a

i
k, (5.3)

for all k = 1, . . . ,K and i = 1,2. Now, suppose without loss
of generality that i = 1. Then for any pixel p:

∂�1
va

(p)

∂a1
k

= ∂[∫ 1
0 va(�

t
va

(p))dt + p]
∂a1

k

=
∫ 1

0

⎛

⎜
⎝

e1
k(�

t
va

(p)) +∑K
α=1 a1

α

〈∇e1
α

�t
va (p)

,
∂�t

va
(p)

∂a1
k

〉

∑K
α=1 a2

α

〈∇e2
α

�t
va (p)

,
∂�t

va
(p)

∂a1
k

〉

⎞

⎟
⎠dt.

As
∂�0

va
(p)

∂a1
k

vanishes, ψk,1,1(p) = ∂�1
va

(p)

∂a1
k

is solution at time

t = 1 of the following O.D.E.:

dψk,1,t (p)

dt

=
⎛

⎜
⎝

e1
k(�

t
va

(p)) +∑K
α=1 a1

α〈∇e1
α

�t
va (p)

,ψk,1,t (p)〉
∑K

α=1 a2
α〈∇e2

α
�t

va (p)
,ψk,1,t (p)〉

⎞

⎟
⎠

with initial condition ψk,1,0(p) = 0. To get a gradient de-
scent algorithm, one uses the above O.D.E. to evaluate the
gradient (5.3). The computation of the optimal choice of the
ai
k’s follows from a classical gradient descent algorithm with

an adaptive step starting from (ai
k)k,i = 0.

This gradient descent may fall into a local minima since
our criterion may not be convex. However, our hierarchical
choice for the splines described in Sect. 4.2 induces a kind

of multi-scale framework which gives an algorithm that per-
forms well in practice. At last, we have used the stopping
criterion of [18] to end the gradient descent algorithm.

5.3 Initialization of the Algorithm

The simplest to initialize our iterative algorithm is to take the
naive estimate Z

(0)
naive = I1+···+In

n
. However, this may give

a very poor preliminary estimator which may considerably
affect the quality of the mean pattern.

Alternatively, we have implemented a new matching cri-
teria proposed by [14, 39] to find rigid transformations be-
tween a set of curves. In our setting, this criteria is a global
measure of how well a set of images are aligned and can be
written as matching function Mn : An → R

+ given by

Mn(a
1, . . . , an) = 1

n

n∑

i=1

∣∣∣∣∣
Ii ◦ �1

vi
a
− 1

n

n∑

i′=1

Ii′ ◦ �1
vi′
a

∣∣∣∣∣

2

P

+ λ1

n∑

i=1

‖ai‖2
R2K ,

where A is a subset of R
2K used to parametrize the vec-

tor fields. The above criterion Mn is closely related to Pro-
crustes analysis which is classically used for the statistical
analysis of shapes (see e.g. [12]) and the registration of a set
of curves onto a common target function. However, here the
common target function is directly given by the average of
the registered images given a possible choice of deformation
parameters a1, . . . , an. An initial image can then be defined
by searching

(â1, . . . , ân) = arg min
(a1,...,an)∈An

Mn(a
1, . . . , an)

and then by taking

Z(0)∗ = 1

n

n∑

i=1

Ii ◦ �1
v
âi

. (5.4)

Surprisingly, our simulations show that this initial estima-
tor Z

(0)∗ which will be referred to as the direct mean, al-
ready gives very accurate results. Note that the gradient of
the criterion Mn can be computed as described in Sect. 5.2,
and thus we have again chosen to compute the coefficients
(â1, . . . , ân) via a gradient descent algorithm with an adap-
tive step.

5.4 Convergence of the Numerical Scheme

The approximation (4.3) is used in [1] to simplify the M-
step in the EM-algorithm used to compute numerically
the minimizer of the incomplete log-likelihood Gn(θ) =∑n

i=1 logq(Ii |θ) (this is referred to as fast approximation
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Fig. 6 Naive mean (lower left image), direct mean Z
(0)
� (lower middle image) and mean pattern Z(3) (lower right image) based on 20 images of

the digit “2” (upper rows)

with modes in [1]). This simplification yields a similar iter-
ative algorithm to the one used in this paper. However, the
fast approximation with modes used in [1] does not guaran-
tee to obtain an iterative scheme which converges to a mini-
mizer of Gn(θ). To overcome this problem, a stochastic EM
algorithm is proposed in [4] yielding an iterative procedure
which is shown to converge to the true MAP estimator. In
our approach, we also use an alternative scheme to find a
minimizer of the empirical contrast function Fn(Z), but this
iterative procedure follows directly from the formulation of
our criteria via a double minimization. As we do not use any
approximation of the functional Fn(Z) to derive this alter-
native scheme, we believe that the sequence of images Z(m)

(see Sect. 5) is likely to give a good approximation of Ẑn

as m grows to infinity although this remains to be proved
rigorously. Moreover, in the next section we discuss a new
matching criterion to initialize our iterative algorithm which
gives surprisingly good results.

6 Numerical Results

Recall that in all our simulations, we used the hierarchical
basis with K = 22J −1

3 = 21 using s = 3 and J = 3 as de-
scribed in Sect. 4.2.

6.1 A Real Example (Mnist Database)

First we return to the example shown previously on hand-
written digits (mnist database). As these images are not very
noisy, the denoising step via wavelet thresholding does not
improve the results. A value of λ1 = 10 gave good results
but more discussion on the influence of this parameter can
be found in the next section of faces averaging.

In Fig. 6, we display the naive mean Z
(0)
naive and the di-

rect mean Z
(0)∗ the obtained from n = 20 images of the digits

“2”. Surprisingly the result obtained with Z
(0)∗ is very satis-

factory and is a better representative of the typical shape of
the digits “2” in this database. In Fig. 6, the image Z(3) ob-
tained after 3 iterations of the algorithm is also displayed
with Z(0) = Z

(0)∗ . We wee that the iterations slightly im-
proves the initial result. Moreover, note that Z(3) has sharper
edges than the naive mean which is very blurred.

In Fig. 7 we finally display the comparison between the
naive mean, the direct mean and the mean pattern Z(3) (ini-
tialized with Z(0) = Z

(0)∗ ), for all digits between 0 and 9
with 20 images for each digit. One can see that our approach
yields significant improvements. In particular it gives mean
digits with sharp edges.

6.2 Influence of the Gradient Descent and the Initialization

In Fig. 7, the second and third rows are almost identical,
which validates our initialization using the direct mean,
see (5.4), but not the rest of the framework. Indeed, one may
wonder if the iterative process by gradient descent does not
get stuck into a local minima and if Z(n) is really better than
the initialization Z(0). To validate our framework, we dis-
play in Fig. 8 an example of the improvements by the iter-
ative process when starting from an initialization with the
naive mean instead of the direct mean (5.4) for digits “8”
and “9”.

6.3 Influence of the Choice of λ1 (Olivetti Database)

Influence of λ1 We illustrate the role of the parameter λ1

which controls the amount of deformation with a problem a
faces alignment. Figure 9 represents two images of the same
subject with varying lighting and facial expression. These
images are taken from the Olivetti face database [31] and
their size is N1 = 98 and N2 = 112. The results of the gra-
dient descent algorithm with various values for λ1 are given
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Fig. 7 Naive mean (first row), direct mean (second row) and mean pattern Z(3) (last row) based on 20 images on the mnist database

Fig. 8 First row: naive mean
for digits “8” and “9”, second
row: Z(5) obtained by starting
from an initialization Z(0) by
the naive mean (images of the
first row)

in the second row of Fig. 9. As expected large values of λ1

yield small deformations while a small value allows much
more flexible diffeomorphic warping.

Mean Images on Olivetti Database For each subject of the
Olivetti database, n = 9 images have been taken with vari-
ous facial expression. Figure 10 shows the faces used in our
simulations.

In Fig. 11 we present some mean pattern obtained with an
iterative algorithm with Z(0) = Z

(0)∗ , λ1 = 1000, and com-
pare them with the corresponding naive mean. Obviously
our method clearly improves the naive estimate, and yields
satisfactory average faces especially in the middle of the im-
ages. However, some parts along the image boundaries in
the second row of Fig. 11 are still slightly blurred. This is
due to the fact that the basis functions that we have chosen
are vanishing along image boundaries (see Fig. 5). This can
be improved by incorporating other basis functions to allow
more flexible warping along image boundaries, but we pre-
fer to leave this example to illustrate the influence of the
choice of the basis functions.

6.4 A Simulated Example

In this section, we generate some simulated noisy images
to judge the quality of the method when the true image to
recover is known. The reference image I ∗ is the Shepp-
Logan phantom image (see [21]) of size N1 × N2 with
N1 = N2 = 128 shown in Fig. 12. We have then simulated

n = 20 noisy and randomly warped images from I �. How-
ever, the random deformations are generated via homoge-
neous vector fields that are not expressed in the basis ek ,
k = 1, . . . ,K to illustrate the robustness of the method via
a kind of mis-specification of the model. These vector fields
are generated by a finite linear combination of Gaussian ker-
nels with random amplitudes and random locations follow-
ing a uniform distribution on a subset of [0;1]2.

In Fig. 13, we display the direct mean Z
(0)∗ followed by

wavelet thresholding obtained from these 20 images with
various values of λ1. Again, these initial estimates are very
accurate estimate of the original template shown in Fig. 12.
In this example running the iterative algorithm does not im-
prove the results, and this can be explained by the fact the
initial estimate is already very good. These simulated data
tend thus to show that our method is also somehow robust
to mis-specification of the model since we recall that the
random vector fields used for the simulations have been not
constructed from the multi-scale B-spline basis described
previously.

6.5 Application to Image Clustering and Classification

Clustering We finally end this section on numerical exper-
iments by showing an example of clustering using the k-
means algorithm (see e.g. [26]). To cluster a set of images
by the k-means algorithm one must choose a proper distance
to compare images and a way of calculating the mean of a
cluster. Given two images I1 and I2 we define a “distance”
between them using diffeomorphic warping as follows (with
λ1 = 10):

d(I1, I2) = min
va∈V

∣∣
∣I1 ◦ �1

va
− I2

∣∣
∣
2

P
+ λ1‖a‖2

R2K .

Then, for a set images belonging to the same cluster, the
mean is defined as Z(4) with initialization by direct mean.
In Fig. 14, we give an example of k-means clustering with
two classes for the digit “2” of the images of the training
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Fig. 9 First row: two images of the same subject taken from the Olivetti database of faces. Second row: warping of the left image onto the right
image with (from left to right) varying values of λ1 = 10000, 1000, 100, 10, 1

Fig. 10 9 samples of the
Olivetti database for 4 subjects

set. One can see that the algorithm gives two different mean
clusters Z(m) which correspond to digits “2” with or without
a loop. Again the results are visually very good. Finally, we
display in Figs. 15,16 and 17 the clusters for the images of
the digit “2”, “3” and “5” of the training set. In all Figures
the upper left image is the mean Z(4) of the cluster. One can
see that the images are classified according to their vertical
orientation.

Classification Even if our goal is not to implement a new
classification method for image recognition, one can easily
adapt our method to reach an automatic supervised classi-
fication procedure. We consider the 10 classes of the Mnist
database and we compute a clustering of two subsets of each

class. On each cluster, the mean patterns are computed and
we use them to classify images belonging to a test set con-
sisting of 100 images of digits between 0 and 9 which makes
on overall set of 1000 images. Then, a simple criterion based
on the norm |.|P is used to classify these data. The decision
rule for any image I in the test set follows naturally from
our minimization algorithm:

d(I) = arg min
i=1...10

min
va∈VA

∣∣∣I ◦ �1
va

− Îi

∣∣∣
2

P
+ λ1‖a‖2

R2K .

We use here λ1 = 10 as it performed well in our simu-
lations. Here, d(I) denotes the predicted class for I in the
test set. The computation of d(I) simply consists in warp-
ing the image I to the closest image among Î1, . . . , Îq . The
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Fig. 11 Example of face averaging for 4 subjects from the Olivetti database. First row: naive mean, second row: mean pattern Z(7)

Fig. 12 Simulated example:
seven deformed and noisy
images of the Shepp-Logan
phantom (out of a sample of 20
images). The upper left image is
the unknown template I �

Fig. 13 Naive mean (right image), and direct mean Z
(0)∗ followed by wavelet thresholding with (from left to right) λ1 = 1000, 500, 100, 10
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rule d(I) will be referred to as classification with warping
in what follows.

The computational cost of the decision rule is low since
the ten mean images Îi , i ∈ {0, . . . ,9} of the ten classes are
computed off-line with the training set. Indeed, computing
the decision d(I) is equivalent to run 10 matching algo-
rithms with our gradient method.

To evaluate the performances of this classification rule,
we have compared its misclassification rate with those of
two other approaches:

• Naive classification: simply take the naive mean for each
class as a typical representative of the images within a
class. Then, for a new image I of the training set, take

Fig. 14 K-means clustering for the 20 images for the class of digit 2
of the training set

the following classification rule simply based on the norm
|.|P (without any warping)

dnaive(I ) = arg min
i=1...q

∣∣∣I − Î naive
i

∣∣∣
2

P
.

• Support vector machine (SVM) classification: we have a
multi-class classification problem. Basically, SVM clas-
sifiers can only solve binary classification problems (see
e.g. [32, 35]). To allow for multi-class classification, we
have used the algorithm implemented in the R library
e1071 [10] that uses the one-against-one technique by
fitting all binary subclassifiers and finding the correct
class by a voting mechanism (see also [19] for gentle in-
troduction to SVM classification). Note that in the case
of SVM classification, the images are simply considered
as vectors in R

N and that the spatial dependency of the
pixels is thus not taken into account.

The parameters of the SVM have an important influ-
ence on the accuracy of the prediction. They have been
set as follows: we use a Gaussian kernel (RBF) as it per-
forms generally better than polynomial kernels. The sev-
eral parameters (margin parameter C and variance para-
meter σ 2) has been set using a tuning step of cross val-
idation to obtain the best performance as possible. This

Fig. 15 Two clusters obtained by K-means clustering for the 20 images for the class of digit “2” of the training set

Fig. 16 Two clusters obtained by K-means clustering for the 20 images for the class of digit “3” of the training set
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Fig. 17 Two clusters obtained by K-means clustering for the 20 images for the class of digit “5” of the training set

Table 1 Classification error
rate on the test sample for the
mnist dataset

Naive classification Classification with warping Classification with warping after clustering SVM

30.2% 15.3% 8.6% 21.3%

can be easily performed with the tune function of the R
library e1071.

In Table 1, we give the mis-classification rate over the
1000 images of the test samples for the two classification
methods described above and our method based on warping
before and after clustering with K-means. The classification
with warping clearly gives the best result. This seems nat-
ural as this rule is the only one which takes into account
the spatial local deformations that may exist between simi-
lar images. One may argue that a classification rate of 15.3%
is not very satisfactory and that much better rates of classi-
fication have been obtained for this database (see e.g. [24]).
However, remark first that we have only used 20 images per
class for the training set which is very small. Secondly, we
only want to show that taking into account the spatial vari-
ability due to the presence of local deformations between
images may improve standard classification rules. At last,
we can largely improve this performance using several clus-
ters to describe each class as pointed in third column of Ta-
ble 1 (8.6% classification error rate).

Finally, note that classifying images using the distances
to the orbit generated by the deformation on the learned
templates for each class is questionable, and seems to give
not optimal results when compared to the performances ob-
tained by [5] with small training sets of the MNIST data-
base. Some further work is certainly needed to improve
these results by using for example non-linear edge detectors
features as in [5].

7 Conclusion and Perspectives

We end this paper by discussing several theoretical and com-
putational aspects of our approach. First remark that we have
built a very general model of random diffeomorphisms to

warp images. This construction relies mainly on the choice
of the basis functions ek for generating the deformations.
The choice of the ek’s is relatively large since one is only re-
stricted to take functions with a sufficient number of deriva-
tives that vanish at the boundaries of [0,1]2. Moreover, our
estimation procedure does not require the choice of a pri-
ori distributions for the random coefficients ai

k . Hence, this
model is very flexible as many parameterizations can be cho-
sen.

Nevertheless, some difficult problems remain to be stud-
ied. We have discussed many different ways for incorporat-
ing some regularization in our estimation procedure. How-
ever, all these regularization methods depends on some hy-
perparameters that have to be carefully calibrated, and a
challenging problem is to find data-based choices for these
parameters. Moreover, we have only focused on the estima-
tion of the mean pattern of a set of images, but one would
like to build other statistics like principal modes of varia-
tions of the learned distribution of the images or the defor-
mations. Building statistics going beyond the simple mean
of set of images within the setting of our model is very chal-
lenging for future investigation.

Acknowledgements We are very much indebted to the referees and
the Editor for their constructive criticism, comments and remarks that
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Appendix A

A.1 Proof of Theorem 1

To obtain the asymptotic convergence of (3.3) toward (3.4)
we use the following proposition whose proof follows from
Theorem 6.3 in [6]:
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Proposition 1 Assume that the following two conditions
hold

(C1) the set {f (·, ·,Z) : Z ∈ Z} is an equicontinuous family
of functions at each point of X = [−A;A]2K × R

N .
(C2) there is a continuous function φ : X → R

+ such that∫
X φ(a, ε)dP (a, ε) < +∞, and for all (a, ε) ∈ X and

Z ∈ Z , |f (a, ε,Z)| � φ(a, ε).

Then

Q̂∞ ⊂ Q0 a.s., (A.1)

where Q̂∞ is defined as the set of accumulation points of the
Ẑn, i.e. the limits of convergent subsequences Ẑnk

of mini-
mizers Ẑn ∈ Q̂n.

In what follows, we establish assumptions (C1) and (C2)
which proves Theorem 1.

Let us denote by 〈I1, I2〉 =∑N

p=1 I1(p)I2(p) the “inner
product” on the pixels p and by |I1|P the empirical “norm”
associated to this inner product, where I1, I2 denotes two
images observed at N pixels (and can thus be viewed as
vectors in R

N ). We start with establishing a result on the
regularity of F and Fn.

Lemma 1 F and Fn are continuous over Z with respect to
the supremum norm ‖.‖∞ on [0;1]2.

Proof We first study the map Z → f (a, ε,Z). Consider
(Z1,Z2) ∈ Z 2 and fix any parameters of the deformations
a and noise ε. Remark that for Z ∈ Z , one can find vZ ∈ VA

such that

va,ε,Z = arg min
v∈VA

f (a, ε,Z),

where f (a, ε,Z) = |Ia + ε − Z ◦ �1
v|2P . This minimum is

reached in VA since VA is here described by a bounded and
closed finite dimensional space which is thus compact.

Using the mere definition of vZ1 = va,ε,Z1 and vZ2 =
va,ε,Z2 , we get

|I � ◦ �1
a + ε − Z1 ◦ �1

vZ1
|2P

� |I � ◦ �1
a + ε − Z1 ◦ �1

vZ2
|2P

� 2|I � ◦ �1
a + ε − Z2 ◦ �1

vZ2
|2P

+ 2|(Z1 − Z2) ◦ �1
vZ2

|2P .

Using the coarse following upper bound

|(Z1 − Z2) ◦ �1
v2

|2P � N‖Z2 − Z1‖2∞,

leads to

f (a, ε,Z1) � f (a, ε,Z2) + N‖Z2 − Z1‖2∞.

Finally, this implies that

|f (a, ε,Z1) − f (a, ε,Z2)|2 � N‖Z2 − Z1‖2∞

proving the continuity of the function Z → f (a, ε,Z). We
now return to the functions F and Fn, we have

|f (a, ε,Z)| � 2|I � ◦ �1
a + ε|2P + 2|Z ◦ �1

vZ1
|2P

︸ ︷︷ ︸
≤M

since ‖Z‖∞ is bounded by some constant M independent of
a and ε. Then we get from assumptions A1 and A2 that
∫

[−A;A]2K×RN

[
|I � ◦ �1

a + ε|2P + M
]
dP (a, ε) < +∞,

I � being bounded since it is a Lipschitz on a [0;1]2.
Hence Z → ∫

f (a, ε,Z)dP (a, ε) = F(Z) is contin-
uous using the dominated convergence theorem. By the
same argument, Fn is also continuous, which completes the
proof. �

We next establish the existence of Q0 and Q̂n. From
the definition of the sets of minimizers, Q̂n stands for can-
didates of the estimate of the mean image and Q0 candi-
dates for the mean image. Using the continuity of F and
Fn (Lemma 1) and since Z is compact, we deduce the next
result:

Lemma 2 Q0 and Q̂n are well defined and non empty for
all integer n ∈ N.

We now establish the conditions (C1) and (C2). We study
first the family of functions indexed by Z ∈ Z : {f (., ., z),
z ∈ Z}.

Proposition 2 For any compact set Z , {f (., ., z), z ∈ Z} is
an equicontinuous family of functions of variables (a, ε).

Proof Let a1, a2, ε1, ε2 be such that (for the standard euclid-
ean norm on [−A;A]2K × R

N )

‖(a1, ε1) − (a2, ε2)‖ � δ,

and note vZi
the optimal vector field obtained to match Zi

on Iai ,εi . Hence, for any Z ∈ Z , one have

f (a1, ε1,Z) = |I � ◦ �1
a1

+ ε1 − Z ◦ �1
va1,ε1,Z

|2P
� | I � ◦ �1

a1
+ ε1 − Z ◦ �1

va2,ε2,Z
|2P

� | I � ◦ �1
a2

+ ε2 − Z ◦ �1
va2,ε2,Z

|2P
+ |ε1 − ε2 + I � ◦ �1

a1
− I � ◦ �1

a2
|2P

+ 2〈I � ◦ �1
a2

+ ε2 − Z ◦ �1
va2,ε2,Z

,

ε1 − ε2 + I � ◦ �1
a1

− I � ◦ �1
a2

〉.
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Then, using the fact that the noise is bounded and that the
images in Z are uniformly bounded, we obtain that there is
a constant � such that

f (a1, ε1,Z)

� f (a2, ε2,Z) + 2|I � ◦ �1
a1

− I � ◦ �1
a2

|2P + 2|ε2 − ε1|2P
+ �

(
|I � ◦ �1

va1,ε1,Z
− I � ◦ �1

va2,ε2,Z
|P + |ε2 − ε1|P

)
,

where the last inequality follows from the Cauchy-Schwarz
and the triangular inequalities. Under assumption A2, we get

f (a1, ε1,Z) − f (a2, ε2,Z)

� 2L2‖�1
a2

− �1
a1

‖2 + 2|ε2 − ε1|2P
+ �

(
L‖�1

a2
− �1

a1
‖ + |ε2 − ε1|P

)

� 2L2N‖�1
a2

− �1
a1

‖2∞ + 2|ε2 − ε1|2P
+ �

(
L

√
N‖�1

a2
− �1

a1
‖∞ + |ε2 − ε1|P

)
.

Using results in [42], (v,‖.‖∞) → (�1
v,‖.‖∞) is continu-

ous. Hence under an appropriate choice of δ1 and δ2 such
that

‖a1 − a2‖ � δ1 |ε1 − ε2|P � δ2,

then

|f (a1, ε1,Z) − f (a2, ε2,Z)| � η,

which proves the equicontinuity of {f (., .,Z), Z ∈ Z}, and
completes the proof. �

Thus assumption (C1) is proved. The proof of assumption
(C2) follows from the proof of Lemma 1.

A.2 Proof of Theorem 2

We provide here a proof of consistency of the M-estimator
defined in Theorem 2. Recall that we consider now the more
general case where the images Ii are i.d.d. observations de-
rived from an unknown distribution P on R

N .
First remark that from assumption (3.8) and since � is

finite, the supremum norm ‖ · ‖∞ for functions Zθ on [0,1]2

(with θ ∈ R
� is equivalent to the supremum norm on R

�.
Therefore, by equivalence of norms, any function defined
on the set of images Z = {Zθ, θ ∈ } that is continuous with
respect to the supremum norm ‖ cot‖∞ for functions Zθ on
[0,1]2 is also a continuous function on R

�.
To derive the result of Theorem 2, one can then simply

apply Theorem 5.10 of [38] which provides sufficient con-
ditions for the consistency of M-estimator in general cases.

Recall that for our purpose, we have set

pen1(v) =
2∑

i=1

K∑

k,k′=1

ai
k�k,k′ai

k′ ,

and

pen2(θ) =
∑

λ∈�

|θλ|.

With our notations, this theorem ensures that

lim
n→∞‖Ẑn − Zθ�‖∞ = 0 a.s.,

under the conditions

(B1) {f (.,Zθ ), θ ∈ } is a Glivenko-Cantelli class,
(B2) F(Zθ ) has a unique minimum at Zθ� for θ ∈ .

Condition (B2) is a mere assumption of Theorem 2. The
condition (B1) is somewhat more complicated to establish
and rely on the theory of empirical processes. We proceed
as in Lemma 1 using the compactness assumption for the
parameters a that define the vector fields va . For any Zθ1 and
Zθ2 in Z , and any image I ∈ R

N , we denote by v1(I ) and
v2(I ) the vector fields which yield f (I,Zθ1) and f (I,Zθ2)

i.e.

vk(I ) = arg min
v∈V

[
‖I − Zθk

◦ �1
v‖2

P + λ1pen1(v)
]
,

k = 1,2.

If we denote by f̃ (I,Zθ ) the map f (I,Z) − λ2pen2(θ), we
have

f̃ (I,Zθ1) = ‖I − Zθ1 ◦ �1
v1(I )‖2

P + λ1pen1(v1(I )) (A.2)

� ‖I − Zθ1 ◦ �1
v2(I )‖2

P + λ1pen1(v2(I ))

� N‖Zθ1 − Zθ2‖2∞
+ ‖I − Zθ2 ◦ �1

v2(I )‖2
P + λ1pen1(v2(I ))

� N‖Zθ1 − Zθ2‖2∞ + f̃ (I,Zθ2). (A.3)

The above inequality immediately imply the continuity of
Z �→ f̃ (I,Z) and of course of Z �→ f (I,Z) for any fixed
image I with respect to the norm ‖.‖∞ on Z which estab-
lishes that Z �→ f (I,Z) is continuous, for any image I .

Then the compactness assumption on the set V of vec-
tor fields, and the continuity of pen1, imply that pen1(v) is
uniformly bounded by a constant C1 for v ∈ V . Also, since
pen2(θ) is a continuous function of Zθ , one has that for any
fixed Zθ0 ∈ Z and for any δ > 0, pen2(θ) − pen2(θ0) is uni-
formly bounded by a constant C2 when Zθ ∈ B(Z0, δ), and
this bound is independent of I . Therefore, from the inequal-
ity (A.3), we derive that

sup
Z/‖Z−Z0‖∞�δ

|f (I,Z)| � Nδ2 + N‖I − Z0‖2∞,N

+ λ1C1 + λ2C2,
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which is dominated by a function of I . Since it is assumed
that
∫

‖I‖2∞,NdP (I) < ∞,

hence, on any neighborhood B of an image Z0 ∈ Z ,
supZ∈B |f (.,Z)| is uniformly bounded by an integrable
function (with respect to dP (I)) depending only on I ∈ R

N .
For any θ ∈ , let m be a decreasing sequence of neigh-

borhoods such that
⋂

m m = {θ}. Define fu,m(.) respec-
tively fl,m(.) the supremum, resp. the infimum of f (.,Zθ )

over θ ∈ m:

fl,m(I ) = inf
θ∈m

f (I,Zθ ) and fu,m(I ) = sup
θ∈m

f (I,Zθ ).

Continuity implies that limm→+∞(fu,m − fl,m) =
f (.,Zθ ) − f (.,Zθ ) = 0. Dominated Convergence yields
that limm

∫
(fu,m(I ) − fl,m(I ))dP (I) = 0. Finally, for any

θ ∈  and ε > 0, there exists a neighborhood B = B(θ)

and two functions fu,B and fl,B such that
∫
(fu,B(I ) −

fl,B(I ))dP (I) � ε. Compacity of  implies that there is a
subcollection of such neighborhoods B , which covers , re-
sulting in a finite number of couple of functions (fu,B, fl,B).
Hence for all θ ∈ , write

1

n

n∑

i=1

fl,B(Ii) − ε � 1

n

n∑

i=1

f (Ii,Zθ ) −
∫

f (I,Zθ )dP (I)

� 1

n

n∑

i=1

fu,B(Ii) + ε.

Since the set of functions fu,B and fl,B is finite, we have

sup
B

∣∣∣∣∣
1

n

n∑

i=1

fu,B(Ii) −
∫

fu,B(I )dP (I)

∣∣∣∣∣
� ε,

sup
B

∣∣∣∣∣
1

n

n∑

i=1

fl,B(Ii) −
∫

fl,B(I )dP (I)

∣∣∣∣∣
� ε,

hence

sup
θ∈

∣∣∣∣∣
1

n

n∑

i=1

f (Ii,Zθ ) −
∫

f (I,Zθ )dP (I)

∣∣∣∣∣
� 2ε. (A.4)

From (A.4), {f (.,Z) : Z ∈ Z} is thus a Glivenko-Cantelli
class which shows that (B1) is true, completing the proof of
Theorem 2.
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